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Abstract. Linked Open Data initiatives have made available a diversity of col-
lections that domain experts have annotated with controlled vocabulary terms
from ontologies. The challenge is to explore these rich and complex annotated
datasets, together with the domain semantics captured within ontologies, to dis-
cover patterns of annotations across multiple concepts that may lead to poten-
tial discoveries. We identify an annotation signature between a pair of concepts
based on shared annotations and ontological relatedness. Formally, an annotation
signature is a partitioning of the edges that represent the relationships between
shared annotations. A clustering algorithm named AnnSigClustering is proposed
to generate annotation signatures. Evaluation results over drug and gene datasets
demonstrate the effectiveness of using annotation signatures to find patterns.

1 Introduction

Ontologies are developed by domain experts to capture knowledge specific to some
domain. They have been extensively developed and widely adopted in the last decade.
Simultaneously, Linked Open Data initiatives have made available a diversity of collec-
tions that have been annotated with controlled vocabulary (CV) terms from these on-
tologies. For example, the biomedical community has taken the lead in such activities;
every model organism database has genes and proteins that are widely annotated with
CV terms from the Gene Ontology (GO). The NCI Thesaurus (NCIt) version 12.05d has
93,788 terms and the LinkedCT dataset of clinical trial results circa September 2011
includes 142,207 drugs or interventions, 167,012 conditions or diseases, and 166,890
links to DBPedia, DrugBank and Diseasome. At the opposite end of the domain spec-
trum, the Financial Industry Business Ontology (FIBO) captures knowledge about the
structure, properties and behavior of financial contracts.

The challenge is to explore these rich and complex annotated datasets, together with
the domain semantics captured within ontologies, to discover patterns of annotations
across multiple concepts that may lead to potential discoveries. For genes, these pat-
terns may involve cross-genome functional annotations, e.g., combining the GO func-
tional annotations of two model organisms such as Arabidopsis thaliana (a plant) and C.
elegans (a nematode or worm), to predict new gene function or protein-protein interac-
tions. Drug target prediction, with a goal of finding new targets for existing drugs, has



received widespread media attention and has resulted in some notable successes, e.g.,
Viagra. Additional applications include predicting potentially adverse side-effects or
providing a comprehensive summary of drug effectiveness so that health professionals
may find cost-effective treatments [10].

As a first step to discovering complex annotation patterns, we define an annota-
tion signature between a pair of scientific concepts, e.g., a pair of drugs or a pair of
genes. The annotation signature builds upon the shared annotations or shared CV terms
between the pair of concepts. The signature further makes use of knowledge in the
ontology to determine the ontological relatedness of the shared CV terms. The anno-
tation signature is represented by N groups (clusters) of ontologically related shared
CV terms. For example, the annotation signature for a (drug, drug) pair will be a set of
N clusters, where each cluster includes a group of ontologically related disease terms
from the NCIt.

Given a pair of concepts, and their sets of annotations, Ai and Aj from ontology O,
elements ai ∈ Ai and aj ∈ Aj form the nodes of a bipartite graph BG. Between nodes
ai and aj there may be an edge or a path throughO; an edge is the special case where ai
and aj are identical CV terms from O. There may be a choice of paths between ai and
aj depending on the the ontology structure and relationship types captured within O.
One can use a variety of similarity metrics, applied to the edges and paths through the
ontology O, to induce a weighted edge between ai and aj in BG; the weight represents
the (ontologically related) similarity score in the range [0.0, 1.0] between ai and aj .

Our objective is to determine an annotation signature based on the bipartite graph
BG. There are many alternatives to create the signature. One could partition the edges
of BG with possible overlap of the nodes. Another solution is to cluster the nodes and
edges of BG. One may also consider a one-to-one bipartite match [8].

We define a version of the Annotation Signature Partition problem as the partition-
ing of the edges ofBG into clusters such that the value of the aggregated cluster density
is maximized; we will define the density metric in the paper. We develop AnnSigClus-
tering, a clustering solution that implements a greedy iterative algorithm to cluster the
edges in BG. We note that such a clustering will result in N clusters of the edges of
BG with potential overlap of nodes in different clusters.

