
Mapping Composition for Matching Large  

Life Science Ontologies 

Anika Groß1,2, Michael Hartung1,2, Toralf Kirsten2,3, Erhard Rahm1,2 

 
1 Department of Computer Science, University of Leipzig 

2 Interdisciplinary Centre for Bioinformatics, University of Leipzig 
3 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig 

{gross, hartung, rahm}@informatik.uni-leipzig.de 
tkirsten@izbi.uni-leipzig.de 

Abstract. There is an increasing need to interrelate different life science ontol-
ogies in order to facilitate data integration or semantic data analysis. Ontology 
matching aims at a largely automatic generation of mappings between ontolo-
gies mostly by calculating the linguistic and structural similarity of their con-
cepts. In this paper we investigate an indirect computation of ontology map-
pings that composes and thus reuses previously determined ontology mappings 
that involve intermediate ontologies. The composition approach promises a fast 
computation of new mappings with reduced manual effort. Our evaluation for 
large anatomy ontologies shows that composing mappings via intermediate hub 
ontologies is not only highly efficient but can also achieve better match quality 
than with a direct matching of ontologies. 
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1   Introduction 

Ontologies have become increasingly important for life sciences, in particular to se-
mantically annotate molecular-biological objects such as proteins or pathways [5, 16]. 
There are frequently multiple interrelated ontologies of a domain. For instance, in-
formation about mammalian anatomy can be found in Foundational Model of Anato-
my (FMA) [8], NCI Thesaurus (NCIT) [19], or Adult Mouse Anatomy (MA) [1]. This 
situation led to a growing need to determine mappings between pairs of related ontol-
ogies. These ontology mappings are valuable for enhanced semantic data analysis, 
data integration [11], for merging (combining) the ontologies [14] and to support 
comparative science, e.g., mouse models for human cancer [18]. 

Since the manual creation of mappings is often too labor-intensive for large ontol-
ogies with thousands of concepts, matching approaches have been proposed to (semi-) 
automatically determine ontology mappings, e.g., by calculating the linguistic or 
structural similarity between ontology concepts [7]. Many ontology matching systems 
have been developed in recent years and several of them participate in the annual 
Ontology Evaluation Alignment Initiative (OAEI) [21]. A promising direction to 
determine ontology mappings that has found only little attention so far (see Related 
Work) is the reuse of previously determined mappings that involve the ontologies to 



be matched. In particular, the composition of mappings with an intermediate ontology 
can be used to indirectly compute ontology mappings. For instance, an ontology map-
ping between MA and NCIT can be obtained by composing two existing mappings to 
an intermediate ontology, e.g., the Uber anatomy ontology (Uberon) [25] or Universal 
Medical Language System (UMLS) [26]. Fig. 1 exemplifies this approach for two 
selected concepts MA_0001421 and NCI_C32239 that are described by name and 
synonym attributes. A direct match of both concepts is non-trivial since their names 
differ significantly. However, using Uberon as an intermediate ontology allows us to 
reuse the correspondences (matches) MA_0001421-UBERON:0001092 (exact match 
of ‘atlas’) and UBERON:0001092-NCI_C32239 (exact match of ‘C1 vertebra’). The 
composition of these two correspondences results in the new correspondence between 
MA_0001421 and NCI_C32239.  

Composing existing mappings for aligning two ontologies is promising in multiple 
ways. First, the life science community is continuously generating new mappings that 
are collected in repositories such as BioPortal [20] and can be reused for composition. 
Such a reuse is especially promising if the mappings are of high quality, e.g. validated 
by domain experts. Second, composing ontology mappings can likely be executed 
very fast while directly matching large ontologies is time-consuming and typically of 
quadratic complexity (every concept of the first is compared with every concept of the 
second ontology). Third, the intermediate ontology may contain additional knowledge 
which can be useful to detect further correspondences for improved mapping quality. 
Finally, if the intermediate ontology is a comprehensive ontology offering ontology 
mappings to numerous other ontologies we can consider it as a hub ontology provid-
ing large reuse potential. For a new ontology one only needs to create a mapping to 
the hub and use this for the composition to all other ontologies in the domain.  

