
CloudFuice: A flexible Cloud-based Data
Integration System

Andreas Thor1, Erhard Rahm2

1 University of Maryland Institute for Advanced Computer Studies, USA
2 University of Leipzig, Department of Computer Science, Germany

thor@umiacs.umd.edu, rahm@informatik.uni-leipzig.de

Abstract. The advent of cloud computing technologies shows great
promise for web engineering and facilitates the development of flexible,
distributed, and scalable web applications. Data integration can notably
benefit from cloud computing because integrating web data is usually
an expensive task. This paper introduces CloudFuice, a data integration
system that follows a mashup-like specification of advanced dataflows
for data integration. CloudFuice’s task-based execution approach allows
for an efficient, asynchronous, and parallel execution of dataflows in the
cloud and utilizes recent cloud-based web engineering instruments. We
demonstrate and evaluate CloudFuice’s applicability for mashup-based
data integration in the cloud with the help of a first prototype imple-
mentation.

Keywords: Cloud Data Management, Data Integration, Mashups

1 Introduction

Cloud computing technologies shows great promise for web engineering. Dis-
tributed data stores (e.g., Google’s Bigtable), web-based queue services (e.g.,
Amazon SQS), and the ability to employ computing capacity on demand (e.g.,
Amazon EC2) facilitate the development of flexible, distributed, and scalable
web applications. Furthermore, recent efforts in entity search engines [5] and the
cloud of linked data [2] have lowered the barriers to easily access huge amounts
of data.

Data integration [16] can notably benefit from cloud computing because ac-
cessing multiple data sources and integration of instance data are usually ex-
pensive tasks. For example, entity matching [14], i.e., identification of entities
referring to the same real-world object, is key for linking multiple data sources.
Since web data is usually dirty, sophisticated matching techniques must employ
multiple similarity measures to make effective match decisions. The pair-wise
similarity computation usually has quadratic complexity and is thus very ex-
pensive for large-scale data integration. On the other hand, data of interest is
usually obtained by sending queries to external data sources. However, the use of
existing search engines may require several queries for more complex integration
tasks to obtain a sufficient number of relevant result entities [9]. Execution of

2 Andreas Thor and Erhard Rahm

many queries needs to be reliable, i.e., it requires handling of failed queries (e.g.,
due to network congestion) as well as dealing with source restrictions, such as
access quota.

Mashup-based data integration [17] demonstrates a programmatic and data-
flow-like integration approach which is complementary to common query- and
search-based data integration approaches, e.g., data warehouses or query media-
tors. In fact, mashups are built on the idea of combining existing services so that
they can also use existing search engines and query services. However, current
mashup dataflows are mostly comparatively simple and do not yet exploit the
full potential of programmatic data integration, e.g., as needed for enterprise
applications or to analyze larger sets of web data. Although cloud services make
it easy to host a mashup application on multiple servers in the cloud, the devel-
opment of mashup dataflows that can transparently run on multiple nodes still
requires substantial development effort.

In this paper we present CloudFuice, a data integration system that allows for
the specification and execution of advanced dataflows for data integration that
can be employed within mashups. It utilizes a simple access model for external
sources to easily incorporate common web sources such as entity search engines,
HTML pages, or RDF data sources. A script language provides operators for
common data integration tasks such as query generation and entity matching.
Beside fast script development the CloudFuice approach also strives for an effi-
cient execution of dataflows in the cloud. Many integration scenarios may easily
involve thousands of entities that need to be processed and thus demand scala-
bility. CloudFuice supports an asynchronous and parallel execution of scripts on
multiple machines in a cloud as well as elastic computing, i.e., available cloud
capacities can immediately be used when they become available.

In this paper, we make the following contributions:

– We introduce a powerful data integration script language that is tailored for
web data integration dataflows. (Section 2)

– We detail how a dataflow can be transformed into independent tasks that in
turn can be executed asynchronously and in parallel in the cloud. (Section 3)

– We present the CloudFuice architecture facilitating dataflow execution in the
cloud. We describe our prototype that also serves as a mashup development
tool. (Section 4)

– We evaluate CloudFuice’s parallel and asynchronous execution approach and
demonstrate that it can significantly reduce the execution time of dataflows.
(Section 5)

We discuss related work in Section 6 before we conclude.

2 Dataflow Definition

In this section we describe how a developer can specify data integration dataflows.
To this end we present the structure of data sources and entities, data structures
and operators, and their combined use within script programs.

