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Abstract. Ontologies are heavily used in life sciences and evolve continuously 

to incorporate new or changed insights. Often ontology changes affect only 

specific parts (regions) of ontologies making it valuable for ontology users and 

applications to know the heavily changed regions on the one hand and stable 

regions on the other hand. However, the size and complexity of life science on-

tologies renders manual approaches to localize changing or stable regions im-

possible. We therefore propose an approach to automatically discover evolving 

or stable ontology regions. We evaluate the approach by studying evolving re-

gions in the Gene Ontology and the NCI Thesaurus. 
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1   Introduction 

Ontologies are heavily used in life sciences, especially to consistently describe or 

annotate objects of an application domain [1, 14]. For instance, SwissProt [2] and 

Ensembl [10] are two frequently used data sources in which proteins are annotated 

(associated) with concepts of the Gene Ontology (GO) [7] to describe their molecular 

functions as well as their involvement in biological processes. The high importance of 

ontologies is reflected in their growing number and size. Currently, there are about 70 

ontologies available in the Open Biomedical Ontology (OBO) foundry [23]. These 

ontologies usually underlie a continuous evolution to incorporate the latest require-

ments and insights of a particular domain [9]. For instance, the GO or the NCI The-

saurus [22] have nearly doubled their size since 2004 [8]. Ontology providers con-

tinuously release new versions of changed ontologies. For example, changes for GO 

are released on a daily basis, and for NCI Thesaurus every month.  

As a consequence of this evolution ontology users need to cope with these changes. 

To determine whether applications or data sources need to be adapted for the newest 

ontology versions it is valuable to know what parts of an ontology have significantly 

changed or remained unchanged in a specific period of time. Such information can be 

utilized in different ways. On the one hand, analysis applications such as functional 

profiling [3, 21] that used a heavily changed ontology region should be rerun to de-

termine how analysis results are affected by the ontology changes. On the other hand, 



algorithms may use the information that specific ontology parts remained unchanged 

for a more efficient computation since they can reuse previous results. For example, 

algorithms to match different ontologies [5] can then reuse match results of previous 

versions for improved efficiency. The information on stable or changing ontology 

regions is also a good indicator where little or much further development is to be 

expected. So, unstable ontology regions are a good indicator for ontology developers 

to participate within a collaborative ontology development. Furthermore, project 

coordinators may use the information about regions to plan future development steps.  

The manual discovery of stable and changing ontology regions is not feasible for 

large ontologies so that automatic techniques are required. So far only little and pre-

liminary work has been performed in this direction. Previous research in the area of 

ontology change (see [6] for a survey) focused on ontology versioning [12, 18], the 

ontology evolution process [15, 24, 25] or the change detection between ontology 

versions [16, 17, 19, 20]. In our own previous work we quantitatively evaluated evo-

lution of life science ontologies [9]. Furthermore, we designed a web application [8] 

which allows access to information about changes in life science ontologies. How-

ever, to our best knowledge no current work determines the location (region) where 

changes occurred in an ontology. We therefore make the following contributions in 

this paper: 

• We introduce and define the notion of ontology regions and corresponding 

measures to classify ontology regions according to their change intensity. 

• We propose an algorithm for the discovery of stable and unstable ontology 

regions. The algorithm is customizable to meet the requirements of different 

applications. It (1) considers different change types, (2) uses an extensible set 

of measures for regions and (3) allows region discovery over different time 

periods. Hence, we can support various application scenarios, e.g., finding 

small and unstable, or large and stable ontology regions. 

• We evaluate the approach for the Gene Ontology and NCI Thesaurus. Re-

sults show that in both cases unstable and stable regions exist and hence in-

dicate that the proposed approach is applicable for automatic discovery of 

evolving regions in large life science ontologies. 

The rest of the paper is organized as follows. In Section 2 we present our models 

for ontologies as well as ontology changes and introduce the notion of ontology re-

gions. Section 3 describes the discovery algorithm. We evaluate the approach in Sec-

tion 4. We finally conclude and outline possibilities for future work. 

2   Preliminaries and Models 

We first outline our ontology model including versioning. Next, we describe which 

kinds of ontology changes are considered and introduce a corresponding change cost 

model. Finally, we define ontology regions and outline possible measures to quantify 

the change intensity of regions. 