We therefore study composition-based matching of life science ontologies and 
make the following contributions: 

• We propose a composition-based ontology matching approach which reuses 
previously determined mappings with one or multiple intermediate ontologies. 

• Our approach is based on powerful ontology and mapping operators such as 
compose, match and extract. The approach also supports an incremental exten-
sion of composed mappings for improved match quality. 

• We evaluate the approach by determining ontology mappings between the 
anatomy ontologies MA and NCIT utilizing large intermediate ontologies such 
as UMLS, FMA, Uberon and RadLex. The results demonstrate the high effec-
tiveness and efficiency of composition-based ontology matching. 

In Sec. 2, we introduce our ontology/mapping model and discuss the ontology match-
ing process. Sec. 3 defines the operators and shows their use within our composition-
based match approach. We evaluate the approach in Sec. 4. After a discussion of 
related work (Sec. 5), we summarize and outline possible future work. 

Figure 1: Composition of correspondences via an Uberon concept 



2   Preliminaries – Models and Ontology Matching 

An ontology O = (C,R) consists of a set of concepts C that are interconnected by rela-

tionships r∈R. Each ontology concept is described by a set of single- or multi-valued 
attributes. The concept name is the most common attribute in life science ontologies. 
Further common attributes include synonym (alternate name) and concept definition. 
A special attribute accession number cacc is used to unambiguously identify a concept 
c within the ontology O. Relationships interconnecting concepts are of a certain kind 
such as is_a (e.g., ‘lung’ is_a ‘organ’) to represent specialization relationships or 
part_of (e.g., ‘left lung’ part_of ‘lung’) to represent part-whole relationships. 

An ontology mapping MO1,O2 = {(c1,c2,sim)|c1∈O1, c2∈O2, sim∈[0,1]} between two 
ontologies O1 and O2 consists of a set of correspondences. Each correspondence 
(c1,c2,sim) interconnects two related or equivalent ontology concepts c1 and c2. The 
strength of the connection is represented by a similarity value sim between 0 and 1. 
The greater the similarity value, the more similar are the corresponding concepts. 

Ontology mappings can be created manually by domain experts. However, the 
complexity and size of the input ontologies make a manual creation often impossible. 
Thus, (semi-)automatic ontology matching approaches have been proposed [7]. They 
can roughly be classified into metadata- or schema-based and instance-based ap-
proaches [23]. The metadata-based approaches are mostly either linguistic and struc-
tural matchers. Linguistic matchers typically employ string similarity measures, e.g., 
ExactMatch, n-gram or EditDistance, on the concept attributes (concept name, syno-
nym, definition). Structural matchers also consider the ontology structure for match-
ing, e.g., context information from children or ancestors of concepts. To improve the 
match quality compared to the adoption of a single matcher, current match systems 
such as COMA++ [3] or GOMMA [10, 13] support the flexible combination of mul-
tiple matchers and the aggregation of their results. In this paper we focus on linguistic 
matchers since previous works [9] has shown that they produce ontology mappings of 
good quality especially for anatomy ontologies that we consider here. 

3   Mapping Composition 

In this section, we present our composition-based match algorithm to indirectly match 
ontologies by reusing existing ontology mappings. We start with a discussion of the 
general idea of using intermediate ontologies in Sec. 3.1 and introduce our ontology 
and mapping operators in Sec. 3.2. We then combine the proposed operators in the 
composition-based match algorithm (Sec. 3.3). 

3.1 Indirect matching via intermediate ontologies 

The general idea of our approach is to use mappings to intermediate ontologies for 
indirect ontology matching. Such mappings are typically produced in a resource-
intensive match process, in particular, when the mappings or portions of them are 
created manually or computed by sophisticated match algorithms. Therefore, reusing 



such mappings promises to save or reduce the huge effort necessary when starting 
from scratch for matching two ontologies. Repositories such as BioPortal provide an 
increasing number of ontology mappings that can be used for a composition-based 
ontology matching. 

