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Abstract. Medical forms are frequently used to document patient data
or to collect relevant data for clinical trials. It is crucial to harmonize
medical forms in order to improve interoperability and data integration
between medical applications. Here we propose a (semi-) automatic anno-
tation of medical forms with concepts of the Unified Medical Language
System (UMLS). Our annotation workflow encompasses a novel seman-
tic blocking, sophisticated match techniques and post-processing steps to
select reasonable annotations. We evaluate our methods based on refer-
ence mappings between medical forms and UMLS, and further manually
validate the recommended annotations.
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1 Introduction

Medical forms are frequently used to document patient data within electronic
health records (EHRs) or to collect relevant data for clinical trials. For instance,
case report forms (CRFs) ask for different eligibility criteria to include or exclude
probands of a study or to document the medical history of patients. Currently,
there are more than 180,000 studies registered on http://clinicaltrials.gov and
every clinical trial requires numerous CRFs for data collection. Often these forms
are created from scratch without considering existing CRFs from previous trials.
Thus, there is a huge amount and diversity of existing medical forms until now,
and this number will increase further. As a consequence, different forms can be
highly heterogeneous impeding the interoperability and data exchange between
different clinical trials and research applications.

To overcome such issues, it is important to annotate medical forms with
concepts of standardized vocabularies such as ontologies [6]. In the biomed-
ical domain, annotations are frequently used to semantically enrich real-world
objects. For instance, the well-known Gene Ontology (GO) is used to describe
molecular functions of genes and proteins [10], scientific publications in PubMed
are annotated with concepts of the Medical Subject Headings (MeSH) [13],
and concepts of SNOMED CT [5] are assigned to EHRs supporting clinical
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applications like diagnosis or treatment. These diverse use cases for annota-
tions show that they can represent a variety of relationships between real-world
objects improving semantic search and integration for comprehensive analysis
tasks. In particular, ontology-based annotations of medical forms facilitate the
identification of similar questions (items) and commonly used medical concepts.
Well-annotated items can be re-used to design new forms avoiding an expensive
re-definition in every clinical trial. Moreover, the integration of results from dif-
ferent trials will be improved due to better compatibility of annotated forms.
Beside clinical trials, also other medical applications like routine documenta-
tion in hospitals can profit from form annotation. For instance, the fusion of
two or more hospitals requires the integration of hospital data which will be
less complex if data semantics are well-defined due to the use of ontology-based
annotations.

The open-access platform Medical Data Models (MDM)1 already aims at
creating, analyzing, sharing and reusing medical forms in a central metadata
repository [4]. Currently, MDM provides more than 9,000 medical form versions
and over 300,000 items. Beside overcoming technical heterogeneities (e.g. dif-
ferent formats), MDM intends to semantically enrich the medical forms with
concepts of the widely used Metathesaurus of the Unified Medical Language
System (UMLS) [2], a huge integrated data source covering more than 100 dif-
ferent biomedical vocabularies. So far, medical experts could assign UMLS con-
cepts to items of some medical forms in MDM, but many forms have no or only
preliminary annotations. However, such a manual annotation process is a very
time-consuming task considering the high number of available forms within and
beyond MDM as well as the huge size of UMLS (> 2.8 Mio. concepts). Thus,
it is a crucial aim to develop automatic annotation methods supporting human
annotators with recommendations.

The automatic annotation of medical forms is challenging since questions
are written in free text, use different synonyms for the same semantics and
can cover several different medical concepts. Moreover, the huge size of UMLS
makes it difficult to identify correct medical concepts. So far, there has been
some research on processing and annotation of different kinds of medical texts
(e.g. [9,12,19]). However, (semi-) automatic annotation of medical forms has only
rarely been studied (see Related Work in Sect. 5). We propose an initial solution
to semi-automatically annotate medical forms with UMLS concepts and make
the following contributions:

– We first discuss the challenges to be addressed for automatically annotating
items in medical forms (Sect. 2).