CloudFuice: A flexible Cloud-based Data Integration System 3

Fig. 1. Examples for two entities sets (left) of kind dblp author and dblp pub, respec-
tively, and a mapping (right).

2.1 Entities and data sources

CloudFuice employs the simple and flexible entity-attribute-value model. An
entity is of a certain kind and has a kind-specific id, i.e., the pair (kind, id)
identifies an entity unambiguously. Each entity has a (possibly empty) list of
attributes that can be single-valued (numbers, strings) or multi-valued (i.e., set
of single values). This key-value format can be well supported by cloud-based
key value stores.

CloudFuice accesses external data sources to obtain entities via three defined
methods: search, get, and link. These methods reflect the characteristics of typical
web data sources such as (static) web pages, (entity) search engines, and RDF
data sources. We therefore assume that it is comparatively easy to implement
the following methods (as web services) for a particular data source. Note that
not all methods need to be available for all sources.

The search method returns entities of a given kind using a specified query.
CloudFuice doesn’t impose any restrictions on the type of query. The query
could be a simple keyword if the source supports keyword search, e.g., a product
search engine. If the source supports structured query languages such as SQL
or SPARQL, the query could be more complex, e.g., a SQL WHERE condi-
tion. The get method retrieves all available information for a given entity. This
is especially important for frequently changing information, e.g., the number of
citations of a publication or the current offered price for a certain product. A pos-
sible realization of the get method is a request to an entity specific HTML page
(e.g., a product detail page) with subsequent screen scraping. The link method
retrieves all entities that are connected to a specified entity. This method re-
flects the nature of web data where the entities are inter-connected by HTML
hyperlinks or RDF links in the cloud of linked data. Examples are the list of
citing publications for a given publication or the list of products for a specified
manufacturer.

2.2 Data structures and operators

CloudFuice follows a script programming approach for defining information in-
tegration dataflows. It builds up on our iFuice idea [20] and is tailored to web
data integration by providing simple and powerful operators. CloudFuice does

4 Andreas Thor and Erhard Rahm

not require prior generation of metadata models (global schemas) but lets de-
velopers take responsibility to define semantically meaningful integration within
their scripts. For example, CloudFuice introduces queries as building blocks and
thus enables developers to carefully construct queries in a programmatic way for
specific data sources.

A CloudFuice script contains several operator calls like in programs of imper-
ative programming languages. Figure 2 illustrates an example script that will be
used throughout the paper and will be discussed in more detail in Section 2.3.
The output of any operator can be bound to a variable for later use, e.g., as input
to other operators. Script programmers should not be limited to the execution of
one source access method at a time but are provided with powerful set-oriented
operators. To this end, CloudFuice supports three set-based data structures.

Entities of the same kind A can be subsumed in a set EA. Figure 1 (left)
illustrates two sets of entities. One is a set of DBLP authors, the other a set of
DBLP publications. Mappings represent directed binary relationships between
entities. A mapping MA×B is a set of correspondences, i.e., pairs of entities of
kind A and B, respectively. Figure 1 (right) depicts an example mapping between
the DBLP authors and DBLP publications. The author named “A Smith” is
linked to the XML and the Cloud paper whereas “B Smith” relates to the Cloud
and the Matching paper. Correspondences can be annotated with similarity val-
ues or other meta data, e.g., to reflect a confidence level for entity matching
[22]. In this paper we restrict the mapping definition to entity pairs without
annotations but we present an extension in [23].

Queries are the third type of data structures because they are key to effi-
cient data retrieval from web sources. Providing an explicit data structure for
queries Q enables the generation and processing of queries and therefore allows
for sophisticated query generation mechanisms [9] that are especially important
for entity search engines.

All data structures can be both input and output for operators. CloudFuice
provides operators for fetching data from sources and for matching entities.
In addition, auxiliary operators are provided for basic data processing. In the
following we give a brief overview of selected operators. A complete operator list
(incl. signature and definition) can be found in [23].

