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Abstract. Link Discovery plays a central role in the creation of knowl-
edge bases that abide by the five Linked Data principles. Over the last
years, several active learning approaches have been developed and used
to facilitate the supervised learning of link specifications. Yet so far, these
approaches have not taken the correlation between unlabeled examples
into account when requiring labels from their user. In this paper, we ad-
dress exactly this drawback by presenting the concept of the correlation-
aware active learning of link specifications. We then present two generic
approaches that implement this concept. The first approach is based on
graph clustering and can make use of intra-class correlation. The second
relies on the activation-spreading paradigm and can make use of both
intra- and inter-class correlations. We evaluate the accuracy of these ap-
proaches and compare them against a state-of-the-art link specification
learning approach in ten different settings. Our results show that our
approaches outperform the state of the art by leading to specifications
with higher F-scores.
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1 Introduction

The importance of the availability of links for a large number of tasks such as
question answering [20] and keyword search [19] as well as federated queries has
been pointed out often in literature (see, e.g., [1]). Two main problems arise
when trying to discover links between data sets or even deduplicate data sets.
First, naive solutions to Link Discovery (LD) display a quadratic time complex-
ity [13]. Consequently, they cannot be used to discover links across large datasets
such as DBpedia1 or Yago2. Time-efficient algorithms such as PPJoin+ [21] and
HR3 [11] have been developed to address the problem of the a-priori quadratic
runtime of LD approaches. While these approaches achieve practicable runtimes
even on large datasets, they do not guarantee the quality of the links that are

1 http://dbpedia.org
2 http://www.mpi-inf.mpg.de/yago-naga/yago/

http://dbpedia.org
http://www.mpi-inf.mpg.de/yago-naga/yago/


returned by LD frameworks. Addressing this second problem of LD demands
the development of techniques that can compute accurate link specifications
(i.e., aggregations of atomic similarity or distance measures and corresponding
thresholds) for deciding whether two resources should be linked. This problem is
commonly addressed within the setting of machine learning. While both super-
vised (e.g., [15]) and unsupervised machine-learning approaches (e.g., [17]) have
been proposed to achieve this goal, we focus on supervised machine learning.

One of the main drawbacks of supervised machine learning for LD lies in the
large number of links necessary to achieve both a high precision and a high recall.
This intrinsic problem of supervised machine learning has been addressed by re-
lying on active learning [18]. The idea here is to rely on curious classifiers. These
are supervised approaches that begin with a small number of labeled links and
then inquire labels for data items that promise to improve their accuracy. Several
approaches that combine genetic programming and active learning have been de-
veloped over the course of the last couple of years and shown to achieve high
F-measures on the deduplication (see e.g., [4]) and LD (see e.g., [15]) problems.
Yet, so far, none of these approaches has made use of the correlation between
the unlabeled data items while computing the set of most informative items. In
this paper, we address exactly this drawback.

The basic intuition behind this work is that we can provide a better approx-
imation of the real information content of unlabeled data items by taking the
similarity of unlabeled items into account. We call this paradigm the correlation-
aware active learning of link specifications and dub it COALA. A better approx-
imation should ensure that curious classifiers converge faster. Consequently, we
should be able to reduce the number of data items that the user has to label
manually. We thus present and evaluate two generic approaches that implement
this intuition. Overall, our contributions are as follows:

1. We describe the correlation-aware active learning of link specifications.
2. We present the first two generic approaches that implement this concept. The

first is based on graph clustering while the second implements the spreading
activation principle.

3. We combine these approaches with the EAGLE algorithm [15] and show in
ten different settings that our approaches improve EAGLE’s performance
with respect to both F-score and standard deviation.

The approaches presented herein were included in the LIMES framework3. A
demo of the approach can be accessed by using the SAIM interface 4. The rest of
this paper is structured as follows: We first present some of the formal notation
necessary to understand this work. In addition, we give some insights into why
the inclusion of correlation information can potentially improve the behavior of
a curious classifier. Thereafter, we present two approaches that implement the
paradigm of including correlation information into the computation of the most
informative link candidates. We compare the two approaches with the state of

3 http://limes.sf.net
4 http://saim.aksw.org
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the art in ten different settings and show that we achieve faster convergence and
even a better overall performance in some cases. We finally present some related
work and conclude.

2 Preliminaries

In this section, we present the core of the formal notation used throughout this
paper. We begin by giving a brief definition of the problem we address. Then,
we present the concept of active learning.