We perform an extensive evaluation of the effectiveness of the annotation signature
on real-world datasets of genes and their GO annotations, as well as on the LinkedCT
dataset of drugs and diseases from NCIt and their associations through the clinical trials.

Our research focuses on exploiting domain specific semantic knowledge. This in-
cludes both the ontology structure and relationship types between concepts. We show
that by using the ontology structure to tune the (ontologically related) similarity score
between node pairs ai and aj , we can control the annotation signature to produce clus-
ters of more closely related terms that are more useful to the domain scientist. Further,
the choice of specific relationship types can be used to further refine the clusters of CV
terms in the annotation signature.

The contributions of this paper can be summarized as follows: i) Definition of an
annotation signature to mine annotated datasets together with domain specific seman-
tic knowledge captured within ontologies. ii) A greedy iterative algorithm that exploits
knowledge encoded in an ontology to discover the signature of a pair of annotated



concepts. iii) An empirical study that suggests that annotation signatures represent in-
teresting patterns across drugs and across genes.

This paper is organized as follows: Section 2 presents annotation graphs from dif-
ferent domains and Section 3 defines our approach. Experimental results are reported
in Section 4, while related work is summarized in Section 5. Section 6 concludes.

2 Motivating Example

An antineoplastic agent is a substance that inhibits the maturation, growth or spread of
tumor cells. Monoclonal antibodies that are also antineoplastic agents have become an
important tool in cancer treatments. When used as a medication, the non-proprietary
drug name ends in -mab. Scientists are interested in studying the relationships between
drugs and the corresponding diseases; drugs are annotated with the NCIt terms that
correspond to the conditions that have been tested for these drugs. Figure 1 illustrates
Brentuximab vedotin and Catumaxomab and some of their annotations. Each path
between a pair of conditions, e.g., Colorectal Carcinoma and Stage IV Rectal

Cancer through the NCIt is identified using red ovals which represent CV terms from
the NCIt. From Figure 1, we may conclude that the shared disease signature for this pair
of drugs includes five components. The three terms Colon Carcinoma, Colorectal
Carcinoma and Stage IV Rectal Cancermay form one component. Similarly, an-
other component may include Thyroid Gland Neoplasm, Oropharyngeal Neoplasm
and Head and Neck Neoplasm.

!"#"$%&'(#))
!($&*+",()

Bevacizumab 
Cetuximab 

-%&'(#))
!($&*+",()

./0$"*1)2#(+1))
3%"4#(,5)

6'(7%)89)!"#"+)
)!(+&%$)

!"#"+))
!($&*+",()

:(#*7+(+'))
!"#"$%&'(#))
3%"4#(5,)

6'(7%)89)-%&'(#)
)!(+&%$)

-%&'(#))
!($&*+",()

;$"4/($0+7%(#)
3%"4#(5,)

!"#"$%&'(#))
<1%+"&($&*+",()

6'(7%)89)!"#"+)
)!(+&%$)

Intervention 
Intervention 

Conditions 
Conditions 

NCIt Paths 

=%(1)(+1)3%&>)
3%"4#(5,)

:(#*7+(+')?'%$*+%))
3%"4#(5,)

:(#*7+(+');@($*(+))
3%"4#(5,)

Fig. 1. Annotation graph representing the annotations of Brentuximab vedotin and Catumaxomab.
Drugs are green rectangles; diseases are pink rectangles; NCIt terms are red ovals.

Consider a pair of financial contracts representing bonds (corporate, municipal,
state, sovereign, etc.) from a repository such as EMMA 1. Figure 2 shows an exam-
ple of two bond contracts (green rectangles). These bonds are described by their CUSIP
identifier, maturity date, principal, initial offering price, yield, etc. Each contract is also

1 http://www.emma.msrb.org/



associated with a set of FIBO terms (pink ovals). For example, the Financial Contract A
is associated with five terms including Joint Guaranty and State Gurantor while
the Financial Contract is associated with seven terms. There is an edge with similarity
equal to 1.0 between identical FIBO terms as well as paths through the FIBO ontology
and intermediate FIBO terms (red circles).

