
Privacy Preserving Record Linkage with PPJoin

Ziad Sehili1, Lars Kolb1, Christian Borgs2, Rainer Schnell2, Erhard Rahm1

1University of Leipzig
{sehili,kolb,rahm}@informatik.uni-leipzig.de

2University of Duisburg-Essen
{rainer.schnell,christian.borgs}@uni-due.de

Abstract:
Privacy-preserving record linkage (PPRL) becomes increasingly important to match

and integrate records with sensitive data. PPRL not only has to preserve the anonymity
of the persons or entities involved but should also be highly efficient and scalable
to large datasets. We therefore investigate how to adapt PPJoin, one of the fastest
approaches for regular record linkage, to PPRL resulting in a new approach called
P4Join. The use of bit vectors for PPRL also allows us to devise a parallel execution
of P4Join on GPUs. We evaluate the new approaches and compare their efficiency
with a PPRL approach based on multibit trees.

1 Introduction

The record linkage process tries to find pairs of entities across different databases that
refer to the same real-wold object. Beside the field of data integration, it is increasingly
used in research applications, for example in medicine, the social sciences and official
statistics. In these fields, protecting the identifiers of the entities is usually required by
law. Therefore, if such linkages are permitted, special techniques protecting the identifiers
have to be used. The set of techniques for record linkage without revealing identifiers is
called Privacy Preserving Record Linkage or PPRL. Due to the many applications, PPRL
is an active field of research in Computer Science, Statistics and some application fields as
Epidemiology, Health Service Research and Survey Methodology [Sch15].

Like traditional approaches for record linkage, PPRL has an inherent scalability prob-
lem if each (encrypted) record needs to be compared with each other record resulting in
a quadratic complexity. The usual means to improve efficiency and thus scalability to
larger datasets is to reduce the search space, e.g. by appropriate filter and blocking tech-
niques, or/and to perform record linkage in parallel on many processors [Chr12b, KTR12].
PPJoin (Position Prefix Join) [XWLY08] is an efficient approach for regular record linkage
exploiting several filters to reduce the search space; its efficiency has been confirmed in
independent evaluation studies for diverse datasets [KTR10, JLFL14]. We will therefore
investigate how to adapt this scheme to PPRL where records are encrypted by bit vectors.
We will also propose and evaluate the parallel execution of the adapted PPJoin scheme on

graphical processing units (GPUs).

Our contributions are thus as follows

• We present how PPJoin can be adapted to evaluate the similarity of bit vectors for
PPRL (Section 4).

• We show how the adapted PPJoin approach, which we call P4Join (Privacy-Preserving
PPJoin), can be executed in parallel on GPUs (Section 5).

• We evaluate the efficiency of the new PPJoin approaches (Section 6). The evaluation
also includes a comparison with a previously proposed approach based on multibit
trees [BRS13].

Before outlining these contributions we begin with preliminaries on the assumed approaches
for record linkage and PPRL (Section 2) and a discussion of related work including the
multibit tree approach (Section 3). At the end, we summarize and close with an outlook.

2 Preliminaries

For record linkage we apply so-called similarity joins that determine all pairs of records
with a similarity above a minimal threshold. We first introduce the notion of such similarity
joins together with a simple length filter that can be utilized to reduce the number of
necessary comparisons. Furthermore, we introduce the assumed model for encrypting
records by bit arrays to support a privacy-preserving record linkage.

2.1 Set similarity joins and length filter

To detect duplicate records between two heterogeneous data sources R and S, similarity
joins identify all pairs (r, s) ∈ R × S with a similarity above a given threshold t, i.e.
Sim(x, y) ≥ t for comparable attribute values x and y. The efficient processing of such
similarity joins for different kinds of similarity measures has been the focus of much re-
search in the past, e.g., [AGK06, HCKS08, MF12, RLW+13, SHC14, WLF10, XWL08,
XWLY08]. In this work we focus on the popular Jaccard similarity because it is well
suited for both string-tokenized records and bit arrays. Given two records with attribute
values x and y, represented as (multi-) sets of tokens (e.g. n-grams), the Jaccard similarity
is defined as:

SimJaccard(x, y) =
|x ∩ y|
|x ∪ y|

=
|x ∩ y|

|x|+ |y| − |x ∩ y|
. (1)

Example: Consider two records x = tomas and y = tommas tokenized to bigrams as
shown in Fig. 1. The resulting Jaccard similarity is 6/7, since all (6) bigrams of x overlap
with the 7 bigrams of y.

The similarity function SimJaccard allows the application of a simple length filter to avoid
the evaluation of the Cartesian product to identify all pairs of similar records. This is
because the minimal similarity (token overlap) can only be achieved if the lengths of the
input records do not deviate too much. Formally, for two records x and y with |x| ≤ |y|, it
holds that

SimJaccard(x, y) ≥ t⇒ |x| ≥ dt · |y|e (2)

For example, two records cannot satisfy a similarity threshold t = 0.8 if their lengths differ
by more than 20%. If the first record has, say, ten tokens a comparison is no longer needed
for all records with less than eight or more than 12 tokens. The length filter can thus
achieve a substantial reduction of the search space and is used in many implementations
including PPJoin and Multibit Trees.

2.2 Privacy Preserving Record Linkage

For privacy preservation, we consider the detection of duplicate records in fully encrypted
datasets. We therefore encrypt the records’ attribute values individually before passing
them to a semi-trusted third party that run the record linkage process.

To encrypt a single record, we map all n-grams of the (relevant) attribute values to a bit
vector (array) of fixed size as proposed in [SBR11]. Specifically, each n-gram (of each
n-gram set) is hashed to multiple bits by applying k independent hash functions, each
defining an index of a bit which is set to one. This can be achieved by a double hashing
scheme combining two independent base hash functions f and g to determine the k hash
values h1(x), . . . , hk(x) for each n-gram x [KM06]:

hi(x) = (f(x) + i · g(x)) mod l.

As base hash functions, [SBR09] proposed the usage of two keyed hash message authenti-
cation codes (HMACs), namely, HMAC-SHA1 and HMAC-MD5 for f and g, respectively.
The mapping of records and their n-grams to bit arrays is illustrated in Figure 1 for the
two names tomas and tommas.

