
Graph-based Data Integration and
Business Intelligence with BIIIG

André Petermann
University of Leipzig

petermann
@informatik

.uni-leipzig.de

Martin Junghanns
University of Leipzig

junghanns
@informatik

.uni-leipzig.de

Robert Müller
Leipzig University

of Applied Sciences

mueller@fbm
.htwk-leipzig.de

Erhard Rahm
University of Leipzig

rahm
@informatik

.uni-leipzig.de

ABSTRACT
We demonstrate BIIIG (Business Intelligence with Integrated
Instance Graphs), a new system for graph-based data inte-
gration and analysis. It aims at improving business analyt-
ics compared to traditional OLAP approaches by compre-
hensively tracking relationships between entities and mak-
ing them available for analysis. BIIIG supports a largely
automatic data integration pipeline for metadata and in-
stance data. Metadata from heterogeneous sources are inte-
grated in a so-called Unified Metadata Graph (UMG) while
instance data is combined in a single integrated instance
graph (IIG). A unique feature of BIIIG is the concept of
business transaction graphs, which are derived from the IIG
and which reflect all steps involved in a specific business
process. Queries and analysis tasks can refer to the en-
tire instance graph or sets of business transaction graphs.
In the demonstration, we perform all data integration steps
and present analytic queries including pattern matching and
graph-based aggregation of business measures.

1. INTRODUCTION
In the last decades, technologies for business intelligence

have been adopted by many enterprises. Most prevailing
are data warehouse and OLAP approaches based on rela-
tional databases [3]. By contrast, graph-based business in-
telligence is a fairly new approach. Compared to traditional
approaches, graph data models promise significant benefits
in terms of analytical flexibility, in particular to evaluate
relationships without having to predefine them in a rather
static data warehouse schema. Powerful graph models such
as the property graph model [8] are also a promising ba-
sis for data integration as they allow a flexible and uniform
representation of heterogeneous metadata and instance ob-
jects and relationships. Ongoing activities by large vendors
such as SAP [9] or Microsoft [10] underline the relevance of
representing and analyzing business data within graph mod-
els. Other approaches on graph-based business intelligence
[4][11][12] focus on specific analytical problems for still sim-
ple graph models.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

To enable flexible business analytics, we are developing
a new approach called BIIIG (Business Intelligence with
Integrated Instance Graphs) [6] for graph-based data inte-
gration and analysis. It supports three main kinds of graphs
based on the property graph model:

Unified Metadata Graph: The UMG serves BIIIG as
a generic metadata model to combine the metadata from
different data sources. Metadata such as database schemas
are represented in an intuitive graph model of classes and as-
sociations. Classes either represent master (reference) data
such as customers or products or transactional data such as
purchase orders or invoices. The UMG components are de-
termined semi-automatically per source and integrated with
the help of experts. We also generate mappings between
data sources and the UMG.

Integrated Instance Graph: The IIG is the main data
store of BIIIG where nodes represent data objects and edges
relationships. The IIG is generated in a fully automated
manner based on the source-UMG mappings. To make the
IIG data self-descriptive and to achieve a high semantic ex-
pressiveness, the graph elements are associated to metadata
classes and associations.

Business Transaction Graphs: From the IIG, we de-
rive so-called BTGs. A BTG represents a single execution
of a business process with all its involved master data ob-
jects, transactional data traces and their interdependencies.
BTGs thus represent valuable units for analysis to provide
insights about the operational business of an enterprise. We
provide an algorithm to extract BTGs automatically from
the IIG.

In the next section, we introduce the components and
processing pipeline of BIIIG in more detail. In Section 3 we
provide details about the current implementation. Finally,
we describe our demonstration scenario to illustrate the data
integration process and to show the analytical value of IIG
and BTGs.

