
A Smart Link Infrastructure for Integrating and Analyzing
Process Data

Eric Peukert, Christian Wartner, Erhard Rahm

Abstract: An often forgotten asset of many companies is internal process data. From
the everyday processes that run within companies, huge amounts of such data is col-
lected within different software systems. However, the value of analyzing this data
holistically is often not exploited. This is mainly due to the inherent heterogeneity of
the different data sources and the missing flexibility of existing approaches to integrate
additional sources in an ad-hoc fashion.

In this paper the Smart Link Infrastructure is introduced. It offers tools that enable
data integration and linking to support a holistic analysis of process data. The infras-
tructure consists of easy to use components for matching schemas, linking entities,
storing entities as a graph and executing pattern queries on top of the integrated data.
We showcase the value of the presented integration approach with two real world use-
cases, one based on knowledge management in manufacturing from the LinkedDesign
project and another one based on an agile software development process.

1 Introduction

An often neglected, highly valuable asset of many companies is internal process data.
Huge amounts of such data is created while people work along predefined, sometimes
implicit processes that are supported by heterogeneous software tools. Examples of such
processes are software development, sales activities or customer relationship management.
Exemplary data sources can be emails, telephone logs, files in source version control sys-
tems, customer interaction protocols or time reports to name a few. If such sources can
be properly integrated and linked, it can be used to identify shortcomings of a process and
give input for optimization.
However, due to the heterogeneity of the involved tools an integration of these data sources
is cumbersome. Even if a single software tool suite is used to support many process steps
there is still often a need to flexibly integrate additional data sources that might help to
assess the overall quality of a process. Also, processes and tools change over time so
that data source schemas, their relations and links between them suffer from continuous
changes.
A number of approaches can be found in literature that simplify the creation of feder-
ated data sources [SL90, BLN86], that use schema matching [BBR11, HRO06] or that
apply object matching to identify links between entities [NA11, KR10]. However, most
of the existing work only focuses on individual aspects of matching and storage and often
comes with the restriction of fixed schemas. First approaches try to follow a schema-
flexible graph-based integration approach as it is done with BIIIG [PJRR14]. It applies a
metadata-based integration of data sources to a unified metadata graph to finally construct



an integrated instance graph. However, BIIIG does not provide mechanisms to identify
new links at the instance level between data sources.
In this paper the Smart Link Infrastructure for graph-based data integration is introduced.
It is based on a schema-flexible integration of data sources into a common information
graph. Existing associations from the original data source are stored as edges in the graph.
But, in many cases such associations do not exist. The infrastructure supports a ”pay as
you go” approach of link generation. Links between nodes of the graph are automatically
computed at the instance level based on the analysis of the contents and relations of indi-
vidual nodes. Nodes in the graph can refer to people, documents, transactions or any other
data object that might be generated throughout a complex process. The linking results in
additional edges within the information graph which then offers new ways of interaction
and analysis. Within the information graph we are able to uniformly navigate, query and
analyze the existing information.
For analyzing the graph of nodes and links the infrastructure relies on so called process
pattern queries. Such pattern queries are different from classical relational queries. A pat-
tern describes a complex setting involving several types of entities together with a specific
set of constraints. A pattern query helps to identify the properties of a project or process
that make one project or process more successful than others. For instance, in a software
development process different kinds of data entities like tasks, code, bugs and worklogs
are typically collected. A flexible tool to integrate and link information created by dif-
ferent software systems promises unprecedented value to software companies by helping
to continuously increase the efficiency of their internal development processes. A simple
pattern query applied to information from a software development process, for instance,
could search for requirements with high complexity that might lead to the involvement of
many people or have a high likelihood for bugs.
This paper makes a number of contributions:

• The architecture of the Smart Link Infrastructure for flexible data integration and
analysis is introduced together with its core data integration services for schema
matching, graph storage and linking.

• The information graph and pattern queries are explained.

