
Management and Analysis of Big Graph Data:
Current Systems and Open Challenges

Martin Junghanns1, André Petermann1, Martin Neumann2 and Erhard Rahm1

1Leipzig University, Database Research Group
2Swedish Institute of Computer Science

{junghanns,petermann,rahm}@informatik.uni-leipzig.de, mneumann@sics.se

Abstract. Many big data applications in business and science require
the management and analysis of huge amounts of graph data. Suitable
systems to manage and to analyze such graph data should meet a num-
ber of challenging requirements including support for an expressive graph
data model with heterogeneous vertices and edges, powerful query and
graph mining capabilities, ease of use as well as high performance and
scalability. In this chapter, we survey current system approaches for man-
agement and analysis of ”big graph data”. We discuss graph database
systems, distributed graph processing systems such as Google Pregel and
its variations, and graph dataflow approaches based on Apache Spark and
Flink. We further outline a recent research framework called Gradoop
that is build on the so-called Extended Property Graph Data Model with
dedicated support for analyzing not only single graphs but also collec-
tions of graphs. Finally, we discuss current and future research challenges.

1 Introduction

Graphs are ubiquitous and the volume and diversity of graph data are strongly
growing. The management and analysis of huge graphs with billions of enti-
ties and relationships such as the web and large social networks were a driving
force for the development of powerful and highly parallel big data systems. Many
scientific and business applications also have to process and analyze highly inter-
related data that can be naturally represented by graphs. Examples of graph data
in such domains include bibliographic citation networks [40], biological networks
[30, 110] or customer interactions with enterprises [88]. The ability of graphs to
easily link different kinds of related information make them a promising data or-
ganization for data integration [90] as demonstrated by the so-called linked open
data web1 or the increasing importance of so-called knowledge graphs providing
consolidated background knowledge [87], e.g., to improve search queries on the
web or in social networks.

The flexible and efficient management and analysis of ”big graph data” holds
high promise. At the same time it poses a number of challenges for suitable
implementations in order to meet the following requirements:

1 http://lod-cloud.net/



2 Management and Analysis of Big Graph Data

– Powerful graph data model: The graph data systems should not be limited
to the processing of homogeneous graphs but should support graphs with
heterogeneous vertices and edges of different types and with different at-
tributes without requiring a fixed schema. This flexibility is necessary for
many applications (e.g., in social networks, vertices may represent users or
groups and relationships may express friendships or memberships) and is im-
portant to support the integration of different kinds of data within a single
graph. Furthermore, the graph data model should be able to represent and
process single graphs (e.g., the social network) as well as graph collections
(e.g., identified communities within a social network). Finally, the graph data
model should provide a set of powerful graph operators to process and ana-
lyze graph data, e.g., to find specific patterns or to aggregate and summarize
graph data.

– Powerful query and analysis capabilities: Users should be enabled to retrieve
and analyze graph data with a declarative query language. Furthermore,
the systems should support the processing of complex graph analysis tasks
requiring the iterative processing of the entire graph or large portions of
it. Such heavy-weight analysis tasks include the evaluation of generic and
application-specific graph metrics (e.g., pagerank, graph centrality, etc.) and
graph mining tasks, e.g., to find frequent subgraphs or to detect communi-
ties in social networks. If a powerful graph data model is supported, the
graph operators of the data model should be usable to simplify the imple-
mentation of analytical graph algorithms as well as to build entire analysis
workflows including analytical algorithms as well as additional steps such as
pre-processing the input graph data or post-processing of analysis results.

– High performance and scalability: Graph processing and analysis should be
fast and scalable to very large graphs with billions of entities and relation-
ships. This typically requires the utilization of distributed clusters and in-
memory graph processing. Distributed graph processing demands an efficient
implementation of graph operators and their distributed execution. Further-
more, the graph data needs to be partitioned among the nodes such that the
amount of communication and dynamic data redistribution is minimized and
the computational load is evenly balanced.