2. OVERVIEW OF BIIIG
In this section, we provide an overview of BIIIG; more de-

tails about the approach can be found in [6]. In contrast to
data warehouses, we do not require defining a global schema
for data integration such as a star or snowflake schema.
While such an approach serves many OLAP queries, it is
often too inflexible as it can only evaluate facts according to
the predefined dimensions and relationships. For example,
to better understand in which way employees or customers
contribute to the profit of an enterprise it is beneficial to



Figure 1: Conceptual Overview of BIIIG

evaluate their involvement and relationships within business
processes. BIIIG thus aims at supporting the analysis of re-
lationships between business entities in addition to standard
analysis tasks. For this purpose, we follow a bottom-up data
integration approach that combines metadata and instance
data from relevant data sources in flexible and generic graph
models that preserve existing relationships for later analysis.

As illustrated in Fig. 1, there are four main steps in the
BIIIG processing pipeline that we will discuss next: meta-
data acquisition and integration resulting in the UMG, in-
stance integration resulting in the IIG, generation of BTGs,
and graph analytics.

2.1 Metadata integration
For every data source such as a database, we first extract

the schema of its objects and relationships and translate it
to the generic graph format of the Unified Metadata Graph
(UMG) describing a source in terms of classes and associ-
ations. In the UMG, classes are represented as nodes and
associations as edges. UMG class definition include the class
name, the originating data source, an id attribute as well as
a list of class attributes. Furthermore, classes are catego-
rized into transactional or master data. Associations have
a name indicating the relationship type as well as a set of
relationship attributes. Assocations can link classes from
different sources. The UMG also contains a mapping per
class and association describing how their instances can be
derived from the data sources.

For relational database sources, the generation of the UMG
components is relatively straight-forward based on the def-
initions of tables and foreign key references and largely au-
tomatic [6]. Mappings can be expressed as SQL statements.
Manual interaction is needed to categorize classes as master
or transactional data or to rename classes and associations
for improved understandability. Furthermore, cross-system
associations need to be defined, e.g. to refer to master data
in another source or to link redundant master data classes by
sameAs associations. SameAs associations indicate match-
ing classes; they will be used to identify and fuse together
matching instances (see below). The semi-automatic gener-
ation of the UMG will be part of the demonstration.

2.2 Instance integration
The main data store of BIIIG is called integrated instance

graph (IIG). In this graph each data object is represented

by a node and each relationship by an edge. Both nodes
and edges have mandatory metadata properties as well as
arbitrarily many instance properties. Nodes provide either
one source identifier (concatenated from a class and instance
identifier) or a set of such identifiers in the case of fused
objects, to enable tracing back any object to its originating
source(s).

Instance integration is fully automated based on the source-
UMG mappings. This process entails three steps. First, the
mappings of all classes are evaluated and a new node is de-
rived for each object. A node is assigned a single source
identifier as well as a class name and category. Attribute-
value pairs from the source are added as properties. In the
second step, the mappings of all associations are evaluated
to derive edges for each relationship. Generated edges of
the dedicated type sameAs connect matching objects and
are processed in the last integration step. We resolve these
edges by fusing the connected nodes and deleting sameAs
edges subsequently. A fused node combines source identi-
fiers, properties and relationships of the original nodes.

2.3 Business Transaction Graphs
A main feature of BIIIG is the generation of business

transaction graphs (BTG) representing interrelated business
activities. We observed that certain relationships reflect
causal connections in terms of business activities, for ex-
ample a sales order can relate to a preceding quotation. Re-
lationships of that kind are represented as edges between
transactional nodes in the IIG. Longer paths of such edges
can also be considered as causal connections For example,
a quotation may cause a sales order and later an invoice
for the order. By contrast, relationships or paths involving
master data are generally no hint for a causal connection.
For example, two quotations involving the same product can
be completely independent. Consequentially, we can con-
sider subgraphs of causally connected transactional nodes as
BTGs. We isolate BTGs by an algorithm which starts with
an arbitrary transactional node, traverses all causal connec-
tions and stops on master data nodes. However, BTGs also
include those master data nodes because of their fundamen-
tal analytical value. Our algorithm ensures that any node
or edge is traversed only once and thus performs in linear
time complexity.