• Front-ends for search and analysis that apply a simple but effective drag and drop
metaphor are described.

• The infrastructure has been developed within a large EU project and succesfully
applied for industrial use cases. We describe two real world use cases in detail to
illustrate the versatility of the Smart Link Infrastructure.



2 Smart Link Infrastructure

2.1 Overview

The architecture of the Smart Link Infrastructure is shown in Figure 1. It consists of three
layers. On the top are the user interface components. These are HTML user interfaces
supporting administrative tasks, i.e. data import and linking of data records as well as
graphical user interfaces for the visualization of graphs, querying and the creation of re-
ports. Since the Smart Link Infrastructure aims at an integration with existing software
systems external tools like OneNote (as used in the knowledge management processes de-
scribed in chapter 3) are supported as well.

Figure 1: Architecture of the Smart Link Infrastructure

The second layer consists of a collection of services: the Schema Matching Service, the
Link Generator Service and the Storage Service. The first two serve data import and man-
agement tasks while the Storage Service represents the general interface to the central
graph database providing operations to store and query data. The services each expose a
REST-based API towards the UI components and external clients. Communication hap-
pens largely with JSON messages.
On the bottom of the architecture the data sources can be found. One is the central graph
database itself and on the left are the multitude of sources (e.g. databases, file repositories,
SPARQL endpoints etc.) from which data is imported. To be able to holistically analyze
and search within data that is distributed across multiple heterogeneous data sources, var-
ious data integration approaches are used. There are some similarities to ETL processes
that are used when building data warehouses to allow efficient analytic processing, e.g.



when data from independently created databases is to be combined to create a unified
view that gives new insights for analysts.
The general workflow applied within the Smart Link Infrastructure is depicted in Figure 2.
The data integration workflow starts with the data import that is supported by a service
providing schema matching methods. In this step relevant data sources can be selected
like files, databases, etc. and a mapping of their schema with the schema of the Smart
Link Store is created. Based on the mapping, new entities are added to the information
graph. The use of the schema matching service is optional and supports administrators
during the definition of the mapping. It could simplify subsequent steps if a sound input
schema is available.
In the linking step, entity resolution approaches are applied to identify relations between
entity sets that originate from different sources. In contrast to standard link approaches,
we also support text mining techniques and new mapping types. Text mining helps to deal
with unstructured data like text documents whereas new mapping types are needed to de-
termine the type of semantic relations between entities. The linking step is important for
defining a well-connected information graph, especially if the imported data sets contain
no direct references to each other.
In the center of the Smart Link workflow there is a graph database, the Smart Link Store,
which provides the capability to store and query data. In particular, it offers means for
executing pattern queries on the information graph that are crucial for the analysis. Each
step of the workflow will be detailed in the following chapters. Chapter 3 will introduce
two real-world use case scenarios that utilize the Smart Link Infrastructure and give an
insight into the actual usage.

Figure 2: Overview of the Smart Link Infrastructure information flow



2.2 Data Import

In order to pre-fill the Smart-Link Store with entities, an administrative user can use the
Data Import Tool. Such pre-filling allows a user to connect to existing data sources such as
relational databases, Excel files or data sources that are exposed through a SPARQL end-
point. When integrating a data source into the information graph the schema of the data
source needs to be mapped to the existing flexible schema of the information graph. Such
a mapping describes how elements of the source schema correspond to elements of the
information graph schema. As discussed above, extending the graph schema is not prob-
lematic, but existing types and properties should be reused. Adding properties to existing
types or adding types is implicitly triggered when new entities are uploaded. Defining the
mappings can be complex and time-consuming. It is often done manually, with the help
of point and click interfaces. The data import tool of the Smart Link Infrastructure offers
a point and click interface similar to existing mapping solutions (see Figure 3). Moreover,

Figure 3: Point and click data import tool

a schema matching service is integrated that is able to compute suggestions for mappings.