2.1 Link Discovery

The formal definition of LD adopted herein is similar to that proposed in [12].
Given a relation R and two sets of instances S and T , the goal of LD is to
find the set M ⊆ S × T of instance pairs (s, t) for which R(s, t) holds. In most
cases, finding an explicit way to compute whether R(s, t) holds for a given pair
(s, t) is a difficult endeavor. Consequently, most LD frameworks compute an
approximation of M by computing a set M̃ = {(s, t) : σ(s, t) ≥ θ}, where σ is
a (complex) similarity function and θ is a distance threshold. The computation
of an accurate (i.e., of high precision and recall) similarity function σ can be
a very complex task [6]. To achieve this goal, machine-learning approaches are
often employed. The idea here is to regard the computation of σ and θ as the
computation of a classifier C : S × T → [−1,+1]. This classifier assigns pairs
(s, t) to the class −1 when σ(s, t) < θ. All other pairs are assigned the class
+1. The similarity function σ and the threshold θ are derived from the decision
boundary of C.

2.2 Active Learning of Link Specifications

Learning approaches based on genetic programming have been most frequently
used to learn link specifications [5,15,17]. Supervised batch learning approaches
for learning such classifiers must rely on large amounts of labeled data to achieve
a high accuracy. For example, the genetic programming approach used in [7]
has been shown to achieve high accuracies when supplied with more than 1000
positive examples. Recent work has addressed this drawback by relying on ac-
tive learning, which was shown in [15] to reduce the amount of labeled data
needed for learning link specifications. The idea behind active learners (also
called curious classifiers [18]) is to query for the labels of chosen pairs (s, t)
(called link candidates) iteratively. We denote the count of iterations with t.
The function label : S × T → {⊕,	,⊗} stands for the labeling function and
encodes whether a pair (s, t) is (1) known be a positive example for a link
(in which case label(s, t) = ⊕), (2) known to be a negative example (in which
case label(s, t) = 	) or (3) is unclassified (in which case label(s, t) = ⊗). We
denote classifiers, similarity functions, thresholds and sets at iteration t by us-
ing a superscript notation. For example, the classifier at iteration t is denoted



Ct while labelt stands for the labeling function at iteration t. We call the set
Pt = {(s, t) ∈ S × T : (label(s, t) = ⊗) ∧ (Ct(s, t) = +1)} the set presumed posi-
tives. The set N t of presumed negatives is defined analogously. If label(s, t) = ⊗,
then we call the class assigned by C to (s, t) the presumed class of (s, t). When
the class of a pair (s, t) is explicit known, we simply use the expression (s, t)’s
class. The set C+t = {(s, t) : Ct(s, t) = +1} is called the set of positive link can-
didates while the set C−t = {(s, t) : Ct(s, t) = −1} is called the set of negative
link candidates. The query for labeled data is carried out by selecting a subset of
Pt with the magnitude k+ (resp. a subset of N t with the magnitude k−). In the
following, we will assume k = k+ = k−. The selection of the k elements from Pt

and N t is carried out by using a function ifm : S×T → R that can compute how
informative a pair (s, t) is for the Ct, i.e., how well the pair would presumably
further the accuracy of Ct. We call I+t ⊆ Pt (resp. I−t ⊆ N t) the set of most
informative positive (resp. most informative negative) link candidates. In this
setting, the information content of a pair (s, t) is usually inverse to its distance
from the boundary of Ct.

Active learning approaches based on genetic programming adopt a comittee-
based setting to active learning. Here, the idea is to learn m classifiers C1, . . . , Cm
concurrently and to have the m classifiers select the sets I−and I+. This is
usually carried out by selecting the k unlabeled pairs (s, t) with positive (resp.
negative) presumed class which lead to the highest disagreement amongst the
classifiers. Several informativeness functions ifm have been used in literature to
measure the disagreement. For example,the authors of [15] use the pairs which
maximize

ifm(s, t) = (m− pos(s, t))(m− neg(s, t)), (1)

where pos(s, t) stands for the number of classifiers which assign (s, t) the pre-
sumed class +1, while neg(s, t) stands for the number of classifiers which assign
(s, t) the class −1. The authors of [7] on the other hand rely on pairs (s, t) which
maximize the entropy score

ifm(s, t) = H

(
pos(s, t)

m

)
where H(x) = −x log(x)− (1− x) log(1− x). (2)

Note that these functions do not take the correlation between the different link
candidates into consideration.