2.4 Graph Analytics
Both the IIG and the set of BTGs can be the basis for a

comprehensive and flexible business analytics. The current
implementation of BIIIG is the foundation of our ongoing
research on novel graph-based business analytics including
graph mining and the evaluation of relationship patterns.
We will also generate relational output from the graphs
to leverage existing OLAP approaches for multidimensional
analysis in addition to the graph-based evaluations. Cur-
rently, BIIIG already offers browsing and querying the dif-
ferent graphs. Analysts can visually navigate through the
graphs to access any piece of recorded data with its re-
lationships. Especially BTGs enable an informative view
on interrelated business activities recorded in different data
sources. Since our current implementation is based on Neo4j
(see next section), we can already leverage the declarative
query language Cypher [1] on the integrated graph data.
Hence, BIIIG already supports analytical graph queries in-
cluding pattern matching and the aggregation of business
measures.

3. IMPLEMENTATION
The architecture of our initial implementation of BIIIG

is shown in Figure 2. It consists of three layers that we
describe bottom up in the following.

Databases: Unified metadata graph (UMG), integrated
instance graph (IIG) and the set of business transaction
graphs (BTGs) are stored in separate graph databases. At
the moment, we use Neo4j [2] in version 2.0 for all graphs.
As Neo4j lacks in support for managing graph collections,
we implemented the set of BTGs as a single graph database
in which every BTG is represented by an isolated subgraph
including redundant master data. To express unique BTG
memberships of nodes, all nodes in that database contain a
dedicated property btg id.

Back End: The back end of BIIIG is implemented in
Java and covers all tasks of actual data processing. The
current implementation includes tasks for metadata acqui-
sition from relational databases, automated instance inte-
gration and BTG isolation, which are implementions of the
corresponding algorithms of [6]. In future developments we
will add further tasks, for example for graph mining. The
backend provides a REST API to trigger task execution re-
motely. We access Neo4j using the native Java API which
is known to provide the best performance [5].

Front End: The front end provides easy-to-use admin-
istrative and analytical facilities for the end user. It is im-
plemented as a Ruby on Rails web application so that all
interfaces are accessible using a web browser. Hence, front
end and back end services and applications can run on dif-
ferent machines and multiple users can use BIIIG concur-
rently. For administrative tasks, the source manager allows
the type-specific configuration of data source connections
and the job scheduler provides control about data process-
ing tasks of the back end. The UMG editor allows manipu-
lating the UMG suggested by metadata acquisition. By this
interface, an expert knowing the data sources can enhance
the UMG as described in Section 2.1. Finally, analysts can
explore all graphs using the graph browser and submit ana-
lytical queries using the query interface with either tabular
or visual output. In the current version, the front end of BI-
IIG integrates the graphical user interface provided by the
Neo4j server for both analytical facilities.

Figure 2: Architecture of BIIIG

4. DEMONSTRATION
During the demonstration, we will present BIIIG as an

end-to-end solution for graph-based data integration and
business intelligence. As data sources we will use real ERP
as well as synthetic data sets generated by the FoodBroker
simulation [7]. The FoodBroker data sets provide realistic
characteristics and can be scaled to different sizes without
introducing and disclosing too many enterprise-specific de-
tails. On site, we will demonstrate the data integration pro-
cess and execute analytical queries on the resulting graphs.

4.1 Data Integration
We will start demonstrating data integration by acquiring

metadata from sources to generate an UMG proposal. Then,
we will add cross-system associations manually and rename
some technical into user-friendly terms in our graphical user
interface. Afterwards, we will start automated instance in-
tegration. We will then visually browse through the IIG
and inspect sample master and transactional data as well
as causal connections. Afterwards we will start extracting
business transaction graphs. We will visually present se-
lected BTGs to demonstrate their analytical potential. A
screenshot of a sample BTG is shown in Fig. 3.