The similarity between two records given by the bit arrays (or fingerprints) x and y can
now be determined analogously to determining the Jaccard similarity by measuring the
degree of overlap between the set bit positions. The resulting similarity is also known as
the Tanimoto similarity and can be expressed as:

SimTanimoto(x, y) =
|x ∧ y|
|x ∨ y|

=
|x ∧ y|

|x|+ |y| − |x ∧ y|
(3)

with |x| denoting the number of set bits (or cardinality) in the bit array x.

For the example in Figure 1 we have 11 set bits in the intersection of the two bit arrays and
12 in the union resulting in a similarity of 11/12.

It was shown in [SBR09] that the described encryption scheme is similarity-preserving. It
also allows applying the length filter introduced before, i.e. two records can only meet a
minimal similarity if their number of set bits does not differ too much.

1 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0

_t to om ma

0 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

as s_

_t to om mm ma as

1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0 0 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

s_

Figure 1: Example of the encryption of two names tomas and tommas, each tokenized to bigrams,
using k = 2 hash functions and bit arrays of size 20 bits.

3 Related Work

Record Linkage Record linkage, entity resolution or data matching is the problem of
finding similar records referring to the same real-world entity. It has been addressed
by numerous research studies and approaches as summarized in several surveys [EIV07,
Chr12b, KR10]. Key challenges include achieving complete and accurate results at a
good efficiency and scalability. Many approaches aim at improving efficiency by re-
ducing the search space, e.g. by so-called indexing and blocking techniques [DN11,
Chr12a]. Furthermore, parallel record linkage approaches have beend devised, e.g. for
MapReduce/Hadoop platforms [VCL10, KTR12] or by using graphic processors (GPUs)
[FPS+13, NKH+13]. The use of similarity joins [Coh00] for finding all pairs of records
with a certain minimal similarity allows several performance improvements by exploiting
charactistics of the considered similarity measure and the prespecified similarity thresh-
old. This holds especially for the broad class of so-called signature-based similarity joins
[AGK06] where the comparison of records is based on their signatures, such as the set
of tokens (e.g., n-grams) for selected attributes. In this case, one cannot only utilize the
introduced length filter but also exclude all pairs of records that do not share at least one
token in their signature. Further proposed optimizations for such similarity joins include
the use of a so-called prefix filter and dynamically created inverted indexes [BMS07].
The PPJoin approach [XWLY08] includes these and further optimizations for improved
efficiency. Since this algorithm is the basic of our work, it will be presented in detail in
Section 4.

Privacy Preserving Record Linkage In [VCV13], a comprehensive taxonomy and survey
of privacy-preserving record linkage techniques is provided covering different encryption
schemes, linkage and scalability approaches. The approach of [ALM05] uses hashing to
map TF/IDF tokens of records to bit vectors for privacy-preserving similarity joins. It

applies a token-based blocking to find candidate pairs that are then compared using the
Jaccard similarity function but uses no further filtering to eliminate dissimilar pairs of
records.

Similarity Filtering with Multibit Trees The use of multibit trees promises a better effi-
ciency for PPRL and will be considered in our evaluation for comparison purposes. The
approach was originally suggested to rapidly query large databases of chemical finger-
prints (bit arrays) [KNP10]. A query bit array A is being searched for in a database B,
with the aim to retrieve all elements in B whose similarity with A is above the threshold
t. Multibit Trees are based on the Tanimoto coefficient presented in Eq. 3 as a similarity
measure.

As suggested in [BRS13], Multibit trees can easily be used for PPRL with the encryption
scheme described in Section 2. If we have two files with records to compare with each
other, we can use the larger file to build up the multibit trees and use each record (finger-
print) of the second file for searching similar records. The time taken to build up the index
structure is therefore much less important than the query time, which increases linearly
with the size of the query file.

The original paper [KNP10] describes several variations and we focus here on the multibit
tree scheme that has shown the best evaluation results in [BRS13] and [Sch14] and also
outperformed blocking approaches such as Sorted Neighborhood and Canopy Clustering.
In this scheme, we partition the fingerprints into buckets according to their lengths such
that all fingerprints with the same number of set bits belong to the same partition (or
bucket). To apply the length filter, we can then restrict the search for similar fingerprints
to the partitions meeting the length criterion of Eq. 2.

Query efficiency is further improved by organizing all fingerprints of a partition within a
multibit tree. A multibit tree is a binary tree to iteratively assign fingerprints to its nodes
based on so-called match bits. A match bit refers to a specific position of the bit array and
can be 1 or 0: it indicates that all fingerprints in the associated subtree share the specified
match bit. When building up the multibit tree, one match bit or multiple such bits are
selected in each step so that the number of unassigned fingerprints can be roughly split by
half (”half clustering” strategy). The split is continued as long as the number of fingerprints
per node does not fall under a limit ([KNP10] recommends a limit of 6). The match bits
can then be used for a query fingerprint to determine the maximal possible similarity for
subtrees when traversing the tree and can thereby eliminate many fingerprints to evaluate.

4 Adaptation of PPjoin for Encrypted Data

PPJoin (Position Prefix Join) [XWLY08] is a signature-based similarity join algorithm that
applies several optimizations for improved efficiency, in particular the length filter, a prefix
filter and a position filter. We first describe the prefix filter already proposed in [CGK06].
We then outline PPJoin and its adaptation for PPRL.

4.1 Prefix Filter

The prefix filter [CGK06] for signature- or token-based similarity joins exploits that simi-
lar records must share at least one token. Depending on the similarity threshold and length
of the records, the overlap must even occur for a subset of the tokens. For example, two
records with ten tokens each can only meet a minimal similarity of 0.8 if they overlap in
at least nine tokens. Hence it is sufficient to check whether subsets of two tokens each
overlap; without such an overlap in the subsets the record pair cannot match and safely be
eliminated from further consideration. To maximize this filter idea one builds the subsets
with the least frequent tokens; i.e. one takes the prefix of a record’s tokens ordered by their
overall frequency.

Given two records x and y represented as sorted token sets (using the same ordering), the
overlap between their tokens is defined as:

Overlap(x, y) = |x ∩ y| (4)

From the similarity join definition using the Jaccard similarity (Eq. 1) we can derive the
required minimal overlap in order to meet the similarity threshold t:

Simjaccard(x, y) ≥ t⇔ Overlap(x, y) ≥ d t

1 + t
· (|x|+ |y|)e = α (5)

Pairs of records with an overlap less than the minimal overlap α cannot meet the similarity
join condition so that the relatively expensive similarity computation can be saved for
them.

