
WETSUIT: An Efficient Mashup Tool for Searching and
Fusing Web Entities

Stefan Endrullis
University of Leipzig

endrullis@informatik.uni-
leipzig.de

Andreas Thor
University of Leipzig

thor@informatik.uni-
leipzig.de

Erhard Rahm
University of Leipzig

rahm@informatik.uni-
leipzig.de

ABSTRACT

We demonstrate a new powerful mashup tool called WET-
SUIT (Web EnTity Search and fUsIon Tool) to search and
integrate web data from diverse sources and domain-specific
entity search engines. WETSUIT supports adaptive search
strategies to query sets of relevant entities with a mini-
mum of communication overhead. Mashups can be com-
posed using a set of high-level operators based on the Java-
compatible language Scala. The operator implementation
supports a high degree of parallel processing, in particular a
streaming of entities between all data transformation opera-
tions facilitating a fast presentation of intermediate results.
WETSUIT has already been applied to solve challenging in-
tegration tasks from different domains.

1. INTRODUCTION

Mashups follow a light-weight and programmatic approach
for on-the-fly data integration which is complementary to
common database-oriented approaches, such as data ware-
houses or query mediators. Mashups have become quite
popular to integrate both web and enterprise data and many
tools and frameworks have been developed [3]. Typical sys-
tems such as Yahoo! Pipes 1, Damia [5], or Semantic Web
Pipes [4] offer a powerful and easy-to-use interface allowing
even inexperienced users to access and integrate data they
need. To this end they provide operators (e.g., filter, merge,
or join) to process sets of entities in user-specified workflows.

However, current mashup dataflows are mostly compar-
atively simple and do not yet exploit the full potential of
programmatic data integration, e.g., to analyze larger sets
of web data. In particular they are limited to simple query
approaches to retrieve relevant entities from hidden data
sources or entity search engines. Furthermore, they typi-
cally provide only simple approaches to deal with dirty data,
e.g., for entity resolution.

1http://pipes.yahoo.com

To overcome such deficiencies we have developed a new
mashup framework called WETSUIT (Web EnTity Search
and fUsIon Tool)2 for the integration of web data, e.g., prod-
uct offers from e-commerce shops, citation data from bibli-
ographic web databases, etc.. Its design is also based on
experiences with our earlier mashup approaches [6, 7]. Dis-
tinctive features of WETSUIT include the following:

• Mashups are specified in a domain specific language em-
bedded in the Java-compatible language Scala3. The lan-
guage comprises high-level set-oriented operators facilitat-
ing compact workflow definitions (scripts). The embed-
ding in a general purpose language (Scala or Java) pro-
vides significant advantages over other mashup systems.
First, developers can more easily reuse existing (Java)
code and can implement specific procedures that are not
captured by the script language, e.g., an HTML parser
for screenscraping web sites. Second, mashup workflows
compile into standard Java bytecode and can thus be used
in other Java or Scala programs. Third, mashup develop-
ers can benefit from common development tools for Java
such as IDEs, debuggers, or unit tests.

• WETSUIT provides powerful operators for entity resolu-
tion and advanced search strategies. In particular, adap-
tive search strategies can be employed to retrieve larger
sets of relevant entities from entity search engines with a
minimum of communication costs [2]. Queries are deter-
mined by source-specific query generators and the most
promising queries are executed based on the characteris-
tics of input entities and previous query results.

• WETSUIT supports a high degree of parallel processing,
in particular a streaming of entities between all data trans-
formation operations facilitating a fast presentation of in-
termediate results. This feature supports highly interac-
tive web applications where first results are quickly shown
to the user.

• WETSUIT has already been applied to solve challenging
integration tasks from different domains. We will demon-
strate two such use cases using bibliographic and movie-
related web data. The bibliographic mashups determines
the top-cited papers (based on Google Scholar citations)
for any conference, journal or author listed at DBLP. The
movie mashup determines all current movie offers of a city
and filters them according to IMDB information such as
the average user rating.

2http://dbs.uni-leipzig.de/wetsuit
3http://www.scala-lang.org/

1970

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.



Application

WETSUIT

Mashup Operators
Search Strategies
Query Generators
Object Matchers

Source Wrappers

DBMSs, CSV Files,
Excel Files, ...

REST, SOAP, Entity Search
Engines, Websites, ...

(Graphical) User Interface

Local Sources Web Sources
Cache

WETSUIT Mashup Script
UI binding

Figure 1: System architecture

Next, we give a brief overview of WETSUIT’s architecture
and mashup language (Section 2). Section 3 explains how
we support different search strategies. Finally, we present
our demonstration scenarios (Section 4).