2.1   Ontology model and versioning 

An ontology O = (C, R) consists of concepts C which are interconnected by relation-

ships in R. Together they form a so-called directed acyclic graph (DAG) representing 

the  structure of O. Special concepts of C called roots are the topmost concepts of O, 

i.e., they have no relationship to any parent concept. If the number of roots is greater 

than one, we introduce a virtual root which acts as a single entry point for the ontol-

ogy. Thus, we can define all roots of the ontology as children of the virtual root. 

A concept c є C of an ontology is defined by a set of single-valued or multi-valued 

attributes. The accession number cacc is a special attribute to unambiguously identify 

ontology concepts. Further typical attributes include the name/label, a definition or 

synonyms of concepts. Relationships r є R can be separated into two groups: (1) is_a 

relationships and (2) other relationships. Is_a relationships usually form the base 

structure of an ontology, hence we will utilize these relationships to define our ontol-

ogy regions (see Section 2.3) and make use of them in our discovery algorithm (see 

Section 3). Other relationships extend the basic is_a structure by more specific rela-

tionships, e.g., part_of or has_parts. . The used ontology model represents well exist-

ing life science ontologies, in particular the ones in the OBO Foundry [23]. 

 An ontology version Ov = (C, R, t) of version v is a snapshot of an ontology at a 

specific point in time t. The concepts C and relationships R of Ov are valid until a 

newer ontology version is released. We assume that versions of an ontology follow a 

linear versioning scheme, i.e., each ontology version Oi has at most one successor 

Oi+1 and one predecessor version Oi-1. The first / last ontology versions have no pre-

decessor / successor version, respectively. 

2.2   Ontology changes and cost model 

The evolution from an old ontology version Oold to a newer ontology version Onew can 

be described by a set of ontology changes. We distinguish between the basic change 

types addition (add), deletion (del) and update (upd) for concepts, relationships and 

attributes of an ontology: 

concept relationship attribute 

add del add del add del upd 

Particularly, concepts, relationships and attributes can be added or deleted. In case 

of attributes we further use the update change type for attribute value changes in con-

cepts, e.g., the modification of a concept’s name or definition. Note that at the current 

stage we do not include complex changes such as merge or split of concepts, since 

these changes are typically composed of basic changes that we already cover. How-

ever, complex changes can be included in the future to achieve a more fine-grained 

and semantically richer distinction between different changes.  

To reflect the impact of changes we introduce a cost model for ontology changes. 

Particularly, we assign change costs to the different kinds of ontology changes to 

determine their impact on an ontology. For instance, we can assign higher change 

costs for delConcept compared to addConcept to consider a higher change impact for 

concept deletions vs. concept additions. The individual costs can be assigned to on-
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Figure 1: Sample ontology with regions, aggregated costs (left) and  

corresponding region measures (right) 

tology concepts affected by an ontology change. Particularly, we distinguish between 

two types of costs for an ontology concept: local costs lc and aggregated costs ac. 

Local costs lc(c) cover the impact of ontology changes that directly affect an ontology 

concept c, i.e., changes on the concept itself as well as changes on its relationships 

and attributes. For instance, the addition/deletion of a child concept or an attribute 

value change have a direct impact. We will later (Section 3.1.1) discuss how local 

costs are assigned to ontology concepts based on the change type. We further use 

aggregated costs ac(c) to reflect all changes occurring in the is_a descendants of a 

concept c. For instance, leaf concept additions/deletions have an indirect impact on 

corresponding ancestor concepts in the ontology. In Section 3.1.2 we describe how 

aggregated costs are derived from local costs. The sample (changed) ontology version 

in Fig. 1 (left) contains aggregated costs (numbers next to a concept) for each con-

cept, e.g., concept c2 has aggregated costs of 7 while its sibling c3 has no aggregated 

costs ac(c3) = 0. 

2.3   Ontology regions and measures 

An ontology region OR is a subgraph of an ontology consisting of a single root con-

cept rc. A region contains all concepts located in the is_a subgraph of rc, i.e., there 

exists at least one is_a-path from every concept c є OR to rc. We will aggregate the 

concept change costs per ontology region to identify change-intensive or stable re-

gions. Our notion of an ontology region observes that changes often occur in the 

boundary of an ontology, e.g., addition of leaves or subgraphs to extend the knowl-

edge of a specific topic. Of course an ontology region also covers changes on inner 

concepts since all intermediate concepts between the root and the leaves are part of 

the region. In the sample ontology of Fig. 1 (left) several ontology regions are 

marked. For instance, the region with root concept c2 consists of the four concepts c2, 

c5, c8 and c9. The complete ontology with root c1 can also be seen as a region. 