Source operators fetch data from (web) data sources by employing set-
based source access methods. For example, the operatores searchInstances and
getInstances take a set of queries or entities, respectively, and call the corre-
sponding source method, search or get, for every single query/entity. The opera-
tor result is then the union of the source methods result. The operators traverse
and map employ the link method in a similar way. The difference between these
two operators is that traverse returns the union of all link results whereas map
incorporates the input entities by returning correspondences between input enti-
ties and the resulting link entities. Matching operators provide techniques for
entity matching. The input of a matching operator are two sets of entities and
the output is a mapping containing the corresponding, i.e., matching entities.
To further restrict the matching, the input can already be a mapping instead of

CloudFuice: A flexible Cloud-based Data Integration System 5

Fig. 2. Left: Script notation of an example dataflow for the integration of publica-
tions from DBLP and Google Scholar (GS). Right: Graph representation of the exam-
ple dataflow. The graph also contains example output for each operator, e.g., entities
{A1, A2} for the first searchInstances operator.

two input sets. The matching operator then only compares entity pairs of the
input mapping. CloudFuice provides a generic attribute matcher attrMatch for
the common use case of entity matching using attribute similarity and a thresh-
old. In addition, external match algorithms can be plugged in via the match
operator. Auxiliary operators act as the “glue” between operators. Since all
data structures are set-based, common set operations union, intersect, and diff
can be applied. The compose operator allows for composition of mappings, e.g.,
for input correspondences (a, b) and (b, c) compose derives the output correspon-
dence (a, c). The filter operator reduces a set of entities or correspondences using
a filter criterion. Finally, queryGen allows for a flexible query generation based
on entities’ attribute values [9].

2.3 Scripts and dataflows

Figure 2 (left) shows an example CloudFuice script that integrates publication
data from DBLP and Google Scholar. The first script line searches for authors in
the DBLP data source and binds the resulting entities to the variable $Author.
The retrieved authors are input to a traverse operator (line #2) that retrieves
the corresponding DBLP publications D1, D2, and D3. The author entities are
also provided to the queryGen operator (line #3) that generates queries using
the authors’s names. In the example, the two authors A1 and A2 generate one
query each and, thus, two queries (“A Smith” for A1 and “B Smith” for A2) are
bound to the $GSQueries variable and sent to the subsequent searchInstances op-
erator (line #4). The searchInstances operator executes both queries and returns
a merged set of Google Scholar publications G1 to G5. Finally, the attrMatch
operator (line #5) takes both the DBLP and the GS publications as input and
determines matching publications. In the example script of Figure 2, two pub-
lications are considered to match if they have a title similarity greater than or
equal to 0.8. The result is then stored in the variable named $DBLPGS.

6 Andreas Thor and Erhard Rahm

CloudFuice scripts define a dataflow, i.e., an acyclic directed graph with
operators as nodes and edges that connect the output of an operator to an input
parameter of another operator. Figure 2 (right) shows the dataflow graph for
the example script. Each incoming edge is annotated with a parameter index
to map the operator output to the specified input parameter. For example, the
parameter indexes of two incoming edges for attrMatch in Figure 2 are 1 and 2,
respectively, to indicate that the traverse output is the first parameter whereas
the searchInstances output is the second parameter of attrMatch. Operator pa-
rameters that are not output of other operators, e.g., the similarity threshold
of attrMatch, are considered to be available anytime and we therefore do not
include them in the dataflow graph. The dataflow graph is the foundation for
CloudFuice’s execution approach that we will explain in the next section.

3 Dataflow Execution

We introduce CloudFuice’s approach to dataflow execution and the application of
inter- and intra-operator parallelism. Furthermore, we present the full execution
plan for our running example.

3.1 Dataflow execution approach

Operators of CloudFuice dataflows are executed within one or multiple operator-
specific tasks that can be run in parallel on distributed cloud servers. Tasks may
concurrently store their results in a distributed datastore. Furthermore, tasks can
be executed as soon as computing resources are available in the cloud to obtain
a minimal overall execution time. Finally, our execution model is based on a
dynamic invocation of tasks such that each finished task invokes the generation
of all operators following in the dataflow as we will detail below.

To support efficient, parallel execution of dataflows, we support both intra-
and inter-operator parallelism similar as in parallel database systems [7]. In
addition to pipeline parallelism between adjacent operators, data partitioning
is utilized to run independent operators on different data in parallel and to
parallelize operators on disjoint data partitions.

However, intra-operator parallelism is subject to partitionable input data
(i.e., operator parameters) only. A parameter pk of an n-ary operator op is called
partitionable if and only if the following two properties hold: (1) The parameter
pk is a set of entities E, or a mapping M (i.e., set of correspondences), or a set
of queries Q. (2) For any complete and disjoint partitioning pk = pk1

∪ pk2
of pk

holds: op(p1, . . . , pk, . . . , pn) = op(p1, . . . , pk1
, . . . , pn) ∪ op(p1, . . . , pk2

, . . . , pn).