– We propose an annotation workflow to automatically assign UMLS concepts
to items of medical forms. The workflow encompasses three phases: a novel
semantic blocking to reduce the search space, a matching phase and a post-
processing phase employing a novel grouping method to finally select the
correct annotations (Sect. 3).

– We evaluate our approaches based on reference mappings between MDM forms
and UMLS. Results reveal that we are able to annotate medical forms in a

1 www.medical-data-models.org/?locale=en.
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largely automatic way. We further manually verify recommended annotations
and present results for this semi-automatic annotation (Sect. 4).

Finally, we discuss related work in Sect. 5 and conclude in Sect. 6.

Fig. 1. Example medical form items and associated annotations to UMLS concepts.
(CRF = ‘Chronic Renal Failure’ = ‘Chronic Kidney Failure’).

2 Challenges

The automatic annotation of medical forms requires first of all the correct iden-
tification of medical concepts in form items. Figure 1 illustrates three annotated
items: (a) and (b) ask for eligibility criteria for a study w.r.t. anemia, and item
(c) asks for the abnormality ‘ulcerating plaque’ in the context of a quality assur-
ance form. An item consists of the actual question and a response field or list
of answer options. In our example, question (c) has one annotation, whereas
(a) and (b) are annotated with three UMLS concepts. Thus, one form item can
address several different aspects like diseases (e.g. CRF, anemia), treatments or a
patient’s response to a treatment. In the following we discuss general challenges
that need to be addressed during the annotation process.

Natural Language Items: Typically, a form consists of a set of items. Ques-
tions can be short phrases like in item (c) or longer sentences written in free text
(Fig. 1(a), (b)). It is a difficult task to correctly identify medical concepts in these
natural language sentences. Moreover, the use of different synonyms complicate
a correct annotation, e.g. in Fig. 1(a) ‘CRF ’ (= Chronic Renal Failure) needs
to be assigned to C0022661 (‘Kidney Failure, Chronic’). Simple string matching
methods are not sufficient to generate annotations of high quality for medical
form items. We will thus apply NLP (natural language processing) techniques
such as named entity recognition and document-based similarity measures like
TF/IDF to identify meaningful medical concepts that can be mapped to UMLS.

Complex Mappings: Every question can contain several medical concepts and
one UMLS concept might be mapped to more than one question. In our example
in Fig. 1 three UMLS concepts need to be assigned to questions (a) and (b) and
the concept ‘anemia’ occurs in both questions. By contrast, question (c) is only
annotated with one concept. Thus, we might need to identify complex N:M
mappings and do not know a priori how many medical concepts need to be tagged
to one item. Conventional match techniques often focus on the identification of
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1:1 mappings, but solely assigning one source concept to one target concept is a
much simpler task. We thus need to develop sophisticated match techniques to
correctly annotate items with several UMLS concepts.

Number and Size of Data Sources: There is high number of forms (e.g.
9000 only in MDM) that need be to annotated and every form can contain tens
to hundreds of items. Moreover, UMLS Metathesaurus is a very large biomed-
ical data source covering more than 2.8 million concepts. Matching 100 forms
each comprising only 10 items to the whole UMLS would already require 2.8
billion comparisons. On the one hand this leads to serious issues w.r.t. mem-
ory consumption and execution time. On the other hand it is extremely hard
to identify correct annotations in such a huge search space. It is thus essen-
tial to apply suitable blocking schemes to reduce the search space and restrict
automatic annotation to the most relevant subset of UMLS.

Instances: Form items are not only characterized by medical concepts in the
actual question but also by its possible instances or response options. Item
answers have a data type (e.g. Boolean ‘yes/no’ in Fig. 1) and might be associ-
ated with value scales (e.g. between 1 and 5) or specific units (e.g. mg, ml). Often
possible answers are restricted to a list of values (e.g. a list of symptoms). To
improve the comparability of different forms, such instance information should
be semantically annotated with concepts of standardized terminologies. In this
paper, we focus on the annotation of item questions but see a correct annotation
of answer options as an important future challenge.