2.3 Schema Matching Service

To reduce the manual effort in mapping, a matching service was integrated that semi-
automatically computes a mapping suggestion for a user. The matching service contains



a number of matching algorithms and a library of schema importers for different schema
types [PER11, DR02]. It takes as input two schemas and computes a mapping sugges-
tion between them. Similarities between source and target elements are computed on
metadata level but also on instance level. Since current matching systems are often not
robust enough to be able to cope with very heterogeneous source schemas we devel-
oped an adaptive matching approach [PER12]. This approach automatically configures
a schema matching system process that consists of a set of operators for matching and fil-
tering. Based on measured features of the input schemas and intermediate results so-called
matching rules can be defined. These rewrite rules rely on analyzing the input schemas
and intermediate results while executing a process and rewrite the process to better fit to
the problem at hand.
As was already described the adaptive schema matching approach is crucial to match
the heterogeneity of schema types to an integrated schema and to finally integrate those
sources within a common information graph. The schema matching service described
above implements parts of the adaptive matching system and is therefore able to improve
the quality of matching results.

2.4 Link Generation

Creating graphs from a structured data source like a database with well-modeled meta-
data can be relatively easy. In contrast to that, creating a graph from unstructured sources
like document collections or independently created databases requires a component to find
links between entities. The Link Generator Service allows the creation, management and
execution of workflows, so called linkers, that can determine relations between entities,
the relation type and the confidence of these relations. Linkers are related to the entity res-
olution workflows used in various data integration and data quality related scenarios(e.g.
link discovery in the web of linked open data [NKH+13], web data integration [WK11]
or classic ETL processes in data warehousing [CP11]). Figure 4 shows how entity res-
olution workflows look at an abstract level (cf. [Chr12] ). Normally they are used for
detecting data objects that are equivalent in the real world but have different represen-
tations in multiple data sources. The input of an entity resolution workflow are usually
sets of data records from one or multiple databases. The operations in the preprocess-
ing step include data transformation steps (e.g. to convert data types or remove special
characters) and filter operations or blocking steps to reduce the search space for finding
matching objects [DN09]. Match operations are then applied to determine the pairwise
similarity of the candidates. Depending on the domain different distance metrics on one
attribute or a combination of attributes can be used to determine this likelihood of two
entities being equal [EIV07]. The match result usually is an instance-level mapping: a set
of correspondences of the type (entity1, entity2, sim) where sim is the confidence of two
entities being equal. In general a mapping contains correspondences of a single type, i.e.
‘sameAs’. This resulting mapping is then used to determine a set of matching objects and
a set of non-matching object pairs from the input data source. Standard entity resolution
workflows can be used to find objects in the graph store that are very similar and merge



Figure 4: General entity resolution workflow

them under the assumption that these are duplicate nodes or slightly different versions of
the same note. These data quality related workflows, however, are not the main focus of
the Link Generator service.
Instead of searching for pairs with a high confidence of a ‘sameAs’ relation, linking work-
flows aim to search for links between arbitrary objects and their type. In the easiest case a
linker can just determine a link between two objects by calculating the similarity between
a certain field that exists in two objects. An example of this is a linker that tries to find
documents written by the same author which involves the following steps:

1. Parse the Input (e.g. a document with a meta-data field about the author).

2. Preprocessing: Split the author field into words and sort them alphabetically.

3. Matching: Calculate the trigram similarity of the sorted author list.

4. The result is a set of correspondences between documents that in effect have the
type ‘sameAuthor’.

Linking workflows like this are useful to generate certain types of edges for our property
graph that connect objects of the same type. However, more complex linking approaches
are needed. To enable the functionality needed for the current Smart Link Infrastructure,
i.e. the calculation of links between arbitrary data objects representing entities like per-
sons, documents, etc. most of the steps depicted in Figure 4 are extended and an additional,
optional, rule application step is added to the process. Figure 5 shows a general linking
workflow.

