
Block-based Load Balancing for
Entity Resolution with MapReduce

Lars Kolb, Andreas Thor, Erhard Rahm
Database Group

University of Leipzig, Germany
{kolb,thor,rahm}@informatik.uni-leipzig.de

ABSTRACT
The effectiveness and scalability of MapReduce-based im-
plementations of complex data-intensive tasks depend on an
even redistribution of data between map and reduce tasks.
In the presence of skewed data, sophisticated redistribution
approaches thus become necessary to achieve load balanc-
ing among all reduce tasks to be executed in parallel. For
the complex problem of entity resolution with blocking, we
propose BlockSplit, a load balancing approach that supports
blocking techniques to reduce the search space of entity res-
olution. The evaluation on a real cloud infrastructure shows
the value and effectiveness of the proposed approach.

Categories and Subject Descriptors
H.2.4 [Systems]: Distributed Databases; H.3.4 [Systems
and Software]: Distributed Systems

General Terms
Algorithms, Performance

Keywords
MapReduce, Entity Resolution, Load Balancing, Data Skew

1. INTRODUCTION
Cloud computing has become a popular paradigm for effi-

ciently processing computational- and data-intensive
tasks. Such tasks can be executed on demand on powerful
distributed hardware and service infrastructures. The Map-
Reduce (MR) model [2] supports the transparent parallel ex-
ecution of complex tasks on cloud infrastructures. However,
the (cost-) effectiveness and scalability of MR programs de-
pend on effective load balancing approaches to evenly utilize
available nodes. This is particularly challenging for data-
intensive tasks where skewed data redistribution may cause
node-specific bottlenecks and load imbalances.
We propose and evaluate an effective load balancing ap-

proach to data skew handling for MR-based entity resolu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

tion (ER). Note that MR’s inherent vulnerability to load
imbalances due to data skew is relevant for all kind of pair-
wise similarity computation, e.g., document similarity com-
putation [4] and set-similarity joins [9]. Such applications
can therefore also benefit from our load balancing approach
though we study MR-based load balancing in the context of
ER only. ER is the task of identifying entities referring to
the same real-world object [7]. It is a pervasive problem and
of critical importance for data quality and data integration,
e.g., to match product offers for price comparison portals.
ER techniques usually compare pairs of entities by evaluat-
ing multiple similarity measures. Näıve approaches examine
the Cartesian product of n input entities. However, the re-
sulting complexity of O(n2) is inefficient for large datasets.
The common approach to improve efficiency is to adopt so-
called blocking techniques [1]. They utilize a blocking key
based on the values of one or several entity attributes to
partition the input data into multiple partitions (blocks)
and restrict the subsequent matching to entities of the same
block. For example, it is sufficient to compare entities of the
same manufacturer when matching product offers.

Even with blocking, ER remains a costly process that can
take up to days for large datasets [8]. The MR model is
well suited to execute blocking-based ER in parallel. Sev-
eral map tasks can read the input entities in parallel and
redistribute them among several reduce tasks based on the
blocking key. This guarantees that all entities of the same
block are assigned to the same reduce task so that different
blocks can be matched in parallel by multiple reduce tasks.
However, such a basic MR implementation is susceptible to
severe load imbalances due to skewed block sizes since the
match work of an entire block is assigned to a single reduce
task. As a consequence, large blocks prevent the utilization
of more than a few nodes. The absence of skew handling
mechanisms can therefore tremendously deteriorate runtime
efficiency and scalability of MR programs. Furthermore, idle
nodes may produce unnecessary costs because public cloud
infrastructures usually charge per utilized machine hours.

We therefore propose BlockSplit, a general load balancing
approach that addresses the mentioned skew problems. It
takes the size of blocks into account and assigns entire blocks
to reduce tasks if this does not violate load balancing con-
straints. Larger blocks are split into smaller chunks based on
the input partitions to enable their parallel matching within
multiple reduce tasks. The evaluation uses real-world data
and demonstrates the importance of skew handling for MR-
based ER and the efficiency of BlockSplit.

Figure 1: Schematic overview of the MR-based
matching process with load balancing.