We call an operator blocking if none of its parameters is partitionable. A
blocking operator is therefore unable to produce any (partial) result until all
input data is available. On the other hand, all parameters (of type E, M , or Q)
of non-blocking operators are partitionable. For example, all source operators
(e.g., searchInstances) are non-blocking. Operators that are neither blocking nor

CloudFuice: A flexible Cloud-based Data Integration System 7

Fig. 3. Pseudocode for executing dataflows, operators, and tasks.

non-blocking are called partially blocking. For example, the diff operator com-
putes the difference of two entity sets E1 and E2 of the same kind. The first
parameter E1 is partitionable whereas the second parameter E2 is not. The op-
erator needs to know all entities E2 that must not appear in the operator result
before returning any (partial) results. The Appendix of [23] specifies the type
for each operator.

The advantages of partitionable input data for an operator are twofold. First,
an operator can partition each partitionable parameter and thereby split the
operator execution into multiple tasks that can be executed in parallel (intra-
operator parallelism). The complete operator result can later be reconstructed
from all task results. On the other hand, data partitioning can also be used
for asynchronous (pipelined) operator execution. Individual task results, i.e.,
partial operator results, can already be handed off (or “pushed”) to its suc-
ceeding operator (which in turn may already produce a partial result) if the
corresponding input parameter of the succeeding operator is partitionable, too.
This method therefore allows for an overlapping execution of neighboring oper-
ators in the dataflow graph. Finally, independent operators, i.e., operators that
neither directly nor indirectly rely on each others’ outputs, are run in parallel
(inter-operator parallelism).

Dataflow execution thus entails the correct transformation of a dataflow into
a series of independently executable tasks. Figure 3 shows the pseudo code for
task generation (methods for dataflow and operator execution) and task execu-
tion. Initially the tasks for all start operators, i.e., operators that do not rely
on input of other operators, are generated and executed (see method execute-
Dataflow). All other operators will be dynamically invoked by the tasks creating
their input parameters (see method executeTask). The input-generating task
then hands over its complete result (taskRes) as well as the associated parame-
ter index (taskIndex) as parameters to the executeOp call. For the invocation of

8 Andreas Thor and Erhard Rahm

a start operator that does not depend on input data, we use a taskIndex value
of 0 (see executeDataflow).

The executeOp method partitions the input data based on an operator-
specific partitioning function partitioning and creates a corresponding task for
each partition. CloudFuice thereby allows tailored partitioning strategies for op-
erators (see Section 5 for a discussion and evaluation). The task execution first
employs the operator-specific computation (compute) to achieve the task result
which is then stored in a distributed data store. Afterwards all following oper-
ators are called (with the task result and the parameter index) which in turn
may eventually create new tasks.

The methods for operator and task execution make use of a few auxil-
iary functions. The function isBlocked returns true if there is at least one non-
partitionable input parameter pi with incomplete data, i.e., the corresponding
input operator has not finished yet, and thus the operator cannot be executed
yet. It makes use of isPartitionable(i) which is true if the parameter pi is par-
titionable. getCurrentValue(i) reads the current value of parameter pi from the
datastore. The function getStartOps returns all start operators of the dataflow
and getNextOps returns the following operators for a task. With the help of
getIndex(nextOp) the parameter index for which the current task provides input
to operator nextOp is determined. Finally, the function createTask generates a
new task that will eventually be executed by the runtime infrastructure (see
Figure 5).

The approach for asynchronous executions of operators/tasks also allows for
notifications when an operator is finished and, thus, when the value of the
bounded script variable is available. An operator is finished if all of its input
operators are finished and there are no unfinished operator tasks. To this end
each operator keeps track of the number of generated tasks as well as the number
of finished tasks. Finally, a script is finished if all operators are finished. This
additional functionality is not shown in Figure 3 in favor of readability.

3.2 Execution example

Finally, we demonstrate how the example script of Figure 2 will be executed.
Figure 4 illustrates the dataflow along with the generated tasks and their exe-
cution time frame. The only start operator, searchInstances, is invoked for one
query at the beginning and as a result it generates one search task. Once fin-
ished, it triggers the two subsequent operators traverse and queryGen. They can
run in parallel because they are independent from each other (inter-operator
parallelism). The traverse operator makes use of intra-operator parallelism and
generates two tasks because it is given two input entities (DBLP authors A1

and A2). The example assumes that there is no access restriction to the data
source so that both tasks can be executed immediately. The queryGen operator
is also invoked for A1 and A2 but generates only one task that emits two queries.
This task – once finished – invokes the second searchInstances operator. The two
input queries lead to two search tasks. In this example we assume that there is a
source access quota so that the first task can be executed immediately whereas

CloudFuice: A flexible Cloud-based Data Integration System 9

Fig. 4. Example execution of the dataflow depicted in Figure 2. In addition to Figure 2
the dataflow graph also shows the generated tasks (green quadrats below the operator
box). The right part shows a timeline of the executed tasks.

the second task is scheduled with consideration of a reasonable waiting time
(handled by a task scheduler, see Section 4).