Especially when trying to support search and information discovery in knowledge manage-
ment processes the data often consists of unstructured text from documents with possibly
incomplete metadata. The string similarity of the content of two text documents, for ex-
ample, does not provide enough information about the relation between them. The only
relationship that could be derived from a low lexicographic distance is that the documents
have duplicate text or large parts of overlapping text. Named entity recognition, keyword
detection, the detection of hyperlinks and mail addresses as well as other text mining



Figure 5: General linking workflow

approaches become important to link documents with semantic relations that go beyond
‘sameAs’ relations. A linking workflow that relies on text mining and uses a simple rule
to decide the relation type could look like this:

1. Parsing of Input data(e.g. text of a PDF file).

2. Preprocessing: Named entity recognition, Keyword detection.

3. Calculation of the similarity (e.g. amount of overlap) of list of keywords, engineer-
ing concepts.

4. Application of rules: For example, a high overlap of keywords leads to the rela-
tion ‘similarContent’ and overlapping engineering concepts extracted from the two
documents lead to the relation ‘sameTopic’.

5. Links, i.e. new edges are inserted into the graph

In addition to the use of text mining approaches linking workflows can also utilize existing
edges in the information graph. Since the Smart Link Infrastructure allows the incremen-
tal addition of new data sets, it is usually possible to use existing relations. An example
would be a relation like ‘sameTopic’ which is transitive to some degree. Once a linker
determines that a new and an already integrated document have a high confidence of such
a relation we can infer that the certain relations exist between the new document and the
already integrated documents neighborhood. This is similar to data matching approaches
that use already existing mappings (e.g., [TR07]) and can be useful to discover and ver-
ify certain types of relations as well as to increase the efficiency of a linker. Generally,
the workflows of the Link Generator service first produce mappings with instance-level
correspondences of the type (entity1 ,entity2, linking method, confidence) representing
the used linking method and its resp. confidence (e.g. (document1, document2, trigram-
author, 0.8), (document1, document2, keywordoverlap-text, 0.2) ). A final rule application
step decides based on the applied method and the confidence value what edges are added
to the graph. A set of simple conditional rules, e.g. “if confidence (author1, author2) ≥
threshold then linktype is sameAuthor” are satisfactory for most use cases, although their
definition requires some domain knowledge.



The Link Generator service allows users the definition of suitable workflows (Linkers) for
a certain domain.

Figure 6: Linking UI

The service offers a variety of preprocessing, text mining, data matching approaches and
filtering operations that can be freely combined. These include:

• Preprocessing operations, filter operations to exclude certain entities from subse-
quent operations,

• Keyword, link, address and named entity detection operations

• Dictionary based unification of terms

• Match approaches like N-gram distance, TF-IDF distance, Edit distance to calculate
the confidence of attribute similarity

• Match approaches that determine a confidence value based on the overlap or element
similarity of lists

• Match approaches based on already known relations (i.e. the neighborhood of enti-
ties)

• Combination operations for aggregating confidence values determined by different
approaches

• Relationship detection rules based on individual or combined confidence values

The operation library of the Link Generator service can be extended by operations needed
for a certain task at any time. Workflows can be set up through a web based UI (Figure 6)
that also allows their management and setup for periodical or triggered execution.



2.5 Smart Link Store

2.5.1 Property Graph Model

The used graph store of the Smart Link Infrastructure relies on a schema-flexible prop-
erty graph model with a navigational query access as implemented by Neo4J [Neo12] or
AIS [RPBL13]. In contrast to widely used triple stores a property graph keeps the object
identity intact. This simplifies queries since the entity construction effort can be omitted.
The used property graph stores objects together with their properties. Those properties
can either be atomic values or associations to other objects in the graph. Each object has a
type which is managed in a dedicated type store. The set of properties of an object can be
changed at any time. Also, an object type does not fix the set of types used. However, the
used graph store permits to dynamically compute statistics about existing types in the store
and their used properties together with usage counts. The statistics of property usage could
help to filter less frequent associations to get a more stable and accurate global schema.
This dynamically computed schema later helps us to generate queries.