2. WETSUIT

Figure 1 illustrates the three-layered architecture of mash-
up applications built withWETSUIT. A mashup application
itself basically consists of a mashup workflow and a (graphi-
cal) user interface. WETSUIT supports the automatic gen-
eration of simple GUIs, but developers can also manually
design appropriate user interfaces. WETSUIT provides a
library of wrappers to access diverse web sources as well as
local data sources such as databases or spreadsheets.

In our framework mashup workflows are specified in a do-
main specific language (DSL) embedded in Scala. In con-
trast to classical programming languages, Scala provides a
series of powerful and flexible language features (e.g., im-
plicit casts, operator overloading, infix operators, implicit
type inference) enabling the design of concise, well readable,
script-like languages as exploited for our workflow language.

In WETSUIT mashup workflows are described through
sequences of mashup operators which may together form
complex data flow graphs. Table 1 shows a list of the most
important operators supported in our framework. We can
roughly divide them into user interaction operators and data
transformation and integration operators. The former kind
is responsible for presenting results to the user and for ac-
quiring user input, whereas the latter kind performs the ac-
tual data handling.

All operators are set-oriented, i.e., they consume and/or
produce sets of entities. Entities are either numeric values
or instances of Scala (or Java) classes which allow for an in-
tuitive and object-oriented modeling of entity types. Figure
2 shows a simple type definition for entity type Publication
consisting of three attributes: title, authors, and year.

A major feature of WETSUIT is the capability of quickly
presenting intermediate results. To this end, our mashup
framework supports inter-operator and intra-operator par-
allelism in a completely transparent fashion to the mashup
developer. The former one is implemented by executing all
operators of a mashup workflow in a pipelined manner, i.e.,
results of each operator immediately stream to subsequent
operators so that all operators can work in parallel as long

Table 1: Selected operators of WETSUIT
Operator Definition

inputOne(label) /
inputMany(label)

asks user for one / many input value(s);
label denotes component caption

selectOne(label) /
selectMany(label)

displays intermediate results and asks
user to select one / many of them

outputOne(label) /
outputMany(label)

presents results

map(f) maps each input entity to a new entity
using the mapping function f

flatMap(f) maps each input entity to a set of new
entities using the mapping function f

filter(cond) filters input entities based on the filter
condition cond

groupBy (groupAttr) groups the input entities by groupAttr;
groupBy has to be followed by filterTop
or aggregateValue

filterTop (n) by
(orderAttr)

for each group / whole input set: filters
the top n elements on orderdAttr

aggregateValue
(value) via (agg,
[rev])

for each group / whole input set: ag-
gregates value using aggregation function
agg and its reverse operation rev (rev
needed if input entities can be revoked)

findAt (ese) searches the input entities at ESE ese us-
ing an implicitly defined search strategy

matchWith set2 using
(matcher)

matches the input entities against entities
of set2 by using match strategy matcher

union, intersect,
diff

classical set operators

join set2 on (theta) θ-join of two entity sets using the binary
function theta as join condition

as they have entities to process. Another speedup can be
achieved through data parallelism within operators, i.e., sev-
eral mashup operators process multiple input entities at the
same time by exploiting different cores of modern CPUs.

A stumbling block for a fast presentation of first results
are blocking operators such as diff, aggregateValue, and
filterTop. These operators usually require the availabil-
ity of the entire input set in order to perform their opera-
tion and to generate their results thereby breaking pipelin-
ing parallelism. To overcome this limitation our framework
implements these operators differently and allows them to
produce preliminary results which can be later updated or
revoked by these operators when new input entities arrive.
This feature allows for instance a citation application to con-
tinuously update the top-cited papers as new citation data
arrives or an eCommerce application to update the lowest-
priced offers for a product of interest. We can thus pro-
vide users quickly with first results while additional search
queries are being processed in the background. Updates and
revokes are automatically propagated to the subsequent op-
erators as well.