Fig. 2a shows the basic situation consisting of two ontologies O1 and O2 as well as 
mappings from O1/O2 to several intermediate ontologies IO1, …, IOk. Intermediate 
ontologies should have a significant overlap with the ontologies to be matched, i.e. 
the mappings should contain correspondences for a larger part of the ontologies’ con-
cepts. If possible it is reasonable to use the knowledge from different intermediate 
ontologies as they may complement each other. As composition of ontologies is likely 
very fast it is easily feasible to determine composed mappings for several intermedi-
ate ontologies. 

In some cases (Fig. 2b), there is a centralized hub ontology HO that is predominant 
in the domain. Typically, such an ontology has many mappings to other ontologies. 
Any new ontology Onew can then be aligned with any other ontology O1, …, On by 
first matching Onew to HO. Afterwards, the mapping MOnew,HO can be composed with 
any available mapping MHO,Oi in the domain. Hence, aligning the ontology Onew with 
any ontology Oi can be efficiently computed. 

3.2 Operators 

Previous research on the generic management of models and mappings [4] has al-
ready identified a series of operators that can be adapted for our purpose of ontology 
matching. In the following, we introduce the ontology and mapping operators match, 
compose and extract. Furthermore, we use merge to combine several (composed) map-
pings. 

The match operator matches the concepts of an ontology OA against the concepts of 
a second ontology OB and directly determines an ontology mapping MAB consisting of 
correspondences with similarity values (sim) between 0 and 1. 

match(OA, OB): OA × OB → MAB 

MAB = {(c1,c2,sim)| c1∈OA, c2∈OB} 

The compose operator allows for the composition of mappings, i.e., it combines 
two mappings (MAB, MBC) to indirectly determine a new mapping (MAC). Two corre-

 
Figure 2: Mapping composition via intermediate ontologies IO1,…,IOn (a) 

Match new ontology to hub ontology (b) 
Example for composition-based ontology matching (c) 



spondences of different mappings can be composed to a new correspondence if the 
range concept of the first correspondence is equal to the domain concept of the second 
correspondence. Different functions can be used to aggregate the similarity values of 
correspondences (aggSim), e.g., by computing the average or maximum similarity.  

compose(MAB, MBC): MAB × MBC → MAC 

MAC = {(c1,c2,aggSim (sim1, sim2))| c1∈OA, b∈OB, c2∈OC: ∃(c1,b,sim1)∈MAB ∧ 

∃(b,c2,sim2)∈MBC} 

The extract operator reduces an ontology OA to a delta ontology ∆OA by returning 
only those concepts that are not covered by an input mapping MAB between OA and 
another ontology OB. It can be used to match only the delta ontologies (match(∆OA, 
∆OB)) to save the comparisons that are already covered by the (partial) mapping MAB. 

extract(OA, MAB): OA × MAB → ∆OA 

∆OA = {c| c∈OA, ∄b∈OB: (c,b,sim)∈MAB} 

The merge operator aggregates several input mappings between the same ontolo-
gies to a combined mapping. The merge decision is based on a minimum occurrence 
count occ in the k input mappings, i.e., a correspondence must appear in at least occ 
of the k input mappings. Note that occ=1 corresponds to a standard union whereas 
occ=k corresponds to the intersection of all mappings. 

merge(MAB1, … , MABk, occ): MAB1× … × MABk × occ→ MAB 
MAB = {(c1,c2,aggSim)| (c1,c 2,sim) occurs in at least occ mappings  

of MAB1, … , MABk} 

3.3 Composition-based Match Approach 

The introduced operators are used within two algorithms that make up our composi-
tion-based match approach: composeMatch and extendMatch. composeMatch takes as 
input two ontologies O1 and O2, a list of one or more intermediate ontologies IO1,… 
IOk as well as the parameter occ denoting the occurrence count for mapping merge. 
The algorithm produces a composed mapping between O1 and O2 using the interme-
diate ontologies by reusing existing mappings. Firstly, for each intermediate ontology 
IOi in the list we get the mappings between O1 and IOi as well as between IOi and O2, 
e.g., from a repository. Afterwards the compose operator is applied to the mappings 
MO1,IOi, MIOi,O2 to determine a mapping between O1 and O2. This composed mapping 
is added to the list of mappings (MapList). Finally, all mappings in MapList are 
merged to a combined mapping controlled by parameter occ. The merge of several 
mappings likely improves match quality. For example, the union of complementing 
intermediate ontologies can help to find more correct correspondences thereby im-
proving recall. If the input list contains only one intermediate ontology, e.g., a known 
hub, the merge step can be omitted.  