2.5.2 Pattern Query and Query Generation

A crucial part for analyzing process data holistically are pattern queries. These are much
more intuitive for a user than navigational queries since the user does not need to know the
exact topology of the graph which is required for navigational queries. Navigational query
access refers to the ability to traverse associations in a graph within the query language.
Many graph stores only implement navigational queries such as GREMLIN in Neo4J or
WIPE within SAP AIS. Existing pattern query languages include SPARQL for triple stores
and Cypher for Neo4J property graphs. Due to the nature of triple stores, SPARQL queries
often become rather complex. The Cypher query language for property graphs of Neo4J
is much easier to use. Unfortunately it is bound to Neo4J. Typically, results to graph pat-
tern queries are computed by applying maximum common subgraph algorithms which are
expensive to execute [McG82]. Since we would like to rely on an existing internal prop-
erty graph store that only provides navigational query access we decided to implement a
pattern query interface on top of the navigational query interface. A pattern query is taken
as input and a navigational query is generated.
Figure 7 illustrates the overall process of query generation. As described earlier, the graph
model we use allows us to compute a schema dynamically from the instances that are cur-
rently in the graph. Before any query is issued to the graph store the current schema is
computed. The example assumes that there is a graph with four different kinds of entities
which are represented by different shapes and names of nodes. The generated schema
only consists of four types of entities including possible associations between instances of
these types. A user could create a pattern query by stating that there shall be two nodes
directly or indirectly connected and the nodes have to follow certain filter predicates. Such
predicates define which nodes from the set of instances of a type should be in the result
set.
From the schema graph that was initially created, a minimal connected subgraph for the



Figure 7: Pattern query generation process

given types is computed. If the types are not connected on schema level, then the query
will return an empty answer. In the example, the intermediate type A was added to get a
minimal connected subgraph. In order to be able to generate a navigational query on that
subgraph a traversal path is needed based on the type graph. In the example the traversal
starts at B and walks to C. Note that the walk needs to be done in backwards direction
since initial filtering on the B nodes did not involve indirect filtering through the subset of
C nodes. Consider that there are B nodes that follow the predicate f1 that have no possible
path to any C node that follows predicate f2. After the traversal path has been computed,
we can now generate the navigational query using any query language that allows navi-
gating associations in both directions. That means if there is an association from A to B
then the classical navigation from A to B is possible. However, in our approach we need
to be able to navigate backwards from B to A returning all nodes A that have an associa-
tion to B. The query language used in the example is a simplified example. At the end of
the query the results of the individual navigation steps are intersected to return the correct
set of nodes for each node type. In the example, nodes are returned that were originally
not requested in the query. This can be filtered out depending on the requirements of the
respective application.

2.6 Data Analysis

The Smart Link infrastructure offers tools for search and analysis within the integrated
information graph. The information graph with its links can help to improve the ranking



(see PageRank from Google) of a key-word based search result. Moreover, the graph that
can be found in the vicinity of a node is displayed in addition to the search result and
entities can be filtered by facets. A screenshot of the developed search interface can be
found in Figure 8.

Figure 8: Search UI

The analysis of the information graph is driven by pattern queries and a simple drag and
drop metaphor for creating charts. Figure 9 shows a screenshot of the analysis tool. It
supports a user to graphically create pattern queries. By dragging and dropping dimensions
and measures onto the axes of an empty chart, a new report can be created. In addition,
users can define functions over measures to compute complex measures on top of the
pattern query result.