The change intensity of an ontology region OR and other characteristics can be de-

scribed by region measures incorporating aspects such as the local/aggregated costs 

or the region size. We will later use these measures in our algorithm for the discovery 

of specific ontology regions. We define the following exemplary measures for an 

ontology region OR: 



• absolute region size abs_size(OR): number of concepts in an ontology region 

OR 

• relative region size rel_size(OR): relative size of OR compared to the overall 

size of the ontology O defined by abs_size(OR) / abs_size(O) 

• absolute change costs abs_costs(OR): the absolute costs of OR represented 

by its root’s aggregated costs ac(rc) 

• average change costs avg_costs(OR): the average costs per concept in OR 

defined by abs_costs(OR) / abs_size(OR) 

Note that these measures are only examples, i.e., we can extend the set of measures 

depending on application requirements. For instance, one may consider other charac-

teristics such as the depth or the compactness of a region. The example regions c1, c2 

and c3 of the sample ontology in Fig. 1 show different characteristics based on our 

example measures, as shown in the table on the right side of Fig. 1. For instance, 

regions c2 and c3 have a similar size but differ largely in their change intensity 

(measures abs_costs and avg_costs). While region c3 has not been changed 

(avg_costs of 0), region c2 exhibits average costs of 1.75. We will now (Section 3) 

explain  how we determine aggregated costs (ac) of concepts in general and for our 

example ontology of Fig. 1. 

3   Ontology Region Discovery 

In this section we present the algorithm for discovering evolving ontology regions. 

We first show how the aggregated costs of concepts are computed for two succeeding 

ontology versions. We then present the algorithm for the computation of region meas-

ures. Finally, we combine both algorithms to discover ontology regions for multiple 

ontology versions released in a specific period of time. 

3.1   Computation of aggregated costs for two ontology versions 

The algorithm for determining aggregated costs in two succeeding ontology versions 

takes as input an old ontology version Oold and a new ontology version Onew as well as 

change costs σ for ontology changes (see Section 2.2). Note that we use dedicated 

concept attributes to store local (lc) and aggregated costs (ac) of concepts, i.e., we 

internally extend the given ontology versions to capture assigned costs in each con-

cept. The algorithm computeAggregatedCosts consists of four steps as follows: 

  

Algorithm 1: computeAggregatedCosts (ontology versions Oold, Onew, change costs σ) 

∆Oold-Onew := diff (Oold, Onew) computes changes between ontology versions (both directions) 

assignLocalCosts (∆Oold-Onew, σ, Oold, Onew) 

Oold:=aggregateCosts (Oold) 

Onew:=aggregateCosts (Onew) 

transferCosts (Oold, Onew) 

return Onew 
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Figure 2: Diff and assignment of local costs for two ontology versions 

We first compute the changes between the input versions (diff). Next we assign lo-

cal costs to affected concepts (assignLocalCosts) to determine the added, deleted and 

modified ontology elements. Depending on the change type local costs are assigned 

either to concepts of the older or the newer ontology version. For instance, the dele-

tion of a concept can only be captured in the older version since the concept is not 

available in the newer one and vice versa for added concepts. Afterwards the local 

costs are propagated upwards in each ontology version (aggregateCosts) according to 

the respective ontology structure. This step ensures that costs from deeper ontology 

parts are aggregated within inner ontology concepts and finally in the ontology root. 

Since we like to discover regions based on the latest ontology version we need to 

transfer aggregated costs of older versions to newer ones (transferCosts). The transfer 

guarantees that costs originated in older ontology versions such as deletes are also 

reflected in the newest ontology version. Finally, the newer ontology version includ-

ing the computed aggregated costs is returned. We then can use this ontology version 

for applying our region measures (see Section 3.2). We also use this enriched version 

in the iterative algorithm for dealing with more than two ontology versions (see Sec-

tion 3.3). We will explain the steps of computeAggregatedCosts in more detail in the 

following sub sections. A simple yet comprehensive example will be used for illustra-

tion. 