Typically, a composed mapping CMO1,O2 may not cover all parts of the ontologies 
O1 and O2 that need to be matched. Therefore, the algorithm extendMatch can be 
applied optionally to further improve recall and match quality. It takes the two ontol-
ogies as well as the composed mapping as input. To find additional correspondences 
between unmatched ontology parts we use the extract operator to determine the sub-
ontologies of O1 and O2 that are not covered by CMO1,O2. The resulting delta ontolo-



gies ∆O1, ∆O2 are matched directly using a specific match algorithm, e.g., string simi-
larity of the attributes name and synonym. We then determine the union (merge with 
occ=1) of this direct mapping DM∆O1∆O2 and the composed mapping CMO1,O2. Note 
that, all produced mappings can be filtered by selection criteria (e.g., a minimal simi-
larity threshold) or advanced post-processing steps to improve precision, i.e., to re-
duce the number of incorrect correspondences. 

Figure 2c illustrates an exemplary application of composeMatch for matching on-
tologies O1 and O2 via two intermediate ontologies IO1 and IO2. Dotted lines represent 
the correspondences of O1 and O2 to the intermediate ontologies. The mapping com-
position (line 2-6) will produce the following MapList with two mappings between O1 
and O2 consisting of two correspondences each: [{(a,a), (b,b)}, {(c,c), (a,a)}]. The 
merge aggregation of the MapList (line 7) with occ=1 results in the union mapping 
{(a,a), (b,b), (c,c)} whereas occ=2 leaves only a single correspondence {(a,a)}. Not 
shown are the similarity values that need to be aggregated, e.g., by computing the 
average similarity. Applying extendMatch determines the two ∆-ontologies: 
∆O1={d,e}, ∆O2={d,f} (line 1-2) which are then matched against each other (line 3). 
The resulting direct mapping, e.g., DM∆O1∆O2 = {(d,d)}, is merged with the input map-
ping CMO1,O2 so that the final mapping {(a,a), (b,b), (c,c), (d,d)} is obtained. 

4   Evaluation 

4.1   Evaluation Setup 

In all experiments, we align the Adult Mouse Anatomy ontology (MA) with the ana-
tomical part of the NCI Thesaurus (NCIT). This match task is part of the annual 
OAEI contest so that the perfect mapping can be used for evaluating the quality (pre-
cision, recall and its combination F-measure) of the generated mappings. Mapping 
composition is performed with the help of four large intermediate ontologies, namely 
FMA [8], Uberon [25], RadLex [22], and UMLS [26] in their versions of late 2010. 
Table 1 summarizes statistical properties of the utilized ontologies and mappings. The 
ontologies significantly differ in their total number of concepts (|C|) and the number 
of name/synonym attributes per concept (ØNameSyn) (Table 1a). All intermediate 
ontologies are significantly larger than MA and NCIT. The ontology mappings used 
for the algorithm composeMatch have been computed once based on the linguistic 

Algorithm composeMatch(O1, O2, IO1…IOk, occ) 

Input:  Two ontologies O1 and O2, list of intermediate 

 ontologies IO1… IOk, occurrence count occ 

Output: Composed mapping CMO1,O2 

1: MapList ← empty 

2: for each IOi ∈ IO do 

3:  MO1,IOi ←getMapping(O1, IOi) 

4:  MIOi,O2 ←getMapping(IOi, O2) 

5:  MapList.add(compose(MO1,IOi, MIOi,O2)) 

6: end for 

7: return merge(MapList, occ) 

 

 

Algorithm extendMatch(O1, O2, CMO1,O2) 

Input:  Two ontologies O1 and O2, 

 composed mapping CMO1,O2 

Output:  Extended Mapping EMO1,O2 

1: ∆O1 ← extract(O1, CMO1,O2) 

2: ∆O2 ← extract(O2, inverse(CMO1,O2)) 