4.2 Business Intelligence
We will demonstrate a variety of analytical queries on the

IIG and BTGs exploiting the graph structure and returning
result graphs or aggregated relationship patterns and mea-
sures. Query suggestions by conference attendees can also
be demonstrated. A few example queries are as follows.

IIG 1 - Count Employee Activities: Determine the
number of different kinds of business activities per employee.
An example result row could be :
〈SalesOrder, processedBy, Alice, 29〉.

IIG 2 - Customer Interaction Overview: Start at
a specific Customer node and traverse all paths via trans-
actional to other master data. The result graph contains
all business activities involving this customer (sales orders,
tickets, ...) including the related master data (products, em-
ployees, ...). Browsing this graph, provides a visual overview
about the selected customers interaction history.

BTG 1 - Net Profit: For each BTG, sum all profit-
related properties representing expenses and revenue to de-
termine the net profit of the business process. An example
result row could be :
〈btg id : 456, rev : 82, 000, exp : 71, 000, profit : 11, 000〉

BTG 2 - Complaint Analysis: Find all BTGs hav-
ing one or more Ticket nodes (customer complaints) and
determine the involved products and employees.



Figure 3: Sample Business Transaction Graph
The screenshot shows a single business transaction graph extracted from a FoodBroker dataset. Transactional nodes are
colored in gray and labeled with their class name (metadata). Master data nodes are colored depending on their class and
labeled with the value of their name property (instance data). Edges are labeled with corresponding relationship types
(metadata). Causal connections are highlighted in red color. The dark rectangle shows properties of the node selected by
the hand-shaped pointer (employee Leota Alberty). Recognizable by multiple values of SOURCE IDS, the node holds data
originating from two data sources.

5. REFERENCES
[1] Cypher query language. http://docs.neo4j.org/

chunked/2.0.1/cypher-query-lang.html.

[2] Neo4j graph database. http://www.neo4j.org.

[3] S. Chaudhuri, U. Dayal, and V. Narasayya. An
overview of business intelligence technology.
Communications of the ACM, 54(8):88–98, 2011.

[4] C. Chen et al. Graph OLAP: Towards online
analytical processing on graphs. In Data Mining.
ICDM’08. Eighth IEEE Int. Conf. on, 2008.

[5] F. Holzschuher and R. Peinl. Performance of graph
query languages. In Proc. of the Joint EDBT/ICDT
2013 Workshops, pages 195–204. ACM, 2013.

[6] A. Petermann, M. Junghanns, R. Müller, and
E. Rahm. BIIIG : Enbabling Business Intelligence
with Integrated Instance Graphs. In Data Engineering
Workshops (ICDEW), IEEE 30th Int. Conf. on, 2014.

[7] A. Petermann, M. Junghanns, R. Müller, and
E. Rahm. FoodBroker - Generating Synthetic Datasets
for Graph-Based Business Analytics. In Big Data
Benchmarking (WBDB), 5th Workshop on, 2014.

[8] M. A. Rodriguez and P. Neubauer. Constructions
from dots and lines. Bulletin of the Amer. Society for
Inf. Sci. and Tec., 36(6), 2010.

[9] M. Rudolf et. al. The graph story of the SAP HANA
database. In BTW, pages 403–420, 2013.

[10] H. Wang. Graph query and analytics with trinity.
http://www.cse.unsw.edu.au/~iwgdm/2013/Slides/

Haixun.pdf.

[11] M. Yin, B. Wu, and Z. Zeng. HMGraph OLAP: a
novel framework for multi-dimensional heterogeneous
network analysis. In Proceedings of the 15th int.
workshop on Data warehousing and OLAP, 2012.

[12] P. Zhao et. al. Graph cube: on warehousing and olap
multidimensional networks. In SIGMOD Conf., 2011.


