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Abstract: A recurring manual task in data integration or ontology alignment is
finding mappings between complex schemas. In order to reduce the manual effort,
many matching algorithms for semi-automatically computing mappings were
introduced. In the last decade it turned out that a combination of matching
algorithms often improves mapping quality. Many possible combination methods
can be found in literature, each promising good result quality for a specific domain
of schemas. We introduce the rationale of each strategy shortly. Then we evaluate
the most commonly used methods on a number of mapping tasks and try to find
the most robust strategy that behaves well across all given tasks.

1 Introduction

Finding mappings between complex schemas is crucial in many areas such as data
integration or ontology alignment. Due to the heterogeneity of schemas identifying such
schema mappings is often a complex and time consuming process. In order to speed up
that process, semi-automatic matching techniques were developed. These techniques rely
on algorithms, so called matchers, to compute correspondences between elements of
schemas. After computing similarities based on syntactical, linguistic and structural
schema and instance information, the user is provided with the most likely mapping
candidates for further refinement [RB01, SE05].

In the last decade, it turned out that a combination of the results of a number of
individual matchers often improves the mapping result quality. The idea is to combine
complementary strengths of different matchers for different sorts of schemas. Current
systems execute a number of matchers, combine their results and finally select the most
promising element pairs for the final mapping. Achieving good result quality highly
depends on choosing the most appropriate result combination and selection method. All
proposed techniques [DR02] try to compute a single result out of a number of base
matcher results.  The combination approaches differ in the parameterization effort and
the result quality retrieved by applying a certain combination or selection method. Here
it would be desirable to know about the strategies robustness for a set of mapping tasks.
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In  this  paper  we  want  to  evaluate  a  range  of  combination  strategies  on  a  number  of
mapping tasks. Our goal is to find the most suitable combination method for each
mapping task as well as the most robust strategy. We define robustness as the ability of a
matching strategy to return good results for different matching tasks without bigger
outliers. Our results support the user in choosing the most appropriate combination
strategy for different use cases. In summary, our contributions are the following:

The paper gives an introduction of the most common combination methods and their
rationale. A focus is set onto strategies that do not require additional configuration
effort.
The achieved quality of the presented methods is evaluated on a number of different
mapping tasks.
All strategies are evaluated with respect to their robustness. Our results show, that
no  strategy  returns  the  best  results  in  all  mapping  task.  However  we  see  some
strategies being more robust than others.

2 Common Matching Process

To better understand where combination methods are needed in a matching process, an
overview to a general matching process is described shortly.

All currently promoted matching systems use a combination of different matching
techniques (see surveys in [RB01, SE05]) for improving the quality of the matching
results.  In  our  work  we  restrict  ourselves  to  the  most  common  system  architecture  of
parallel combination that was first introduced by COMA [DR02]. However other
topologies can also be used to combine matching techniques like sequential combination
or iterative computation [LTL09, MBR01].

Figure 1: Common Matching Process

In parallel combination systems all matchers are executed independently, typically on
the whole cross product of source- and target schema elements (see Figure 1: Common
Matching Process). Results of individual matchers, so called similarity matrices, are put
into a similarity cube [DR02]. A similarity combination operation reduces the cube
down to a single similarity matrix. A subsequent selection operator tries to select the
most promising element pairs, i.e. by using a threshold. Some systems post-process the
found mapping with a constraint resolving step to prune out conflicting mappings. In this
paper we particularly focus on the step that reduces the similarity cube to a single
similarity matrix (Combining match results), what we call similarity combination.



3 Combination Techniques

The most commonly used methods for similarity combination are MIN, MAX,
AVERAGE and WEIGHTED[DR02]. Recently also HADAPT[MYM08],
SIGMOID[ES04], OWA[JHQ08], OPENII[Sel10] and NONLINEAR[Alg10] were
proposed. In the following paragraphs each of these combination approaches will be
described shortly.