3 Correlation-Aware Active Learning of Link
Specifications

The basic insight behind this paper is that the correlation between the features
of the elements of N and P should play a role when computing the sets I+
and I−. In particular, two main factors affect the information content of a link
candidate: its similarity to elements of its presumed class and to elements of the
other class. For the sake of simplicity, we will assume that the presumed class
of the link candidate of interest is +1. Our insights yet hold symmetrically for
link candidates whose presumed class is −1.



(a) Intra-
correlation

(b) Inter-
correlation

Fig. 1: Examples of correlations within classes and between classes. In each sub-
figure, the gray surface represent N while the white surface stands for P. The
oblique line is C’s boundary.

Let A = (sA, tA), B = (sB , tB) ∈ P to be two link candidates which are
equidistant from C’s boundary. Consider Figure 1a, where P= {A,B,C} andN=
{D}. The link candidate B is on on average most distant from any other elements
of P. Thus, it is more likely to be a statistical outlier than A. Hence, making
a classification error on B should not have the same impact as an erroneous
classification of link candidate A, which is close to another presumably positive
link candidate, C. Consequently, B should be considered less informative than
A. Approaches that make use of this information are said to exploit the intra-
class correlation. Now, consider Figure 1b, where P= {A,B} and N= {C,D}.
While the probability of A being an outlier is the same as B’s, A is still to be
considered more informative than B as it is located closer to elements of N and
can thus provide more information on where to set the classifier boundary. This
information is dubbed inter-class correlation.

4 Approaches

Several approaches that make use of these two types of correlations can be envis-
aged. In the following, we present two approaches for these purposes. The first
makes use of intra-class correlations and relies on graph clustering. The second
approach relies on the spreading activation principle in combination with weight
decay. We assume that the complex similarity function σ underlying C is com-
puted by combining n atomic similarity functions σ1, . . . , σn. This combination
is most commonly carried out by using metric operators such as min, max or
linear combinations.5 Consequently, each link candidate (s, t) can be described
by a vector (σ1(s, t), . . . , σn(s, t)) ∈ [0, 1]n. We define the similarity of link can-
didates sim : (S × T )2 → [0, 1] to be the inverse of the Euclidean distance in
the space spawned by the similarities σ1 to σn. Hence, the similarity of two link

5 See [12] for a more complete description of a grammar for link specifications.



candidates (s, t) and (s′, t′) is given by:

sim((s, t), (s′, t′)) =
1

1 +

√
n∑

i=1

(σi(s, t)− σi(s′, t′))2
. (3)

Note that we added 1 to the denominator to prevent divisions by 0.

4.1 Graph Clustering

The basic intuition behind using clustering for COALA is that groups of very
similar link candidates can be represented by a single link candidate. Conse-
quently, once a representative of a group has been chosen, all other elements
of the group become less informative. An example that illustrates this intuition
is given in Figure 2. We implemented COALA based on clustering as shown in
Algorithm 1. In each iteration, we begin by first selecting two sets S+ ⊆ P resp.
S− ⊆ N that contain the positive resp. negative link candidates that are most
informative for the classifier at hand. Formally, S+ fulfills

∀x ∈ S+ ∀y ∈ P, y /∈ S+ → ifm(y) ≤ ifm(x). (4)

The analogous equation holds for S−. In the following, we will explain the further
steps of the algorithm for S+. The same steps are carried out for S−. First, we
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Fig. 2: Example of clustering. One of the most informative single link candidate
is selected from each cluster. For example, d is selected from the cluster {d, e}.

compute the similarity of all elements of S+ by using the similarity function
shown in Equation 3. In the resulting similarity matrix, we set all elements
of the diagonal to 0. Then, for each x ∈ S+, we only retain a fixed number
ec of highest similarity values and set all others to 0. The resulting similarity
matrix is regarded as the adjacency matrix of an undirected weighted graph
G = (V,E, sim). G’s set of nodes V is equal to S+. The set of edges E is a
set of 2-sets6 of link candidates. Finally, the weighted function is the similarity

6 A n-set is a set of magnitude n.



function sim. Note that ec is the minimal degree of nodes in G. In a second
step, we use the graph G as input for a graph clustering approach. The resulting
clustering is assumed to be a partition V of the set V of vertices of G. The
informativeness of partition Vi ∈ V is set to max

x∈Vi

ifm(x). The final step of our

approach consists of selecting the most informative node from each of the k most
informative partitions. These are merged to generate I+, which is sent as query
to the oracle. The computation of I− is carried out analogously. Note that this
approach is generic in the sense that it can be combined with any graph clustering
algorithm that can process weighted graphs as well as with any informativeness
function ifm. Here, we use BorderFlow [16] as clustering algorithm because (1)
it has been used successfully in several other applications [9,10] and (2) it is
parameter-free and does not require any tuning.

