

# UNIVERSITÄT LEIPZIG

# **Evolution-based Analysis of functional Protein Annotation**

Anika Groß<sup>1</sup>, Michael Hartung<sup>1</sup>, Toralf Kirsten<sup>1,3</sup>, Erhard Rahm<sup>1,2</sup>

<sup>1</sup> Interdisciplinary Centre for Bioinformatics, University of Leipzig

- <sup>2</sup> Department of Computer Science, University of Leipzig
- <sup>3</sup> Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig http://imise.uni-leipzig.de

http://www.izbi.de http://dbs.uni-leipzig.de

### Motivation

#### **Current State**

- o Various and increasing number of data sources storing molecular biological data, such as Ensembl and SwissProt for protein data
- Annotations: ontology-based and semantic description of biological objects, e.g., proteins are annotated with molecular functions or biological processes
- o Frequent changes of both, data sources about biological objects and ontologies resulting in different versions
  - o Addition of new experimental findings
  - Revision of existing knowledge

#### Problems

Evolution-based influences on dependent software systems and data, e.g., outdated annotations

## **Analysis Results**

#### Evolution of Concepts in GO \*



en T·Bahm E: Analyzing the Evolution Integration in the Life Scie Life Science Ontologi s (DILS), Paris, 2008 nd Mappings. Proc. 5th

#### **Evolution of Protein Data (Human Proteins)**

|                                          | Ensembl    | SwissProt  |
|------------------------------------------|------------|------------|
| Number of proteins 2004                  | 34111      | 10404      |
| Number of proteins 2008                  | 46742      | 20069      |
| Growth rate                              | 1.37 (37%) | 1.93 (93%) |
| Percentage of annotated<br>proteins 2004 | 52%        | 68%        |
| Percentage of annotated<br>proteins 2008 | 79%        | 59%        |

- Significant increase of ontology concepts and proteins from 2004 to 2008
- Add is the dominant operation but there is also a significant number of deletes

#### Quantity Structure Evolution of GO Annotations in Ensembl & SwissProt



- Different evolution (2004 2008) in Ensembl and SwissProt
- Ensembl (SwissProt) has a growth rate of 2.73 (1.96)
- The most frequently used sub-ontology is MF (BP) in Ensembl (SwissProt)

# **Conclusion & Future Work**

#### Conclusions

- Annotations in Ensembl are highly volatile
- Ensembl covers significantly more annotations than SwissProt due to a high amount 0 of additional automatically assigned annotations
- SwissProt is a manually curated data source and especially annotates with "high 0 quality ECs" (author statement and experimental)
- Usage of annotations depends on the purpose of an application ο
  - High quality but lower number of annotations (e.g. Automatic annotation of new biological objects, Computation of ontology mappings)
  - Low quality and very high number of annotations (e.g. Annotation of protein networks with the objective of high coverage)

#### Future Challenges

- Computation of <u>stability values</u> by means of evolutionary information to quantify the degree of evolution in ontologies and protein data

  - to determine the reliability of annotations (additional use of ο Evidence Code information)



#### **Open Questions**

- How different is the evolution in ontologies, protein data and 0 annotations?
- How stable are annotations in different sources?
- Which changes exhibits a single annotation during its evolution process?
- How can quality of annotations be assessed to ensure enhanced quality in further analysis results?

#### Goals

- Quality-based ranking of data sources 0
- Filtering of source-specific annotation data
- Evolution-based quantitative analysis of biological data in the Gene Ontology (GO), Ensembl, SwissProt

"http://www.geneontology.org/GO.evidence

GO:0005737

"negative" annotatior evolution (existed only

1 Add (v<sub>55</sub>) 1 Delete (v<sub>56</sub>)

in one version)

#### Annotation Evaluation by Evidence Codes" (EC)

- o Specifies the type of experiment or analysis that resulted in a GO annotation
- ECs are arranged in a taxonomy describing the reliability of an annotation

#### Evidence Code Taxonomy



#### Example: Cytochrome b5 reductase 4 (SwissProt)

| Concept id | Concept name                                      | GO sub-  | VEA  | Vee  | Vec  | GO:0004128                               |
|------------|---------------------------------------------------|----------|------|------|------|------------------------------------------|
| Concoptia  |                                                   | ontology | - 34 | - 55 | - 50 | 1 Add (v <sub>54</sub> )                 |
| GO:0004128 | cytochrome-b5<br>reductase activity               | MF       | IEA  | TAS  | IDA  | 2 EC-Changes<br>(v 54-v55, v55-v56)      |
| GO:0006091 | generation of precursor<br>metabolites and energy | BP       |      | TAS  | IDA  | "positive" annotation<br>evolution (from |
| GO:0005737 | cytoplasm                                         | CC       |      | TAS  |      | automatically<br>assigned to curator     |
| GO:0003032 | detection of oxygen                               | BP       |      |      | NAS  | IDA Inferred fro                         |
| GO:0016174 | NAD(P)H oxidase                                   | MF       |      |      | IDA  | TAS Traceable                            |

#### Annotation Evolution in different EC Groups



|                               | Ensembl                          | SwissProt                |
|-------------------------------|----------------------------------|--------------------------|
| Highest number of annotations | Automatically assigned (172648)  | Author statement (24394) |
| Highest growth rate           | Automatically assigned (3.85)    | Experimental (18.85)     |
| Degree of automation          | High part of automatic assignent | Mostly manually curated  |

#### Aggregated EC-Changes in SwissProt (2004-2008)

From To Diff 187

What is an EC-Change  $(v_i \rightarrow v_{i+1})$ ?

- $\rightarrow$  Persisting annotation, but its EC is revised from v<sub>i</sub> to v<sub>i+1</sub>
- o Most EC-Changes occur towards IDA (Experimental)
- o Most EC-Changes "leave" TAS (Author Statement)
- o In SwissProt EC-Changes predominantly occur in order to annotate with experimental ECs