2. MAPREDUCE AND ENTITY
RESOLUTION

MapReduce (MR) is a programming model designed for
parallel data-intensive computing in cluster environments
with up to thousands of nodes [2]. A computation is ex-
pressed with two user defined functions, map and reduce,
that are executed in parallel on disjoint partitions of the in-
put data. Themap function transforms input entities to key-
value pairs whereas reduce is called for each key that occurs
as map output. Within the reduce function, one can access
the list of all corresponding values. A MR cluster consists
of a set of nodes that run a fixed number of map and reduce
processes. For each MR job execution, the number of map
tasks (m) and reduce tasks (r) is specified. Each process
can execute only one task at a time. After a task has fin-
ished, another task is automatically assigned to the released
process using a framework-specific scheduling mechanism.
Besides map and reduce, a MR dataflow relies on three fur-

ther functions. First, the function part partitions the map
output and thereby distributes it to the available reduce
tasks. All keys are sorted with the help of a comparison
function comp. Finally, each reduce task employs a group-
ing function group to determine the data chunks for each
reduce function call. Each of these functions operates only
on (parts of) the key of key-value pairs and does not take the
values into account. The use of extended (composite) keys
and an appropriate choice of part, comp, and group supports
sophisticated partitioning and grouping behavior and will be
utilized in our load balancing approach.
As discussed in the introduction, parallel ER using block-

ing can be easily implemented with MR. The map function
can be used to determine for every input entity its block-
ing key and to output a key-value pair (blocking key, entity).
The default hash partitioning strategy would use the block-
ing key to distribute key-value pairs among reduce tasks
so that all entities sharing the same blocking key are as-
signed to the same reduce task. Finally, the reduce function
is called for each block and computes the matching entity
pairs within its block. We call this straightforward approach
Basic. However, the Basic strategy is vulnerable to data skew
due to blocks of varying size. Therefore, the execution time
may be dominated by a single or a few reduce tasks.

3. BLOCK-BASED LOAD BALANCING
We describe our load balancing approach BlockSplit for

Figure 2: Example dataflow for computation of the
block distribution matrix (MR Job1 of Figure 1).

ER for one data source R. The input is a set of entities
and the output are the entity pairs that are considered to
be the same. We perform ER processing within two MR
jobs as illustrated in Figure 1. Both jobs are based on the
same number of map tasks and the same partitioning of the
input data. The first job calculates a so-called block distri-
bution matrix (BDM) that specifies the number of entities
per block separated by input partitions. The matrix is used
by the map phase of the second MR job to tailor entity re-
distribution for parallel matching of blocks of different size.

BlockSplit generates one or several so-called match tasks
per block and distributes match tasks among reduce tasks.
Furthermore, it uses the following two ideas:
• Small blocks are processed within a single match task sim-

ilar to Basic. Large blocks are split according to the m
input partitions into m sub-blocks. All entities within the
same sub-block are compared with each other. Further-
more, pairs of sub-blocks are processed to evaluate their
Cartesian product. This ensures that all comparisons of
the original block will be computed.

• BlockSplit determines the number of comparisons per
match task and assigns match tasks in descending size
among reduce tasks. This implements a greedy load bal-
ancing heuristic ensuring that the largest match tasks are
processed first and makes it unlikely that two large match
tasks are processed by the same reduce task.

In the following, we describe the computation of the BDM
and our BlockSplit strategy. Further information including
pseudo-code can be found in [5].

3.1 Block Distribution Matrix
The block distribution matrix (BDM) is a b × m matrix

that specifies the number of entities of b blocks across m in-
put partitions. The BDM computation using MR is straight-
forward as illustrated by Figure 2 for an example dataset.
The 14 entities (A-O) are divided into two input partitions
Π0 and Π1 and each entity has a blocking key (w-z) that
is denoted as index. For example, the map output key of

Figure 3: Example dataflow for the load balancing
strategy BlockSplit (MR Job2 of Figure 1).

M is z.1 because M ’s blocking key equals z and M appears
in the second partition (partition index=1). This key is as-
signed to the last reduce task that outputs [z, 1, 3] because
there are 3 entities in the second partition for blocking key
z. The combined reduce outputs correspond to the BDM.
To assign block keys to rows of the BDM, we use the order
of the blocks from the reduce output, i.e., we assign the first
block (key w) to block index position 0, etc.
The block sizes in the example vary between 2 and 5 enti-

ties. The match work to compare all entities per block with
each other thus ranges from 1 to 10 comparisons; the largest
block with key z entails 50% (10 of 20) of all comparisons
although it contains only 35% (5 out 14) of all entities.
As illustrated in Figure 1, map produces an additional

output Π′
i per input partition that contains the original en-

tities annotated with their blocking keys. This output is
not shown in Figure 2 to save space but used as input in the
second MR job (see Figure 3).