– Persistent graph storage and transaction support: Despite the need for an
in-memory processing of graphs, a persistent storage of the graph data and
of analysis results is necessary. It is also desirable to provide OLTP (On-
line Transaction Processing) functionality with ACID transactions [55] for
modifying graph data.

– Ease of use / graph visualization: Large graphs or a large number of smaller
graphs are inherently complex and difficult to browse and understand for
users. Hence, it is necessary to simplify the use and analysis of graph data as
much as possible, e.g., by providing powerful graph operators and analysis
capabilities. Furthermore, the users should be able to interactively query and
analyze graph data similar to the use of OLAP (Online Analytical Process-
ing) for business intelligence. The definition of graph workflows should be
supported by a graphical editor. Furthermore, there should be support for



Management and Analysis of Big Graph Data 3

visualization of graph data and analysis results which is powerful, customiz-
able and able to handle big graph data.

Numerous systems have been developed to manage and analyze graph data, in
particular graph database systems as well as different kinds of distributed graph
data systems, e.g., for Hadoop-based cluster architectures. Graph database sys-
tems typically support semantically rich graph data models and provide a query
language and OLTP functionality, but mostly do not support partitioned storage
of graphs on distributed infrastructures as desirable for high scalability (Section
2). The latter aspects are addressed by distributed systems that we roughly
separate into distributed graph processing systems and graph dataflow systems.
Distributed graph processing systems include vertex-centric approaches such as
Google Pregel [78] and its variations and extensions including Apache Giraph
[4], GPS [101], GraphLab [76], Giraph++ [109] etc. (Section 3). On the other
hand, distributed graph dataflow systems (Section 4) are graph-specific exten-
sions (e.g., GraphX and Gelly) of general-purpose distributed dataflow systems
such as Apache Spark [118] and Apache Flink [21]. These systems support a set
of powerful operators (map, reduce, join, etc.) that are executed in parallel in a
distributed system separately or within analytical programs. The data between
operators is streamed for a pipelined execution. The graph extensions add graph-
specific operators and processing capabilities for the simplified development of
analytical programs including graph data.

Early work on distributed graph processing on Hadoop was based on the
MapReduce programming paradigm [103, 100]. This simple model has been used
for the development of different graph algorithms, e.g., [75, 49, 71]. However,
MapReduce has a number of significant problems [27, 81] that are overcome with
the newer programming frameworks such as Apache Giraph, Apache Spark and
Apache Flink. In particular, MapReduce is not optimized for in-memory process-
ing and tends to suffer from extensive overhead for disk I/O and data redistri-
bution. This is especially a problem for iterative algorithms that are commonly
necessary for graph analytics and can involve the execution of many expensive
MapReduce jobs. For these reasons, we will not cover the MapReduce-based
approaches for graph processing in this chapter.

In this chapter, we give an overview about the mentioned kinds of graph data
systems, and evaluate them with respect to the introduced requirements. In par-
ticular we discuss graph database systems and their main graph data models,
namely the resource description framework [70] and the property graph model
[97] (Sec. 2). Furthermore we give a brief overview about distributed graph pro-
cessing systems (Sec. 3) and graph dataflow systems with focus on Apache Flink
(Sec. 4). In Section 5, we outline a new research prototype supporting distributed
graph dataflows called Gradoop (Graph analytics on Hadoop). Gradoop im-
plements the so-called Extended Property Graph Data Model (EPGM) with
dedicated support for analyzing not only single graphs but also collections of
graphs. In Section 6, we compare the introduced system categories w.r.t. intro-
duced requirements in a summarizing way. Finally, we discuss current and future
research challenges (Sec. 7) and conclude.



4 Management and Analysis of Big Graph Data

2 Graph Databases

Research on graph database models started in the nineteen-seventies, reached
its peak popularity in the early nineties but lost attention in the two-thousands
[23]. Then, there was a comeback of graph data models as part of the NoSQL
movement [35] with several commercial graph database systems [22]. However,
these new-generation graph data models arose with only few connections to early
rather theoretical work on graph database models. In this section, we compare
recent graph database systems to identify trends regarding used data models
and their application scope as well as their analytical capabilities and suitability
for ”big graph data” analytics.