Fig. 2. FIBO terms (pink ovals) annotate a pair of financial contracts (green rectangles). An edge
connects identical FIBO terms in the bipartite graph between the two sets of annotations on the
left and right. Paths pass through intermediate FIBO terms (red circles).

3 Our Approach

A broad variety of similarity metrics have been proposed in the literature and have been
summarized in [2]. Existing similarity metrics include the following: i) string-similarity
metrics that measure similarity using (approximate) string matching functions; ii) path-
similarity metrics such as PathSim and HeteSim that compute relatedness based on the
paths that connect concepts in a graph; and iii) topological-similarity metrics that mea-
sure relatedness in terms of the closeness of CV terms in a given taxonomy or ontology.

We use a taxonomic distance metric dtax [2]. The intuition behind the dtax metric
is to capture the taxonomic distance between two vertices with respect to the depth of
the common ancestor of these two vertices. Additionally, dtax tries to assign low(er)
values of taxonomic distance to pairs of vertices that are: (1) at greater depth in the
taxonomy and (2) are closer to their lowest common ancestor. A value close to 0.0
means that the two vertices are close to the leaves and both are close to their lowest
common ancestor. A value close to 1.0 represents that both vertices are general or that
the lowest common ancestor is close to the root of the taxonomy. Then, (1 - dtax) will
be used as the similarity or ontological relatedness between the two nodes.

The taxonomic distance metric dtax is as follows, where root is the root node in the
ontology; lca is the lowest common ancestor, and pl denotes path length:

dtax(x, y) =
pl(lca(x, y), x) + pl(lca(x, y), y)

pl(root, x) + pl(root, y)
(1)

Recall that we wish to utilize knowledge from the ontology; one option is to fully
exploit ontology structure. A CV term that is farther up in the ontology, towards the



root, is typically a general concept and its presence in a cluster is less interesting to
scientists. This is especially true if the cluster has CV terms at much greater depth.
Our goal is to reduce the number of such general concepts that occur in the annotation
signature. To do so, we define an extension of dtax named dstrtax; it will assign low
values of ontological relatedness (similarity) to pairs of CV terms where at least one of
the terms is a general concept in the ontology. Let MaxDepth Ontology represent the
greatest depth in the ontology.

dstrtax(A,B) = dtax(A,B) ∗ (1− pFactor(A,B)) (2)

pFactor(A,B) =
max(correctedDepth(A), correctedDepth(B))

MaxDepth Ontology

correctedDepth(X) =MaxDepth Ontology −Depth(X)

Definition 1 (Cluster Density). Given a labeled bipartite graph BG=(Ai ∪ Aj , WE)
with nodes Ai and Aj and edges WE, a distance metric d, and a subset p of WE, the

cluster density of p cDensity(p) =
∑

e∈p 1−d(e)
|p| .

Definition 2 (The Annotation Signature Partition Problem). Given a labeled bi-
partite graph BG=(Ai ∪ Aj , WE), a distance metric d, and a real number θ in the
range [0.0:1.0]. For each a ∈ Ai and b ∈ Aj , if 1-d(a,b) > θ, then there is an edge
e = (a, b) ∈ WE. For each e = (a, b) ∈ WE, label(e)= 1-d(a, b). The AnnSig Parti-
tion Problem identifies a (minimal) partition P of WE such that the aggregate cluster
density P AnnSig(P ) =

∑
p∈P (cDensity(p))

|P | is maximal.