3.1 MIN/MAX Combination

The MIN-Combination always chooses the minimum value of a set of values that were
computed by different matchers. This approach is very pessimistic, since it requires all
matchers to return high similarity values to later “survive” a selection. The MAX-
combination in comparison behaves very optimistically since only one matcher needs to
return a high similarity value, no matter what other matchers compute.

3.2 Weighted Sum Approaches

According to [ES04] similarity combination combines multiple similarity values from k
matchers to one value. It can be expressed through an adjusted weighted sum of input
similarities:

    sim (s, t) = ( )) (3.1)

with ( ) being a source and target element pair, ( ) being the similarity
computed by the k-th matcher, w  being a weight for each individual matcher and
function : [0,1] [0,1] being an adjustment function to transform the original
similarity. The adjustment function is a continuous and not necessarily differentiable
function. Most of the combination approaches we describe represent a special case of
this adjusted weighted sum of input similarities. Some techniques focus on how the
weights are defined like OWA, OPENII and HADAPT and others focus on the
adjustment function like SIGMOID does.

There are a number of techniques known in literature that apply machine learning
techniques for finding the best weights for a given mapping problem or problem class
[ES04, ES05, MG08]. However, these learning-based approaches are not in the focus of
this paper. The reason is that gold standard mappings are rare, thus making learning
approaches often impossible to use. Also we do not consider approaches that support the
user in manually defining the weights proposed in the CMC-Method [TY05].

The AVERAGE combination is the simplest version of the weighted approaches. It
assumes equal weights for every matcher and uses the identity function as adjustment
function. AVERAGE showed good results on former evaluations [Do05] since it levels
out the individual weaknesses and strength of individual matchers



The WEIGHTED combination also uses the identity function as adjustment function.
The simplified equation computes a weighted sum of matcher input similarities.
WEIGHTED crucially depends on the optimal setting of weights for each matcher.

The HADAPT combination method presented in the PRIOR+ System automatically
determines the weights for a weighted combination. It relies on a measure that is called
harmony (Note: Their naming clashes with the Harmony system[Mo08]), that is
computed from the output similarities of individual matchers. The overall idea is to
count entries in the similarity matrix that both are a maximum in a line and a row of the
matrix. Their measure is related to the Direction-Both Selection method introduced in
COMA  [RB01]  and  the  Stable  Marriage  Property  [GI89].  The  main  assumption  is  to
give match results with higher harmony-value a higher weight since those values might
have computed better results. In their work a correlation of harmony with the F-Measure
was shown so that harmony could be an indicator for a good F-Measure.

The OWA combination (Ordered Weighted Average) tries to simplify the process of
determining the weights of individual matchers. For that purpose, each set of similarity
values computed for an element pair is ordered and each position in the ordered list gets
a weight assigned. It implies that different matcher-similarities might have a different
position and weight for two different element comparisons. Additionally the authors of
OWA proposed a so called linguistic method to come up with combination weights
automatically.  Their linguistic approach proposes a number of variants like OWAMOST
or OWAALH and also Maximal and Minimal which are equal to MIN, MAX.

The SIGMOID combination prepares the matcher results for the weighted sum by
setting the adjustment function to:

( ) = ( ) (3.2)

where  sets the slope and the s describes a shifting factor for the sigmoid function.
These values can be adjusted to a given mapping task. It pre-processes the input match
results by increasing higher similarity values and decreasing lower values. It acts similar
to a contrast filter in image processing by increasing the contrast on input matrices. The
sigmoid function can also be described as a smoothed threshold by interpreting a
threshold as a stepping function.