The prefix filter uses this observation to determine prefixes of sufficient size so that they
have to overlap to meet the minimal similarity. This is the case for prefix lengths |x|−α+1
and |y| −α+1 for x and y, respectively. For the mentioned example above α = 9 and the
prefixes have to be of length 2.

4.2 Position Prefix Join (PPJoin)

As mentioned before, PPJoin is a set similarity join algorithm using the Jaccard similarity
to find all similar pairs (x, y), if SimJaccard(x, y) ≥ t. To do this in an efficient way,
PPJoin applies length filtering, prefix filtering and position filtering 1. As in [XWLY08],
we describe PPJoin for finding similar records in a single input file R. The more general
case with two (duplicate-free) input files can be mapped to this case by merging the two
files into one and observing that only records from different input files are compared with
each other [VCL10].

In order to apply the length and prefix filters, a preprocessing step is executed first followed
by the actual filtering and record comparisons.

1[XWLY08] also proposed the use of a suffix filter but this filter is not considered here due to its likely high
overhead for encrypted data.

r1 = Tom

r2 = Thommas

r3 = Tommas

r1 = [_t, to, om, m_]

r2 = [_t, th, ho, om, mm, ma, as, s_]

r3 = [_t, to, om, mm, ma, as, s_]

r1 = [m_, to, _t, om]

r2 = [ho, th, mm, ma, as, s_, _t, om]

r3 = [mm, to, ma, as, s_, _t, om]

mm

2

to

3

ma

3

as

3

s_

3

_t

4

om

4

 Token

 Doc. Freq.

Record Set of tokens (bigrams) Document Frequency Ordering O

4 5 6 7 8 9 10 Position

ho

1

m_

1

th

1

1 2 3 r4 = [_t, to, om, ma, as, s_]

2

3

3

3

Prefix Length

[m_, to]

[to, ma, as]
[mm, to, ma]

[ho, th, mm]

Prefix Set of reordered tokens

4

8

7

6

Length

r1

r2
r3

r4

Id

4

6

7

8

Length

Tokenize

records

Generate

prefix

Count

tokens

Reorder records’ tokens according to O

Sort records

by length

r4 = [to, ma, as, s_, _t, om]

r4 = Tomas

Figure 2: Preprocessing step: The records are first tokenized (to bigrams) and the tokens’ frequencies
are determined. The resulting document frequency ordering O is then used to order the tokens of the
records according to their frequency. After the computation of their prefixes for a threshold t = 0.8,
the records are sorted by ascending length.

(a) Preprocessing: The main goals of preprocessing are to determine the lengths and pre-
fixes of all records and to sort the records according to their lengths. Determining the
prefixes requires to determine the tokens’ frequencies and reorder the tokens per record.
These tasks are achieved in two passes. First PPJoin reads the records sequentially, deter-
mines their lengths and counts the occurrence of each token in all the records. The tokens
are then sorted by ascending frequency which corresponds to the document frequency or-
dering in IR. In the second pass, the tokens of each record are sorted according to the
overall frequency, i.e. from the least frequent to the most frequent token. Furthermore
for each record x, the prefix pref(x) is computed. According to Eq. 5, the minimal over-
lap and thus the prefix length also depends on the length of the record y to which x is to
be compared. Since these other records are yet unknown and of varying length, PPJoin
applies the following safe prefix length retaining all true matches:

|pref(x)| = d(1− t) · |x|e+ 1 (6)

At the end of preprocessing the records are sorted by length to support the use of the length
filter in the next step.

Figure (2) illustrates the preprocessing for an input of four records r1 = Tom, r2 =
Thommas, r3 = Tommas and r4 = Tomas and a Jaccard similarity threshold t = 0.8.

(b) Comparison of records: In the second step, PPJoin jointly applies the length and
prefix filters while processing the records in ascending order of their lengths. To quickly
determine the records with overlapping prefixes, PPJoin builds up an inverted index I
on-th-fly recording per token all (relevant) records having this token in their prefix.

We explain this process by using the four records returned by the preprocessing shown
in Figure 2. The first (shortest) record r1 has length 4 and prefix pref(r1) = [m , to].
The index I is initialized with the two tokens pointing to record r1 (Figure 3a). The next
record r4 has length 6 and prefix pref(r4) = [to,ma, as]. The length filter check reveals
that |r1| < dt · |r4|e (4 < d0.8 · 6e) so that r1 does not have to be compared against
r4 and any further records which have at least length 6. Hence, when adding the new

Inverted

Index

“I”

Token

m_

to

List: (Ids)

r1

r1

a) reading r1

Token

m_

to

List: (Ids)

r1

r1

b) reading r4

r4

ma

as

r4

r4

Token

m_

to

List: (Ids)

r1

r4

c) reading r3

r3

ma

as

r4

r4

r3

mm r3

Token

m_

to

List: (Ids)

r1

r4

d) reading r2

r3

ma

as

r4

r4

r3

mm r3 r2

ho r2

th r2

Figure 3: Index usage for PPJoin

prefix tokens to the index, all index entries found for r1 can be safely deleted as shown
in Figure 3b. When processing the further records r3 and r2 the inverted index reveals
the prefix overlaps between r4 and r3 and between r3 and r2 (shown in red squares in
Figure 3c and 3d respectively) so that the respective records need to be compared with
each other.

PPJoin makes additional use of the prefix tokens by a so-called position filter. To ap-
proximate the maximal possible overlap between two records, it considers the number of
common prefix tokens as well as the position of the last common prefix token. With this
information one can derive the maximal possible overlap by assuming that all non-prefix
tokens overlap to the maximal extent possible. For example, records r3 and r2 in Figure 3d,
share only one prefix token, mm, at positions pos(mm)r3 = 1 and pos(mm)r2 = 3. This
last common token separates each record into a left part lp representing the tokens already
seen and a right part rp of unseen tokens. Furthermore the length of rp equals the length of
the record minus the position of the last common token, e.g. rp(r3) = |r3| − pos(mm) =
7 − 1 = 6 and rp(r2) = 8 − 3 = 5. The right parts can thus overlap in at most 5 tokens;
together with the prefix overlap in the left parts (= 1) the total overlap between r2 and r3
is at most 5 + 1 = 6.