AnnSigClustering is a greedy iterative algorithm to solve the Annotation Signa-
ture Partition Problem. AnnSigClustering adds an edge to a cluster following a greedy
heuristic to create clusters that maximize the cluster density. AnnSigClustering assigns
a score to an edge e in WE according to the number of edges whose adjacent terms
are dissimilar to the terms of e, and that have been already assigned to a cluster. Then,
edges are chosen in terms of this score (descendant order). Intuitively, selecting an
edge with the maximum score, allows AnnSigClustering to place first the edges with
more restrictions; this is one for which there is a smaller set of potential clusters.
The selected edge is assigned to the cluster that maximized the cluster density func-
tion. Time complexity of AnnSigClustering is O(|WE |3). To illustrate the behavior of
AnnSigClustering, lets consider the annotated graph in Figure 2. This graph can be
partitioned into 2 groups of edges, e.g., one group includes the edges between State

Guarantor on the left with two terms STRIP and State Guarantor on the right;
also, the edge between Municipal Debt Issuer belongs to this group. The other
group is comprised of edges between Perpetual Maturity on the left with two terms
Maturity Duration and Perpetual Maturity on the right, as well as the edge be-
tween Putable and Perpetual Maturity. Exchangeable that is not ontologically
related to any of the FIBO terms associated with the Financial Contract A (on the
left). These two clusters were created because when each of the edges was assigned to
the corresponding cluster, similarity values between the adjacent terms of all the edges
in the clusters, were high enough to ensure that cluster density was maximized.



4 Evaluation

The goal of our evaluation is to validate if annotation signatures group together mean-
ingful terms across shared annotations. Additionally, we evaluate the impact of the se-
mantics encoded in the ontologies on the quality of the signature. We study two an-
notated datasets: i) Twelve drugs annotated with NCIt terms that correspond to the
diseases associated with these drugs in clinical trials. ii) Twenty transporter genes from
Arabidopsis thaliana annotated with GO terms. There is no prior gold standard solu-
tion(s) or ground truth for these two datasets that we can use to evaluate the quality of
the annotation signature. Thus, we relied on a team of experts to analyze the annotation
signatures. Annotated datasets are included in the supplementary material. All results
are available via a Web portal 2.

4.1 Dataset and Evaluators

Drugs: Anti-neoplastic agents and monoclonal antibodies are two popular and inde-
pendent intervention regimes that have been successfully applied to treat a large range
of cancers. There are 12 drugs that fall within their intersection, and scientists are inter-
ested in studying the relationships between these drugs and the corresponding diseases.
We consider a dataset of the following twelve drugs: Alemtuzumab, Bevacizumab,
Brentuximab vedotin, Cetuximab, Catumaxomab, Edrecolomab, Gemtuzumab,
Ipilimumab, Ofatumumab, Panitumumab, Rituximab, and Trastuzumab. The pro-
tocol to create the dataset is as follows: Each drug was used to retrieve a set of clinical
trials in LinkedCT circa September 2011 (linkedct.org). Then each disease associ-
ated with each trial was linked to its corresponding term in the NCI Thesaurus version
12.05d; annotation was performed by NCIt experts. Our group of evaluators included
two experts who develop databases and tools for the NCI Thesaurus and two bioinfor-
matics researchers with expertise on the NCIt and other biomedical ontologies.

Genes: The vacuolar-type H+-ATPase are proton pumps associated with the adenosine
triphosphatase (ATP) enzyme. The pump acidifies intracellular compartments and
is essential for many processes, including co-transport, guard cell movement, develop-
ment, and tolerance to environmental stress. Our collaborators in the Sze Lab at the
University of Maryland have identified genes encoding subunits of V-ATPase in the
Arabidopsis thaliana genome. The pump consists of subunits A through H of the
peripheral V1 complex, and subunits a, c, c" and d of the Vo membrane sector. The
genes are named AtVHA-n where n represents the code for each subunit. Our dataset
included the following twenty genes, AtVHA-A, AtVHA-A1, AtVHA-A2, AtVHA-A3,
AtVHA-B1, AtVHA-B2, AtVHA-B3, AtVHA-C, AtVHA-C1, AtVHA-C2, AtVHA-C3, AtVHA-C4,
AtVHA-C5, AtVHA-D1, AtVHA-D2, AtVHA-E1, AtVHA-E2, AtVHA-F, AtVHA-c"1 and
AtVHA-c"2. We obtained the GO annotations from the TAIR portal3.



