
Evolution of the COMA Match System

Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

WDI Lab, Institute of Computer Science
University of Leipzig, Leipzig, Germany

{lastname}@informatik.uni-leipzig.de
http://wdilab.uni-leipzig.de

Abstract. The schema and ontology matching systems COMA and COMA++ are
widely used in the community as a basis for comparison of new match approaches.
We give an overview of the evolution of COMA during the last decade. In par-
ticular we discuss lessons learned on strong points and remaining weaknesses.
Furthermore, we outline the design and functionality of the upcoming COMA 3.0.

1 Introduction

Schema and ontology matching is the process of automatically deriving correspondences
between the elements or concepts of two or more data models, such as XML schemas
or formal ontologies. Computed correspondences typically need to be validated and
corrected by users to achieve the correct match mappings. Match mappings are needed
in many areas, in particular for data integration, data exchange, or to support schema
and ontology evolution. Hence, match mappings are the input of many algorithms in
these domains, e. g. to determine executable data transformation mappings or to perform
ontology merging.

In the last decade, there has been a huge amount of research on schema and ontology
matching and on mapping-based metadata management in general. Overviews of the
current state-of-the-art are provided in two books [5, 13]. Many dozens of research pro-
totypes have been developed and at least simple (linguistic) automatic match approaches
found their way into commercial mapping tools [23]. COMA (Combining Matchers)
is one of the first generic schema matching tools. Its development started about ten
years ago at the University of Leipzig and is still going on. COMA and its successor
COMA++ have been made available to other researchers and have been widely used as a
comparison basis for new match approaches.

This paper reflects on the evolution of COMA during the last decade and reports
on the major lessons learned. We also describe the design and functionality of a new
version, dubbed COMA 3.0. In the next section, we give a short overview of the evolution
of COMA and COMA++. We then discuss lessons learned in Section 3 by outlining strong
points and remaining weaknesses. The new version of COMA is described in Section 4.

2 System Evolution

Key stations and publications concerning development and use of COMA are as follows:



2 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

2002 Initial release and publication of COMA paper at VLDB in Hong Kong [9]. Support
for multi-matcher architecture and reuse of previous match mappings.

2003/04 Further evaluations [8] and initial design to support large XML schemas [25].
2005 Release and SIGMOD publication of COMA++ [2]. Support for ontology matching,

GUI and fragment matching. Ph.D. Thesis of Hong Hai Do [7].
2006 Support for instance-based matching. Participation at OAEI contest [17].
2007/08 Further evaluations with larger and more diverse models, including web direc-

tories [10, 18]. Use of COMA++ within the QuickMig project [11]. Web edition.
2010/11 Redesign and development of COMA 3.0.

The development of COMA started in 2001 and was influenced by the findings and
recommendations of the survey article [24] on schema matching. In contrast to most
previous approaches at the time, COMA provides a generic approach to support matching
of different kinds of schemas (in particular relational and XML schemas) and for different
application domains. This is made possible by representing all kinds of schemas by a
generic in-memory graph representation on which matching takes place. A key feature
of COMA is the flexible support for multiple independently executable matchers that
can be executed within a user-controlled match process or workflow. More than ten
schema-based matchers were initially supported mainly based on the linguistic and
structural similarity of elements. All matchers are evaluated on the Cartesian product
of elements from the two input schemas, where each element is represented by a path
to the schema root. Furthermore, different approaches to combine matcher results and
select correspondences are provided. A unique feature of the initial COMA design was
the support for reusing previous match mappings, especially the possibility to compose
several existing mappings stored in a repository. An extensive evaluation on XML
schemas showed that the combination of several matchers clearly outperforms single
matchers.

The initial evaluation used relatively small schemas of less than 100 nodes. Hence,
further evaluations and adjustments focused on larger schemas, especially for e-business
schemas containing shared schema fragments (e. g. for address information) [25]. Several
extensions to deal with large schemas were designed and integrated within the next
major release of the prototype, called COMA++. COMA++ was introduced in 2005 [2]
and represents a major re-implementation of the original COMA design to improve both
performance and functionality. It provides a GUI to simplify the definition of match
strategies and to correct computed match correspondences. It also supports matching
of ontologies, especially OWL ontologies. COMA++ provides additional matchers and
operators like merge and diff for post-processing of match mappings.