Figure 3 shows a simple WETSUIT mashup for online ci-
tation analysis. The workflow starts with asking the user
to enter an author name. The authors matching the name
are looked up in DBLP4 and presented to the user. When
the user selects one of the authors all his/her DBLP publica-
tions are determined and handed over to the search strategy,
initiated by operator findAt(Scholar). This complex op-
erator tries to find all corresponding publications at Google
Scholar5 by generating suitable queries, sending them to
Scholar and matching the results against the input publi-
cations. The result of the entity search is a set of correspon-
dences consisting of a domain entity (DBLP publication),

4http://www.informatik.uni-trier.de/~ley/db/
5http://scholar.google.com/

1971



case class Publication(title: String, authors: String,
year: Int)

Figure 2: Sample type definition in Scala

inputOne ("Author name: ", "")
flatMap (name => Dblp.Author.where("name like ?",

"%"+name+"%"))
selectOne ("Select one author")
flatMap (_.publications)
findAt (Scholar)
groupBy (_.range) filterTop 1 by (_.sim)
groupBy (_.domain) aggregateValue (_.range.citations)

via (_+_, _-_)
outputMany ("DBLP pubs with citations")

Figure 3: Mashup for an online citation service

a range entity (Scholar publication), and a similarity value
sim. In order to avoid that one Scholar publication may
match to multiple DBLP publications the filterTop oper-
ation filters out all correspondences but the best match for
each range entity (Scholar publication). Finally, the second
groupBy line aggregates the Scholar citation counts for each
domain entity (DBLP publication) which are afterwards pre-
sented to the user. A screenshot of this mashup application
is shown in Figure 7.

3. SEARCH STRATEGIES

A huge amount of information on the web is hidden behind
entity search engines (ESE) or hidden databases such as
Google Scholar or IMDB6. Such sources provide access only
to specific types of entities (e.g., publications or movies) and
typically offer multiple search predicates to specify search
conditions (e.g., on the publication title or authors).

Figure 4 shows an example for the definition of a Google
Scholar-like entity search engine in WETSUIT. The search
engine provides access to entities of type Publication and
supports the search predicates keywords and authors. The
queryMapper describes how queries are mapped from a log-
ical expression (our internal query format) to URLs of the
search engine. In the example we use a query mapper which
composes the query URL in the same way a web browser
would compose the request from a classical web form after
the search button was pressed. Some ESEs such as Scholar
support logical operators (e.g., AND and OR) within input
fields. In WETSUIT query generators may exploit such op-
erators, especially the disjunction of terms is promising in
order to search for several entities within one query. The
actual format for these operators can be specified as param-
eters and and or of the query mapper, e.g., to specify that
spaces between search terms denote a conjunction.

In order to enable efficient and effective entity search our
framework goes far beyond the simple search approaches of
common mashup tools. WETSUIT supports sophisticated
entity search strategies [2] exploiting different query gener-

ators [1] to find sets of entities with a minimum of queries.
Search strategies are specific for a certain type of input en-
tities and a certain entity search engine. For example, to

6http://imdb.com/

object Scholar extends Ese {
type ResultType = Publication

// declare search predicates
val keywords = predicate("as_q")
val authors = predicate("as_sauthors")

// how queries are mapped to URLs
val queryMapper = UrlParamQueryMapper(
urlPrefix = "http://scholar.google.de/scholar?",
and = " ", // separator for conjunctions
or = " OR ") // separator for disjunctions

// parser for search engine results
val resultParser = ScholarParser

}

Figure 4: Definition of an entity search engine (sim-
plified)

quickly retrieve the citations of all publications of an author
WETSUIT can start with a single author query rather than
querying every publication.

Figure 5 shows a definition of a search strategy that can be
used to search for Publications at the publication search
engine Scholar from Figure 4. The first half of the code
defines two query generators. A query generator represents
an algorithm for generating queries for a set of input entities,
in our case Publications. The first one, named fallback, is
a naive query generator, i.e., it creates one query per input
entity. Specifically, it maps the first author and all title
keywords of each input publication to the search predicates
authors and keywords, respectively. The query generator fv
represents a so-called frequent value query generator which
determines frequently occurring authors in the input set to
formulate queries with them. The property minEntities =

2 ensures that each generated query of fv covers at least
two input entities to ensure a minimal efficiency.

Below the two query generators the titleSim similarity
measure is defined that can be used for matching publica-
tions (entity resolution). It calculates the trigram similarity
between two publication titles. Additional similarity mea-
sures and their combination can be defined analogously.

Search strategies can be build upon multiple query gen-
erators in order to find more relevant results and/or make
the entity search more efficient. Figure 5 (lower part) shows
an example for the definition of an implicit search strategy
that is automatically invoked by calling operator findAt for
Scholar. The search strategy applies the two query gen-
erators sequentially. It starts searching for the input en-
tities using query generator fv and continues the search
using fallback. The algorithm stops searching for enti-
ties that have been found at least once (maxResults = 1)
or searched already two times (maxTrials = 2). Matching
pairs between input entities and search results are identi-
fied by using the similarity measure titleSim and a thresh-
old of 0.8. Similar matching rules can be applied within
the matchWith operator. A more detailed description and
evaluation of search strategies can be found in [2]. In par-
ticular, we outline a fully adaptive strategy of WETSUIT
that analyzes the input entities and search results to con-
tinuously determine the most promising search queries to
execute next.