In general, the maximal overlap between two records x and y can be determined by

MaxOverlap(x, y) = |lp(x) ∩ lp(y)|+min(|rp(x)|, |rp(y)|)

The record pair can be filtered out from the similarity comparison if this maximal overlap
is smaller than the minimally needed overlap α given in Eq. 5. This is the case for our
example because MaxOverlap(r3, r2) = 6 < α = 7.

4.3 PPJoin for Encrypted Data (P4Join)

For the PPRL version of PPJoin, called P4Join (Privacy-Preserving Prefix Position Join),
all input records are encrypted as same-sized bit arrays as explained in Section 2.2. Many
parts of PPJoin can then be adapted rather easily by considering the set bit positions (in-
dexes) as the new ”tokens”. The length of a record thus corresponds to the number of set

Tokens (Index of set bits) Bit array

 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0

Id

r1 0 2 6 8 11 13 15

 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1

 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1

 1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 1

7

Cardinality

r2

r3

r4

13

12

11

1 2 3 5 6 8 9 11

0 2 4 6 8 9 11 12

0 2 4 6 9 11 12 13

12 15 16 18

13 18 19

15 18

Frequency 3 1 4 2 2 1 4 0 3 3 0 4 3 3 0 3 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 3 3

17 18 19

19

3

19

Frequency Ordering “O” 1 1 1 2 2 3 3 3 3 3 3 3 3 4 4

1 5 16 3 4 0 8 9 12 13 15 18 19 2 6

4

11

Reordered bit array

 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0

Id

r1

 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0

 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0

 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0

7

Cardinality

r2

r3

r4

13

12

11

O-based reordering of tokens

0 8 13 15 2 6 11

1 5 16 3 8 9 12 15

3 4 0 8 9 12 13 18

4 0 9 12 13 15 18 19

18 19 2 6 11

19 2 6

2 6

3

Prefix Cardinality

4

4

4

Prefix

11

11

 0 0 0 0 0 1 1 0 0 1

 1 1 1 1

 0 0 0 1 1 1 1

 0 0 0 0 1 1 0 1 1

O

Reorder bit arrays according to O

(a)

(b)

(c)

(d)

Figure 4: P4Join preprocessing. The top part shows the computation of the frequency ordering O
and the bottom part the reordering of the bit arrays and the computation of prefixes for t = 0.8.

bits in its bit array which we call its cardinality to avoid confusion. We first explain the
adapted preprocessing phase and then the use of the filters in the main processing phase.
As we will see, P4Join can be realized without building an inverted index. We will also
devise an improved position filter.

(a) Preprocessing: As before, preprocessing works in two passes. In the first pass we
determine for each index position its frequency, i.e. we count for how many records it is
set. The index positions are then ordered in ascending frequency resulting in an ordering
O. Figure 4a and 4b show an example of the position frequencies and the generation of O
for four records that are encrypted by bit arrays of size 20. Index positions with frequency
0 (positions 7, 10, etc.) are unset in all bit arrays and can simply be ignored in the further
processing. In the second pass, the bits per bit array are reordered according toO as shown
in Figure 4c. The prefix length is again calculated according to Eq. 6. Again, the length
refers to the number of set positions (cardinality) and not to the size of the prefix. For
example in Figure 4d the prefix of record r1 contains all starting bits of the reordered r1
bit array until we reach the prefix’s cardinality 3. Hence, prefixes of the same length may
have different sizes.

(b) Comparison of bit arrays: In this second step we process records differently than
for PPJoin. This is because we observed in preliminary experiments that the overhead to

Algorithm 1: P4Join (without preprocessing)
Input : List of records (bit array) R sorted by ascending cardinality;

Similarity threshold t;
Output: {(x, y) ∈ R× R | Sim(x, y) ≥ t}

1 result← [];
2 lmap← new Map(length: List<record>);

3 foreach x ∈ R do
4 foreach e ∈ lmap do
5 if e.length < |x| · t then // Length filter
6 lmap.remove(e);

7 else
8 foreach record y ∈ e.List do
9 if pref(x) ∧ pref(y) 6= 0 then // Prefix filter

10 if not Positional Filter (x, y) then
11 if (SimTanimoto(x, y) ≥ t) then
12 result.add(x, y);

13 lmap.add(x);

14 return result;

15 Boolean Positional Filter(x, y)
16 prefOverlap← |pref(x) ∧ pref(y)|;
17 p1 ← position of the last set bit in pref(x);
18 p2 ← position of the last set bit in pref(y);
19 diff1 ← 0;
20 diff2 ← 0;

21 if p1 > p2 then
22 diff1 ← number of set bits in pref(x) having position > p2;

23 else
24 diff2 ← number of set bits in pref(y) having position > p1;

25 restOverlap← min[(|x| − |pref(x)|+ diff1), (|y| − pref(y) + diff2))];

26 MaxOverlap← prefOverlap + restOvelap;
27 return MaxOverlap < d(|x|+ |y|) · t

(1+t)
e; // MaxOverlap < MinOverlap?

maintain and use an inverted index is too high compared to the achievable savings (which
are lowered by the fact that the actual similarity computation is much faster for bit arrays
than for general sets of tokens). We similarly observed that using the original position filter
of PPJoin results in a performance degradation so that we devise a new position filter.

Algorithm 1 shows the pseudo-code of the main phase of P4Join using as input the output
of the preprocessing step as well as the similarity threshold t. It uses a data structure lmap
(Line 2) that lists for each record length (cardinality) the records that are still relevant for
comparisons based on the length filter. While the shown algorithm uses all three supported
filters (length, prefix, position) we can easily deselect some of these filters to evaluate their
relative performance impact (this will be used in the evaluation). We now discuss the use
and implementation for each of the filters.