The OPENII combination method gives higher weight to higher similarity values and
lower weight to lower similarity values. In that respect it is similar to the SIGMOID
approach. The difference is that they directly use the absolute value of their so called
voter score as a weight to compute a confidence score. Voter scores are similar to
similarity values except that voter scores are in the interval 1,1]. Values higher than 0
get a high confidence, whereas values below 0 get a low confidence:

(s, t) = ( )| ( )
( )|

(3.3)

Since all other combination methods rely on similarities in the interval [0,1] we
introduce functions t : [0,1] 1,1] and t : [ 1,1] [0,1] that transform



similarities from and to voter scores. By using these functions we can adapt the OPENII
approach for our evaluation.

    sim (s, t) = t ( ))| ( ))
( ))|

(3.4)

The NONLINEAR combination also relies on weights but follows an extended
approach. It tries to include interdependencies of similarity measures into the
combination of their similarities for different matchers:

    sim (s, t) w sim (s, t)  ± (1 ) sim (s, t)sim (s, t)  (3.5)

The first part of the formula computes the weighted average similar to equation 3.1
except that the weights are not normalized on the sum of weights. The second part is
computing the correlations between similarity measures. Depending on the value of the
weighted average, the value will be added or subtracted which is implied by the ±. This
value behaves similar to the shifting factor of the SIGMOID combination and is hard to
set. The constant  is used to level computed values into the interval [0,1].

4 Comparative Evaluation

In our evaluation we first characterize our data set that consists of a number of real world
mapping tasks. We then describe our evaluation methodology where we tried to fix some
variables to simplify comparison of combination methods. After that our evaluations are
presented and analyzed.

4.1 Datasets

Table 1: Evaluation Data Set

Mapping Task Dimension
s

#C Resolution
CIDX_Apertum 40x147 54 Paths
CIDX_Excel 40x54 65 Paths
CIDX_Noris 40x65 32 Paths
CIDX_Paragon 40x80 49 Paths
Excel_Apertum 54x147 79 Paths
Excel_Noris 54x65 50 Paths
Excel_Paragon 54x80 60 Paths
Noris_Apertum 65x147 85 Paths
Noris_Paragon 65x80 45 Paths
Paragon_Apertum 80x147 66 Paths
DB_Mapping 19x20 11 Paths
s3Mapping 125x123 67 Paths

Mapping Task Dimension
s

#C Resolution
dmoz_google 746x728 729 Paths
dmoz_web 746x418 218 Paths
dmoz_yahoo 746x1132 356 Paths
Freizeit 71x67 67 Paths
google_web 728x418 211 Paths
google_yahoo 728x1132 340 Paths
Lebensmittel 59x53 32 Paths
web_yahoo 418x1132 197 Paths
OAEI_101-301 80x55 54 Nodes
OAEI_101-302 80x42 43 Nodes
OAEI_101-303 80x126 43 Nodes
OAEI_101-304 80x74 64 Nodes



In  our  evaluations  we  use  four  groups  of  data  sets  (see  Table  1).  #C  represents  the
number of intended correspondences.

A number of mappings between schemas of the purchase order domain are taken
from the COMA++ Evaluation [Do05] (CIDX, Apertum, Excel, Noris, Paragon).
These schemas exhibit recurring features of business schemata such as a strong
reuse of components, camel-case naming and different data types.
The second group consists of mappings between schemas from the Spicy-
Evaluations [Bon08] that are database schemata with foreign key relationships.
The third group is taken from the domain of web directories (dmoz, Google, Yahoo,
web). These schemas are taxonomies with deep paths and nodes without types.
The last group consists of four mappings from the recent OAEI Ontology alignment
contest [Eu09].  Here we restricted the set to real world alignments since the other
reference alignments are synthetically generated gold standards.

In literature other Benchmarks for schema matching systems were proposed such as
XBenchMatch[DBH07] and STBenchmark[ATV08]. XBenchMatch consists of only
four small sized mapping problems. They were left out of the collection since it already
consisted of number of other small mapping problems. STBenchmark generates
synthetic schemata and mappings. Since we restricted our selection of mapping task to
real world examples the STBenchmark was not included.

4.2 Experimental Methodology

For our evaluations we implemented all strategies from Section 3 that are: MIN, MAX,
AVERAGE, WEIGHTED, HADAPT, SIGMOID, OWAMOST, OPENII and NON-
LINEAR. Since WEIGHTED requires a manual definition of weights we evaluate that
strategy separately. All other strategies are used with a fixed parameter setting proposed
by the original authors on all mapping tasks. For SIGMOID we take the values applied
by the NOM-System [ES04] that is = 8 and = 0.5.  For  NONLINEAR  we  chose

= 0.5 and subtract the second part of the NONLINEAR- equation for values lower
than 0.3 in the first part. As evaluation measure we apply the commonly used Precision
and Recall as well as the F-Measure that combines both.