Several approaches in COMA++ facilitate the matching of larger schemas, in particu-
lar to avoid the evaluation of the Cartesian product of schema elements. First, fragment
matching is supported that implements one of the first divide-and-conquer approaches
where only similar schema fragments need to be matched with each other. Secondly,
sequential execution of matchers (or mapping refinement) is supported so that a fast
matcher can be executed first and more expensive matchers are only evaluated on more
similar pairs of elements. In particular, a strategy called FilteredContext performs first
matching only for nodes and restricts the evaluation of paths (i. e. node contexts) to the



COMA 3.0 3

more similar node pairs. A detailed description and evaluation of these features can be
found in [7, 10].

In 2006, two instance matchers were added to COMA++ to prepare the system
for participation in the OAEI contest1 that provides instances for its basic benchmark
test cases. Sets of instances are associated to schema elements. One approach is to
compare individual instance values with each other and aggregate the similarity values
per element pair. Alternatively, all instances are combined within a virtual document and
a TF/IDF-like document similarity is determined for element pairs (similar approaches
are used in other match systems, e. g. RiMOM [16]). The instance-based matchers and
their combination with metadata-based matchers were successfully evaluated on the
ontologies of the OAEI benchmark [12] and on web directory taxonomies [18].

In a joint project with SAP, COMA++ was used as the basis for developing mappings
for data migration [11]. Furthermore, we created a web edition of COMA++ to support
matching without local installation of the tool and its underlying DBMS (MySQL).
For evaluation, we also added to COMA++ some advanced approaches for aggregating
similarity values of different matchers [22] as being used in other match systems such as
Prior+ or OpenII Harmony. Since 2010, we partially redesigned and extended COMA++
as we will describe in Section 4.

Due to numerous requests, we made the binary version of COMA/COMA++ available
for free to other researchers. Hundreds of researchers world-wide downloaded the
prototype for use and comparison with their own matching approaches.

3 Lessons Learned

Working on and with a system with such a longevity as COMA, there are both positive
and negative lessons learned. This section presents both sides.

3.1 Strong Points

In retrospect, we believe that many design decisions of COMA and COMA++ have been
right. Several of them have also been adopted by later match systems. The positive points
include the following:

Multi-matcher architecture Supporting many diverse matcher algorithms that can be
combined within match workflows is key to obtain sufficient match quality for
different match tasks. Almost all recent match systems follow such a design with
support for linguistic, structural, and instance-based matchers.

Generic approach The generic representation of models as rooted, directed acyclic
graphs allowed us to apply all matchers and combination approaches to diverse
kinds of schemas and ontologies. By providing the respective parsers we could thus
easily extend the scope of COMA to different domains and models. This flexibility
also contributed to the popularity of COMA for other researchers.

1 http://oaei.ontologymatching.org/



4 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

Effective default configuration COMA and COMA++ provide a default match configu-
ration that can be used without manual tuning effort. The default configuration was
determined for a set of XML schema match tasks and consists of four linguistic and
structural matchers and a specific combination approach [10]. The default combina-
tion approach is based on taking the average matcher similarity per element pair and
applying a so-called Delta selection returning the match candidates with the highest
match similarity (above a threshold) as well as all further candidates within a small
distance (delta) of the top candidate. For improved precision, a stable marriage-like
selection is further applied (called Both) by default. The default strategy turned out
to be surprisingly effective over a wide range of further match problems evaluated
by other researchers, including for matching web directories [3], for n-way (holistic)
schema matching [14] and even for matching of UML meta-models [15]. An evalu-
ation of different methods to combine matcher results [22] showed that advanced
approaches can perform well only in specific cases and are not as robust as simply
determining the average matcher similarity applied by default in COMA++.

GUI The graphical user interface in COMA++ significantly improves the usability
compared to the original COMA implementation, in particular for importing and
visualizing schemas, configuring match strategies, and inspecting and correcting
match mappings. Furthermore, it allows a simplified evaluation of different match
strategies.

Customizability Even when using the default match strategy, it is possible to customize
linguistic matching by providing domain-specific dictionaries, in particular synonym
and abbreviation lists. These simple lists can significantly improve match quality and
are an effective approach to leverage and reuse background knowledge. Particularly,
they avoid the risk of many wrong match candidates (poor precision) when using
general-purpose dictionaries such as Wordnet. There are many more possibilities to
customize the match strategy, in particular the selection of promising matchers. For
example, instance matching can be selected if instances are available for matching.