Length Filter: According to the shown algorithm, all records are read sequentially in the
given order with ascending cardinality (see top of Figure 5). When a record x with car-
dinality c is read, it is added to lmap either together with a new entry for cardinality c
or by appending it to an existing record list for c (Line 13). The first record is immedi-

lmap

Cardinality

7

List: (Ids)

r1

a) reading r1

Cardinality

7

List: (Ids)

r1

b) reading r4

11 r4

Cardinality List: (Ids)

c) reading r3

11 r4

12 r3

Cardinality List: (Ids)

d) reading r2

11 r4

12 r3

13 r2

Bit arrays

sorted by

ascending

cardinality

Reordered bit array

 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0

Id

r1

 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0

 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0

 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0

7

Cardinality

r2

r3

r4

13

12

11

3

Prefix Cardinality

4

4

4

Prefix

 0 0 0 0 0 1 1 0 0 1

 1 1 1 1

 0 0 0 1 1 1 1

 0 0 0 0 1 1 0 1 1

Figure 5: P4Join processing for four sample records

ately added while for a non-empty lmap the addition follows after applying the length
filter (and possibly further filters) and performing the necessary similarity checks against
already read records. For example, reading the first record r1 results in the state of lmap
shown in (Figure 5a) with r1 listed for cardinality 7.

The lmap data structure makes it easy and efficient to identify candidates that no longer
need to be considered according to the length filter. This is achieved by the second
foreach loop where we check for each length in lmap whether the length filter applies in
comparison with the current record x. Each record with such a length can safely be ex-
cluded from all further comparisons since all further records have the same or larger cardi-
nality than x (Lines 4 to 6). When processing the second record r4 we therefore determine
that cardinality 7 does not satisfy the length filter for threshold t = 0.8 (7 < d0.8 · 11e).
Hence this entry together with its record r1 can be safely deleted from lmap (Figure 5b).
After eliminating the entry, record r4 is added to a new lmap element for cardinality 11.
The further records, r3 and r2, do not allow a similar reduction so that all records need to
be compared with each other if we would only apply the length filter.

Prefix Filter: The prefix filter avoids the comparison for two records if their prefixes do not
share at least one set bit position. In PPJoin the prefix overlap is checked with an inverted
index which is relatively expensive to maintain and use for bit arrays. This is because the
bit arrays make it very cheap to directly determine the overlap by simply computing the
AND operation between the two prefixes. Only if the resulting bit array has at least a single
bit set we need to further consider the pair of records (Line 9); otherwise we can avoid
the similarity computation. Figures 5c and 5d show in red squares the two pairs that pass
the prefix filter. For example the records r4 and r3 pass the length filter (11 > d0.8 · 12e)
and the prefix filter (000011011 AND 0001111 = 000011000), so that they must
be compared with each other (unless the position filter avoids this which will be the case,
see below). By contrast, records r4 and r2 have no common bit position in their prefixes
so that their similarity comparison is saved.

Position Filter: Applying the PPJoin position filter to bit arrays turned out to be rela-

tively expensive (partly due to the need to determine and use the positions of last com-
mon prefix tokens) but was also limited by an overly imprecise estimate for the maximal
overlap. We can determine a more accurate maximum overlap between two records by
considering the last prefix tokens instead of the last common prefix token. We explain the
idea for records r4 and r3 having cardinalities 11 and 12 and the prefixes of set positions
pref(r4) = [4, 5, 7, 8] and pref(r3) = [3, 4, 5, 6] as shown in the top of Figure 5. The
overlap between the two prefixes equals 2 and the last common prefix token, 5, has the
positions pos(5)r4 = 2 and pos(5)r3 = 3. Using the PPJoin position filter, we thus obtain
MaxOverlap(r4, r3) = 2 + min(11 − 2, 12 − 3) = 11. This overlap is not smaller
than the minimum required overlap α = d(11 + 12) · (0.8/1.8)e = 11 (Eq. 5) so that the
similarity computation between r4 and r3 cannot be saved.

However, we observe that token 6 in pref(r3) cannot contribute toMaxOverlap because
it refers to a bit position smaller than some tokens in pref(r4), namely 7 and 8. In gen-
eral, given two prefixes pref(x) and pref(y) having as last tokens a and b respectively,
if a < b then the only prefix tokens that can contribute to MaxOverlap (beside the com-
mon tokens) are those tokens from pref(y) greater than a. For r3, the maximal number
of possibly overlapping tokens is thus the number of common prefix tokens (2) plus the
number of non-prefix tokens (8), i.e. 10 in total. For r4, the maximal possible overlap is
the number of common prefix tokens (2), plus the number of non-prefix tokens (7) plus the
number of tokens in pref(r4) greater than the last token 6 in pref(r3) (= 2), i.e. 11 in to-
tal. The maximal overlap is the minimum of 10 and 11 which is 10 and below the minimal
overlap α = 11. Hence, we can filter out r4 and r3 from the similarity comparison.

This new position filtering can thus prune more dissimilar pairs of records compared to
the original PPJoin position filter. Its implementation as a function is shown in the bottom
part of Algorithm 1. It determines the last tokens in the two prefixes. The smaller of
the two determines how many tokens of the other prefix may contribute to MaxOverlap.
The function returns the boolean value true if the maximal overlap is smaller than the
minimally needed overlap α. Hence in the main algorithm the similarity comparison is
only performed if the position filter does not apply (Line 10).

5 Matching Encrypted Data with GPUs

The utilization of Graphical Processing Units (GPUs) to speed-up similarity computations
is a comparatively new approach [FPS+13]. Modern GPUs provide thousands of cores that
allow for a massively-parallel application of the same instruction set to disjoint data parti-
tions. The availability of frameworks like CUDA2 and OpenCL3 simplify the utilization of
GPUs to parallelize general purpose algorithms. In this work, we rely on OpenCL which,
in contrast to CUDA, is supported by different hardware vendors. An OpenCL-Program,
which is also referred to as a Kernel, is written in a dialect of theC programming language.
The number of kernels that can be applied to disjoint data partitions simultaneously de-

2 https://developer.nvidia.com/category/zone/cuda-zone
3 https://www.khronos.org/opencl/

https://developer.nvidia.com/category/zone/cuda-zone
https://www.khronos.org/opencl/

pends on the number of cores provided by the GPU and the memory requirements of the
Kernel instances.