The last operator, attrMatch, takes as input the output of the two operators
traverse and searchInstances. The operator input data comes in four data chunks
because both input operators employ two tasks each for their execution. The
order of the incoming data chunks is arbitrary and in the example of Figure 4
we assume the following order: traverse:A1 (= {D1, D2}), search:A (= {G1, G2}),
traverse:A2 (= {D2, D3}), and search:B (= {G3, G4, G5}). Once finished, each
task invokes the attrMatch operator.

In our example we consider a non-blocking implementation of attrMatch, i.e.,
attrMatch process all pairs of the Cartesian product independently, e.g., with the
help of common string similarity measures such as Edit Distance. It is therefore
amenable to asynchronous execution, i.e., it can produce partial results on partial
input data. However, the first operator call does not yet create any tasks because
at this point there are only DBLP publications available but no GS publications.
The second operator call generates the first task AM:1 that matches all available
DBLP entities with the new available GS entities (see the box in the middle
of Figure 4). The third operator call completes the DBLP input entities and
creates task AM:2. This task process the new DBLP entities (only D3 is new
because D1 and D2 have been already retrieved by the previous traverse task)
along with all available GS entities. Finally, the second query of searchInstances
is finished and the corresponding task calls attrMatch for the fourth time. To this
end, attrMatch creates task AM:3 that takes as input all available DBLP entities
and the newly added GS entities {G3, G4, G5}. The box in the center of Figure 4
summarizes the three employed attrMatch tasks along with their input data. It
thereby illustrates that the attrMatch operator indeed processes the entire cross
product of all DBLP and GS entities. In the example of Figure 4 the partitioning
is solely driven by the outcome and the execution order of the input operator
tasks. However, large entity sets may require an additional partitioning to reduce
the workload per task (see Section 5).

10 Andreas Thor and Erhard Rahm

Fig. 5. Architecture of the CloudFuice approach. It employs a distributed data store,
a task queue service, and a cloud of servers for task execution.

4 Web-based Architecture and Prototype

Figure 5 depicts the overall CloudFuice architecture. It comprises a script and
operator executor, a task scheduler, and an elastic cloud of servers. The script
and operator executor realize CloudFuice’s execution approach. A given script
is first converted into a dataflow and then decomposed into a set of operator
calls which are in turn transformed into multiple tasks. Tasks are subject to
a scheduling mechanism that takes into account access restrictions of external
sources. Tasks are executed on a cloud of servers that are capable of (parallel)
executing tasks as web services. All tasks store their results in a distributed data
store and invoke other operators if necessary. If the last task of an operator has
finished, it may notify external applications about the availability of an operator
result (not shown in Figure 5).

The script executor analyzes a given CloudFuice script and decomposes it
into a data flow. The script executor then invokes all start operators, i.e., all
operators that do not rely on input of other operators. The operator executor
retrieves the relevant parameter values from the datastore. If the operator can
be executed, the executor applies an operator-specific partitioning strategy on
the input data and generates one or multiple tasks. Each task is assigned the
relevant partition of the operator’s input data as well as the list of following
operators. Tasks are sent to the task scheduler.

The task scheduler provides a task queue for each source and a task is ap-
pended to a task queue if it is supposed to send a request to the corresponding
source. Each task queue employs a simple bucket algorithm for scheduling task
execution because source access is typically limited by quotas and exceeded quo-
tas may cause requests failures. The bucket size determines how many tasks can
be executed in parallel, i.e., how many requests can be sent to the source simul-
taneously. The execution rate controls the average number of task executions for
a time window, e.g., 1 task (request) per second. The scheduler also provides an
additional unlimited task queue (“miscellaneous”) for all other tasks. Since tasks
mail fail due to several reasons (e.g., network congestion or server unavailability)
each task queue also provides a retry mechanism for failed tasks.