Advanced match strategies While not part of the default match strategy, COMA++ sup-
ports several advanced match strategies that are especially helpful to deal with large
schemas and ontologies. These strategies include the reuse of previous match results,
fragment matching, as well as mapping refinements such as in the FilteredContext
strategy. While the approaches have been quite effective, there are still opportunities
for improvement, e. g. for a more comprehensive reuse and for schema partitioning
as discussed in [23].

Repository We store all imported schemas and ontologies as well as confirmed map-
pings in a repository for later inspection and reuse. The repository avoids the
repeated import and matching of the same schemas and is a prerequisite for the
reuse matchers.

3.2 Weak Points

Given the broad need for schema and ontology matching and increasing demands
w. r. t. the size of match tasks and the use of mappings, we also encountered a set of
difficulties with our match system asking for improvements. Most current match systems



COMA 3.0 5

share similar limitations although some of the associated challenges have already been
addressed in recent research [28].

Scalability issues The number of paths is generally much higher than the number of
nodes per schema so that COMA’s path-based matching leads to memory and runtime
problems for large match tasks with millions of path pairs to evaluate in the Cartesian
product. Memory problems are primarily caused by storing the similarity values
for all matchers and path pairs in memory in addition to the schema graphs. These
problems can be alleviated to some degree by applying fragment matching and node-
based matching but a more general solution with reduced memory requirements is
needed. Furthermore, additional performance techniques such as parallel matching
on several processors are desirable.

Configuration effort While the default match strategy is often effective it cannot guar-
antee the best match quality and runtime performance for all match tasks. Finding
better match strategies, however, is difficult even for experts due to the high flexibil-
ity that comes with the possibility to select from many matchers and combination
options and having to find suitable parameter settings. Therefore, the system should
help users to choose a match strategy based on an automatic analysis of the match
task to solve.

Limited semantics of match mappings The system only determines match mappings
consisting of simple equality correspondences between elements of schemas or
ontologies. More expressive mappings are desirable supporting additional kinds of
relationships such as containment or is-a relationships. Furthermore, applications
such as data exchange or schema evolution need executable mappings that can be
applied to instance data.

Limited accessibility COMA++ is a stand-alone tool designed for interactive use, not
for use by programs. To improve the accessibility, the provision of an API, e. g.
based on web services is desirable. The web edition of COMA++ is not widely used
and a redesigned browser-based GUI would be attractive.

4 COMA 3.0

Since 2010 we have partially redesigned and extended COMA++ at the Web Data In-
tegration Lab (WDI Lab) of the University of Leipzig. The mission of the WDI Lab
is the development of advanced data integration tools and approaches that can be used
for practical applications. Major work areas include support for schema and ontology
integration, entity resolution as well as mashup-like data integration workflows.

In this section, we outline the new version of our match tool called COMA 3.0
that includes support for enriched mappings and ontology merging. We start with an
overview of the architecture and functionality of COMA 3.0. We then discuss the mapping
enrichment and ontology merging components and present preliminary evaluation results.
COMA 3.0 will be made available in 2012. We plan to provide two versions: a community
version as open source and a professional version to be distributed by a WDI Lab spinoff.



6 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

4.1 Overview

The revised architecture of COMA is shown in Figure 1. Several components are analo-
gous to COMA++, including Import of schemas and ontologies, auxiliary information
and mappings, an Export to output models and mappings, and a Repository where these
information as well as match configurations are kept. Furthermore, there is an Execu-
tion Engine to execute defined match strategies using matchers and preprocessing and
postprocessing steps from different libraries. The following components are largely new:

Configuration Engine which supports both a manual configuration (expert mode) as
well as an initial kind of automatic configuration (simple mode) and validation
of workflow configurations. The automatic configuration uses the default match
strategy as a starting point and decides about which matchers to add or drop and
how to change the approach for combining matcher results. For this purpose, the
input schemas/ontologies are checked for the availability of instances, comments,
and diverse data types to determine whether the matchers requiring these features
can be used at all. Furthermore, we test whether the reuse of previously determined
match mappings is applicable. Similar to other systems [16], we also calculate the
degree of linguistic and structural similarity of the input models to decide about the
use of linguistic and structural matchers. We also check the input sizes to decide
about the use of fragment matching.