Compared to developing “CPU programs”, GPUs and their programming languages like
OpenCL have several limitations. Before and after the computation, input and output data
must be transferred between the main memory of the host system and the memory of the
GPU. Furthermore, on GPUs dynamic memory allocation is not possible at runtime, i.e.,
the resources required by an algorithm must be known and allocated a priori. Usually the
memory capacity of GPUs is smaller than the available main memory. This requires to
divide the overall workload into smaller tasks which are executed by the GPU in multiple
rounds. Thereby, the scheduling of the individual tasks should minimize the data volume
to be transferred between host system and GPU. Furthermore only basic data types (e.g.,
int, long, float) and fixed-length data structures (e.g., arrays) can be used. Despite such
limitations, the utilization of GPUs is a promising approach to speed up record linkage on
encrypted datasets. All records are represented as bit arrays of equal length, which can be
expressed by arrays of type long (64 bits). Furthermore, the similarity computation can be
broken down into simple bit operations which can be easily processed by GPUs.

We describe the GPU version of P4Join for the general case of two input datasets R and
S; the special case with only one dataset R is easily supported by comparing R with
itself. The preprocessing is performed on the host system while the filtering and similarity
checks are performed on the GPUs. Only the length and prefix filters are applied as a
GPU implementation of the position filter becomes already too complex compared to the
similarity computation itself. We also support a hybrid scheme utilizing both CPUs and
GPUs for similarity computation.

5.1 Preprocessing

In a preprocessing step, the records of the input datasets R and S are sorted by their cardi-
nality, i.e., the number of bits set to one. Additionally, the bits of all records are ordered by
the document frequency in ascending order. Furthermore, each record is annotated with its
cardinality and its prefix fingerprint (see Section 4.3). In general, the input datasets as well
as the resulting correspondences exceed the available memory of the GPU. Thus, R and
S are range-partitioned into fixed-sized partitions. Similar to [HKGR13], pairs (Ri, Sj)
are then iteratively shipped to the GPU for similarity computation. Before a partition pair
is shipped to the GPU, it is checked whether the two partitions contain at least one record
pair which passes the length filter (see Eq. 2). To this end, the cardinality values of the first
and the last record of the two (sorted) partitions are compared. If there is no such record,
the pair is skipped. Otherwise it is transferred to the GPU.

1 / 16

Read
MR0,S4

PARTITIONIERUNG UND AUSFÜHRUNGSSCHEMA

ACCELERATING Privacy Preserving Record Linkage

𝐒

S0 S1 S2 S3 S4

𝐑

R0

R1

R2

R3

GPU thread

CPU thread(s)

Match task

m
at

ch
e

s

MR0,S3

Global memory

Replace
S3 with S4

Kernel0

Kernel|R0|-1

…

GPU

𝐫0-S4

𝐫|R0|-1-S4

b
it

s

R0 S4

b
it

s
ca

rd
.

b
it

s

cardinality

ca
rd

in
al

it
y

b
it

s

b
it

s

b
it

s

b
it

s
b

it
s

b
it

s

R0 S3

p
re

fi
x

b
it

s
ca

rd
.

b
it

s
p

re
fi

x

b
it

s

b
it

s
ca

rd
.

b
it

s
p

re
fi

x

b
it

s
ca

rd
.

b
it

s
p

re
fi

x

Figure 6: Execution scheme for hybrid GPU/CPU-based record linkage minimizing the data transfer
between the host program and the GPU.

5.2 Massively-parallel Record Linkage

The GPU executes a kernel instance for each record r ∈ Ri. A kernel instance is responsi-
ble for comparing r with each s ∈ Sj . Thereby, the kernel iterates over all s ∈ Sj (which
are sorted by cardinality) and consecutively checks whether the length filtering constraint
is fulfilled and whether the evaluation of subsequent s′ ∈ Sj can be skipped. For each
remaining candidate record, it is checked whether the prefix fingerprints do overlap. If this
is the case, their similarity is computed according to Eq. 3.

The indexes of all s ∈ Sj with SimTanimoto(r, s) ≥ t are written to a kernel instance-
specific range of an output array of type int which can be accessed by all kernel instances.
The partial results are later unified by the host program.

To minimize the data volume to be transferred between the main memory and the GPU
we also support a hybrid CPU/GPU execution scheme similar to [HKGR13]. We utilize a
task queue that supports the parallel matching of different partition pairs on both the GPU
as well as on the CPU. A dedicated thread takes tasks from this queue and submits them
to the GPU. In addition to this GPU thread, several CPU threads can access the job queue
from the opposite end to independently perform matching on the CPU. We select jobs and
ship partitions using the scheme displayed in Figure 6. This scheme ensures that after
completion of a GPU job only one new partition need to be transferred to it. The other
partition remains in the GPU’s memory and is reused for the next job.

6 Evaluation

We evaluate the proposed P4Join approach and its filters for several datasets of different
sizes and compare the resulting execution times with the use of the Multibit tree algo-
rithm and a naive nested loop implementation. We also evaluate the GPU implementation
of P4Join. Before presenting the evaluation results we introduce the experimental setup

n 100,000 200,000 300,000 400,000 500,000

|R|= n/5 20,000 40,000 60,000 80,000 100,000

|S|= 4 * n/5 80,000 160,000 240,000 320,000 400,000

Figure 7: Size of the datasets (number of records) used in the evaluation

including the used datasets.

Note that for a given dataset all the algorithms produce the same match result, i.e. they
find all the pairs having a similarity greater or equal to a predefined threshold. Hence,
the quality of the match result does not depend on the considered algorithms but on the
input datasets and the encryption method. The quality of the used encryption method has
already been evaluated in [SBR09, BRS13].

6.1 Experimental setup

In our experimental setup we largely follow the settings used in previous evaluations on
privacy-preserving record linkage such as [BRS13]. We utilize the data generator from
[Chr05] to generate five differently sized datasets of person records. Each dataset consists
of n records that are assigned to two subsetsR and S of size 1/5·n and 4/5·n respectively
such that R contains duplicate records of records in S (see Figure 7). The records are
tokenized into bigrams which are mapped to bit vectors of length l = 1000 using k = 20
hash functions. For each configuration, we apply a Jaccard similarity threshold of t = 0.8.
For the Multibit tree experiments, we use a Java implementation of the approach4 with the
clustering strategy split in half and the minimal node size of 6 (see Section 3).

All configurations of the first experiment are conducted single-threaded on a desktop ma-
chine with a 4-core 2.67GHz CPU and 4GB of main memory. For the second exper-
iment, we utilize two low-profile GPUs, namely a Nvidia GeForce GT 610 (48 CUDA
cores@810MHz, 1GB memory, 35e) and a Nvidia GeForce GT 540M (96 CUDA cores
@672MHz, 1GB memory). For the GPU-based comparisons, the datasets R and S are
split into partitions with a maximum size of 2, 000 records.