3.1.1   Change detection and assignment of local costs 

Change detection between the two ontology versions Oold and Onew is based on the 

comparison of concept accession numbers which are typically used in life science 

ontologies for unambiguous concept identification. Particularly, we determine ontol-

ogy changes by comparing elements of Oold with those of Onew: diff(Oold, Onew). In this 

process we distinguish between concept, relationship and attribute changes. Added 

elements (add) are only present in the newer version Onew while deleted elements (del) 

only exist in the older version Oold. Furthermore, we detect updates (upd) on attrib-

utes, e.g., when the name of a concept has been changed. Thus, we cover all changes 

described in Section 2.2. Note that these changes represent the basic change types in 

ontology evolution and complex changes such as split or merge can be seen as a com-

position of these. 

The example in Fig. 2 shows two ontology versions Oold and Onew including 

changes in concepts and relationships (for simplicity we omit attribute changes and 

focus on is_a relationships). Particularly, from Oold to Onew two new concepts (c8, c9) 



were introduced while one concept (c4) was deleted. Corresponding relationships 

were inserted ((c8,c2), (c9,c5), (c9,c8)) and removed ((c4,c2)). 

The changes in the diff result and the specified change costs are used to assign local 

costs (lc) to affected concepts in both ontology versions. We assign local costs to 

concepts using the assignLocalCosts method in the following way. Costs of additions 

and updates are always captured in the new ontology version. In contrast, costs of 

deletions are captured in the old ontology version since the affected elements (e.g., a 

deleted concept) are only present in this version. The costs of concept and attribute 

changes are directly assigned to the affected concept. For relationship changes the 

costs are assigned to the source and target concept of a relationship. Note that differ-

ent costs for the source and target concept can be used. 

In Fig. 2 the numbers next to the concepts refer to the associated local costs for the 

changes found by diff(Oold, Onew). For simplicity, we assume uniform change costs of 1 

per change. Furthermore, we only assign costs to the target of a changed relationship. 

In our example the deletion of c4 causes the assignment of local costs 1 to c4 (del-

Concept) and c2 (delRelationship) in Oold. The insertion of c8 and c9 (addConcept) 

leads to the assignment of local costs 1 to both concepts. Concept c8 receives addi-

tional costs 1 caused by the insertion of the (c9,c8) relationship, thus its overall local 

costs are 2 (lc(c8)=2). Due to the addition of the relationships (c9,c5) and (c8,c2) 

concepts c2 and c5 of Onew are both assigned local cost 1. 

3.1.2   Aggregation of local costs 
We propagate local costs (lc) of concepts via is_a paths upwards (in root direction) 

and hence aggregate costs of subgraphs in corresponding inner ontology concepts 

(aggregated costs (ac) of concepts). The aggregation is applied on the old version as 

well as the new version with the intention, that the sum of all assigned local costs is 

equal to the aggregated costs of the root, i.e., the root subsumes all costs assigned to 

an ontology version. 

The aggregation of costs follows one rule. The aggregated costs of a concept is the 

sum of the aggregated costs of its direct children plus the local costs of itself:  

       )(
|)'(|

)'(
)(

c of c'children direct 

clc
cparents

cac
cac += ∑  

If a concept c has more than one parent the costs are split into |parents| portions so 

that costs/|parents| costs are propagated to each parent. The algorithm aggregateCosts 

uses an ontology version Ov with associated local costs and propagates them through 

the ontology using the given structure of Ov: 

 

Algorithm 2: aggregateCosts (ontology version Ov) 

for all concepts c in Ov do 

 if local costs lc(c) > 0 then 

 aggregate (c, Ov, lc(c)) 

 end if 

end for 

return Ov 

 



Particularly, the local costs of an ontology concept are propagated along its root 

paths to the root of the ontology. The recursive algorithm aggregate is responsible for 

one propagation step along the path. Thereby aggregated costs ac(c) are updated 

(summed up) with the incoming costs from a child. The new costs are calculated 

based on c’s number of parents and are finally propagated to all parents of c (recur-

sive call of aggregate). Since a concept may have multiple children, the concept can be 

updated multiple times to aggregate all local costs assigned to its is_a descendants. 