3: DM∆O1∆O2 ← match(∆O1, ∆O2) 

4: EMO1,O2 ← merge({CMO1,O2, DM∆O1∆O2}, 1) 
5: return EMO1,O2 

 

 

 



similarity (trigram with threshold 0.8) of concept names and synonyms. Hence we 
compose automatically determined mappings instead of manually verified ones mak-
ing it more difficult to achieve high mapping quality. Table 1b reveals significant 
differences in the mapping coverage (Cov) and sizes (|Map|) for MA and NCIT. For 
UMLS and Uberon, the mappings cover up to 80% and more while RadLex is limited 
to about 40%, i.e. this intermediate ontology cannot provide correspondences for most 
concepts. The FMA mappings have only medium coverage potentially influenced by 
relatively few names and synonyms per concept (Table 1a) limiting the quality of 
linguistic matching. By contrast, Uberon is a promising intermediate ontology due to 
its high ØNameSyn value. We generally expect ontologies providing many synonym 
terms to be adequate intermediate ontologies w.r.t. linguistic matching. 

The match operation within the extendMatch algorithm and the direct match com-
putation consists of the steps pre-processing, similarity calculation, and post-
processing. Pre-processing includes the elimination of delimiters and stop words, 
transformation to lower case letters, and word stemming. The similarity between 
ontology concept pairs is calculated based on the linguistic trigram similarity on con-
cept names and synonyms. Post-processing consists of a MaxDelta selection [6] of 
correspondences returning for a concept the correspondences with the maximal simi-
larity value or within a small delta distance to the maximal value. Furthermore, corre-
spondences must meet a so-called CrissCross condition [12] for improved precision 
that eliminates conflicting correspondences (a1, b1) and (a2, b2) where a2 is a child of 
a1 but b1 a child of b2 or vice versa. 

4.2   Composition-based matching 

We first compare the quality of indirectly determined ontology mappings using the 
composeMatch algorithm as well as the impact of extendMatch. Fig. 3 summarizes 
the obtained mapping quality in terms of F-measure and compares them with the 
quality of a direct match (called as no IO). The direct matching based on linguistic 
similarity achieved a F-measure of 86% which is comparable to the best value of all 
previous OAEI contests (87.7%). The quality of the composed mappings (light grey 
bars) strongly depends on the utilized intermediate ontology and their associated 
mappings. The best F-measure values are achieved for composition via UMLS 
(86.2%) and Uberon (84.7%). Particularly, the UMLS-based mapping even exceeds 
the quality achieved by a direct match. Ontology mappings using FMA (77%) and 
RadLex (59%) only achieve a low quality influenced by the low coverage of their 
mappings to MA and NCIT. While RadLex is not primarily concerned with anatomy, 

Table 1: Statistics for ontologies (a) and mappings (b) 

Mapping CovDomain CovRange |Map|

MA-Uberon 80% 45% 2300

Uberon-NCIT 33% 48% 1703

MA-UMLS 69% 3% 2975

UMLS-NCIT 5% 87% 4214

MA-RadLex 39% 3% 1082

RadLex-NCIT 4% 40% 1347

MA-FMA 57% 2% 1601

FMA-NCIT 3% 67% 2337

(b) 
|C| |ØNameSyn| 

MA 2,738 1.1

NCIT 3,298 2.5

Uberon 4,958 4.9

UMLS 87,913 3.1

RadLex 30,773 1.6

FMA 81,059 1.8

(a) 



Uberon provides a cross-species anatomy ontology and UMLS contains a huge anat-
omy part making these ontologies highly suitable for indirectly matching anatomy 
ontologies. The dark grey bars in Fig. 3 denote the achieved quality by an additional 
application of extendMatch. The results indicate that this additional step always leads 
to an improved quality. Interestingly, Uberon now achieves the best quality (88.2%) 
exceeding UMLS (87.0%) and the best OAEI result so far. This indicates that compo-
sition via Uberon finds non-trivial correspondences that cannot be identified by a 
direct match. The additional match effort of extendMatch improves match quality 
especially for intermediate ontologies with comparatively poor compose results (e.g., 
RadLex and FMA). 