6.2 Comparing P4Join with Multibit Trees and NestedLoop

Figure 8 shows the achieved execution times for record linkage on the five datasets for a
naive nested loop implementation (evaluating the Cartesian product), the previously pro-
posed Multibit tree as well as the P4Join and its filters. As expected the execution times
increase substantially (almost quadratically) with the dataset size. The Multibit Tree ap-
proach consistently outperforms NestedLoop albeit only to a relatively small degree of less

4http://www.birc.au.dk/˜tgk/TanimotoQuery/

http://www.birc.au.dk/~tgk/TanimotoQuery/

Algorithm
Dataset size

100,000 200,000 300,000 400,000 500,000

Nested loop 6.10 27.68 66.07 122.02 194.77

Multibit Tree 4.68 18.95 40.63 78.23 119.73

P4Join, length filter only 3.38 20.53 46.48 88.33 140.73

P4Join, length + prefix filter 3.77 22.98 52.95 99.72 159.22

P4Join, all filters 2.25 15.50 40.05 77.80 125.52

Figure 8: Runtime in minutes for P4Join with different filters compared with the nested loop and
multibit tree approaches

than a factor of 2. This shows already that the applied filtering and reduction of the search
space are not so significant if the similarity computations are cheap which is the case for
computing the Taminoto similarity on bit arrays. This also limits the effectiveness of the
P4Join implementation for which we separate the results based on the use of the different
filters.

The best results are achieved by applying all filters including the new position filter. In
this case we achieve similarly good results than for the Multibit Tree. Most of the savings
in execution time compared to NestedLoop are already achieved by the length filter which
can exclude many comparisons with a simple length check. By contrast the prefix and
position filters incur a check per record pair which may be unsuccessful and at best saves
a single comparison which is not much more expensive for bit arrays than the filter check.
This was especially a limitation for the prefix filter that did not pay off in combination with
the length filter. To explain this somewhat surprising result we checked more closely the
record and prefix characteristics. We observed that for our settings the generated bit arrays
have an average cardinality of 300 and an average prefix length of 60. Such large prefixes
lead to a high probability of non-empty intersections so that relatively few comparisons
could be saved while the overhead of the prefix check occurs for every record pair passing
the length filter.

P4Join preprocessing was generally very fast compared the whole execution time. It var-
ied from 6s for the smallest dataset (100, 000 records) to 24s for the largest (500, 000
records),i.e. less than 0.3% of complete execution time.

6.3 GPU-based results

The relatively slow improvements in execution time show the need for more optimizations
such as the use of parallel processing. As outlined in Section 5, the simplicity of P4Join
made it possible to develop a parallel implementation for GPUs that we evaluate now.

Figure 9 shows the achieved execution times for the five datasets on the two considered
graphic cards. We also present results for the hybrid case when we use three CPU threads

Graphic Card
Dataset size

100,000 200,000 300,000 400,000 500,000

GeForce GT 610 0.33 1.32 2.95 5.23 8.15

GeForce GT 610 + 3CPUs 0.30 1.15 2.57 4.50 7.03

GeForce GT 540M 0.28 1.08 2.41 4.28 6.67

GeForce GT 540M + 3CPUs 0.22 0.87 1.95 3.45 5.43

Figure 9: Runtime in minutes of two different graphic cards, also in hybrid mode with 3 CPU
threads.

for similarity computation in addition to the GPUs. We observe that both GPUs allow
huge improvements in efficiency by reducing execution times by more than a factor 10
and a factor 15-20 for the largest dataset compared to the sequential CPU execution of
P4Join. The hybrid approach allows a further improvement by 10-20% by utilizing the
CPU threads for additional parallelism and saved data transfers to the GPU. For the largest
dataset we could thus improve the execution time to only about 5 minutes compared to
125 minutes for the sequential P4Join execution and 195 minutes for NestedLoop.

The results show the high potential of executing P4Join in parallel and that both GPU and
CPU parallelism can be effectively combined.

7 Conclusions and Future Work

We showed how the PPJoin approach for similarity joins can be adapted to privacy-preserving
record linkage where sensitive records are encrypted by bit arrays. The new approach
called P4Join supports a length, prefix and an optimized position filter. We also showed
how P4Join can be executed in parallel on GPUs. Our evaluation revealed that the efficient
similarity computation for bit arrays reduces the optimization potential for filter techniques
such as the ones in PPJoin and other similarity join implementations. Still the proposed
P4Join approach and especially the length filter and the new position filter proved to be
effective in reducing the execution time. The biggest performance gains are achieved by
the parallel computation on GPUs with a speedup of up to 20 even for low-profile graphic
cards.

We see a strong need for further research on improving the efficiency of PPRL schemes
to support their scalability to very large datasets. First, the almost quadratic increase of
execution times w.r.t input size needs to be improved, e.g. by the use of tailored block-
ing mechanisms. Furthermore, parallel processing should be employed more comprehen-
sively, in particular on clusters of processing nodes in addition to the node-specific parallel
record linkage using GPUs and several CPU cores.

References

[AGK06] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient Exact Set-Similarity
Joins. In Proceedings of the 32nd International Conference on Very Large Data Bases,
pages 918–929, 2006.

[ALM05] Ali Al-Lawati, Dongwon Lee, and Patrick McDaniel. Blocking-Aware Private Record
Linkage. In Proceedings of 2nd International Workshop on Information Quality in
Information Systems, pages 59–68, 2005.

[BMS07] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling Up All Pairs
Similarity Search. In Proceedings of the 16th International Conference on World Wide
Web, pages 131–140, 2007.

[BRS13] Tobias Bachteler, Jörg Reiher, and Rainer Schnell. Similarity Filtering with Multi-
bit Trees for Record Linkage. Technical Report WP-GRLC-2013-01, German Record
Linkage Center, 2013.

[CGK06] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A Primitive Operator for
Similarity Joins in Data Cleaning. In Proceedings of the 22nd International Conference
on Data Engineering, 2006.

[Chr05] Peter Christen. Probabilistic Data Generation for Deduplication and Data Linkage.
In Proceedings of 6th International Conference on Intelligent Data Engineering and
Automated Learning, pages 109–116, 2005.