In order to reduce the search space we first tried to find an optimal parameterization for
the selection step that takes place after the combination. From recent evaluations [Do05]
we took the meta-data based COMA_OPT matcher that consists of 4 matchers (Name,
Path, Leaves and Parents). Given these matchers we computed the F-Measure on our
given dataset for all combination strategies and different selection techniques. According
to [DR02] a number of selection techniques can be used that are DIRECTION,
THRESHOLD, MAXDELTA, and MAXN. As selection direction BOTH was chosen.
The THRESHOLD selection was parameterized with values ranging from 0 to 1 using
0.01 steps, a MAXDELTA-selection with values from 0 to 0.6 with 0.01 steps and
MAXN  selection  with  values  from  0-10  for  the  N.  Details  on  these  strategies  can  be
found in [DR02].



In our observations the best selection strategy to choose is the MAXDELTA, with a
delta value of 0.01. We decided to fix the selection parameter to MAXDELTA 0.01 for
the upcoming evaluations of the different combination approaches.

4.3 Comparison of Combination Methods

First we compared all combination strategies on their best F-Measure for each mapping
task (see Figure 2). The x-axis enumerates the different mapping tasks, whereas the y-
axis shows the achieved F-Measure of a combination strategy. The mapping tasks are
ordered by the best F-Measure that was achieved with at least one of the configurations
(see Best FM in Figure 2). Each line represents one combination method. For reasons of
readability we created two separate figures, each containing 4 strategies. Obviously the
MIN and MAX combination do not perform well in comparison to the others. MAX
never returns better results than all others but often worse. Surprisingly the MIN-strategy
returns the best F-Measure for the Excel_Paragon and DB-Mapping mapping task.

Figure 2: Maximum F-Measure for each mapping task

OWAMOST performs better than MIN/MAX and more often returns the best F-Measure
possible. On the other hand it also produces negative outliers in a number of other
mapping tasks. This could be explained by the rationale of OWAMOST to throw away
very high and very low values. This behavior is prone to error since all matcher
similarities of our 4-matcher set should be considered. OPENII performs little better than
OWAMOST by having less negative outliers. Surprisingly the OPENII combination
seems to have problems mainly on the purchase order mappings. This could be explained
by its behavior to overweight higher similarities and underweight lower similarities. In
order to distinguish different contexts of shared components small differences in the path
similarities are highly relevant. If those differences are underweighted the elements get
mapped into the wrong context producing bad results.

The best 4 strategies found are AVERAGE, NONLINEAR, HADAPT and SIGMOID.
HADAPT  is  in  most  cases  not  much  different  from  AVERAGE  since  the  computed
weights often equal to AVERAGE. HADAPT seems to have problems with some of the
purchase order schemata. And again the reuse of components in the purchase order
schemata and the contained 1:n mappings give the explanation. The computed harmony-
value expects 1:1 correspondences in the final result. Hence, it underweights matchers



that produce 1:n correspondences. There is almost no difference between NONLINEAR
and AVERAGE. Obviously the interdependencies of matcher similarities do not have a
big influence in our matcher set, giving the first part of equation 3.5 the most influence
which is an AVERAGE combination. SIGMOID behaves different to the others and
often returns results that are slightly below the maximum. In some rare cases it performs
better than all others. The problem with the SIGMOID combination is the definition of
the shifting factor. High shifting values might reduce similarity values for too many
element pairs that otherwise would have contributed to the final result. By coincident in
some mapping tasks our parameter setting seemed to be optimal, whereas in most other
tasks it only decreased the quality.