 

Fig. 3 shows the aggregation of local costs in our running example for ontology 

versions Oold and Onew. Each concept is displayed with its local and aggregated costs 

(lc(c)|ac(c)), paths are annotated with the propagated costs. For instance, in Onew c9’s 

aggregated costs are equal to lc(c9) since c9 has no children. The relationships (c9,c5) 

and (c9,c8) are utilized to propagate c9’s costs to the corresponding parents. Since 

two parents exist, ac(c9) is split into two portions of 0.5 which are propagated to c5 

and c8, respectively. Thus, the aggregated costs of c5 are composed of ac(c9)/2 and 

lc(c5): ac(c5) = ac(c9)/2+lc(c5) = 0.5+1 = 1.5. The same holds for c8: ac(c8) = 

ac(c9)/2+lc(c8) = 0.5+2 = 2.5. In the next step ac(c5) and ac(c8) are propagated to c2 

and aggregated with lc(c2): ac(c2) = ac(c5)+ac(c8)+lc(c2) = 1.5+2.5+1 = 5. Having 

propagated all costs, the aggregated costs of both roots are equal to the sum of all 

assigned local costs: 2 for Oold and 5 for Onew, respectively. 

3.1.3   Transfer of aggregated costs 
After separate aggregation of costs in the old and new version the results are now 

transferred to the newer version. The transfer ensures that change costs of the old 

version are reflected in the new version as well since we like to discover regions of 

interest based on the new version. The transferCosts algorithm transfers aggregated 

Algorithm 3: aggregate (concept c, ontology version Ov, change costs σ) 

aggregated costs ac(c) := ac(c) + σ 

parent concepts Cparent(c) := getParents(Ov, c) 

normalized costs σnorm := σ / |Cparent(c)| 

for all concepts c' in Cparent(c) do 

 aggregate(c', Ov, σnorm) 

end for 
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Figure 3: Aggregation of costs in both ontology versions 

 



costs of concepts from the old version into the new version. In particular, the method 

sums up the aggregated costs of equal concepts in both versions and stores the result 

in the new version: 

 

The transfer of costs for our running example is displayed in Fig. 4. The table be-

low shows how the costs of Oold and Onew are summed up in Onew. Since concepts c1, 

c2, c3, c5, c6 and c7 are present in the old and new ontology version their aggregated 

costs of both versions are fused, e.g., after the transfer c2’s aggregated costs is 7 (2 

from Oold and 5 from Onew). If a concept is only present in the new version its aggre-

gated costs remain unchanged (e.g., for c8 and c9 in Onew). In contrast, aggregated 

costs of deleted concepts can not directly be transferred to the new version (e.g., the 

costs of c4). However, the cost aggregation described in Section 3.1.2 ensures that 

costs of deletions are indirectly transferred. In our case c2’s aggregated costs which 

are transferred to Onew contain the costs of c4’s deletion. Thus, changes on c4 are 

indirectly reflected in the new version as well. 

3.2   Computation of measures and discovery of ontology regions 

To compute the proposed region measures of Section 2.3 we apply an algorithm com-
puteRegionMeasures which uses available information such as aggregated costs or the 

ontology structure. As an example, in case of the rel_size measure we iterate over all 

Algorithm 4: transferCosts (ontology versions Oold, Onew) 

for all concepts c in Oold do 

 if c ∈ Onew then 

 ac(c) ∈ Onew += ac(c) ∈ Oold 

 end if 

end for  
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Figure 4: Transfer of aggregated costs from old to new ontology version 



ontology concepts and compute the ratio between the region size of each concept and 

the overall ontology size. c1 as the root of our running example exhibits a rel_size of 

1.0 while c2 (c3) show a rel_size of 0.5 (0.375). As one may notice the sample ontol-

ogy displayed in Fig. 1 is equal to the result of the transfer of our running example 

discussed in Section 3.1.3. Hence, the results of our example are equal to the ones 

presented in Section 2.3. 

Based on the results we can discover regions of interest in the new ontology ver-

sion. Particularly, we define constraints on the results and thus select the regions that 

satisfy the criteria. Depending on the application different criteria (e.g., relative or 

absolute size/cost measures) can be considered and combined. For instance, “large 

stable regions” may be defined with the constraints: rel_size(OR)>0.2 and 

avg_costs(OR)=0. In our case region c3 is the only region satisfying these constraints. 

