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ABSTRACT 
We present FEVER, a new evaluation platform for entity resolu-
tion approaches. The modular structure of the FEVER framework 
supports the incorporation or reconstruction of many previously 
proposed approaches for entity resolution. A distinctive feature of 
FEVER is that it not only evaluates traditional measures such as 
precision and recall but also the effort for configuring (e.g., pa-
rameter tuning, training) a good entity resolution approach. FE-
VER thus strives for a fair comparative evaluation of different 
approaches by considering both the effectiveness and configura-
tion effort. 

1. INTRODUCTION 
Entity resolution (also referred to as object or entity matching, 
duplicate identification, record linkage or reference reconcilia-
tion) is a fundamental problem for data integration and data clean-
ing [11]. It is the task of identifying entities referring to the same 
real-world object. The high importance and difficulty of the entity 
resolution problem has triggered a huge amount of research on 
different variations of the problem and numerous approaches have 
been proposed especially for structured data. For a recent over-
view survey and a tutorial see [5] and [8], respectively. 

Due to the high number and diversity of different entity resolution 
approaches we see a strong need for comparative evaluations of 
different schemes. To date most entity resolution approaches have 
been evaluated individually using diverse methodologies, con-
figurations, and test problems making it difficult to assess the 
overall quality of each approach, let alone their comparative ef-
fectiveness and efficiency. Only few attempts for comparative 
evaluations of some sub-approaches have been made, e.g., evalua-
tion of different string similarity metrics [4] and of blocking 
approaches [1]. Some benchmark proposals for entity resolution 
have been made [10], [13] but they have not yet been 
implemented or applied. 

In this demo paper we present FEVER – a framework for evaluat-
ing entity resolution. FEVER is not yet another entity resolution 
approach but serves as a flexible evaluation platform for a large 
spectrum of entity resolution algorithms and strategies building  

upon and extending our previous prototypes MOMA [12] and 
STEM [7]. FEVER offers the following key features: 

- FEVER supports the flexible construction and comparative 
evaluation of many different entity resolution workflows based 
on so-called operator trees. Operator trees support the combined 
application of different blocking and match algorithms in order 
to achieve a high effectiveness (precision, recall). Individual 
operator implementations can be based on virtually any previ-
ously proposed algorithm, e.g., for blocking or entity matching, 
so that these can be evaluated with FEVER. Entity resolution 
methods may be based on machine learning techniques utilizing 
training data. Hence, FEVER can be used to compare non-
learner and learner-based approaches for entity resolution.  

- FEVER allows each match approach to be automatically exe-
cuted and evaluated under different parameter configurations. 
We first use this feature to determine the necessary effort for 
training and parameter tuning (e.g., finding suitable similarity 
thresholds) to obtain a reasonable match quality. This way we 
can conduct a fair comparison of different entity resolution al-
gorithms under comparable tuning effort.  Hence, an approach 
A with better effectiveness than approach B is only superior if it 
does not incur a substantially higher configuration effort. 

- FEVER can also be used to fine-tune match approaches by let-
ting the system automatically evaluate a large number of pa-
rameter settings for test data. The best performing configuration 
can then be used for subsequent match tasks on similar and lar-
ger input data.  

In the following we give an overview of FEVER and present the 
operator library. We then describe FEVER's effort-based configu-
ration strategies that facilitate a fair algorithm comparison. We 
conclude with a description on what will be demonstrated. 