In summary, the automatic identification of high-quality annotations for med-
ical forms is a difficult task. However, studying automatic annotation is very
useful to support human experts with recommendations. For a semi-automatic
annotation process it is especially important to identify a high number of cor-
rect annotations without generating too many false positives. Thus, achieving
high recall values is a major goal while precision should not be too low, since the
number of presented recommendations should be manageable for human experts.
Moreover, a fast computation of annotation candidates is desirable to support
an interactive annotation process. To address these challenges, we present a
workflow for semi-automatic annotation of medical forms in the following.

3 Annotation Workflow

Our annotation workflow semantically enriches a set of medical forms by assign-
ing UMLS concepts to form questions. An annotation is an association between a
question and an UMLS concept. UMLS concepts are identified by their Concept
Unique Identifiers (CUI) and are further described by attributes like a preferred
name or synonyms. To identify annotations for a given medical form F , we deter-
mine a mapping M between the set of form questions F = {q1, q2, ..., qk} and
the set of UMLS concepts UMLS = {cui1, cui2, ..., cuim}. The mapping covers
a set of annotations and is defined as:

MF,UMLS = {(q, cui, sim)|q ∈ F, cui ∈ UMLS, sim ∈ [0, 1]}.
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Fig. 2. Overview of the annotation workflow.

A question q in a form F is annotated with a concept cui from UMLS. Our
automatic annotation method computes a similarity value sim indicating the
strength of a connection. Greater sim values denote a higher similarity between
the question and the annotated concept. Our annotation workflow (see Fig. 2)
consists of three main phases that address the challenges discussed in Sect. 2.
The input is a set of medical forms F1, . . . , Fn each comprising a set of item
questions as well as the UMLS Metathesaurus. During preprocessing we further
use the UMLS Semantic Network and a subset of annotated forms. The output
is a set of annotation mappings MF1,UMLS , . . . ,MFn,UMLS .

– In the Preprocessing phase we normalize input questions and UMLS concepts.
Since a medical form is usually only associated to some domains covered by
UMLS, we develop a novel semantic blocking technique to identify relevant
concepts for the annotation generation. The approach is training-based and
involves semantic types of UMLS concepts.

– In the Mapping Generation phase we identify annotations by matching the
questions to names and synonyms of relevant UMLS concepts. We use a com-
bination of a document retrieval method (TF/IDF) and classic match tech-
niques (Trigram, LCS (Longest Common Substring)). By doing so we are able
to identify complex annotation mappings for long natural language sentences
as well as annotations to single concepts for shorter questions.

– During Postprocessing we remove probably wrong annotations to obtain a
manageable set of relevant annotations for expert validation. Beside thresh-
old selection we apply a novel group-based filtering to address the fact that
questions might cover several medical concepts. For each question, we cluster
similar concepts and keep only the best matching one per group.

Our workflow generates annotation recommendations which should be verified
by domain experts since automatic approaches can not guarantee a correct anno-
tation for all items. In the following, we discuss the methods in more detail.

3.1 Preprocessing

During preprocessing, we normalize the questions of a medical form as well as
names and synonyms of UMLS concepts. In particular, we transform all string
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Fig. 3. Semantic blocking workflow. NER = Named Entity Recognition.

values to lower case and remove delimiters. We then remove potentially irrelevant
parts of item questions. For instance, prepositions or verbs are typically part of
natural language sentences, however they rarely cover information on medical
concepts. We therefore apply a part-of-speech (POS) tagger2 and keep only
nouns, adjectives, adverbs and numbers/cardinals. We tokenize all strings into
trigrams and word-tokens for the later annotation generation.