3.2 BlockSplit
The realization of BlockSplitmakes use of the BDM as well

as of composite map output keys. Map generates a carefully
constructed composite key that (together with associated
partition and group functions) allows a balanced load dis-
tribution. The composite key thereby combines information
about the target reduce task(s), the block of the entity, and
the entity itself. The map function may generate multiple
keys per entity if this entity is supposed to be processed by
multiple reduce tasks. The reduce phase performs the ac-
tual ER and computes match similarities between entities of
the same block. Since the reduce phase consumes the vast
majority of the overall runtime (∼95% in our experiments),
our load balancing strategy solely focusses on data redis-
tribution for reduce tasks. Other MR-specific performance
factors as data locality are therefore not considered.
Map outputs key-value pairs with key=(reduce index �

block index � split) and value=(entity). The reduce task
index has a value between 0 and r − 1 and is used by part

to realize the desired assignment to reduce tasks. Grouping
is done on the entire key and – since the block index is part
of the key – ensures that each reduce function only receives
entities of the same block. The split value indicates what
match task has to be performed by the reduce function, i.e.,
whether a complete block or sub-blocks need to be processed.

During the initialization, each of the m map tasks reads
the BDM and computes the number of comparison per block
and the total number of comparisons P over all b blocks Φk:
P = 1

2
· Σb−1

k=0|Φk| · (|Φk| − 1). For each block Φk, it also
checks if the number of comparisons is above the average
reduce task workload, i.e., if

1

2
· |Φk| · (|Φk| − 1) > P/r.

If the block Φk is not above the average workload it can
be processed within a single match task (denoted as k.∗ in
the block index and split components of the map output key).
Otherwise, it is split into m sub-blocks based on the m input
partitions leading to the following 1

2
·m · (m− 1)+m match

tasks:
• m match tasks, denoted with key components k.i, for the

individual processing of the ith sub-block for i ∈ [0,m−1]
• 1

2
·m · (m− 1) match tasks, denoted with key components

k.i×j with i, j ∈ [0,m−1] and i < j, for the computation
of the Cartesian product of sub-blocks i and j

Note that the BDM holds the number of entities per (block,
partition) pair and map can therefore determine which input
partitions contain no entities of Φk, resulting in less match
tasks. However, in favor of readability we assume that all
m input partitions contain at least one entity. To determine
the reduce task for each match task, all match tasks are first
sorted in descending order of their number of comparisons.
Match tasks are then assigned to reduce tasks in this order
so that the current match task is assigned to the reduce
task with the lowest number of already assigned pairs. In
the following, we denote the reduce task index for match
task k.x with R(k.x).

After the described initialization phase, the map function
is called for each input entity. If the entity belongs to a block
Φk that has not to be split, map outputs one key-value pair
with composite key=R(k.*).k.*. Otherwise, map outputs m
key-value pairs for the entity. The key R(k.i).k.i represents
the individual sub-block i of block Φk and the remaining
m − 1 keys R(k.i).k.i × j (for j ∈ [0,m − 1] and j �= i)
represent all combinations with the other m− 1 sub-blocks.
This indicates that entities of split blocks are replicated m
times to support load balancing. The map function emits
the entity as value of the key-value pair; for split blocks
we annotate entities with the partition index for use in the
reduce phase.

In our running example, only block Φ3 (blocking key z)
is subject to splitting into m=2 sub-blocks. The BDM (see
Figure 2) indicates for block Φ3 that Π0 and Π1 contain two
and three entities, respectively. The resulting sub-blocks
Φ3.0 and Φ3.1 lead to the three match tasks 3.0, 3.0×1, and
3.1 that account for 1, 6, and 3 comparisons, respectively.
The resulting ordering of match tasks by size (0.*, 3.0×1,
2.*, 3.1, 1.*, and 3.0) leads for three reduce tasks to the
distribution shown in Figure 3. The replication of the five
entities for the split block leads to 19 key-value pairs for the
14 input entities. Each reduce task has to process between
six and seven comparisons indicating a good load balancing
for the example.

Figure 4: Execution times for different data skews
using 114,000 entities.