1972



object PublicationSearchStrategy extends
SearchStrategyFor[Publication, Scholar.type] {

// query generators
val fallback = naiveQg(
ese.authors <= {_.authors.take(1)},
ese.keywords <= {_.title.keywords}

)
val fv = frequentValueQg(
ese.authors <= {_.authors}

) using (minEntities = 2)

// similarity measures
val titleSim = sim { (pub1, pub2) =>

triGramSim(pub1.title, pub2.title) }

// implicit search strategy
implicit val seq = sequentialStrategy(fv, fallback).
using (maxTrials = 2, maxResults = 1,

matcher = (titleSim >= 0.8))
}

Figure 5: Example for a search strategy

4. DEMONSTRATION DESCRIPTION

During the demonstration we will illustrate how WET-
SUIT can be employed for mashup development. To this
end, we provide two scenarios (Cinema and Publications)
that showcase WETSUIT’s core functionality.

Scenario “Cinema”: We will demonstrate an example
cinema mashup built with WETSUIT. The audience can
search for an actor and a city and the mashup will show
movie offers in the city starring the specified actor. For
each movie, screening times, locations, and actor informa-
tion will be displayed (see Figure 6). Movies are ranked
by their IMDB rating. To this end, the cinema mashup
retrieves all movie offers of the city using Google’s cinema
search. It then searches for the corresponding movies in the
IMDB. After the audience has been convinced of the correct
and reliable operation of the script, the audience can change
the script’s functionality. First, an additional filter can be
incorporated that shows movies with an IMDB rating above
a given threshold only. The threshold can either be hard-
coded in the mashup or realized as an additional parameter.
In the latter case the audience will experience WETSUIT’s
automatic GUI adjustments, i.e., an additional input field
will be generated based on the mashup script. Second, the
movie ranking can be modified. We will change the script so
that it additionally retrieves the number of won Oscars for
all actors and producers for each movie. Movies can then
be ranked based on their number of Oscars.

Scenario “Publications”: The second scenario illus-
trates the effect of search strategies with the help of our
online citation mashup. For all DBLP publications of a
specified author or venue, the mashup retrieves matching
Google Scholar entries and summarizes their citation counts
(see Figure 7). On the one hand, a simple search strat-
egy that only sends one query with the author’s or venue’s
name is sufficient for a quick overview to identify the top-
cited papers. On the other hand, extensive evaluation of all
papers for subsequent data analysis requires an exhaustive
search strategy because small changes in citation counts may
already have significant impact on derived statistics, e.g.,

Figure 6: Screenshot of the Cinema Mashup

Figure 7: Screenshot of the Online Citation Service

h-index. It is therefore crucial to retrieve all matching publi-
cations in Google Scholar. The audience will experience the
runtime and data quality differences between both strate-
gies. Finally, we will demonstrate a sophisticated strategy
that executes the most-promising queries based on the per-
formance (i.e., effectiveness and efficiency) of previously ex-
ecuted queries. We thereby showcase WETSUIT’s approach
of cost-effective search strategies, i.e., achieving the (almost)
complete result with a minimal number of queries.

5. REFERENCES
[1] S. Endrullis, A. Thor, and E. Rahm. Evaluation of

Query Generators for Entity Search Engines. In Int.

Workshop USETIM, 2009.

[2] S. Endrullis, A. Thor, and E. Rahm. Entity Search
Strategies for Mashup Applications. In ICDE, pages
66–77, 2012.

[3] G. Lorenzo et al. Data Integration in Mashups.
SIGMOD Record, 38(1):59–66, 2009.

[4] D. L. Phuoc, A. Polleres, M. Hauswirth,
G. Tummarello, and C. Morbidoni. Rapid Prototyping
of Semantic Mash-ups through Semantic Web Pipes. In
WWW, pages 581–590, 2009.

[5] D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan,
and A. Singh. Damia: Data Mashups for Intranet
Applications. In SIGMOD, pages 1171–1182, 2008.

[6] A. Thor, D. Aumueller, and E. Rahm. Data integration
support for mashups. In Int. Workshop on Information

Integration on the Web, 2007.

[7] A. Thor and E. Rahm. CloudFuice: A Flexible
Cloud-Based Data Integration System. In ICWE, pages
304–318, 2011.

1973