Algorithm 1: COALA based on Clustering

input : mappingSet set of mappings, exampleCount number of examples,
edgesPerNode maximal number of edges per node

output: list of mappings for the oracle oracleList
1 S−:=get closest negative mapppings(mappingSet)
2 S+:= get closest positive mapppings(mappingSet)
3 clusterSet:= ∅
4 for set ∈ {S−,S+} do
5 G := buildGraph(set,edgesPerNode)
6 clusterSet← clustering(G)
7 visitedClusters := ∅, addedElements :=0
8 sortedMappingList := sortingByDistanceToClassfier(mappingSet)
9 repeat

10 (s, t):= next(sortedMappingList)
11 partition:=getPartition((s, t))
12 if partition /∈ visitedClusters then
13 oracleList:=add((s, t))
14 addedElements:=+1
15 visitedClusters:=addCluster(partition)

16 until addedElements = exampleCount

4.2 Spreading Activation with Weight Decay

The idea behind spreading activation with weight decay (WD) is to combine the
intra- and inter-class correlation to determine the informativeness of each link
candidate. Here, we begin by computing the set S = S+∪S−, where S+ and S−
are described as above. Let si and sj be the ith and jth elements of S. We then
compute the quadratic similarity matrix M with entries mij = sim(si, sj) for
i 6= j and 0 else. Note that both negative and positive link candidates belong to
S. Thus, M encodes both inter- and intra-class correlation. In addition to M,



we compute the activation vector A by setting its entries to ai =ifm(si). In the
following, A is considered to be a column vector. The spreading of the activation
with weight decay is then carried out as shown in Algorithm 2.

Algorithm 2: COALA based on Weight Decay

input : mappingSet set of mappings, r fix point exponent, exampleCount
number of examples

output: oracleList list of mapping for the oracle
1 M:= buildAdjacenceMatrix(mappingSet)
2 A:= buildActivationVector(mappingSet)
3 repeat
4 A := A/maxA
5 A := A+M×A
6 M := (∀mij ∈M : mij := mr

ij)
7 until ∀mij ∈M|mij 6= 1 : mij ≤ ε
8 oracleList:= getMostActivatedMapping(A,exampleCount)

In a first step, we normalize the activation vector A to ensure that the values
contained therein do not grow indefinitely. Then, in a second step, we set A =
A+M×A. This has the effect of propagating the activation of each s to all its
neighbors according to the weights of the edges between s and its neighbors. Note
that elements of S+ that are close to elements of S− get a higher activation than
elements of S+ that are further away from S− and vice-versa. Moreover, elements
at the center of node clusters (i.e., elements that are probably no statistical
outliers) also get a higher activation than elements that are probably outliers.
The idea behind the weight decay step is to update the matrix by setting each
mij to mr

ij , where r > 1 is a fix exponent. This is the third step of the algorithm.
Given that ∀i∀j mij ≤ 1, the entries in the matrix get smaller with time. By these
means, the amount of activation transferred across long paths is reduced. We run
this three-step procedure iteratively until all non-1 entries of the matrix are less
or equal to a threshold ε = 10−2. The k elements of S+ resp. S− with maximal
activation are returned as I+resp. I−. In the example shown in Figure 3, while
all nodes from S+ and S− start with the same activation, two nodes get the
highest activation after only 3 iterations.

5 Evaluation

The goal of our evaluation was to study the improvement in F-score achieved by
integrating the approaches presented above with a correlation-unaware approach.
We chose to use EAGLE [15], an approach based on genetic programming. We
ran a preliminary experiment on one dataset to determine good parameter set-
tings for the combination of EAGLE and clustering (CL) as well as the combi-
nation EAGLE and weight decay (WD). Thereafter, we compared the F-score
achieved by EAGLE with that of CL and WD in ten different settings.
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Fig. 3: Example of weight decay. Here r was set to 2. The left picture shows the
initial activations and similarity scores while the right picture shows the results
after 3 iterations. Note that for the sake of completeness the weights of the edges
were not set to 0 when they reached ε.