Enrichment Engine which supports a semi-automatic or manual enrichment of simple
1:1 correspondences into more complex mapping expressions including functions,
e. g. to support data transformations. Furthermore, is-a and inverse is-a correspon-
dences between ontologies can be determined as input for ontology merging. More
details will be described in subsection 4.2.

Merge and Transformation Engines which support match-driven ontology merging
(see subsection 4.3), as well as the generation of executable mappings (queries) for
data transformation. The latter functionality is based on the approaches developed
for the +Spicy mapping system [20].

User Interfaces. A new GUI as well as programmatic access to the COMA functionality
is planned by offering an API and web service interfaces.

We retain virtually all matchers and advanced strategies (reuse matching, fragment
matching, FilteredContext) of COMA++ and add some new ones. We implemented an
additional kind of fragment matching for large schemas/ontologies where fragments are
automatically identified by a clustering algorithm based on the structural similarity within
schemas/ontologies. The approach is described and evaluated in [1]. For matching life
science ontologies, we added a domain-specific matcher called NameSyn that exploits
the frequent availability of name synonyms for concepts. It therefore considers two
concepts to match if either their names or one of their synonyms are highly similar.

There are numerous implementation enhancements to improve performance and
scalability. Since the matcher results (similarity matrices) can contain a very large
number of similarity values we support their storage either in memory or in a database
table. Both implementations support the same interface and are thus internally usable in
the same way. Linguistic matching is now based on a set of optimized and more versatile
string matchers (Trigram, Jaccard, Levensthein, TF/IDF, etc.) that have been devised in



COMA 3.0 7

Repository

Schemas, Ontologies

Auxiliary Information

Mappings

Import

Storage

Configuration Engine

Execution Engine

Matcher 

Library

Enrichment

Engine

Transformation

Engine

Generated Query

Transformed Data

Export

Mapping 

Match 

Execution

Mapping

Processing

GUI APISoftware as 

a Service
User

Connection

Automatic Manual

Merge 

Engine
Merged Models

Fig. 1. Architecture of COMA 3.0

the WDI Lab for both entity resolution and schema/ontology matching. In particular the
input and output of these matchers can either be in memory, in a file or in a database.
Common optimizations of the string matchers include a preprocessing of input strings
(stop word removal, tokenization, resolution of abbreviations/synonyms etc.) as well as
an early pruning of highly unsimilar pairs of strings.

As mentioned, we plan to make the COMA functionality available as a web service
(SaaS). The goal is to broaden the usability of COMA to diverse applications thereby
reducing the need to repeatedly re-implement match functionality. Possible consumers
include mashups or mobile applications as well as match-driven tools, e. g. for data
migration or ontology merging. Furthermore, the match functionality can be utilized
within new graphical user interfaces, e. g. a browser-based light-weight GUI for match
processing. The core functionality to be provided as web service includes the possibility
to load schemas and ontologies, to specify and execute a match strategy and to return
computed match mappings. A challenge still to be addressed is support for multi-tenancy
so that the data and execution of many users can be isolated from each other.

4.2 Enrichment Engine

The match process of COMA identifies a set of 1:1 equality match correspondences
between elements of the input schemas or ontologies. While elements may participate
in multiple such correspondences, there is no direct support for complex correspon-
dences interrelating several elements per input schema. For example, there may be
correspondences Name–FirstName and Name–LastName that should in fact be a com-
plex correspondence Name – {FirstName, LastName}. One task of the enrichment engine
is to semi-automatically determine such complex correspondences and extend them with
data transformation functions, e. g. to specify that a split of Name should be applied to
obtain the FirstName and LastName elements. The second task of the enrichment engine
is the derivation of more semantic correspondences for ontologies, in particular is-a and
their inverse is-a relationships that can be utilized for ontology merging.

We have extended the mapping structure of COMA to support complex correspon-
dences with data transformation functions. We support similar functions as in commercial



8 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

Fig. 2. a) A Mapping Scenario from STBenchmark – b) A Merging Scenario

mapping tools such as BizTalk Server2, in particular numerical functions (e. g. sum, mul-
tiply), string functions (e. g. concat, lowercase, replace), date/time functions, conversion
functions, logical functions, relational functions, etc. The semi-automatic determination
of complex correspondences and mapping expressions is very complex and only few
research approaches have been proposed so far, e. g. iMAP [6].