We further apply a semantic blocking to reduce the size of UMLS. UMLS
Metathesaurus is a huge data source covering a lot of different subdomains. How-
ever, medical forms are usually only associated to a part of UMLS such that a
comparison to the whole Metathesaurus should be avoided. We therefore aim
at reducing UMLS by removing concepts that are probably not relevant for the
annotation process. Our semantic blocking technique involves the UMLS Seman-
tic Network. It covers 133 different semantic types and every UMLS concept is
associated to at least one of the types. Our blocking technique follows a training-
based approach and uses Named Entity Recognition (NER) to identify relevant
semantic types for item questions. The general procedure is depicted in Fig. 3.

First, we build a training set T based on a subset of manually annotated
forms AF . For each question in AF , we identify annotated named entities.
Therefore, we compute the longest common part between a question and the
names/synonyms of its annotated UMLS concepts. We then tag the identified
question parts with the semantic types of the corresponding UMLS concept.
Figure 4 illustrates an example for the training set generation. The given question
is annotated with two UMLS concepts. The longest common part of the question
and the concept C0020517 is Hypersensitivity, while C0015506 corresponds to
the question part Factor VIII. Thus, Hypersensitivity is tagged with the seman-
tic type of C0020517 (‘Pathologic Function’ ) and Factor VIII is labeled with
‘Amino Acid, Peptide, or Protein’. Based on the tagged training set T of forms
AF we learn a NER-model M using the Open-NLP framework3. Our semantic
blocking (see Fig. 3) then performs a named entity recognition using the model
M to a non-annotated set of forms F . By doing so, we can recognize named enti-
ties for the questions in F and identify a set of relevant semantic types S. Finally,
we reduce the UMLS Metathesaurus to those concepts that are associated to a
semantic type in S and obtain the filtered UMLS′.

2 http://nlp.stanford.edu/software/tagger.shtml.
3 https://opennlp.apache.org/.

http://nlp.stanford.edu/software/tagger.shtml
https://opennlp.apache.org/
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Fig. 4. Training set generation: example for tagging a question with semantic types.

3.2 Matching Phase

We generate annotation mappings between a set of medical forms F1, . . . , Fn

and the reduced UMLS′ using a combination of a document retrieval method
(TF/IDF ) and classic match techniques (ExactMatch, Trigram, LCS ). These
methods can complement each other such that we are able to identify com-
plex annotation mappings for long natural language sentences as well as shorter
questions covering only one concept. To generate annotations for each considered
form, we compute similarities between all questions of a form and every concept
in UMLS′. Note that, we tokenized strings during preprocessing. To enable an
efficient matching, we encode every token (word or trigram), and compare inte-
ger instead of string values. Furthermore, we separate UMLS into smaller chunks
and distribute match computations among several threads.

We apply for each question the three match methods. Trigram compares
a question with concept names and synonyms, identifies overlapping trigram
tokens, and computes similarities based on the Dice Metric. This is useful for
shorter questions that slightly differ from the concept to be assigned. In our
example in Fig. 1 the annotation for item (c) ‘Ulcerating plaque’ needs to be
assigned to the concept C0751634 (‘Carotid Ulcer ’). This correspondence can be
identified by the synonym ‘Carotid Artery Ulcerating Plaque’ of C0751634. Since
there is only a partial overlap, it is feasible to identify the longest sequence of
successive common word-tokens (LCS ) between a question and a concept. LCS
is also useful for complex matches when a question contains several medical
concepts, e.g., ‘recombinant erythropoietin’ and ‘anemia’ in item (b) (Fig. 1).

Moreover, we use TF/IDF to especially reward common, but infrequent
tokens between questions and UMLS concepts. For instance, in medical forms
the token ‘patient’ occurs essentially more often then ‘erythropoietin’. Thus,
the computed similarity value should be higher for matches of rarely occurring,
meaningful tokens compared to frequent tokens that appear in many questions
and concepts. We compute tf-idf values for each token w.r.t. a question and an
UMLS concept. The term frequency (tf) denotes the frequency of a token within
the considered question or concept while the inverse document frequency (idf)
characterizes the general meaning of a token compared to the total set of tokens.
The tf-idf values are then used to compute the similarity between a token vec-
tor of the question and a token vector for names and synonyms of an UMLS
concept. We choose a hamming-distance based measure to compare two token
vectors. We compute distances between tf-idf values of two token vectors and
normalize it based on the vector length. The normalized distance is converted
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Fig. 5. Group-based filtering for two questions q1 and q2 and their annotations to
concepts c1−4. Uniformly colored concepts represent a group of similar concepts.