3 Case Studies

3.1 Software Development Process

The Smart Link Infrastructure was used in a proof of concept implementation to analyze
process data that is created within an agile software development process. In order to get
an idea what data sources were integrated the development process is briefly described.
The development is organized as an agile project based on the SCRUM method. A project
is split into short sprints of 1 or 2 weeks. Requirements are collected within a so called
backlog. At the beginning of a sprint, tasks (issues) are taken from the backlog, their effort
is estimated and the issue is assigned to the sprint in a so called planning meeting. The
development team takes issues and marks them as resolved when finished. Software code
and documents are created and pushed to special code management systems. After each
sprint the completed issues are reviewed and the next sprint is planned. There are many
tools such as Agilefant [Agi] or JIRA [Atl] that try to support such processes. These tools
offer support for issue creation, assignment to developers as well as time and status report-
ing. For the actual development and code management, source version control systems can



Figure 9: Analysis UI

be used such as CVS, SVN, Perforce or Git. Throughout the process, meetings are orga-
nized between team members and emails are exchanged, that contain discussions about the
current development tasks. Continuous integration and test systems take developed code
and run tests. Committed code is analyzed and executed which results in error/test reports
that provide the developer with feedback about the quality of the committed code. In later
stages, bugs are filed and attached to certain code fragments. For each of these process
steps separate software systems and data stores are typically used. However, it would be
valuable to be able to link tasks to actual commits, corresponding files and test reports.
In the proof of concept the data sources were integrated with the help of the Smart Link
Infrastructure in a common information graph that links requirements with tasks, people,
code commits and test reports. (see Figure 10).

The linking service of the Smart Link Infrastructure created a number of meaningful links
between different types of objects. A linking between commits and issues was possible
since some developers put contents from the issue description and issue names into the
commit message. Commits are also linked to people based on user ids, emails and names.
Some objects are also linked by date which helps to assign commits to sprints. Issues
are also linked to people which finally forms a nice information graph of the development
process at hand. With the help of the analysis tools the development process could now be
analyzed. It was now possible to observe interesting properties of the process that could
serve as input for improving the process in future. For instance, times of high workload
could easily be identified. Even though the actual estimated times for issues remained
similar for all sprints the actual logged working times and committed lines of code showed



Figure 10: Linked data sources in the information graph

some strong peaks. This happened often before milestone deadlines. However, according
to the scrum method, such peaks should be avoided since they could put too much pressure
onto a development team. Moreover, the tools helps to measure the efficiency of a team
and could give an indicator to the complexity of a software system. When a software is
newly build, many lines of code are initially created in very short times. Unfortunately, the
number of changed lines per logged hour of work reduces over time since the complexity of
change increases. The exemplary analysis from Figure 9 showed a comparison of changed
lines of code to actually logged working hours for a selected set of issues. With additional
data sources like vacation times or calendar data one could certainly make further helpful
observations.

In summary, the integrated information graph provided many insights on the running pro-
cess that would otherwise be hidden. The lightweight integration approach of the Smart
Link Infrastructure helped a lot since there was no need to define a global schema up-
front. The sources could simply be integrated by letting the automatic linking identify
correspondences.

3.2 Smart Link Infrastructure for Knowledge Management Processes

To demonstrate the wide spectrum of application cases the Smart Link Infrastructure was
applied to analyze and support a knowledge management process within an oil platform
construction company. In particular the linking component was tightly integrated into a
document authoring tool (Microsoft OneNote) that is typically used within that company.

The Smart Link infrastructure is able to automatically link a document to an existing cor-
pus of documents while it is created or edited. Found links are dynamically inserted into
the currently edited document and also within related documents of the corpus. Links
can be created between documents of the same kind but also to external sources such as
taxonomies of terms or other records such as people, files on a share or a source version
control system. This approach does not require the user to collect links to entities from
each of these possible information sources manually or to manually insert them into the



document at hand. Given that these information sources are known, all such links are
added automatically.

The prototype consists of an extension (Linking Plugin) to Microsoft OneNote. While
editing textual content the Linking Plugin extracts the content and triggers a linking work-
flow of the Linking Service. The Linking Service computes links from the newly created
document to existing documents or to other sources. Each linker can produce different
types of links such as references, is-related, is-contained-in, created. As described above,
the linking service can be extended by further linkers and workflows.