2.1 Recent graph database systems

Graph database systems are based on a graph data model representing data
by graph structures and providing graph-based operators such as neighborhood
traversal and pattern matching [22]. Table 1 provides an overview about re-
cent graph database systems including supported data models, their application
scope and the used storage approaches. The selection claims no completeness
but shows representatives from current research projects and commercial sys-
tems with diverse characteristics.

Supported data models: The majority of the considered systems supports one or
both of two data models, in particular the property graph model (PGM) and the
resource description framework (RDF). While RDF [70] and the related query
language SPARQL [57] are standardized, for the PGM [97] there exists only the
industry-driven de facto standard Apache TinkerPop2. TinkerPop also includes
the query language Gremlin [96]. A more detailed discussion of both data models
and their query languages follows in subsequent paragraphs.

A few systems are using generic graph models. We use the term generic
to denote graph data models supporting arbitrary user-defined data structures
(ranging from simple scalar values or tuples to nested documents) attached to
vertices and edges. Such generic graph models are also used by most graph pro-
cessing systems (see Section 3). The support for arbitrary data attached to
vertices and edges is a distinctive feature of generic graph models and can be
seen as a strength and a weakness at the same time. On the one hand, generic
models give maximum flexibility and allow users to model other graph models
like RDF or the PGM. On the other hand, such systems cannot provide built-in
operators related to vertex or edge data as the existence of certain features like
type labels or attributes are not part of the database model.

Application scope: Most graph databases focus on OLTP workload, i.e., CRUD
operations (create, read, update, delete) for vertices and edges as well as trans-
action and query processing. Queries are typically focused on small portions of
the graph, for example, to find all friends and interests of a certain user. Some of
the considered graph databases already show built-in support for graph analyt-
ics, i.e., the execution of graph algorithms that may involve processing the whole

2 http://tinkerpop.apache.org/



Management and Analysis of Big Graph Data 5

Data Model Scope Storage

R
D

F
/S

P
A

R
Q

L

P
G

M
/T

in
ke

rP
op

G
en

er
ic

O
L
T

P
/Q

u
er

ie
s

A
n
al

y
ti

cs

A
p
p
ro

ac
h

R
ep

li
ca

ti
on

P
ar

it
io

n
in

g

Apache Jena TBD [5] X/X X native
AllegroGraph [2] X/X X native X
MarkLogic [12] X/X X native X X
Ontotext GraphDB [9] X/X X native X
Oracle Spatial and Graph [13] X/X X native X
Virtuoso [43] X/X X relational X X
TripleBit [117] X/X X native

Blazegraph [16] X/X X/X X X native RDF X X
IBM System G [33, 114] X/X X/X X X X native PGM, X X

wide column store
Stardog [15] X/X X/X X � native RDF X
SAP Active Info. Store [99] X/- X relational
ArangoDB [11] X/X X document store X X
InfiniteGraph [10] X/X X native X X
Neo4j [83] X/X X native X
Oracle Big Data [6] X/X X key value store X X
OrientDB [18] X/X X document store X X
Sparksee [79] X/X X native X
SQLGraph [106] X/X X relational
Titan [17] X/X X � wide column store, X X

key value store

HypergraphDB [61] X X native

Table 1. Comparison of Graph database systems

graph, for example to calculate the pagerank of vertices [78] or to detect frequent
substructures [107]. These systems thus try to include the typical functionality
of graph processing systems by different strategies. IBM System G and Oracle
Big Data provide built-in algorithms for graph analytics, for example pagerank,
connected components or k-neighborhood [33]. The only system capable to run
custom graph processing algorithms within the database is Blazegraph by its
gather-apply-scatter (see Section 3) API3. Additionally, the current version of
TinkerPop includes the virtual integration of graph processing systems in graph
databases, i.e., from the user perspective graph processing is part of the database
system but data is actually moved to an external system. However, indicated by
a circle in the analytics column in Table 1, we could identify only two systems
currently implementing this functionality.