(a) Catumaxomab-Trastuzumab Green (b) Ipilimumab-Trastuzumab Red

(c) Ipilimumab-Trastuzumab Cyan (d) Bevacizumab-Cetuximab Brown

Fig. 3. Connectivity Patterns within Each Cluster for θ = 0.5; (a) Catumaxomab-Trastuzumab
Green; (b) Ipilimumab-Trastuzumab Red; (c) Ipilimumab-Trastuzumab Cyan; (d) Bevacizumab-
Cetuximab Brown.

4.2 Connectivity Patterns within a cluster

The connectivity pattern within each cluster provides insight into the ontological re-
latedness of the diseases. In Figure 3(a) Carcinoma on the left is connected to 8
terms on the right. In Figure 3(b), Sarcoma on the left is connected to 9 drugs on
the right. Similarly, Breast Neoplasm on the right is connected to eight diseases on
the left. None of the other drugs has more than one incident edge. In contrast, in Fig-
ure 3(c), we see a much more general many-to-many connection pattern between the
diseases on the left and right. Finally, Figure 3(d) shows a more complex connectivity
pattern where the terms are ontologically related but they are placed within three dis-
connected graphs. The four terms Diffuse Intrinsic Pontine Glioma, Spinal

2 dynbigraph.appspot.com
3 http://www.arabidopsis.org/,April-May2013



Cord Ependymoma, Carcinoma and Squamous Cell Neoplasm form the most well
connected cluster. Comments from the evaluators noted that while groups such as Fig-
ure 3(a) that included generic terms such as Carcinoma were valid, they did not convey
useful information. In contrast, groups in Figures 3(c) and (d), that had more specific
terms and were more densely connected, had the potential to be more meaningful.

4.3 Utilizing Relationship Type Semantics

The goal of this evaluation is to determine the impact of the semantics of the ontology
relationships on the annotation signatures. Figure 4 presents an example of exploiting
relationship types using the GO ontology. There are five type of relationships captured
in the GO ontology: i) is a, ii) part of, iii) regulates, iv) positively regulates

and v) negatively regulates. Figures 4 (a) and (b) present two components of the
gene signature for the genes AtVHA-C5 and AtVHA-C for threshold θ = 0.75. This is a
scenario where dtax (ontological relatedness) is computed using paths that consider all
the GO relationship types. We observe that the term vacuolar proton-transporting

V-type ATPase, V1 domain appears in both components of Figures 4(a) and (b).
In contrast, Figures 4(c) and (d) present the two components when only is a rela-
tionship types are considered. The value for dtax between vacuole and vacuolar

proton-transporting V-type ATPase, V1 domain decreases from 0.800 to
0.70. As a result, the term vacuolar proton-transporting V-type ATPase,

V1 domain is only present in one component in Figure 4(d). This example illustrates
multiple benefits from using ontological knowledge. First, redundancy in patterns is
reduced. More important, the modified components represent more precise patterns of
relationships between shared annotations and reflect additional semantic knowledge. A
summary of this evaluation is described in Section 4.5.

4.4 Utilizing Ontology Structure

Recall that dstrtax extended the taxonomic distance metric dtax to consider ontology
structure. Figure 5(a) illustrates an example cluster of the annotations for the pair
Trastuzumab and Bevacizumab produced by dtax; the threshold θ = 0.50. There are
many shortcomings. First, it contains generic CV terms such as Adenocarcinoma and
Carcinoma. Further, it is very large and many diverse and unrelated cancers are in-
cluded. Figure 5(b) shows the result of applying the metric dstrtax to exploit ontology
structure. The large cluster was partitioned into smaller clusters. Many of the generic
CV terms are no longer included and each smaller cluster includes more closely related
CV terms. For example, one has a focus on breast cancer related terms, another has
a focus on lung cancer, while a third combines terms related to pancreatic, renal and
colorectal cancers. This example illustrates benefits from using ontological knowledge
to eliminate generic terms from the annotation signatures. Redundancy in patterns is re-
duced, and the modified annotation signatures are comprised of relationships between
more specific terms. Summarized results of the comparison between dtax and dstrtax for
the dataset of the twelve drugs are presented in next section.
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(a) AtVHA-C5 AtVHA-C Tan θ = 0.75.
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Fig. 4. Enhancing Discovery Patterns with Semantics for θ = 0.75; (a) and (b) Paths are computed
using all five GO relationship types; (c) and (d) Paths are computed using only the is a GO
relationship type.