To find complex correspondences we analyze the set of 1:1 correspondences. In
particular we check whether sets of correspondences involving the same source or target
element should be combined within a complex correspondence, e. g. if they refer to
elements in close proximity such as in the mentioned Name example. As usual, all
suggestions are subject to user feedback for confirmation or correction.

Our approach to identify applicable transformation functions depends on instance
data but also uses element names and structural information. For all correspondences
we test and verify the applicability of the type-specific transformation functions. For
illustration, consider the example from the STBenchmark3 shown in Figure 2(a), where
three functions are needed to correctly transform source instances into target instances.
In particular, f1 and f2 describe how to split the source element name into the two target
elements FirstName and LastName; similarly, the concatenation function f3 defines
how to combine the three elements street, city, zip into the target element Address. Our
approach is able to find out, for example, the last complex correspondence by starting
from the 1:1-correspondence address–Address automatically detected by the system and
performing a structural analysis of these two elements. Since data is not stored in the
inner node address but in its children, a complex correspondence will be created out
of the subnodes. Furthermore, analyzing instance data is helpful to determine in which
order the source elements should be concatenated by f3.

Besides discovering complex matches, the enrichment engine supports the determi-
nation of semantic correspondences between ontologies, in particular is-a and inverse
is-a relationships, that can be used for ontology merging. We provide a basic algorithm
based on the analysis of labels that can detect textual containment relationships between
concepts; this approach can be extended using external linguistic oracles (e. g. WordNet)
providing semantic relationship indicators. For illustration, consider the simple example
in Figure 2(b) where the catalog of a new online car shop (source) should be merged into
the catalog of a price comparison portal (target). Analyzing the labels of the input con-

2 http://www.microsoft.com/biztalk
3 http://www.stbenchmark.org/



COMA 3.0 9

cepts, we find that the source label Wagon BMW “is contained” in the target label BMW
and then derive that Wagon BMW “is a” BMW; similarly for concepts SUV, SUV Audi
and SUV BMW, but in the opposite direction, identifying the inverse-is-a relationships
shown in Figure 2(b).

A related approach for semantic matching is supported by S-Match [14] where
different matchers are used to discover semantic relations, like equivalence, less general,
more general and disjointness between concepts. The less and more general relationships
correspond to is-a and inverse-is-a relationships in our approach.

4.3 Ontology Merging

A major extension of COMA 3.0 is the inclusion of an ontology merging component that
consumes the match mapping as input and produces an integrated ontology as output,
called merged ontology. The main approach is called AUTOMATIC TARGET-DRIVEN
ONTOLOGY MERGING (ATOM) and is described in more detail in [27]. The current
version is restricted to is-a taxonomies; multiple inheritance and instance data for leaf
concepts are supported.

Ontology merging is a difficult problem since there often exists no ideal unique
solution. Previous ontology merge approaches are largely user-controlled and do not
clearly separate matching from merging resulting in complex approaches, [4], [21], [19],
[29]. By utilizing a manually verified match mapping as input, our merge approach is
largely automatic. We support two kinds of automatic ontology merging: a symmetric or
full merge as well as an asymmetric, target-driven merge.

The symmetric approach fully preserves both input ontologies, combining equiva-
lent concepts and maintaining all remaining concepts and relationships of both input
ontologies. The main problem of such a full merge result is that maintaining different
organizations of the same information can reduce its understandability and introduce
multiple inheritance and semantic overlap.

As an alternative we therefore support the new asymmetric ATOM approach that
merges the source (first) input ontology into the target (second) input ontology. It thus
gives preference to the target ontology and preserves it fully while redundant source
concepts and relationships might be dropped. We find that such an asymmetric merge is
highly relevant in practice and allows us to incrementally extend the target ontology by
additional source ontologies. For example, the product catalog of a merchant may have
to be merged as a new source into the existing catalog of a price comparison portal.