The linking result is filtered and ranked based on the computed confidence values. Selected
links are finally inserted in the currently edited document. Links can be inserted as separate
sections, but could also be added inline to the text if specific keywords relate to an entity
in one of the attached information sources. Changes to the text or referenced documents
can also trigger a removal of previously computed links. Generated links could be marked
as being strong or less strong. Also the age of the link could be visualized. The longer a
link is part of a document the more time is should take to remove the link. It should be
shown as deprecated so that a user can accept removal manually. Linked documents are
also changed to also link to the newly created document. The linking process is dynamic
so that by writing new content the dynamic links can change. The user has the option to
manually remove link suggestions or to reset linking parameters so that only links with
higher confidence are added to the document.

3.2.1 Link Generation

For generating links the linking component that was described above is used. In the fol-
lowing we introduce a few interesting linkers. A file reference linker looks up file names
and paths in existing file-shares to recognize file-names inside the text at hand. Also names
of other documents mentioned within the text can serve as indication for creating reference
links. To identify related documents text-similarity measures like TF-IDF or N-Gram are
applied. These measures attach a confidence to a link that can be used for filtering and
ranking. The linking quality can be improved by extracting most representative keywords
from the text and to compute similarity based on comparing keyword-sets. A number of
techniques propose to identify structure of documents, apply stemming to normalize and
tokenize longer terms. Such preprocessing can help to improve linking quality.

The computed links between documents, authors, files and other entities build a graph of
entities in the background. A neighborhood linker uses this graph to identify indirectly
related documents and further information such as the authors of such documents.

3.2.2 Search and Analysis

Through the above linking process a complex graph of documents and other data entities
is created.

In the proof of concept we also added facilities for users to rate created content and give
feedback. Moreover the viewer tracks when certain documents where last viewed and



Figure 11: Document graph

edited. As a result of combining these data sources, an analysis of the age and maturity
of existing knowledge documents can be performed. If legally permitted one could also
measure the documentation quality and relevance of content from individual authors. The
authors can be clustered by their expertise for certain topics which helps users to identify
experts.
Moreover, searching over the document base improves with the help of a PageRank-like
algorithm to measure the importance of linked documents.

4 Conclusions & Outlook

The paper introduced the Smart Link Infrastructure that can be used to integrate and ana-
lyze highly heterogeneous data sources that result from implicit or explicit working pro-
cesses into a common information graph. Data import is supported by schema matching
and links between entities of the information graph are generated by linking workflows.
The integrated data of the information graph can be queried with the help of pattern queries
and reports can be generated with the help of a drag and drop metaphor. Also, a search
interface supports faceted search over the information graph and subgraphs can be visual-
ized and used for navigation.
Two real world use cases proof that the Smart Link Infrastructure can be applied for solv-
ing a broad range of data integration problems that occur when integrating process data.
Future work will focus on pattern mining and query pattern recommendation techniques
to simplify the construction of relevant pattern queries for a user.

5 Acknowledgement

This paper was partly funded by the European Commission through Project LinkedDesign
(No. 284613 FoF-ICT-2011.7.4). LinkedDesign is a European project aiming to create a
platform that addresses the problem of a missing integrated, holistic view of data across
the whole product life cycle in the current manufacturing ICT landscape. The Smart Link



Infrastructure is the data integration and analysis component of the LinkedDesign plat-
form and provides tools to integrate and link data objects from different product life-cycle
phases into a property graph to enable search and analysis in order to solve problems in
various use case scenarios.

References

[Agi] Agilefant. http://agilefant.com/. [last visited 10.10.2014].

[Atl] Atlassian. https://www.atlassian.com/software/jira. [last visited 10.10.2014].

[BBR11] Z. Bellahsene., A. Bonifati, and E. Rahm. Schema Matching and Mapping. Springer,
2011.

[BLN86] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A Comparative Analysis
of Methodologies for Database Schema Integration. ACM Comput. Surv., 18(4):323–
364, 1986.