In contrast, one may use rel_size(OR)>0.2 and avg_costs(OR)>1 to select “large un-

stable regions”, e.g., region c2 in our running example. Note that we can eliminate 

sub-regions of a larger ontology region for a compact result, i.e., only regions satisfy-

ing the given constraints and which are not contained in another selected region are 

returned. For instance, the region covered by c8 would also satisfy the constraints of 

an unstable region (avg_costs(c8)>1 and rel_size(c8)>0.2). However, c8 is contained 

in region c2 and thus we only return c2 as an identified region. 

3.3   Discovery algorithm for multiple ontology versions  

Based on computeAggregatedCosts and computeRegionMeasures we now define the 

generalized findRegions algorithm which works on multiple ontology versions released 

in a specific time period. The idea of the combined algorithm is the following. Having 

n released ontology versions (O1, …, On) we iterate over all releases and apply com-
puteAggregatedCosts on each pair (Oi,Oi+1). Thus, we cover all version changes be-

tween succeeding ontology versions and transfer costs from older ontology versions 

to the latest ontology version On where the region discovery is applied (computeRe-
gionMeasures). The algorithm findRegions for n ontology versions looks as follows: 

 

4   Evaluation 

We evaluated the proposed region discovery algorithm for the well-known Gene 

Ontology (GO) and the National Cancer Institute Thesaurus (NCIT). After the de-

scription of the evaluation setup we first comparatively analyze the overall ontology 

stability for different periods. In Section 4.3 we analyze the distribution of ontology 

regions w.r.t. their stability and present how the most (un)stable ontology regions can 

Algorithm 5: findRegions(ontology versions O1 … On, change costs σ) 

for all succeeding ontology versions Oi – Oi+1 do 

 Oi+1 := computeAggregatedCosts(Oi, Oi+1, σ) 

end for 

computeRegionMeasures(On) 



be discovered. We finally show how the algorithm can be used to track the stability of 

ontology regions over time. 

4.1   Evaluation setup 

The two considered ontologies are heavily used in different projects and underlie 

continuous changes. GO is widely used for the annotation of proteins w.r.t. Biological 

Processes (BP), Molecular Functions (MF) and Cellular Components (CC). NCIT 

maintained at the National Cancer Institute consists of 20 main categories which 

cover cancer-related topics such as drugs, tissues or anatomical structures. It is util-

ized in US-wide projects such as the Cancer Biomedical Informatics Grid (caBIG) [4] 

and its underlying infrastructure caCORE [13]. 

We integrated available ontology versions between 2004 and 2009 on a monthly 

basis in a repository [11]. Note that we include at most one version per month, if there 

is more than one version available we use the first release. The repository allows for 

the efficient retrieval of versioned ontology information. Thus, we can compare on-

tology versions of a specified time period to determine the ontology changes in our 

algorithm. The latest considered GO version of December 2009 consists of 30,304 

concepts (GO-BP: 18,108; GO-MF: 9,459; GO-CC: 2,737) while the latest NCIT 

version of December 2009 contains 77,465 concepts. 

For all evaluation studies we apply the following change costs: 

concept relationship attribute 

add del add del add del upd 

1.0 2.0 1.0 2.0 0.5 0.5 0.5 

In general concept changes have the biggest impact followed by relationship and 

attribute changes. Furthermore, we give concept and relationship deletions more im-

pact, attribute changes are weighted equally. In case of relationships we assign half of 

the costs to the target and the other half to the source concept of a changed relation-

ship. The used values are for illustration only and can be changed to meet specific 

application characteristics.  

4.2   Overall ontology stability 

We apply our region measures to the root of an ontology for assessing its overall 

stability. Particularly, we utilize released versions of a specific time period and assess 

the overall stability by taking the measures abs_size(root), abs_costs(root) and 

avg_costs(root) into account. Table 1 lists the overall stability of GO (including its 

sub ontologies) and NCIT for 2008 and 2009, respectively. 