2. OVERVIEW OF FEVER 
Figure 1 illustrates the architecture of FEVER consisting of mod-
ules for the definition and execution of entity resolution ap-
proaches or so-called match workflows. A GUI-based workflow 
editor allows to interactively specify match workflows utilizing 
operator trees. The FEVER runtime executes a specified work-
flow and, thus, generates evaluation data.  
A match workflow specification has three parts: input data defini-
tion, operator tree, and configuration specification. All parts can 
be edited in the workflow editor. Figure 2 shows a screenshot of 
the FEVER's main window with portions of the workflow editor 
on the left side. The right side shows a sample evaluation result 
for different match workflows.  
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The input data includes the entities of one or two data sources to 
be resolved, and the perfect match result for evaluating the effec-
tiveness of the entity matching workflow. For training-based 
match approaches, the training data also needs to be provided. 
The actual match workflow is declaratively described in terms of 
an operator tree. The input data sources form the leaves of the 
tree and non-leaf nodes are operators. The output of the root op-
erator is the final match result specifying the identified entity 
correspondences within a so-called mapping (see next section). 
FEVER provides an extensible operator library with a variety of 
operators for training selection, blocking, matching, and mapping 
combination. Operators define their expected input and delivered 
output as well as their mandatory and optional parameters. The 
shape of the operator tree determines the order in which operators 
are applied. An operator tree is well formed if all operators are 
nested correctly, provided with their necessary input and manda-
tory parameters are set.  
The operator tree concept provides a high flexibility to specify a 
tailored workflow for a given match task and supports its com-
parative evaluation with other approaches. In particular, it allows 
the selection and combination of several match approaches. De-
veloped operator trees can be saved as building blocks and can 
then be reused as a sub-tree in other workflow definitions. The 
operator tree concept and the supported operators are described in 
the following section.  
The third match workflow component specifies the execution of 
the operator tree according to a configuration strategy defining 
the parameter settings of all operators of the tree. For evaluation 
purposes the operator tree is usually executed multiple times with 
different parameter settings. This way the effectiveness of the 
match workflow for different settings can be evaluated and the 
effort to find an effective configuration can be determined. We 
present configuration strategies in more detail in Section 4. 
Specified workflows are stored in a repository and can be exe-
cuted by the FEVER runtime (upper part of Figure 1). The run-
time supports an iterative execution model to execute an operator 
tree several times for different parameter settings. The match 
result of each operator tree execution is automatically evaluated 
with the help of the given perfect result and, thus, evaluation 
measures such as precision, recall, and F-measure can be deter-
mined. In addition, performance indicators are recorded, e.g., 
execution runtime and used main memory. The calculated quality 
measures are stored and can be compared to the effort of config-

uring the parameter setting. Hence, FEVER not only allows an 
evaluation of the match quality, but also facilitates an analysis of 
the effort expended to reach the respective match quality. As a 
consequence, FEVER supports a fair comparison of match algo-
rithms by comparing the match quality reached under the same 
effort.  
For smaller datasets the execution of a match workflow can be 
started from the GUI and the results interactively inspected via 
the build-in plotter. This feature will be used during the demon-
stration (see Section 5). For larger datasets the match workflow 
can be modeled within the GUI and then executed in batch mode. 
The FEVER implementation is written in Java and uses the Rapid 
Miner [9]1 library of machine learners.  

3. OPERATOR TREES 
FEVER allows the definition of entity matching algorithms by 
operator trees. Operator trees are a common modeling concept for 
numerous database problems (e.g., query optimization) and have 
previously also been used to model entity resolution approaches 
[3]. We build on those previous approaches and extend the idea to 
a flexible method for defining match workflows. The tree is exe-
cuted in a post-order traversal sequence and the results of the 
child operators are input to the father operator.  
FEVER's operator library offers a variety of operators. The main 
operator types for blocking, matching and training selection gen-
erate mappings as operator output. A mapping m between two 
sets of entities A ⊆ SA and B ⊆ SB from two sources SA and SB 
consists of a set of match correspondences, i.e., m = {(a, b, s)| 
a∈A, b∈B, s∈[0,1]}. The similarity value s indicates the strength 
of the similarity between two entities a ∈ A and b ∈ B. The uni-
form mapping data structure is the foundation for the flexible 
combination of operators within trees. Some previous match ap-
proaches represent their results as clusters of entities that are con-
sidered to be the same. FEVER can also support such methods by 
interpreting clusters as a mapping containing pairwise correspon-
dences between all entities of the cluster. 