3 http://wiki.blazegraph.com/wiki/index.php/RDF GAS API



6 Management and Analysis of Big Graph Data

Fig. 1. Comparison of graph structures.

Storage techniques: The majority of the considered graph databases is using a
so-called native storage approach, i.e., the storage is tailored to characteristics
of graph database models, for example, to enable efficient edge traversal. A
typical technique of graph-optimized storage are adjacency lists, i.e., storing
edges redundantly attached to their connected vertices [33]. By contrast, some
systems implement the graph database on top of alternative data models such
as relational or document stores. IBM System G and Titan are offering multiple
storage options. The used storage approach is generally no hint for database
performance [106]. Most systems can utilize computing clusters by replicating
the entire database on each node to improve read performance. About half of
the considered systems also has some support for partitioned graph storage and
distributed query processing. Systems with non-native storage typically inherited
data partitioning from the underlying storage technique but provide no graph-
specific partitioning strategy. For example, OrientDB treats vertices as typed
documents and implements partitioning by type-wise sharding.

2.2 Graph data models

A graph is typically represented by a pair G = 〈V,E〉 of vertices V and edges E.
Many extensions have been made to this simple abstraction to define rich graph
data models [22, 23]. In the following, we introduce varying characteristics of
graph data models with regard to the represented graph structure and attached
data. Based on that, we discuss RDF and the property graph model in more
detail.

Graph structures: Figure 1 shows a comparison of different graph structures.
Graph structures mainly differ regarding their edge characteristics. First, edges
can be either undirected or directed. While edges of an undirected graph (Fig.
1a) are 2-element sets of vertices, the ones of a directed graph are ordered pairs.
The order of vertices in these pairs indicates a direction from source to target
vertex. In drawings and visualizations of directed graphs, arrowheads are used to
express edge direction (Fig.1b). In simple undirected or directed graphs, between
any two vertices there may exist only one edge for undirected graphs and one
edge in each direction for directed graphs. By contrast, multigraphs allow an
arbitrary number of edges between any pair of vertices. Depending on the edge



Management and Analysis of Big Graph Data 7

definition, multigraphs are directed or undirected. Most graph databases use
directed multigraphs as shown by Fig. 1c.

The majority of applied graph data models support only binary edges. A
graph supporting n-ary edges is called hypergraph [39]. In a hypergraph model
edges are non-empty sets of vertices, denoted by hyperedges. Fig. 1d shows a
hypergraph with a ternary hyperedge. From the graph databases of Table 1 only
HypergraphDB supports hypergraphs by default. A graph data model supporting
edges not only between vertices but also between graphs is the hypernode model
[91]. In this model we distinguish between primitive vertices and graphs in the
role of vertices, the so-called hypervertices. Fig. 1e shows a graph containing
hypervertices. Except an early research prototype, there is no graph database
system explicitly supporting this data model. However, using the concept of
n-quads, it is possible to express hypervertices using RDF [34].

Vertex- and edge-specific data: Another variation of graph data models relates
to their support for data attached to the graph structure, i.e., their data content.
Figure 2 illustrates different ways of attaching data to vertices and edges. The
simplest form are labeled graphs where scalar values are attached to vertices or
edges. For graph data management, labels are distinguished from identifiers, i.e.,
labels do not have to be distinct. An important special case of a labeled graph is a
weighted graph, where edges show numeric labels (see Fig. 2a). Further on, labels
are often used to add semantics to the graph structure, i.e., to give vertices and
edges a type. Fig. 2b shows a vertex-labeled graph where labels express different
types of vertices. A popular semantic model using vertex and edge labels is the
Resource Description Framework (RDF) [70], where labels may be identifiers,
blank or literals. Fig. 2c shows an example RDF graph.