5.1 Experimental Setup

Throughout our experiments, we set both mutation and crossover rates to 0.6.
Individuals were given a 70% chance to get selected for reproduction. The popu-
lation sizes were set to 20 and 100. We set k = 5 and ran our experiments for 10
iterations, evolving the populations for 50 generations each iteration. We ran our
experiments on two real-world datasets and three synthetic datasets. The syn-
thetic datasets consisted of the datasets from the OAEI 2010 benchmark7. The
real-world datasets consisted of the ACM-DBLP and Abt-Buy datasets, which
were extracted from websites or databases [8] 8. The ACM-DBLP dataset con-
sists of 2,617 source and 2,295 target publications with 2,224 links between them.
The Abt-Buy dataset holds 1,092 links between 1,081 resp. 1,092 products. Note
that this particular dataset is both noisy and incomplete. All non-RDF datasets
were transformed into RDF and all string properties were set to lower case. Given
that genetic programming is non-deterministic, all results presented below are
the means of 5 runs. Each experiment was ran on a single thread of a server
running JDK1.7 on Ubuntu 10.0.4 and was allocated maximally 2GB of RAM.
The processors were 2.0GHz Quadcore AMD Opterons.

5.2 Results

Parametrization of WD and CL In a preliminary series of experiments we
tested for a good parametrization of both WD and CL. For this purpose we ran
both approaches on the DBLP-ACM dataset using 5 different values for the r
exponent for weight decay and the clustering ec parameter. The tests were ran
with a population of 20, r = {2, 4, 8, 16, 32} and ec = {1, 2, 3, 4, 5}. Figures 4a
and 4b show the results of achieved F-scores and runtimes. In both plots f(p)
and d(p) denote the F-score and runtime of the particular method using the p
parameter. Figure 4a suggests that r = 2 leads to a good accuracy (especially

7 http://oaei.ontologymatching.org/2010/
8 http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/

benchmark_datasets_for_entity_resolution

http://oaei.ontologymatching.org/2010/
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
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Fig. 4: Testing different r and ec parameter for both approaches on the DBLP-
ACM dataset. f(p) denotes the F-score accieved with the method wusing the
parameter p, while d(p) denotes the reuired run time.

for later inquiries) while requiring moderate computation resources. Similarly,
r = 16 promises fast convergence and led to better results in the fourth and
fifth iterations. Still, we chose r = 2 for all experiments due to an overall better
performance. The test for different ec parameters led us to use an edge limit
of ec = 3. This value leads to good results with respect to both accuracy and
runtime as Figure 4b suggests.

Runtime and F-score Figures 5 - 9 show the results of both our approaches
in comparison to the EAGLE algorithm. And a summary of the results is given
in Table 1. Most importantly, our results suggest that using correlation informa-
tion can indeed improve the F-score achieved by curious classifiers. The average
of the results achieved by the approaches throughout the learning process (left
group of results in Table 1) shows that already in average our approaches out-
perform EAGLE in 9 from 10 settings. A look at the final F-scores achieved by
the approaches show that one of the approaches WD and CL always outperform
EAGLE both with respect to the average F-score and the standard deviation
achieved across the 5 runs except on the Restaurant data set (100 popultion),
where the results of CL and EAGLE are the same. This leads us to conclude
that the intuition underlying this paper is indeed valid. Interestingly, the experi-
ments presented herein do not allow declaring CL superior to WD or vice-versa.
While CL performs better on the small population, WD catches up on larger
populations and outperform CL in 3 of 5 settings. An explanation for this behav-
ior could lie in WD taking more information into consideration and thus being
more sensible to outliers than CL. A larger population size which reduces the
number of outliers would then be better suited to WD. This explanation is yet
still to be proven in larger series of experiments and in combination with other
link discovery approaches such as RAVEN. Running WD and CL is clearly more
time-demanding than simply running EAGLE. Still the overhead remains within



acceptable boundaries. For example, while EAGLE needs approx. 2.9s for 100
individuals on the Abt-Buy dataset while both WD and CL require 3.4s (i.e.,
16.3% more time).
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Fig. 5: F-score and runtime on the ACM-DBLP dataset. f(X) stands for the F-
score achieved by algorithm X, while d(X) stands for the total duration required
by the algorithm.
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Fig. 6: F-score and runtime on the Abt-Buy dataset.
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Fig. 7: F-score and runtime on the OAEI 2010 Person1 dataset.
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Fig. 8: F-score and runtime on the OAEI 2010 Person2 dataset.