4. EVALUATION
In the following we evaluate our BlockSplit strategy re-

garding the degree of data skew and the number of available
nodes (n). We ran our experiments with real-world datasets
on the Amazon EC2 cloud infrastructure using Hadoop.
We first evaluate the robustness of our load balancing

strategies against data skew for a dataset containing about
114,000 product descriptions. To this end, we control the
degree of data skew by generating block distributions that
follow an exponential distribution. Given a fixed number of
blocks b=100, the number of entities in the kth block is pro-
portional to e−s·k. The skew factor s ≥ 0 thereby describes
the degree of data skew. Note that the data skew, i.e., the
distribution of entities over all blocks, determines the overall
number of entity pairs. We are therefore interested in the
average execution time per entity pair when comparing load
balancing strategies for different data skews.
Figure 4 shows the average execution time per 104 pairs for

different data skews (n=10, m=20, r=100). The Basic strat-
egy explained in Section 2 is not robust against data skew
because a higher data skew increases the number of pairs of
the largest block. For example, for s=1 Basic needs 225ms
per 104 comparisons which is more than 12 times slower than
BlockSplit. However, the Basic strategy is slightly faster for
a uniform block distribution (s=0) because it does not suf-
fer from the additional BDM computation and load balanc-
ing overhead. The BDM influence becomes insignificant for
higher data skews because the data skew does not affect the
time for BDM computation but the number of pairs. This
is why the execution time per pair is reduced for increasing
s. In general, BlockSplit is stable across all data skews.
To analyze the scalability of BlockSplit, we use a larger

dataset of approx. 1.4 million publication records. The
blocking is formed by the first three letters of the publi-
cation title. We vary the number of nodes from 1 up to 100.
For n nodes, the number of map tasks is set to m = 2 ·n and
the number of reduce tasks is set to r = 10 · n, i.e., adding
new nodes leads to additional map and reduce tasks.
The resulting execution times and speedup values are shown

in Figure 5. In contrast to Basic, BlockSplit shows its abil-
ity to evenly distribute the workload across available nodes.
It scales almost linearly up to 40 nodes. For larger n the
speedup increase slightly alleviates due to the decreasing
workload (number of entity comparisons) per reduce task.
At the same time, the relative fraction of the MR overhead
for task initialization and task shutdown is increasing.

Figure 5: Execution times and speedup of the Block-
Split strategy.

5. RELATED WORK
Load balancing and skew handling are well-known data

management problems and MR has been criticized for hav-
ing overlooked the skew issue [3]. MR’s inherent vulnerabil-
ity to data skew is relevant for all kind of pairwise similarity
computation, e.g., pairwise document similarity [4] or set-
similarity joins [9]. MR has already been employed for ER
(e.g., [10]) but we are only aware of one load balancing mech-
anism. [6] studies load balancing for Sorted Neighborhood
that is by design less vulnerable to skewed data.

6. SUMMARY AND OUTLOOK
We proposed a load balancing approach, BlockSplit, for

parallelizing blocking-based entity resolution using the
widely available MapReduce framework. The approach is
capable to deal with skewed blocking key distributions and
effectively distributes the workload among all reduce tasks
by splitting large blocks. Our evaluation in a real cloud en-
vironment demonstrated that it is robust against data skew
and scales with the number of available nodes.

In future work we will extend our approach to multi-pass
blocking that assigns multiple blocks per entity. We will
further investigate how our load balancing approach can
be adapted for MapReduce-based implementations of other
data-intensive tasks, such as join processing or data mining.

7. REFERENCES
[1] R. Baxter, P. Christen, and T. Churches. A comparison of fast

blocking methods for record linkage. In Workshop Data
Cleaning, Record Linkage, and Object Consolidation, 2003.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[3] D. J. DeWitt and M. Stonebraker. MapReduce: A major step
backwards, 2008.

[4] T. Elsayed, J. Lin, and D. W. Oard. Pairwise Document
Similarity in Large Collections with MapReduce. In ACL, 2008.

[5] L. Kolb, A. Thor, and E. Rahm. Load Balancing for
MapReduce-based Entity Resolution. ArXiv, 2011.

[6] L. Kolb, A. Thor, and E. Rahm. Multi-pass Sorted
Neighborhood Blocking with MapReduce. CSRD, 2011.

[7] H. Köpcke and E. Rahm. Frameworks for entity matching: A
comparison. Data Knowl. Eng., 69(2), 2010.

[8] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity
resolution approaches on real-world match problems. PVLDB,
3(1), 2010.

[9] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using MapReduce. In SIGMOD, 2010.

[10] C. Wang et al. MapDupReducer: Detecting near duplicates
over massive datasets. In SIGMOD, 2010.

	Introduction
	MapReduce and Entity Resolution
	Block-based Load Balancing
	Block Distribution Matrix
	BlockSplit

	Evaluation
	Related Work
	Summary and outlook
	References