Graph models supporting multiple values per vertex or edge are called at-
tributed. Fig. 2d shows an example vertex-attributed graph. The shown graph is
homogeneous as all vertices represent the same type of entities and show a fixed
schema (name, age, gender). A popular attributed model used by commercial
graph databases is the property graph model (PGM) [97]. A property graph is
a directed multigraph where an arbitrary set of key-value pairs, so-called prop-
erties, can be attached to any vertex or edge. The key of a property provides a
meaning about its value, e.g., a property name:Alice represents a name attribute
with value Alice. Property graphs additionally support labels to provide vertex
and edge types.

Resource Description Framework: In its core, RDF is a machine-readable data
exchange format consisting of (subject, predicate, object) triples. Considering
subjects and objects as vertices and predicates as edges, a dataset consisting of
such triples forms a directed labeled multigraph. Labels are either international-
ized resource identifiers (IRIs), literals such as numbers and strings or so-called
blank nodes. The latter is used to reflect vertices not representing an actual re-
source. There are domain constraints for labels depending on the triple position.
Subjects are either IRIs or blank nodes, predicates must be IRIs and objects
may be IRIs, literals or blank nodes. In contrast to other graph models, RDF



8 Management and Analysis of Big Graph Data

Fig. 2. Different variants of data attached to vertices and edges.

also allows edges between edges and vertices, which can be used to add schema
information to the graph. For example, the type of an edge :alice,:knows,:bob
can be further qualified by another edge :knows,:isA,:Relationship. A schema
describing an RDF database is a further RDF graph containing metadata and
is often referred to as ontology [31]. RDF is most popular in the context of
the semantic web where its major strengths are standardization, the availabil-
ity of web knowledge bases to flexibly enrich user databases and the resulting
reasoning capabilities over linked RDF data [112]. Kaoudi and Manolescu [66]
comprehensively survey recent approaches to manage large RDF graphs and
consider additional systems not listed in Table 1.

Property Graph Model: While RDF is heavily considered in research, the PGM
and its de-facto standard Apache TinkerPop found lower interest so far. However,
many commercial graph database products use TinkerPop and the approach ap-
pears to gain public interest, e.g., in popularity rankings of database engines4.
With one exception, all of the considered PGM databases support TinkerPop.
The TinkerPop property graph model describes a directed labeled multigraph
with properties for vertices and edges. Basically, the PGM is schema-free, i.e.,
there is no dependency between a type label and the allowed property keys.
However, some of the systems, for example Sparksee, use labels strictly to repre-
sent vertex and edges types and require a fixed schema for all of their instances.
Other systems like ArangoDB manage schema-less graphs, i.e., labels may in-
dicate types but can be coupled with arbitrary properties at the same time. In
most of the databases upfront schema definition is optional.

4 http://db-engines.com/en/ranking/graph+dbms



Management and Analysis of Big Graph Data 9

Property graphs with a fixed schema can be represented using RDF. How-
ever, representing edge properties requires reification. In the standard way5, a
logical relationship db:alice,schema:knows,db:bob is represented by a blank
node :bn and dedicated edges are used to express subject, object and pred-
icate (e.g., :bn,rdf:subject,db:alice). Properties are expressed analogously
to vertices (e.g. :bn,schema:since,2016). In consequence, every PGM edge is
expressed by 3 + m triples, where m is the number of properties. Two of the
graph databases of Table 1 store the PGM using RDF but both are using alter-
native, non-standard ways of reification. Stardog is using n-quads [34] for PGM
edge reification. N-quads are extended triples where the fourth position is an
IRI to identify a graph. Used for edge reification, each of such graphs repre-
sents an PGM edge [38]. Blazegraph follows a further, non-standard approach
to reification and implements custom RDF and SPARQL extensions [58].