into a similarity value. We assign a smaller weight to the length of the longer
vector to address cases, when one string consists of considerably more tokens
than the other one, as this occurs for annotating long sentences. Thus, the mea-
sure does not penalize differences that are triggered by a differing vector length.
High similarities between a shorter and a longer token vector can be achieved
when a considerable number of meaningful tokens are contained in both vectors.

The generated annotation mappings are finally unified and similarities are
aggregated by selecting the maximum sim value of a correspondence identified
of several match methods to maximize the recall. Note that, we optimize the
precision by performing the postprocessing phase. The match methods can iden-
tify overlapping results, but complement each other since they address different
aspects of document and string similarity. We choose to adopt the three match
methods in order to achieve a good recall by finding simple 1:1 as well as complex
mappings for longer questions.

3.3 Postprocessing

Beside a simple threshold filtering, we apply a more sophisticated postprocessing
step to filter the generated annotation mapping. Our aim is to identify all anno-
tations to a question that are likely to be correct, i.e. to obtain high recall values.
However, the result should not contain too many false positives in order to obtain
a manageable set of recommendations to be presented to human experts. This
is a complicated task when questions cover more than one medical concept, i.e.
when we need to identify complex mappings. A simple approach would be to
select the top k similar concepts for each question. However, it is possible that
several annotations for the same medical concept in a question are among the
top k. A top k selection could eliminate all annotations of medical concepts with
lower sim values. We therefore apply a novel group-based filtering.

The group-based filtering first clusters concepts that are likely to belong to
the same medical concept and then selects the most similar concept within a
group. Figure 5 exemplarily describes the overall procedure for two questions q1
and q2 and their annotations to several concepts. Given a set of annotations for
a question, we compute similarities between all UMLS concepts that are anno-
tated to a question using trigram matching on concept names and synonyms.
We than cluster concepts in one group if their similarity exceeds the required
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simgroup threshold. In our example, we compare c1, c2 and c3 for q1, and identify
two groups ({c1, c2}, {c3}). c1 and c2 are very similar (simgroup ≥ 0.7), while
c3 builds an own group. Finally, the best annotation per group is selected to
be included in the final mapping based on the annotation similarities from the
previous phase. For instance, we remove (q1, c2) due to the lower annotation sim-
ilarity within its group. Applying a simple top 2 selection would have preserved
(q1, c2) but removed (q1, c3), although (q1, c3) is likely to be the best match for
a different medical concept covered by question q1. Using the group-based filter-
ing, we are able to keep one annotation for each medical concept in a question
and thus allow for complex annotation mappings. In the following, we evaluate
the proposed annotation methods for real-world medical forms.

4 Evaluation

To evaluate the proposed annotation workflow we consider three datasets cov-
ering medical forms from the MDM portal [4]. Figure 6 gives an overview on
the number of considered forms, the average number of items per form, the
average number of tokens per item question and the average number of anno-
tations per item. The first set of medical forms considers eligibility criteria
(EC) that are used for patient recruitment in clinical trials w.r.t. diseases
like Diabetes Mellitus or Epilepsy. The dataset covers 25 medical forms each

Fig. 6. Overview of the used datasets.

comprising about 20 items on average. To
recruit trial participants, a precise def-
inition of inclusion and exclusion crite-
ria is required, such that most questions
are long natural language sentences (∼8
tokens on average) possibly covering sev-
eral medical concepts. A correct identi-

fication of all annotations is very challenging for this dataset. Moreover, we
consider medical forms for standardized quality assurance (QA) w.r.t. cardio-
vascular procedures. Since 2000 all German health service providers are obliged
by law to apply these QA forms to prove the quality of their services [3]. The
23 QA forms contain about 49 items on average, but questions are shorter (∼3
tokens on average). We further consider a set of top items (TI) from the MDM
portal. In [20], these items have been manually reduced to the relevant semantic
question parts resulting in a low token number per question. We handle the 101
top items as one medical form. For UMLS, we only consider concepts that pos-
sess a preferred name or term, which is the case for ∼1 Mio. UMLS concepts.
We involve names and synonyms of these UMLS concepts.