Figure 3 shows a COMA 3.0 screenshot on the use of ATOM for merging the ontologies
of Figure 2(b). The merge result is shown in the middle. The lines specify mappings
between the input ontologies and the merged ontology that are also automatically
determined and that can be used to migrate instances. If ATOM is provided with semantic
correspondences as discussed in the previous Section, the merge result can be improved
by finding a better placement of concepts. The screenshot in Figure 3 shows already
the outcome when using the correspondences labeled isa1, inv-isa1 and inv-isa2 in
Figure 2(b). These correspondences could be used, for example, to place the concept
Wagon BMW as a subclass of the BMW concept, which would not have been possible
with equivalence correspondences alone. More details on our merging approach and its
evaluation can be found in [26] and [27].



10 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

Fig. 3. A merging scenario in COMA 3.0

4.4 Preliminary Evaluation

We have just started to evaluate COMA 3.0 and can therefore discuss only some prelimi-
nary results. We report some results for the OAEI Anatomy match task. Some statistics
of the two anatomy ontologies are shown in Table 1. The ontologies have around 3000
concepts resulting in about 9 million pairs to evaluate in the Cartesian product. The
number of root paths is much higher due to multiple inheritance etc. resulting in about
470 million pairs to evaluate for the Cartesian product. COMA++ used to run into memory
problems on the path-based evaluation of the anatomy match task and could thus only
solve it with a node-based execution strategy.

With COMA 3.0 eliminating the memory bottleneck we are able to solve this match
task for both node-based and path-based evaluation. Due to the high linguistic similarity
of the input ontologies, we use a combination of mainly linguistic matchers: a simple
Name matcher for concepts, the domain-specific NameSyn matcher as well as a Path
matcher comparing the concatenated names of the concepts on the root path.

Source Target Comparisons

OAEI Anatomy Nodes 2,746 3,306 9 million
Paths 12,362 39,001 468 million

Table 1. Statistics of the match task

Source Target

Name 18 18
Path 137 156

Table 2. Average string length

Figure 4(a) gives precision, recall, and F-measure results, evaluated against the gold
standard containing about 1500 correspondences. The numbers in the combinations
denote the weights of the individual matchers as used in the combined similarity value.
The best F-measure value of 0.88 is achieved using the combination of NameSyn, Path,
and Parents matchers. Figure 4(b) depicts execution times needed for the single
matchers on an average workspace PC. The Name matcher itself is the fastest with an
execution time of around 10 seconds, thereby still achieving 0.81 F-measure. The Path
matcher requires in total over 41 minutes of which 32 are consumed by the evaluation
of the 468 million pairs of paths, which are due to high number of path elements (cf.
Table 2). The remaining time mainly is attributed to the combination of similarity values
of the multiple paths per concept.



COMA 3.0 11

0,81
0,84

0,06

0,71

0,86 0,86 0,88

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

Name NameSyn
(Ns)

Parents
(P)

Path Ns+ P
(.7,.3)

Ns+Path
(.5,.5)

Ns+Path+P
(.4,.5,.1)

Precision Recall Fmeasurea) b)

0,2 0,3
4,1

41,2

0
5

10
15
20
25
30
35
40
45

Name NameSyn Parents Path

Time (min)

Fig. 4. Results for anatomy matching

5 Conclusions

We described the evolution of the COMA match systems during the last decade, discussed
lessons learned, and sketched the upcoming version COMA 3.0. We find that many
features and design decisions of the original COMA system are still valid today, and are
being used in most other schema and ontology matching tools, such as the multi-matcher
architecture. Further strong points include an effective default match configuration and
advanced match strategies such as reuse of previous mappings and fragment matching.
We also outlined current limitations of COMA++ and discussed how they are partially
addressed in COMA 3.0. In particular, the new system provides improved scalability
and initial support for self configuration. Furthermore, it supports the generation of
enhanced mappings as well as automatic ontology merging. We are currently evaluating
and completing the implementation of COMA 3.0. Further extensions are planned for
future versions, such as parallel matching.

6 Acknowledgements

We thank Hong Hai Do for implementing COMA and helping in developing COMA++.

References

1. Alsayed Algergawy, Sabine Massmann, and Erhard Rahm. A Clustering-based Approach For
Large-scale Ontology Matching. Proc. ADBIS, 2011.

2. David Aumüller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. Schema and Ontology
Matching with COMA++. In Proc. of ACM SIGMOD, 2005.

3. Paolo Avesani, Fausto Giunchiglia, and Mikalai Yatskevich. A Large Scale Taxonomy
Mapping Evaluation. In Proc. Int. Conf. Semantic Web (ICSW), LNCS 3729. Springer-Verlag,
2005.

4. Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A Comparative Analysis of
Methodologies for Database Schema Integration. ACM Comp. Surv., 18(4), 1986.

5. Zohra Bellahsene, Angela Bonifati, and Erhard Rahm. Schema Matching and Mapping.
Data-centric Systems and Applications. Springer, 2011.

6. Robin Dhamankar, Yoonkyong Lee, Anhai Doan, Alon Halevy, and Pedro Domingos. iMAP:
Discovering Complex Semantic Matches between Database Schemas. In Proc. of ACM
SIGMOD, 2004.



12 Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold, Erhard Rahm

7. Hong Hai Do. Schema Matching and Mapping-based Data Integration: Architecture, Ap-
proaches and Evaluation. VDM Verlag, Saarbrücken, Germany, 2007.

8. Hong-Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of Schema Matching Evalua-
tions. In Revised Papers from the NODe 2002 Web and Database-Related Workshops on Web,
Web-Services, and Database Systems. Springer-Verlag, 2003.

9. Hong-Hai Do and Erhard Rahm. COMA - A System for Flexible Combination of Schema
Matching Approaches. In Proc. of VLDB, 2002.

10. Hong-Hai Do and Erhard Rahm. Matching Large Schemas: Approaches and Evaluation. Inf.
Syst., 32, September 2007.

11. Christian Drumm, Matthias Schmitt, Hong-Hai Do, and Erhard Rahm. QuickMig - Automatic
Schema Matching for Data Migration Projects. In Proc. of CIKM, 2007.

12. Daniel Engmann and Sabine Massmann. Instance Matching with COMA++. In BTW
Workshops, 2007.

13. Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer, 2007.
14. Fausto Giunchiglia, Aliaksandr Autayeu, and Juan Pane. S-Match: An Open Source Frame-

work for Matching Lightweight Ontologies. Semantic Web, 2011.
15. Gerti Kappel, Horst Kargl, Gerhard Kramler, Andrea Schauerhuber, Martina Seidl, Michael

Strommer, and Manuel Wimmer. Matching Metamodels with Semantic Systems - An Experi-
ence Report. In BTW workshop on Model Management, 2007.

16. Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. RiMOM: A Dynamic Multistrategy Ontology
Alignment Framework. IEEE Trans. Knowl. Data Egineering, 21(8), 2009.

17. Sabine Massmann, Daniel Engmann, and Erhard Rahm. COMA++: Results for the Ontology
Alignment Contest OAEI 2006. Int. Workshop on Ontology Matching, 2006.

18. Sabine Massmann and Erhard Rahm. Evaluating Instance-based Matching of Web Directories.
11th International Workshop on the Web and Databases (WebDB), 2008.

19. Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder. An Environment for
Merging and Testing Large Ontologies. In KR, 2000.

20. Giansalvatore Mecca, Paolo Papotti, Salvatore Raunich, and Marcello Buoncristiano. Concise
and Expressive Mappings with +Spicy. Proc. VLDB Endow., August 2009.

21. Natalya Fridman Noy and Mark A. Musen. PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. In AAAI/IAAI, 2000.

22. Eric Peukert, Sabine Massmann, and Kathleen Koenig. Comparing Similarity Combination
Methods for Schema Matching. In Klaus-Peter Faehnrich and Bogdan Franczyk, editors, GI
Jahrestagung (1), volume 175 of LNI. GI, 2010.

23. Erhard Rahm. Towards Large-scale Schema and Ontology Matching. In Schema Matching
and Mapping. Springer, 2011.

24. Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. VLDB J., 10, April 2001.

25. Erhard Rahm, Hong-Hai Do, and Sabine Massmann. Matching Large XML Schemas. SIG-
MOD Record 33(4), 2004.

26. Salvatore Raunich and Erhard Rahm. Target-driven Merging of Taxonomies. Technical report,
University of Leipzig, 2010.

27. Salvatore Raunich and Erhard Rahm. ATOM: Automatic Target-driven Ontology Merging. In
Proc. of ICDE, 2011.

28. Pavel Shvaiko and Jérôme Euzenat. Ten Challenges for Ontology Matching. Proc. OTM
Conferences, 2008.

29. Gerd Stumme and Alexander Maedche. FCA-MERGE: Bottom-Up Merging of Ontologies.
In IJCAI, 2001.