CloudFuice: A flexible Cloud-based Data Integration System 11

The CloudFuice architecture realizes task execution by web service requests.
Requests can be handled by different servers (nodes) that all have access to a
distributed data store for storing task results. The actual task implementations
are encapsulated as web services and can, thus, be realized in virtually any pro-
gramming language. Each task may request data from the Web using one of the
source access methods (search, get, or link). Note that the task implementation
does not need to deal with any source constraints because this is already handled
by the task scheduler. Moreover, no global coordinator is needed for the task ex-
ecution because each task knows what operator is supposed to be invoked after
its completion.

The current prototype implementation employs Google App Engine, a plat-
form for running web applications on multiple nodes. New server instances be-
come automatically (un)available based on the number of tasks. All operators
and tasks are implemented as REST-based web services and use JSON as data
exchange format. The prototype employs Google App Engine’s datastore that
implements the Bigtable data model [4]. Task results can be concurrently stored
using a unique task id which is assigned during task generation. Each task result
contains a reference to the corresponding operator and, thus, operator results can
be retrieved by merging all corresponding task results. The prototype employs
Google Spreadsheet as script development environment (see [23] for screenshots).
The spreadsheet contains both CloudFuice scripts and data and, thus, will serve
as an integrated development environment. Google Spreadsheet executes Cloud-
Fuice scripts and retrieves data by HTTP requests. On the other hand, Google
Spreadsheet’s API enables the CloudFuice server to directly update results in a
spreadsheet (data pushing) even if the spreadsheet is closed. Google Apps Script
is used to implement simple user interfaces and execute parametrized CloudFuice
scripts. This mechanism acts as a simple way for mashup development.

5 Evaluation

We evaluate the practicability of our approach with the help of our prototype and
thereby demonstrate that the use of cloud technologies can improve the runtime
performance of CloudFuice scripts. In particular we will examine partitioning
strategies for entity matching and the effect of asynchronous script execution.

The first experiment deals with effective and efficient data partitioning which
is key to a correct and efficient execution of dataflows. Recall that the execution
approach ensures that only partitionable data is subject to intra-operator par-
allelism and that different partitioning strategies can be applied. Fine-grained
partitioning strategies generate small tasks that can be executed in parallel but
suffer from the additional overhead of task creation, scheduling, and execution.
Furthermore, danger of skew effects also grows with more tasks since the slowest
task determines the overall execution time. On the other hand coarse-grained
strategies result in few large tasks that may not fully exploit the power of the
available computing resources. For intra-operator parallelism, we evaluate size-
based partitioning functions for entity matching similar to [13]. A maximal block

12 Andreas Thor and Erhard Rahm

Fig. 6. Evaluation of partitioning strategies for entity matching (left) and the influence
of asynchronous dataflow execution (right).

size b ensures that each match task only process a limited part of the Cartesian
product, i.e., at most b× b entities per task. For our experiment we employ attr-
Match with two entity sets of size |R| = 471 and |S| = 16, 269, respectively. Each
set is evenly divided into blocks of maximal size b and one task is generated for
each pair of blocks. For example, a block size b = 100 leads to 5 blocks for R
and 163 blocks for S and thus 5 · 163 = 815 match tasks are created.

Figure 6 (left) shows the measured average script execution time (average
over three runs, minimal and maximal values are shown as error bars) for differ-
ent block sizes. The x-axis denotes the resulting number of tasks. The execution
time can be significantly reduced from 55 seconds (computation is realized by
one task only) to 14 seconds if approx. 250 tasks are employed. However, if the
number of tasks is increased even further the execution time is overwhelmed
by the additional task management overhead. Note that the prototype runs on
Google App Engine that does not allow configuration of computing capacities,
i.e., creation and utilization of node instances cannot be controlled. Instances
become instead available and unavailable, respectively, by an internal heuristics
based on the current number of tasks.

In a second experiment we demonstrate the influence of asynchronous script
execution (inter-operator parallelism). The evaluation scripts contains two steps.
First, 1,180 entities are requested by 49 queries (searchInstances). We assume a
reasonable source quota of 1 query per second, i.e., query execution process takes
about 50 seconds. In a second step the obtained entities are matched against a
given set of 16,269 entities like in our previous experiment. As shown in our run-
ning example (see Figure 4) both input sets of attrMatch are partitionable, i.e.,
entity matching can already process partial input data. For a synchronous exe-
cution we assume that none of the attrMatch parameters are partitionable and
thus the operator cannot start until all input data becomes fully available. Syn-
chronous execution behavior of attrMatch is achieved by modifying the isBlocked
function accordingly (see pseudo code in Figure 3).