[Chr12a] Peter Christen. A Survey of Indexing Techniques for Scalable Record Linkage and
Deduplication. IEEE Transactions on Knowledge and Data Engineering, 24(9):1537–
1555, 2012.

[Chr12b] Peter Christen. Data Matching - Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Data-centric systems and applications. Springer,
2012.

[Coh00] William W. Cohen. Data Integration Using Similarity Joins and a Word-Based Informa-
tion Representation Language. ACM Transactions on Information Systems, 18(3):288–
321, 2000.

[DN11] Uwe Draisbach and Felix Naumann. A Generalization of Blocking and Windowing
Algorithms for Duplicate Detection. In Proceedings of 5th International Conference on
Data and Knowledge Engineering, pages 18–24, 2011.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate
Record Detection: A Survey. IEEE Transactions on Knowledge and Data Engineering,
19(1):1–16, 2007.

[FPS+13] Benedikt Forchhammer, Thorsten Papenbrock, Thomas Stening, Sven Viehmeier, Uwe
Draisbach, and Felix Naumann. Duplicate Detection on GPUs. In Proceedings of the
15th Conference on Database Systems for Business, Technology, and Web, pages 165–
184, 2013.

[HCKS08] Marios Hadjieleftheriou, Amit Chandel, Nick Koudas, and Divesh Srivastava. Fast
Indexes and Algorithms for Set Similarity Selection Queries. In Proceedings of the
24th International Conference on Data Engineering, pages 267–276, 2008.

[HKGR13] Michael Hartung, Lars Kolb, Anika Groß, and Erhard Rahm. Optimizing Similarity
Computations for Ontology Matching - Experiences from GOMMA. In Proceedings of
the 9th International Conference on Data Integration in the Life Sciences, pages 81–89,
2013.

[JLFL14] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. String Similarity Joins: An
Experimental Evaluation. Proceedings of the VLDB Endowment, 7(8):625–636, 2014.

[KM06] Adam Kirsch and Michael Mitzenmacher. Less Hashing, Same Performance: Building
a Better Bloom Filter. In Algorithms - ESA 2006, 14th Annual European Symposium,
pages 456–467, 2006.

[KNP10] Thomas Greve Kristensen, Jesper Nielsen, and Christian N. S. Pedersen. A tree-based
method for the rapid screening of chemical fingerprints. Algorithms for Molecular
Biology, 5:9, 2010.

[KR10] Hanna Köpcke and Erhard Rahm. Frameworks for entity matching: A comparison.
Data & Knowledge Engineering, 69(2):197–210, 2010.

[KTR10] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution ap-
proaches on real-world match problems. Proceedings of the VLDB Endowment, 3(1),
2010.

[KTR12] Lars Kolb, Andreas Thor, and Erhard Rahm. Dedoop: Efficient Deduplication with
Hadoop. Proceedings of the VLDB Endowment, 5(12):1878–1881, 2012.

[MF12] Ahmed Metwally and Christos Faloutsos. V-SMART-Join: A Scalable MapReduce
Framework for All-Pair Similarity Joins of Multisets and Vectors. Proceedings of the
VLDB Endowment, 5(8):704–715, 2012.

[NKH+13] Axel-Cyrille Ngonga Ngomo, Lars Kolb, Norman Heino, Michael Hartung, Sören Auer,
and Erhard Rahm. When to Reach for the Cloud: Using Parallel Hardware for Link Dis-
covery. In Proceedings of the 10th International Extended Semantic Web Conference,
pages 275–289, 2013.

[RLW+13] Chuitian Rong, Wei Lu, Xiaoli Wang, Xiaoyong Du, Yueguo Chen, and Anthony K. H.
Tung. Efficient and Scalable Processing of String Similarity Join. IEEE Transactions
on Knowledge and Data Engineering, 25(10):2217–2230, 2013.

[SBR09] Rainer Schnell, Tobias Bachteler, and Jörg Reiher. Privacy-preserving record linkage
using Bloom filters. BMC Med. Inf. & Decision Making, 9:41, 2009.

[SBR11] Rainer Schnell, Tobias Bachteler, and Jörg Reiher. A Novel Error-Tolerant Anonymous
Linking Code. Technical Report WP-GRLC-2011-02, German Record Linkage Center,
Duisburg, 2011.

[Sch14] Rainer Schnell. An efficient privacy-preserving record linkage technique for adminis-
trative data and censuses. Statistical Journal of the IAOS, 30(3):263–270, 2014.

[Sch15] Rainer Schnell. Privacy Preserving Record Linkage. In Katie Harron, Harvey Goldstein,
and Chris Dibben, editors, Methodological Developments in Data Linkage. Wiley, 2015.
To appear.

[SHC14] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. ClusterJoin: A Similarity Joins
Framework using Map-Reduce. Proceedings of the VLDB Endowment, 7(12):1059–
1070, 2014.

[VCL10] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins
using MapReduce. In Proceedings of the International Conference on Management of
Data, pages 495–506, 2010.

[VCV13] Dinusha Vatsalan, Peter Christen, and Vassilios S. Verykios. A taxonomy of privacy-
preserving record linkage techniques. Information Systems, 38(6):946–969, 2013.

[WLF10] Jiannan Wang, Guoliang Li, and Jianhua Feng. Trie-Join: Efficient Trie-based String
Similarity Joins with Edit-Distance Constraints. Proceedings of the VLDB Endowment,
3(1):1219–1230, 2010.

[XWL08] Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-Join: An Efficient Algorithm for Sim-
ilarity Joins With Edit Distance Constraints. Proceedings of the VLDB Endowment,
1(1):933–944, 2008.

[XWLY08] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient Similarity Joins
for Near Duplicate Detection. In Proceedings of the 17th International Conference on
World Wide Web, pages 131–140, 2008.

	Introduction
	Preliminaries
	Set similarity joins and length filter
	Privacy Preserving Record Linkage

	Related Work
	Adaptation of PPjoin for Encrypted Data
	Prefix Filter
	Position Prefix Join (PPJoin)
	PPJoin for Encrypted Data (P4Join)

	Matching Encrypted Data with GPUs
	Preprocessing
	Massively-parallel Record Linkage

	Evaluation
	Experimental setup
	Comparing P4Join with Multibit Trees and NestedLoop
	GPU-based results

	Conclusions and Future Work