                                                                 
1 http://www.rapidminer.com 
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Blocking operators expect as input one or two sets of entities and 
return a mapping. Blocking is needed for large inputs to reduce 
the search space for entity resolution from the Cartesian product 
to a small subset of the most likely matching entity pairs. Besides 
the CrossJoin (which retains all possible entity pairs of the Carte-
sian product) FEVER supports disjoint (e.g., (multi-pass) sorted 
neighborhood) as well as overlapping blocking methods (e.g., 
bigram indexing, canopy clustering). Disjoint methods build mu-
tually exclusive blocks, whereas overlapping methods may result 
in overlapping blocks of entities. All blocking operators have to 
specify a blocking key. Additional parameters such as the window 
size for the sorted neighborhood operator might be required. 
The match operators form an integral part of the operator li-
brary. They require as input a mapping resulting either from the 
previous application of a blocking operator or another match op-
erator. The input mapping specifies the pairs of entities that 
should be compared by the match approach and, thus, limits the 
match complexity. FEVER supports non-learning matchers as 
well as learning-based matchers. For non-learning matchers 
(NLM), our current implementation incorporates a variety of 
previously proposed attribute matcher or similarity join algo-
rithms (e.g., EdJoin and PPJoinPlus [14], PartEnum [2]). The 
similarity join operators match entities based on the similarity of a 
single attribute pair. Further parameters include the (string) simi-
larity measure to be applied (e.g., edit distance, cosine, n-gram, 
TF/IDF) and the threshold above which entities are considered to 
match. A multi-attribute matcher is also supported which directly 
evaluates and combines the similarity for multiple attribute pairs.  
Learning-based matchers (LM) are complex match approaches 
utilizing supervised learning algorithms such as SVM (support 
vector machine), decision trees and logistic regression to auto-
matically find an effective combination of non-learning matchers 
such as attribute matchers. In addition to an input mapping, LM 
require a training mapping that contains manually labeled corre-
spondences representing examples for matching (similarity value 
equals 1) and non-matching (0) entities. Furthermore, LM expect 
as a parameter a list of attribute matcher specifications indicating 
which similarity measure should be evaluated on which entity 
attributes. The LM operator applies the specified similarity meas-
ures to the attribute pairs in the training mapping. The learner 
uses the resulting similarity values to automatically determine a 
combination of the specified similarity measures for a match deci-
sion. The learned combination is then applied during the LM exe-
cution to the input mapping to determine the match correspon-
dences.  
Training mappings are provided by TrainSelect operators. They 
select correspondences from an input mapping and prompt users 
to label them interactively as match or non-match. By doing so 
the correspondences are annotated with similarity 0 (non-match) 
or 1 (match) and, thus, a training mapping is compiled. Labeled 
correspondences are additionally stored in a repository to avoid 
repeated labeling of the same correspondence. The input mapping 
may be the result of a previous blocking operator execution, e.g., 
CrossJoin for smaller datasets. However, an approximate match 
result may also be used as input to make sure that only "interest-
ing" correspondences are labeled, e.g., correspondences whose 
entities fulfill a minimal similarity. The chosen TrainSelect opera-
tor determines the resulting training mapping of a specified size. 
Currently, FEVER offers two operators for training selection: 
Random and Ratio. Random randomly selects correspondences 

from the input for labeling. Ratio reduces a randomly selected set 
of correspondences so that a defined ratio between match and 
non-match correspondences is guaranteed. This approach is help-
ful to avoid an over-fitting of the learning-based match approach. 
The TrainSelect operators support a fair comparison of learning-
based matchers by ensuring that learners are provided with train-
ing data of the same size and quality.  
Besides the operators for blocking, matching and training selec-
tion FEVER also offers auxiliary operators for combining and 
filtering entities and mappings. Figure 3 shows a sample operator 
tree merging the results of two independently executed match 
approaches. The first approach applies a PPJoinPlus similarity 
join [14] on the output of a Sorted Neighborhood blocking me-
thod. The second approach computes an EdJoin on the whole 
Cartesian product (cross join) of entity pairs.   

4. CONFIGURATION STRATEGIES 
An operator tree typically comprises several operators each hav-
ing several parameters that need to be specified in order to apply 
the operator tree to a match problem. Typical operator parameters 
have been discussed above. Permissible parameter values can 
mostly be defined by a set of possible values, or by a range of real 
or integer numbers. For example, the similarity join operator 
PPJoinPlus (see Figure 3) has a set parameter to specify the simi-
larity measure to be applied (Cosine or Jaccard in this case) and a 
range parameter for the similarity threshold.  
We further distinguish between bounded and free parameters. A 
bounded parameter is already assigned a value through the user in 
the operator tree definition. Parameters that are not bounded are 
called free parameters. They are treated as parameters of the op-
erator tree and, thus, have to be assigned a value dynamically 
according to a configuration strategy. For the example in Figure 
3, the names of the attributes to be compared are bound parame-
ters (manually provided) while the similarity function and thresh-
old are free parameters.  
An assignment of all free parameters of an operator tree with a 
valid value is called a parameter setting. For operator trees with-
out learning-based match operators the parameter setting is suffi-
cient for the configuration. Training-based operator trees addi-
tionally require a training mapping for the configuration. To allow 
for comparative evaluations, we take an effort-based approach. 
We evaluate the quality of an operator tree against the effort spent 
to determine the match configuration. We consider both, the 
parameterization and the labeling effort. The parameterization 
effort can be represented as the number of parameter settings that 
have been evaluated to identify the best setting, i.e., the setting for 