Figure 6 (right) compares the overall times for synchronous vs. asynchronous
execution using different partitioning strategies for attrMatch. The synchronous
execution is composed of the search time and matching time. The search time

CloudFuice: A flexible Cloud-based Data Integration System 13

remains the same for all partitioning strategies because it is dominated by the
source quota. On the other hand, an increasing number of tasks decreases the
time for entity matching similar to what we have observed in Figure 6 (left).
Figure 6 (right) proves that CloudFuice’s asynchronous dataflow execution can
significantly reduce the execution time by an early hand-off of partial results. The
source access is, of course, a lower bound but the asynchronous model already
performs entity matching while still querying the data source. It thereby reduces
the remaining workload after the last query result becomes available. However,
the asynchronous model is characterized by an increasing execution time for an
increasing task number. This is due to the fact that each search result retrieves
a comparatively small number of entities (≈ 24) which then have to be matched
against the large set of 16,269 entities. Obviously a fine-grained partitioning
is not beneficial for such imbalanced match tasks. For example, if we assume
that each search result retrieves at most 100 entities a block size of b = 100
would result in 163 tasks per search result. The overall number of match tasks
is therefore 49 (search queries) × 163 = 7,987 that deteriorates execution time.

In general, CloudFuice’s execution model has to combine a partitioning strat-
egy with an incremental availability of input data due to asynchronous execution.
This is especially important against the background of an additional overhead
for task generation, scheduling, and transferring. We will therefore investigate
in adaptive partitioning strategies in future work. For example, a partitioning
strategy may not create any tasks until a minimal number of entities is avail-
able when dealing with partial results. Furthermore, operators that do not have
following operators might apply a different partitioning strategy because there
is no benefit in forwarding partial results.

6 Related Work

Mashup-based data integration has become very popular in recent years and
many tools and frameworks have been developed [17]. Applications need com-
ponents for data, process, and presentation level [18] and CloudFuice mainly
focuses on the data level. A popular approach are pipes, e.g., as used in Yahoo!
Pipes, Damia [21], or [15], that process entity sets via relatively simple user-
specified dataflows. These tools have demonstrated to be applicable in different
settings since they offer a powerful and easy-to-use interface for inexperienced
users. However, they are not designed for more advanced data integration prob-
lems that have to deal with dirty data and, thus, require advanced operators. For
example, entity matching and query generation are key to achieve accurate and
complete integrated results. This, on the other hand, requires more advanced
skills in mashup development. CloudFuice therefore strives for a good balance
between powerful data integration operators and a simple scripting language.

A few recent mashup platforms also deal with mashup efficiency. CoMaP
[10] targets a distributed mashup execution that minimizes the overall mashup
execution time of multiple hosted mashups. It is based on a general mashup
dataflow model with operators that can be executed on different nodes. A dy-

14 Andreas Thor and Erhard Rahm

namic scheduling takes into account several parameters such as network and
users. The AMMORE [11] system even modifies original mashup dataflows to
avoid duplicate computations and unnecessary data retrievals. To this end, AM-
MORE identifies common operator sequences in different mashups and executes
them together. CoMap, AMMORE, and CloudFuice share the same goal of ef-
ficient dataflow execution but have slightly different focuses. CloudFuice does
not deal with multiple mashups and users but task scheduling is driven by data
source constraints and available computing capacity instead of usage or network
traffic.

The recent shift in web infrastructures from high-end server systems to clus-
ters of commodity hardware (also known as cloud) has triggered research in
parallel data processing in a wide variety of applications. Driving forces are sim-
ple and powerful parallel programming models such as MapReduce [6] and Dryad
[12]. Although the MapReduce program model is limited to two dataflow prim-
itives (map and reduce), it has proven to be very powerful for a wide range of
applications. On the other hand Dryad supports general dataflow graphs. Freely
available frameworks such as Hadoop further stimulate the popularity of dis-
tributed data processing. Higher-level languages can be layered on top of these
infrastructures. Examples include the high-level dataflow language Pig Latin [19],
Nephele/PACTs [1] (based on MapReduce), DryadLINQ [24] as well as SCOPE
[3] that offers a SQL-like scripting language on top of Microsoft’s distributed
computing platform Cosmos. Similar to Cloudfuice, a high-level program is de-
composed into small buildings blocks (tasks) that are transparently executed in
a distributed environment. On the other hand, CloudFuice targets the fast devel-
opment of dataflows for web applications and therefore relies on a common web
engineering tools. Furthermore CloudFuice deals with asynchronous dataflow
execution, e.g., due to continuous data input from query results, in contrast
to synchronized offline data analysing/processing. For example, MapReduce en-
forces synchronization between the map and reduce phase (a disadvantage that
has been recently addressed in [8]).