4.5 Summary Statistics

In this section we report on aggregated results of our evaluations. Table 1(a) provides a
summary of the gene clustering when dtax (ontological relatedness) is computed using
all the GO relationship types and when only IS A relationship types are considered. We
compute the annotation signatures for pairwise comparisons of twenty genes; we report
on minimum (MIN), maximum (MAX), and average (AVG) number of clusters in these
annotation signatures. We consider two different values of threshold θ = 0.5 and 0.75.
As the threshold θ increases, the average of the number of clusters decreases. Further,
when only IS A relationship types are considered, the values of dtax (ontological re-
latedness) are affected. The number of paths between two terms decreases, e.g., paths
combining positively regulates and negatively regulates are not included
in the bipartite graph BG. Additionally, dtax values typically decrease and more edges
are deleted fromBG. Thus, as observed in Table 1(a), the average of number of clusters
decreases. As noted earlier, these refinements also create more closely related clusters.

Table 1(b) provides summary statistics for annotation signatures computed using
dtax and dstrtax over the pairwise comparisons of twelve diseases. We report on mini-
mum (MIN), maximum (MAX), and average (AVG) number of clusters in these signa-
tures; two values of threshold θ = 0.5 and 0.75 are considered. Because dstrtax penalizes
generic CV terms, many edges are eliminated from BG. Further, the values of dstrtax are
lower than the values of dtax. Thus, many of the large clusters computed with dtax are
partitioned into smaller clusters by dstrtax. At the same time, the number of clusters de-



(a) Trastuzumab-Bevacizumab Cadeblue θ = 0.50.

(b) Trastuzumab-Bevacizumab θ = 0.50 using dstrtax

Fig. 5. Enhancing Signatures with Semantics for θ = 0.50. (a) Signature of Trastuzumab-
Bevacizumab θ = 0.50; Similarity dtax-Figure has been truncated for readability.; (b) Three clus-
ters of Trastuzumab-Bevacizumab θ = 0.50 when generic terms are penalized using dstrtax.



Table 1. Cluster Distribution over the set of annotated drugs and genes. (a) Aggregate Clus-
ter Distribution, all GO relations versus only is a for AtVHA-n genes ; (b) Aggregate Clus-
ter Distribution, effect of dtax versus dstrtax to eliminate relationships with generic terms. MIN,
MAX, AVG correspond to the minimum, maximal and average numbers of clusters identified by
AnnSigClustering, respectively.

(a) Aggregate Cluster Distribution
AtVHA-n genes

MIN MAX AVG
0.50 4.00 28.00 11.96
0.50 Only is a 4.00 30.00 11.75
0.75 2.00 34.00 10.99
0.75 Only is a 2.00 34.00 10.45

(b) Aggregate Cluster Distri-
bution Diseases

MIN MAX AVG
0.50 dtax 1.00 46.00 6.26
0.50 dstrtax 0.00 28.00 3.38
0.75 dtax 0.00 37.00 4.92
0.75 dstrtax 0.00 9.00 0.80

creases. All of these refinements lead to a smaller number of more closely related and
meaningful clusters within the annotation signature.

5 Related Work

Graph data mining [5] covers a broad range of methods dealing with the identification
of (sub)structures and patterns in graphs. Popular techniques include graph clustering,
community detection and cliques. The problem of a 1-to-1 weighted maximal bipartite
match has been applied to many problems, e.g, semantic equivalence between two sen-
tences and measuring similarity between shapes for object recognition[1, 3, 11]. These
approaches clearly show the benefits of solving a matching problem to identify similar-
ity between terms or concepts. Our research advances prior research in that we consider
the relatedness of sets of annotations and identify a many-to-many bipartite match.