In our evaluations we decided to treat the WEIGHTED combination separately since it
requires a manual definition of weights. We a number of combinations of weights and
applied them on our mapping tasks. Figure 3 shows a comparison of the AVERAGE
strategy with the maximal and minimal possible F-Measure with different weights for
each matcher.

Figure 3: Comparing AVERAGE to WEIGHTED with different weights

Obviously by setting the proper weights, the F-Measure could be increased for
individual mapping tasks using the WEIGHTED strategy. However setting the proper
weights is difficult, even for trained experts. Interestingly by setting the wrong weights
the F-Measure decreases more than it could increase by setting the right weights. This
can be explained by the fact that not only strengths of matchers are weighted higher but
also weaknesses might get overweighted. Thus using the WEIGHTED strategy imposes
a higher risk of achieving bad mapping results. Also we did not find a combination of
weights that performed significantly better than AVERAGE in all mapping tasks.

In  our  evaluations  we  took  average  weights  for  the  NONLINEAR  and  the  SIGMOID
combination. However both combination methods allow specifying manual matcher
weights.  For  that  reason  we  also  compared  both,  NONLINEAR  and  SIGMOID,  to  a
weighted equivalent. The results did not differ much from the results in Figure 3 and we
left them out for space reasons.

Initially we restricted our evaluation to a set of four matchers. However, in order to show
the influence of the number of matchers, we ran our experiments on sets of 1 to 7
matchers. For each set we computed the best possible selection of matchers. Figure 4a
compares the achieved average F-Measure over all mapping tasks for each combination
method. The result shows that applying more than 4 matchers decreases the result quality



which was already shown by [Do05]. The best combination strategy we found with each
matcher set was AVERAGE, closely followed by NON-LINEAR. Obviously all
combination approaches that try to automatically define the weights or pre-adjust
similarity values seem to have problems with many matchers. Also for a small set of
matchers, the automatic definition of weights works. But on higher numbers of matchers
the AVERAGE combination returns better results, even though taking too many
matchers is not recommended since the result quality drops.

Finally we want to find robust strategies. The average result of a strategy over different
mapping tasks (as shown in Figure 4) does not necessarily show its robustness. For that
reason, we computed the variance of deviation from the possible maximum F-Measure
(with the 4-matcher set) and visualized the result in Figure 4b.  As described above,
AVERAGE and NONLINEAR behave almost equal in our test cases with AVERAGE
returning slightly better results. However, when looking at the variances there is a
difference. NONLINEAR shows a higher variance on the OAEI-Tasks and the Spicy
Tasks. We therefore conclude that AVERAGE behaves more robust in our different
mapping tasks. When comparing SIGMOID and HADAPT, the effect is even stronger.
Both have similar average values but HADAPT has a much higher variance in the PO
and Spicy mapping tasks. Thus SIGMOID is much more robust in comparison to
HADAPT.

Figure 4: (a) Averaged F-Measure for three matcher sets, (b) Best variance by mapping task group

5 Conclusion and Outlook

In this paper we introduced a number of commonly used methods for combining
similarities of different matchers. We evaluated each of them on a number of mapping
tasks that are well known in the schema matching community.

Some of our results are surprising. There is no single strategy that is returning the best
results  in  all  test  cases.  In  our  mapping tasks  we could  not  find  an  argument  for  using
MIN/MAX strategies since they do not perform well in almost all our tasks. The
AVERAGE and NONLINEAR strategy performed best in our evaluations. However the
influence of interdependencies in NONLINEAR was so small that it almost computed
equal to AVERAGE. HADAPT, SIGMOID, OPENII and OWAMOST tried to
automatically set the weights or adjusted individual similarities. In some cases this



improved the result but in other cases its effect was negative. Also we found strategies
that are more robust than others.

In future we need to find out from the mapping task, when each of these strategies
should be applied. In that context, pre-processing of input schemata is crucial. Also a
combination of automatically setting the weights and automatically adjusting similarity
values could be promising. Our comparison of AVERAGE to WEIGHTED with a
manual setting of weights showed some potential that is still to uncover in future.
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