7 Conclusions and Future Work

We presented CloudFuice, a flexible system for specification and execution of
dataflows for data integration. The task-based execution approach allows for an
efficient, asynchronous, and parallel execution within the cloud and is tailored to
recent cloud-based web engineering instruments. We have demonstrated Cloud-
Fuice’s applicability for mashup-based data integration in the cloud with the
help of a first prototype implementation.

Future work includes the development of adaptive partitioning strategies
as well as the further development toward a comprehensive mashup platform.
We will also investigate how dataflows can be automatically generated from
declarative queries.

CloudFuice: A flexible Cloud-based Data Integration System 15

References

1. Battré, Ewen, Hueske, Kao, Markl, and Warneke. Nephele/PACTs: a programming
model and execution framework for web-scale analytical processing. In SoCC, 2010.

2. Bizer, Heath, and Berners-Lee. Linked data - the story so far. IJSWIS, 5(3), 2009.
3. Chaiken, Jenkins, Larson, Ramsey, Shakib, Weaver, and Zhou. SCOPE: Easy and

efficient parallel processing of massive data sets. PVLDB, 1(2), 2008.
4. Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, and Gruber.

Bigtable: A distributed storage system for structured data. ACM Trans. Comput.
Syst., 26, 2008.

5. Cheng, Yan, and Chang. Entityrank: Searching entities directly and holistically.
VLDB, 2007.

6. Dean and Ghemawat. MapReduce: Simplified data processing on large clusters.
Communications of the ACM, 51(1), 2008.

7. DeWitt and Gray. Parallel database systems: The future of high performance
database systems. Communications of the ACM, 35(6), 1992.

8. Elteir, Lin, and Feng. Enhancing mapreduce via asynchronous data processing. In
ICPADS, 2010.

9. Endrullis, Thor, and Rahm. Evaluation of Query Generators for Entity Search
Engines. In USETIM, 2009.

10. Hassan, Ramaswamy, and Miller. Comap: A cooperative overlay-based mashup
platform. CoopIS, 2010.

11. Hassan, Ramaswamy, and Miller. Enhancing Scalability and Performance of
Mashups Through Merging and Operator Reordering. In ICWS, 2010.

12. Isard, Budiu, Yu, Birrell, and Fetterly. Dryad: Distributed Data-parallel Programs
from Sequential Building Blocks. In EuroSys Conference, 2007.

13. Kirsten, Kolb, Hartung, Gross, Köpcke, and Rahm. Data Partitioning for Parallel
Entity Matching. In QDB, 2010.

14. Köpcke and Rahm. Frameworks for entity matching: A comparison. Data Knowl.
Eng., 69(2), 2010.

15. Le-Phuoc, Polleres, Hauswirth, Tummarello, and Morbidoni. Rapid Prototyping
of semantic Mash-ups through semantic Web Pipes. In WWW, 2009.

16. Lenzerini. Data integration: A theoretical perspective. In PODS, 2002.
17. Lorenzo, Hacid, Paik, and Benatallah. Data Integration in Mashups. SIGMOD

Rec., 38, 2009.
18. Maximilien, Wilkinson, Desai, and Tai. A domain-specific Language for Web APIs

and Services Mashups. In ICSOC, 2007.
19. Olston, Reed, Srivastava, Kumar, and Tomkins. Pig Latin: A Not-So-Foreign Lan-

guage for Data Processing. In SIGMOD, 2008.
20. Rahm, Thor, Aumueller, Do, Golovin, and Kirsten. iFuice - Information Fusion

utilizing Instance Correspondences and Peer Mappings. In WebDB, 2005.
21. Simmen, Altinel, Markl, Padmanabhan, and Singh. Damia: Data Mashups for

Intranet Applications. In SIGMOD, 2008.
22. Thor and Rahm. MOMA - A Mapping-based Object Matching System. CIDR,

2007.
23. Thor and Rahm. CloudFuice: A flexible Cloud-based Data Integration Ap-

proach. Technical report, University of Leipzig, 2011. http://dbs.uni-leipzig.

de/publication/year/2011.
24. Yu, Isard, Fetterly, Budiu, Erlingsson, Gunda, and Currey. Dryadlinq: a system for

general-purpose distributed data-parallel computing using a high-level language.
In OSDI, 2008.