[Chr12] Peter Christen. A survey of indexing techniques for scalable record linkage and dedu-
plication. Knowledge and Data Engineering, IEEE Transactions on, 24(9):1537–1555,
2012.

[CP11] Alfredo Cuzzocrea and Laura Puglisi. Record linkage in data warehousing: State-of-
the-art analysis and research perspectives. In Proc. of 22nd International Workshop on
Database and Expert Systems Applications (DEXA), 2011, pages 121–125. IEEE, 2011.

[DN09] Uwe Draisbach and Felix Naumann. A comparison and generalization of blocking
and windowing algorithms for duplicate detection. In Proceedings of the International
Workshop on Quality in Databases (QDB), pages 51–56, 2009.

[DR02] H. H. Do and E. Rahm. COMA - A System for Flexible Combination of Schema
Matching Approaches. In Proc. 28th Intl. Conference on Very Large Databases (VLDB),
pages 610–621, 2002.

[EIV07] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. Duplicate
record detection: A survey. IEEE Transactions on Knowledge and Data Engineering,
19(1):1–16, 2007.

[HRO06] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data Integration: The Teenage
Years. In Proc. of the 32. International Conference on Very Large Data Bases(VLDB),
pages 9–16. VLDB Endowment, 2006.

[KR10] Hanna Köpcke and Erhard Rahm. Frameworks for entity matching: A comparison.
Data & Knowledge Engineering, 69(2):197–210, 2010.

[McG82] J. J. McGregor. Backtrack search algorithms and the maximal common subgraph prob-
lem. Software Practice and Experience, 12:23–34, 1982.

[NA11] Axel-Cyrille Ngonga Ngomo and Sören Auer. LIMES: a time-efficient approach for
large-scale link discovery on the web of data. In Proceedings of the 22. international
joint conference on Artificial Intelligence, pages 2312–2317. AAAI Press, 2011.

[Neo12] Neo4j. Neo4j - The World’s Leading Graph Database, 2012.



[NKH+13] Axel-Cyrille Ngonga Ngomo, Lars Kolb, Norman Heino, Michael Hartung, Sören Auer,
and Erhard Rahm. When to reach for the cloud: Using parallel hardware for link dis-
covery. In The Semantic Web: Semantics and Big Data, pages 275–289. Springer, 2013.

[PER11] Eric Peukert, Julian Eberius, and Erhard Rahm. AMC - A Framework for Modelling
and Comparing Matching Systems as Matching Processes. In Proc. Int. Conf. on Data
Engineering (ICDE), pages 1304–1307, 2011.

[PER12] Eric Peukert, Julian Eberius, and Erhard Rahm. A Self-Configuring Schema Matching
System. In Proc. Int. Conf. on Data Engineering (ICDE), pages 306–317, 2012.

[PJRR14] Andre Petermann, Martin Junghanns, Müller Robert, and E. Rahm. Graph-based Data
Integration and Business Intelligence with BIIIG. In Proc. of the 40. International
Conference on Very Large Data Bases(VLDB), 2014.

[RPBL13] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner. The
Graph Story of the SAP HANA Database. In Proc. of 15. GI-Fachtagung für Daten-
banksysteme in Business, Technologie und Web (BTW), pages 403–420, 2013.

[SL90] Amit P. Sheth and James A. Larson. Federated Database Systems for Managing Dis-
tributed, Heterogeneous, and Autonomous Databases. ACM Comput. Surv., 22(3):183–
236, 1990.

[TR07] Andreas Thor and Erhard Rahm. MOMA-A Mapping-based Object Matching System.
In Proc. of 3rd Conference on Innovative Data Systems Research (CIDR), pages 247–
258, 2007.

[WK11] Christian Wartner and Sven Kitschke. PROOF: Produktmonitoring im Web. In Proc.
of 14. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW),
pages 722–725, 2011.