To evaluate the quality of automatically generated annotation mappings we
use reference mappings between all considered MDM forms and UMLS. Our team
consists of computer scientists as well as medical experts (two physicians), such
that we could manually create the reference mappings based on expert knowledge.
We compute precision, recall and F-measure for the annotation mappings of every
medical form and show average values for the respective dataset (EC, QA or TI).
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Fig. 7. Semantic blocking: quality differences (left) and execution time (right) for QA
and EC, comparison of trigram without (Tri) and with semantic blocking (Tri+Blo).

Note, that the average of F-measures is not equal to a harmonic mean of aver-
age precision and average recall. Since a manual annotation is a difficult and
time-consuming task, the initial reference mappings might not be complete. We
therefore follow a semi-automatic annotation approach and manually validate
the automatically generated annotations for the QA dataset to find further cor-
rect annotations (see Sect. 4.4). We first show evaluation results for EC and QA
w.r.t. the methods of our annotation workflow (Sects. 4.1 and 4.2) and then give
an overview on results for all datasets (Sect. 4.3).

4.1 Semantic Blocking

To evaluate our semantic blocking approach we measure the quality of the gen-
erated annotation mappings as well as matching execution times. We run exper-
iments on an Intel i7–4770 3.4 GHz machine with 4 cores. Our aim is to reduce
execution times without affecting the recall. The generation of training data is
an important step for the semantic blocking. So far, we generated training data
by randomly selecting half of the manually annotated datasets. Note, that the
training sets have some bias since we consider a special type of medical forms,
namely eligibility criteria and quality assurance forms. However, it is feasible
to choose relevant semantic types in UMLS based on form annotations in the
considered domain. It is an interesting point for future work to study the train-
ing set generation for the semantic blocking in more detail. We evaluate the
impact of the semantic blocking using a basic trigram matching (Tri) without
group-based filtering (threshold t = 0.8). Figure 7 shows quality differences and
execution time results for QA and EC. The overall number of tokens was to small
to apply the named entity recognition for TI. Applying the semantic blocking
(Blo), UMLS could be reduced to ∼600.000 concepts. This results in good exe-
cution time reductions of 26–36 % for both datasets. However, we observe for
each dataset a reduction of the quality of −0.5% for EC and −4.73% for QA.
In both cases, the semantic blocking might be too restrictive by filtering some
relevant UMLS concepts. A reason might be that the selection of our training
set is not representative for the unannotated set of forms. We plan to further
study the NER model generation to improve the blocking of UMLS concepts.
Overall, our semantic blocking leads to good execution time reductions by fairly
preserving recall values.
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Fig. 8. Quality evaluation: comparison of trigram (Tri), combined matching (Comb)
and group-based filtering (Tri+Group and Comb+Group) for QA forms.