 
 
 
 
 
 
 
 

Figure 3: Graphical representation of an operator tree (left)  
incl. parameters for selected similarity join operator (right) 



which the operator tree result has the best quality (e.g., F-
measure). For training-based workflows the labeling effort re-
gards the number of correspondences that have to be labeled by 
the user. We can thus ensure equal labeling effort for a compara-
tive comparison of different training-based approaches. Parame-
terization and labeling effort are considered independently and are 
not set off into a single effort measure. This facilitates an analysis 
of the reached match quality measured in terms of a quality meas-
ure (e.g. precision, recall, f-measure) against the effort spent for 
parameterization as well as for labeling. In future work, we will 
investigate how to automatically determine a good trade-off be-
tween the expended effort and the reached quality. 
The evaluation of an operator tree is subject to a specified maxi-
mal labeling effort M and maximal parameterization effort N. 
Hence, for training-based operator trees we restrict the user to 
label M training pairs.  Additionally, we generate N different pa-
rameter settings according to a specified configuration strategy 
and determine from all obtained evaluation results the best ones. 
A configuration strategy takes as input the free parameters of an 
operator tree and the maximal parameterization effort N. To gen-
erate N different parameter settings FEVER currently supports the 
following configuration strategies. In a user defined strategy the 
parameter settings are completely specified by the user. This man-
ual strategy can be applied if a defined set of parameter values 
should be evaluated, e.g., a threshold parameter value varies from 
0 to 1 in 0.05 steps. The random strategy is a straightforward 
way that assigns parameter values out of their possible values 
randomly, i.e., N parameter settings are selected by random as-
signment of parameter values. The grid strategy realizes a simple 
grid search, dividing the multidimensional parameter space into a 
uniform grid. The coarseness of the grid is controlled by the num-
ber of parameter settings N and, thus determines the search effi-
ciency and the quality of the solution. The sophisticated gradient 
descent strategy is more goal-oriented and iteratively refines a 
parameter setting by considering the quality of previously gener-
ated settings. We have adapted the Hooke-Jeeves method [6] for 
this strategy. Note that all (except user-defined) strategies are 
independent from the match approach modeled by the operator 
tree. Thus the configuration strategies can be applied to different 
match workflows. 

5. DEMONSTRATION DESCRIPTION 
Our demonstration will illustrate how FEVER is used to model 
and evaluate entity resolution approaches for different datasets. 
First, we will show how to set up typical match workflows with 
FEVER. For providing the necessary input sources of a match 
task we will demonstrate the data import from file and from a 
database. We then show how to interactively construct an entity 
resolution approach by selecting and adding operators to the op-
erator tree. We will start with a very simple operator tree, e.g., 
consisting of just one blocking and one matching operator. The 
tree can then be executed and the resulting mapping inspected. To 
analyze the sensitivity of the operator tree towards the chosen 
configuration we will provide the perfect mapping and apply the 
user defined configuration strategy to test some manually selected 
configurations. To showcase a fair comparison evaluation we will 
define an alternative operator tree for the same input sources and 
demonstrate the application of the random, grid or gradient de-
scent configuration strategy.  

We will save both simple trees as building boxes and then set up a 
third more complex tree reusing the simple trees as sub-trees of a 
merge operator. This allows for a comprehensive analysis and a 
study of whether the sub-tree combination may improve the over-
all result quality and - if yes - how the sub trees should be com-
bined. Another demonstration scenario focuses on the parameteri-
zation and effort-based comparison of learning-based operator 
trees. In particular, we can demonstrate the influence of training 
data by varying the size and selection method. Furthermore, we 
can compare the effort and quality between learning-based and 
non-learning-based entity resolution methods.  
All evaluation results can be visually displayed by graphs such as 
the one illustrated in Figure 2 indicating the F-measure results for 
three operator trees under different configuration effort values. In 
the shown example, a simple operator tree with few parameters 
such as operator tree 1 needed a very small configuration effort to 
reach a stable level. For low configuration efforts the medium-
sized and complex operator trees were inferior to this simple op-
erator tree, but with more configuration effort the medium tree 
eventually outperformed the simple match workflow.  
We finally demonstrate how FEVER can be used to fine-tune a 
selected match workflow. We do this by setting a relatively high 
parameterization effort and inspect the parameter settings for the 
best-performing configurations. The found settings can then be 
applied as a manually specified configuration for a larger or simi-
lar match task.  
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