6 Related Work

The number of LD approaches has proliferated over the last years. Herein, we
present a brief overview of existing approaches (see [11,7] for more extensive
presentations of the state of the art). Overall, two main problems have been at
the core of the research on LD. First, the time complexity of LD was addressed.
In [13], an approach based on the Cauchy-Schwarz inequality was used to reduce
the runtime of LD processes based on metrics. The approach HR3 [11] rely on
space tiling in spaces with measures that can be split into independent measures
across the dimensions of the problem at hand. Especially, HR3 was shown to
be the first approach that can achieve a relative reduction ratio r′ less or equal
to any given relative reduction ratio r > 1. Concepts from the deduplication
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Fig. 9: F-score and runtime on the OAEI 2010 Restaurant dataset.

research field were also employed for LD. For example, standard blocking ap-
proaches were implemented in the first versions of SILK9 and later replaced with
MultiBlock [6], a lossless multi-dimensional blocking technique. KnoFuss [17] also
implements blocking techniques to achieve acceptable runtimes. Moreover, time-
efficient string comparison algorithms such as PPJoin+ [21] were integrated into
the hybrid framework LIMES [12]. Other LD frameworks can be found in the
results of the ontology alignment evaluation initiative [3]. The second problem
that was addressed is the complexity of link specifications. Although unsuper-
vised techniques were newly developed (see, e.g., [17]), most of the approaches
developed so far abide by the paradigm of supervised machine learning. For ex-
ample, the approach presented in [5] relies on large amounts of training data to
detect accurate link specification using genetic programming. RAVEN [14] is (to
the best of our knowledge) the first active learning technique for LD. The ap-
proach was implemented for linear or Boolean classifiers and shown to require a
small number of queries to achieve high accuracy. While the first active genetic
programming approach was presented in [4], similar approaches for LD were
developed later [7,15]. Still, none of the active learning approaches for LD pre-
sented in previous work made use of the similarity of unlabeled link candidates
to improve the convergence of curious classifiers. Yet, works in other research
areas have started considering the combination of active learning with graph
algorithms (see e.g., [2]).

7 Conclusion

We presented the first generic LD approaches that make use of the correlation
between positive and negative link candidates to achieve a better convergence.

9 http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/

http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/


Table 1: Comparison of average F-scores achieved by EAGLE, WD and CL. The
top section of the table shows the results for a population size of 20 while the
bottom part shows the results for 100 individuals. Best scores are in bold font.
Abt stands for Abt-Buy, DBLP for DBLP-ACM and Rest. for Restaurants.

Average values Final values

DataSet EAGLE WD CL EAGLE WD CL

Abt 0.22± 0.06 0.25 ± 0.07 0.25 ± 0.08 0.22± 0.05 0.29 ± 0.03 0.27 ± 0.05
DBLP 0.87± 0.1 0.89± 0.09 0.87± 0.08 0.94± 0.02 0.89± 0.13 0.97± 0.0
Person1 0.85± 0.05 0.85± 0.06 0.87± 0.03 0.88± 0.02 0.77± 0.25 0.89± 0.01
Person2 0.72± 0.05 0.69± 0.11 0.73± 0.08 0.75± 0.02 0.72± 0.09 0.78± 0.0
Rest. 0.79± 0.13 0.82± 0.08 0.85± 0.05 0.51± 0.36 0.61± 0.28 0.78± 0.01

Abt 0.21 ± 0.06 0.23± 0.07 0.23± 0.05 0.19 ± 0.04 0.25± 0.04 0.23± 0.04
DBLP 0.87± 0.1 0.89± 0.09 0.89± 0.08 0.91± 0.03 0.96± 0.01 0.96± 0.02
Person1 0.82± 0.05 0.84± 0.07 0.84± 0.07 0.86± 0.02 0.89± 0.01 0.81± 0.18
Person2 0.7± 0.09 0.69± 0.1 0.69± 0.07 0.74± 0.03 0.71± 0.08 0.77± 0.03
Rest. 0.81± 0.11 0.82± 0.06 0.85± 0.03 0.89± 0.0 0.86± 0.02 0.89± 0.0

The first approach is based on clustering and only makes use of correlations
within classes while the second algorithm makes use of both correlations within
and between classes. We compared these approaches on 5 datasets and showed
that we achieve better F-scores and standard deviations than the EAGLE algo-
rithm. Thus, in future work, we will integrate our approach into other algorithms
such as RAVEN. Moreover, we will measure the impact of the graph clustering
algorithm utilized in the first approach on the convergence of the classifier. Our
experimental results showed that each of the approaches we proposed has its
pros and cons. We will thus explore combinations of WD and CL.
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