4.2 Matching and Group-Based Filtering

We now generate annotation mappings by using a simple trigram matching (Tri),
compare it to our combined match strategy based on TF/IDF, Trigram and LCS
(Comb), and evaluate the impact of the group-based filtering (Group) for the QA
dataset (see Fig. 8). We disable the blocking for this experiment and consider
different threshold settings to evaluate the annotation quality. The combined
match approach leads to higher recall values for all thresholds compared to tri-
gram, since Comb detects a higher number of correct annotations compared to
the single matcher. In particular, the combined matching achieves the best recall
of ∼66 % (t = 0.6) which is 17 % more than for trigram. Trigram is more restric-
tive and results in higher precision values, such that the overall F-measure is
better for low thresholds. In general, increasing the threshold improves the over-
all annotation quality due to a higher precision, e.g. for t = 0.8 the F-measure
is 15 % higher than for t = 0.6 (Comb). However, we want to find a high num-
ber of correct annotations (high recall) during the annotation generation phase.
Therefore, we then filter wrong correspondences using our group-based selection
strategy (Fig. 8 right). This leads to significantly improved precision values and
preserves the high recall. Since the combined match strategy results in higher
recall values than the trigram matching, the F-measure values of the combined
match strategy with the group-based selection (Comb+Group) are better than
the trigram matching with the group-based selection (Tri+Group). For t = 0.7,
we achieve the best average F-measure of 57 % for the QA dataset. Thus, the
group-based filtering is a valuable selection strategy to remove wrong but keep
correct annotations.

4.3 Result Summary

To give a result overview w.r.t. the annotation quality, we show average F-measure
values for all datasets (EC, QA, TI) in Fig. 9. Since the semantic blocking
decrease the quality, we compare the trigram matching (Tri), trigram matching
with group-based filtering (Tri+Group) and combined matching with group-
based filtering (Comb+Group) Due to a different amount of free text within the
datasets, a uniform threshold not results in the best quality for each dataset, e.g.,
the TI dataset consists of mostly two words per item compared to the QA and EC
dataset which have mostly more than three words per item. Therefore, we calcu-
late the average for the thresholds 0.6, 0.7 and 0.8. The vertical lines indicate the
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Fig. 9. Comparison of effectiveness of the combined matching strategy and group-based
filtering approach for each dataset.

minimum and the maximum F-measure values for the underlying thresholds. We
observe for each dataset an increasing of F-measure by applying group-based fil-
tering compared to trigram matching. The precision increases heavily while most
correct annotations are preserved. Since the combined matching strategy results
in higher recall values than the trigram matching, the combination with group
filtering leads to better F-measure values such that the difference of best F-
measure values is ∼3 %(EC), ∼7 %(QA) and ∼0.5 %(TI). We achieve the best
F-measure of ∼85 % for TI followed by ∼57 % for QA and ∼35 % for EC.

The automatic annotation of the EC dataset showed to be very difficult, since
EC contains items with specifically long natural language sentences covering an
unknown number of medical concepts. The annotation of QA forms leads to
better results, but still needs improvement. For the annotation of the top items
(TI) we achieve very good results. These items have been manually reduced to the
relevant medical terms having a positive impact on the automatic assignment of
UMLS concepts for this dataset. The semantic blocking was valuable to reduce
executions times, and the combined match strategy together with the group-
based filtering showed to produce very good results compared to a simple trigram
matching. Overall, the automatic annotation of medical forms is a challenging
task and requires future research, e.g. to further improve the recall.

4.4 Validation

We applied a semi-automatic annotation for the QA dataset by manually vali-
dating recommendations generated by our automatic annotation workflow. We
computed mappings for all 23 QA forms using semantic blocking, combined
matching and group-based filtering. For every form and question, we presented
the expected correct annotations as well as our recommendations, and high-
lighted false negatives, false positives and true positives.

Medical experts could identify 213 new correct annotations out of the set of
false positives. We further found 5 wrong annotations in the reference mappings
based on our automatically generated recommendations. According to these find-
ings we adapted the QA reference mappings leading to an average F-measure
improvement of 9 % (for t = 0.7). Note, that we used these adapted QA ref-
erence mappings in the previous sections. Some of the recommendations were
especially valuable. In particular, we found correct UMLS concepts for 38 so far
not annotated questions, e.g.:
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The manual annotation of medical forms is difficult for curators. UMLS
Metathesaurus is very huge, and even for medical experts it is hard to find a
complete set of annotations. Sometimes it is difficult to decide for the correct con-
cept, since UMLS contains similar concepts that might be suitable for the same
medical concept in a question of a medical form [20]. Applying our automatic
annotation workflow led to new correct annotations and could even indicate
some false annotations. Our results point out the importance of semi-automatic
annotation approaches. Combining manual and automatic annotation techniques
(1) reduces the manual annotation effort and (2) leads to more complete and
correct overall results. Semi-automatic annotation is especially relevant, since
many medical forms are sparsely or not annotated. For instance, in MDM most
items are only pre-annotated and need to be curated again. Part of the forms
could not be annotated so far, and MDM is continuously extended by new non-
annotated forms. Medical forms in MDM and can be semantically enriched by
applying our annotation workflow in combination with expert validation.