In 2008 GO and NCIT exhibit similar absolute costs (GO: ~24,200; NCIT: 

~23,200) but the average change intensity was much higher for GO (avg_costs 0.87 

for GO vs. 0.32 for NCIT). In 2009, the change intensity increased for NCIT but 

decreased for GO, but GO still retained an increased change activity (avg_costs 0.64 

vs. 0.47). Within the GO sub ontologies GO-BP possesses the highest absolute and 

average costs in both periods. In contrast GO-MF can be seen as the most stable sub 



 
Figure 5: Distribution of regions w.r.t. average costs for GO-BP in 2009 

2008 2009 2008 2009 2008 2009

GO 27,799 30,304 24,242 19,412 0.87 0.64

– MF 9,205 9,459 4,636 3,002 0.50 0.32

– BP 16,231 18,108 17,594 14,557 1.08 0.80

– CC 2,363 2,737 2,011 1,854 0.85 0.68
NCIT 71,337 77,455 23,165 36,562 0.32 0.47

abs_size(root) abs_costs(root) avg_costs(root)

 
Table 1: Overall stability of ontologies in 2008 and 2009 

ontology of GO (≤0.5 avg_costs in 2008 and 2009). Between 2008 and 2009 the aver-

age costs decreased especially for GO-MF (from 0.5 to 0.32) underlining the im-

proved stability compared to GO-BP and GO-CC.  

4.3   Discovery of (un)stable regions 

To discover the most stable and unstable regions of an ontology we analyze the distri-

bution of ontology regions w.r.t. their avg_costs. Figure 5 shows such a distribution 

for GO-BP changes in 2009. We consider ontology regions with a minimum rel_size 

of 0.3% (~ 50 concepts) and group them according to their average costs into intervals 

of size 0.05. Overall we classified 518 regions in 36 intervals (0.00:0.05 to 1.75:1.80). 

Most of the regions (~430 regions; ~83%) exhibit average costs between 0 and 0.5, 60 

out of which (~12%) have average costs lower than 0.05 and are thus largely stable. 

In contrast about 53 ontology regions (~10%) show average costs above 0.65. 

We can thus determine the most stable and unstable ontology regions by focusing 

on the two ends of the cost-based distribution. Depending on the application needs we 

may use either absolute thresholds (e.g., avg_costs < 0.01 or avg_costs > 0.8) or per-

centiles of a distribution to classify regions as stable or unstable. For the following 



accession name abs_size rel_size avg_costs

GO:0005102 receptor binding 408 4.31% 0.95

GO:0009653 anatomical structure morphogenesis 583 3.22% 1.22

GO:0048856 anatomical structure development 566 3.13% 0.91

GO:0033643 host cell part 77 2.81% 1.90

GO:0003676 nucleic acid binding 241 2.55% 0.86

GO:0048646 anatomical structure formation involved in morphogenesis 253 1.40% 0.92

GO:0031300 intrinsic to organelle membrane 36 1.32% 0.000

GO:0030054 cell junction 31 1.13% 0.000

GO:0050865 regulation of cell activation 184 1.02% 0.012

GO:0075136 response to host 181 1.00% 0.019

GO:0000151 ubiquitin ligase complex 25 0.91% 0.000

GO:0016860 intramolecular oxidoreductase activity 71 0.75% 0.000

C28428 Retired Concept 3,264 4.21% 3.49

C53791 Adverse Event Associated with Infection 1,186 1.53% 2.36

C45678 Industrial Aid 889 1.15% 1.40

C74944 Clinical Pathology Procedure 747 0.96% 0.84

C66892 Natural Product 708 0.91% 1.35

C53543 Rare Non-Neoplastic Disorder 504 0.65% 1.22

C64389 Genomic Feature Physical Location 1,026 1.32% 0.000

C23988 Mouse Neoplasms 886 1.14% 0.000

C48232 Cancer TNM Finding 742 0.96% 0.000

C53798 Adverse Event Associated with Surgery & Intra-Operative Injury 707 0.91% 0.000

C43877 American Indian 555 0.72% 0.000

C53832 Infection Adverse Event with Unknown Absolute Neutrophil Count 386 0.50% 0.000

G
O

N
C

IT

unstable

stable

unstable

stable

 
Table 2: Largest (un)stable ontology regions in 2009 

analysis, we regard all ontology regions of a certain minimal size below the 5%-

percentile as stable and all ontology regions above the 95%-percentile as unstable.  