A key element in finding patterns is identifying related concepts; we consider on-
tological relatedness. Similarity metrics (or distance metrics) can be used to measure
relatedness; we briefly describe some of the existing metrics. The first class of metrics
are string-similarity[4]; they compare the names or labels of the concepts using string
comparison functions based on edit distances or other functions that compare strings.
This includes the Levenstein distance and Jaro-Winkler [6]. The next are path-similarity
metrics that compute relatedness based on the paths that connect the concepts within
some appropriate graph. Nodes in the paths can be all of the same abstract types (e.g.,
PathSim [13]) or they can be heterogeneous (HeteSim [12]). Furthermore, topological-
similarity metrics extend the concept of path-similarity and they look at relationships
within an ontology or taxonomy that is itself designed to capture relationships (e.g., nan
[7], dps [9] and dtax[2]). We propose an approach that exploits ontological knowledge
of scientific annotations to decide relatedness between entities of annotated datasets.

6 Conclusions and Future Work

We have defined the Annotation Signature Partitioning problem and the AnnSigCluster-
ing algorithm to develop the components of a signature based on shared annotations and



ontological relatedness. We empirically studied the effectiveness of AnnSigClustering
to identify potential meaningful signatures of annotated concepts. Further, we have an-
alyzed the effects of considering knowledge encoded in the ontologies used to annotate
Linked Data. Our results suggest that the grouping capability of our approach is en-
hanced whenever the type of relationships are considered as well as when relationships
with generic terms are eliminated. Our initial project objective was to validate correct-
ness and utility of components in a signature. Nevertheless, in the future, we will also
address performance and scalability. Additionally, we plan to conduct a deeper evalua-
tion study with our collaborators, and thus determine the potential discovery capability
of the approach. Finally, we plan to apply our techniques to other domains, e.g., to iden-
tify signatures of electoral voters, relationships between financial contracts, and patterns
of viral diseases.

References

1. S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape
contexts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(4):509–522,
2002.

2. J. Benik, C. Chang, L. Raschid, M. E. Vidal, G. Palma, and A. Thor. Finding cross genome
patterns in annotation graphs. In Proceedings of Data Integration in the Life Sciences (DILS),
2012.

3. S. Bhagwani, S. Satapathy, and H. Karnick. Semantic textual similarity using maximal
weighted bipartite graph matching. In Proceedings of the First Joint Conference on Lex-
ical and Computational Semantics-Volume 1: Proceedings of the main conference and the
shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic
Evaluation, pages 579–585. Association for Computational Linguistics, 2012.

4. W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics
for name-matching tasks. In IIWeb, pages 73–78, 2003.

5. D. J. Cook and L. B. Holder. Mining graph data. Wiley-Blackwell, 2007.
6. M. A. Jaro. Probabilistic linkage of large public health data files. Statistics in Medicine,

pages 491–498, 1995.
7. B. McInnes, T. Pedersen, and S. Pakhomov. Umls-interface and umls-similarity : Open

source software for measuring paths and semantic similarity. Proceedings of the AMIA Sym-
posium, pages 431–435, 2009.

8. G. Palma, M.-E. Vidal, E. Haag, L. Raschid, and A. Thor. Measuring relatedness between
scientific entities in annotation datasets. Technical report, University of Maryland. UMIACS
Technical Report, 2013.

9. V. Pekar and S. Staab. Taxonomy learning - factoring the structure of a taxonomy into a
semantic classification decision. In COLING, 2002.

10. L. Raschid, G. Palma, M.-E. Vidal, and A. Thor. Exploration using signatures in annotation
graph datasets. Technical report, University of Maryland. UMIACS Technical Report, 2013.

11. Y. Shavitt, E. Weinsberg, and U. Weinsberg. Estimating peer similarity using distance of
shared files. In International workshop on peer-to-peer systems (IPTPS), volume 104, 2010.

12. C. Shi, X. Kong, P. S. Yu, S. Xie, and B. Wu. Relevance search in heterogeneous networks.
In EDBT, pages 180–191, 2012.

13. Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim: Meta path-based top-k similarity search
in heterogeneous information networks. PVLDB, 4(11):992–1003, 2011.