5 Related Work

Our work on automatic annotation of medical forms is related to the areas of
information retrieval [15] and ontology matching [8,17]. Both research fields
have been studied intensively and provide useful methods to process free-
text and match identified concepts to standardized vocabularies. Our system
GOMMA [11] already allows for efficient and effective matching of especially
large life science ontologies and can be a basis to align items with concepts of
large ontologies. However, GOMMA does not provide methods to match free-text
like form items.

In the medical domain, manual and automatic annotation methods have
been studied to semantically enrich different kinds of documents. For instance,
in [9] the authors clustered similar clinical trials by performing nearest neighbor
search based on similarly annotated eligibility criteria. In [12] the application
of a dictionary-based pre-annotation method could improve the speed of man-
ual annotation for clinical trial announcements. The work in [19] focuses on
the manual annotation process by presenting a semantic annotation schema and
guidelines for clinical documents like radiology reports. The tool MetaMap [1]
allows to retrieve UMLS concepts in medical texts based on information retrieval
methods like tokenization and lexical lookup. In own initial tests by medical
experts, MetaMap annotation results were not sufficient for our purposes. More-
over, there is evidence in the literature that MetaMap results are not fine-grained
enough [14], contain too many spurious annotations [16] and do not cover map-
pings to longer medical terms [18]. In own previous work we already used man-
ual annotations to compare and cluster different medical forms from the MDM
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platform [7]. We further identified most frequent eligibility criteria in clinical
trial forms and performed a manual annotation for these top terms [20].

Previous research showed the usefulness of semantic annotations for different
kinds of clinical documents. However, the problem remains that annotations, in
particular, for medical forms are only sparsely available. So far, there is no auto-
matic annotation tool to support the semantic annotation of large medical form
sets as provided by MDM. In contrast to previous work on document annotation
in the medical domain, we here focus on the development of automatic annota-
tion methods for medical forms. In particular, we use a novel blocking technique
to reduce the complexity of UMLS as well as a combined match approach to
cope with shorter as well as free-text questions. A novel group-based filtering
allows to select the most likely set of question annotations to be presented for
further manual validation.

6 Conclusions and Future Work

We proposed a workflow to (semi-)automatically annotate items in medical forms
with concepts of UMLS. The automatic annotation is challenging since form
questions are often formulated in long natural language sentences and can cover
several medical concepts. The huge size of UMLS further complicates the anno-
tation generation. We used a combined match strategy and presented a novel
semantic blocking as well as a group-based filtering of annotations. We applied
our methods to annotate real-world medical forms from the MDM portal and per-
formed a manual validation of the generated annotations. Our methods showed
to be effective and we could generate valuable recommendations. Medical experts
can benefit from automatic form annotation since it reduces the manual effort
and can prevent from missing or incorrect annotations.

We see several directions for future work. We will extend our annotation
workflow to enable an adaptive matching which automatically determines the
thresholds and select a set of appropriate match approaches by considering use-
ful dataset characteristics. We further plan to annotate the instance information
of items, e.g. their response options or data types. To test whether recommen-
dations computed by different annotation methods can complement each other,
we will integrate results of other tools like MetaMap. Furthermore, we plan to
develop a reuse repository to facilitate the annotation of existing and creation
of new medical forms based on well-annotated items.
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