Next, we determine whether the combination of several composed mappings from 
different intermediate ontologies improves match quality. Figure 4 shows the result-
ing F-measure values when merging the four composed mappings for different values 
for the occurrence count occ (specifying how often a correspondence has to occur in 
the individual composed mappings). The results show that merging several composed 
mappings improves match quality to up to 90.2% F-measure (recall 87.8%; precision 
92.7%) for occ=1, i.e. when we take the union of the mappings. So we can outperform 
the quality of direct matching as well as the best OAEI result by our composition-
based approach although we only compose automatically determined mappings. The 
intersection of the mappings (occ=4) turned out to be not effective (F-measure 57.4%) 
due to a significant reduction of recall, i.e. we can no longer take advantage of com-
plementary correspondences provided by different intermediate ontologies. Addition-
ally applying extendMatch leaves the result for occ=1 almost unchanged (90.3%) 
while it can significantly improve match qualities for larger occ values. Hence, the 
union of composed mappings can be used without applying an extra matching step. 
None of the previous approaches participating in OAEI anatomy track could exceed 
87% F-Measure such that an increase to more than 90% is a significant improvement. 

The execution times of the match process (without parsing ontologies/mappings) 
could be significantly reduced. The compose via all four intermediate ontologies and 
the following mapping merge took only 2.8s. The execution time for the additional 
extendMatch was 36s on average. By contrast the full direct match of the whole on-
tologies took 116s, i.e., the execution time could be reduced by up to a factor of 41 
while achieving similar or even better match quality. 

Figure 3: Compose via different 
intermediate ontologies 

Figure 4: Merge composed  
mappings 



5   Related Work 

The direct matching of large life science ontologies has been studied before [9, 15, 
21]. Thereby different match approaches such as lexical and structural methods have 
been evaluated, e.g., in the domain of anatomy [28, 17]. 

The operators compose, match and extract were introduced within the framework of 
model management [4]. They can be used in scenarios such as schema evolution to 
adapt dependent artifacts like instance data and views. In contrast we use these opera-
tors to efficiently match two ontologies based on composition.  

The match compose operation has been introduced in schema matching before [3, 
6] but was not applied for ontology matching. So far, there has been some attention on 
indirect matching and mapping composition in the life sciences. [27] derived indirect 
mappings using FMA as reference ontology. By contrast, we focus on using multiple 
complementing intermediate ontologies as well as an additional extendMatch to im-
prove recall of compose. [24] presented an empirical analysis of mapping composi-
tion. They analyzed a pool of mappings without distinguishing different intermediate 
ontologies. Hence, it was not the focus to study which ontologies are useful hub on-
tologies. [2, 15] matched ontologies or other vocabularies by using a single ontology 
as domain/background knowledge. These strategies differ from our approach as they 
do not combine the knowledge of several different intermediate ontologies.  

6   Conclusion and Future Work 

We proposed a composition-based approach for indirectly matching life science on-
tologies via one or several intermediate ontologies. The goal is to reuse previously 
determined ontology mappings for improved match efficiency and quality. The ap-
proach is based on ontology and mapping operators compose, match, extract and merge. 
It allows the flexible combination of several composed mappings and the incremental 
extension of mappings by additional match steps for unmatched ontology concepts.  

In our evaluation for large anatomy ontologies we considered four intermediate on-
tologies, namely UMLS, FMA, Uberon and RadLex. Overall, we achieved very good 
match quality (>90%) and significantly reduced execution times using a composition-
based match instead of a direct match strategy. While the use of extendMatch is gen-
erally helpful to improve match quality, mapping composition alone was able to out-
perform the runtime and quality compared to direct matching especially when we 
merge several composed mappings. Uberon and UMLS showed to be very effective 
intermediate ontologies and are thus suited as hub ontologies in the anatomy domain.  

In future work, we plan to investigate composition-based ontology matching for 
further domains. We also want to study the impact of considering additional map-
pings, e.g. determined by structural matching or existing mappings from BioPortal. 
Furthermore, we want to investigate when it could be useful to compose more than 
two mappings within longer mapping chains. 

Acknowledgments. This work is supported by the German Research Foundation 
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