Table 2 displays the six largest (un)stable ontology regions of GO and NCIT in 

2009. The relative region sizes vary between 0.5% and 5% of the overall ontology 

size. In GO the relative sizes of the six largest unstable regions are higher than the 

stable ones. Particularly, the largest stable region in GO exhibits a relative size of 

1.32% (GO:0031300) whereas the 6
th

 largest unstable region (GO:0048646) has 1.4% 

relative size. The largest stable regions regarding absolute size can be found in NCIT 

consisting of more than 400 concepts. Furthermore, all stable regions of NCIT exhibit 

no average costs, i.e., in these regions no changes occurred. In contrast, some stable 

regions of GO show slight average costs, e.g., GO:0050865 or GO:0075136. We 

further observed that in GO-BP “anatomical structure” topics were highly modified in 

2009 (see GO:0009653, GO:0048856 or GO:0048646). Furthermore, in GO-MF the 

change focus was on special binding functions such as “receptor binding” and “nu-

cleic acid binding”. Particularly, “receptor binding” is the largest unstable region of 

GO (rel_size=4.31%). In NCIT “Retired Concept” is the largest unstable region 

(rel_size=4.21%). Note that this ontology region is utilized to collect all ontology 

concepts that have been retired. Other regions of high interest concern “Drugs and 

Chemicals” topics such as “Industrial Aid” or “Natural Product”. 

4.4   Tracking the stability of ontology regions 

A sample application of our discovery algorithm is tracking the stability of ontology 

regions over time. Particularly, we apply our region measures for different time peri-

ods to determine the change intensity of different regions over time. We can thus 



Figure 6: Tracking of avg_costs for sample regions in NCIT (2004-2009) 

observe certain trends in the evolution of ontologies that are of interest to ontology 

users. 

As an example we applied region tracking on NCIT between 2004 and 2009 for its 

20 main categories. The computation uses a sliding window in the following way. We 

apply our algorithm for a window of size ‘half year’ (window step: 1 month), i.e., for 

each window we compute region measures for the selected categories and consider 

them for a final trend analysis. Hence, we can study variances in the measured results 

over time, e.g., to find out where and when massive development took place or not. 

The chart in Fig. 6 shows the tracking of average costs for three selected main 

categories of NCIT between 2004 and 2009. We can distinguish different patterns. 

First, we observe regions, such as “Drugs and Chemicals”, that are always unstable, 

i.e., they experience higher average costs due to frequent modifications. Such regions 

represent active research fields, and will likely be modified in the near future as well. 

Furthermore, there are regions such as “Organisms” which exhibit both, periods of 

high stability mixed with periods of substantial instability. Its instability peaks (Mar 

2006-Feb 2007, Mar 2008-Mar 2009) may be caused by new research findings or 

restructuring decisions by the project consortium which coordinates the ontology 

development. Finally, there are regions which have become stable over time. For 

instance, “Anatomic Structure System or Substance” had change activities until the 

end of 2006, but remained largely stable since 2007. Hence, such a region can be 

considered as almost finished, i.e., the probability for dramatic changes in the near 

future is low. This observation especially holds for ontology regions covering ac-

cepted / standardized knowledge, e.g., anatomy in the life sciences. 



5   Conclusion and Future Work 

We introduced the notion of ontology regions and corresponding measures to deter-

mine the change intensity or stability of ontology parts. Based on this notion we pro-

posed an algorithm to discover evolving (un)stable regions in life science ontologies 

by taking ontology changes and the ontology structure into account. The presented 

algorithm utilizes an adaptable change cost model to reflect the impact of different 

ontology changes. Our approach can be used in different scenarios, e.g., by ontology 

users to find out the need to rerun analysis applications or by ontology engineers to 

notice past and ongoing work in regions of an ontology. We applied our algorithm in 

a comparative study for two large life science ontologies for different time periods. 

We observed that the algorithm is able to discover (un)stable ontology regions. The 

tracking of ontology region stability over time showed different evolution patterns, 

e.g., ontology regions which are always heavily modified or others that have become 

stable over the past years. 

We see several directions for future work. First, we can consider high-level ontol-

ogy changes such as merge or split of concepts to achieve a more fine-grained repre-

sentation of ontology evolution. Second, we plan to integrate the region discovery 

algorithm into our OnEX system [8]. Finally, we will investigate how algorithms for 

ontology matching can utilize information about (un)stable regions to determine new 

ontology mappings in a more efficient way. 
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