2.3 Query Language Support

In [22], Angles named four operators specific to graph databases query languages:
adjacency, reachabilty, pattern matching and aggregation queries. Adjacency
queries are used to determine the neighborhood of a vertex while reachability
queries identify if and how two vertices are connected. Reachability queries are
also used to find all vertices reachable from a start vertex within a certain number
of traversal steps or via vertices and edges meeting given traversal constraints.
Pattern matching retrieves subgraphs (embeddings) isomorphic to a given pat-
tern graph. Pattern matching is an important operator for data analytics as it
requires no specific start point but can be applied to the whole graph. Figure
3a shows an example pattern graph representing an analytical question about
social network data. Finally, aggregation is used to derive aggregated, scalar val-
ues from graph structures. In contrast to Angles, we use the term aggregation
instead of summarization, as the latter is also used to denote structural sum-
maries of graphs [108]. Such summarization queries are not supported by any of
the considered systems.

Most of the recent graph database systems either support SPARQL for RDF
or TinkerPop Gremlin for the property graph model. Both query languages sup-
port adjacency, reachability, pattern matching and aggregation queries. Fig. 3c
and 3d show example pattern matching queries equivalent to the pattern graph
of Fig. 3a expressed in SPARQL and Gremlin. The result are pairs of Users
who are member of the same Group with name GDM. Further on, one User should
be younger than 25, member since 2016 and already knew the other user be-
fore 2016. The query was chosen to highlight syntactical differences and involves
predicates related to labels and properties of vertices and edges. To support edge
predicates, the SPARQL query relates to edge properties expressed by standard
reification. While such complex graph patterns in SPARQL are expressed by a
composition triple patterns and literal predicates (FILTER), the Gremlin equiva-
lent is a composition of traversal chains, similar to the syntax of object-oriented
programming languages.

5 https://www.w3.org/TR/rdf-schema/#ch reificationvocab



10 Management and Analysis of Big Graph Data

Fig. 3. Comparison of pattern matching queries.

Beside this, there are also some vendor-specific query languages or vendor-
specific SQL extensions. However, these languages miss pattern matching. A
notable exception is Neo4j Cypher[7]. In Cypher, pattern graphs are described
by ASCII characters where predicates related to vertices and edges are separated
within a WHERE clause. Cypher is currently exclusively available for Neo4j but it
is planned to make it an open industry standard similar to Gremlin. Participants
of the respective openCypher6 project are i.a. Oracle and databricks (Apache
Spark), which could make Cypher available to more graph database and graph
processing systems in future. A common limitation of SPARQL, Gremlin and
Cypher is the representation of pattern matching query results in the form of
tables or single graphs (SPARQL CONSTRUCT). In consequence, it is not pos-
sible to evaluate the embeddings in more detail, e.g., by visual comparison, and
to execute any further graph operations on query results. A recently proposed
solution to this problem is representing the result of pattern matching queries
by a collection of graphs (see Section 5).

6 http://www.opencypher.org/



Management and Analysis of Big Graph Data 11

Fig. 4. Directed graph with two weakly connected components.

3 Graph Processing

Many algorithms for graph analytics such as pagerank, triangle counting or con-
nected components need to iteratively process the whole graph while other algo-
rithms such as single source shortest path might require access to a large portion
of it. Graph databases excel at querying graphs but usually cannot efficiently
process large graphs in an iterative way. Such tasks are the domain of distributed
graph processing frameworks.

In this section, we focus on dedicated distributed graph processing systems
such as Pregel [78] and its derivates. More general dataflow systems like Apache
Flink or Apache Spark, which also provide graph processing capabilities, will be
discussed in the next section. Our presentation focuses on the popular vertex-
centric processing model and its variations like partition- or graph-centric pro-
cessing. To illustrate different programming models, we show their use to com-
pute weakly connected components (WCC) of a graph. A connected component
is a subgraph where each pair of vertices is connected via a path. For weakly
connected components the edge direction is ignored, i.e., the graph is considered
to be undirected. Figure 4 shows an example graph with two weakly connected
components VC1

= {1, 2, 3, 6, 7} and VC2
= {4, 5, 8}.

3.1 General architecture

The different programming models are based on a general architecture of a dis-
tributed graph processing framework. The architecture uses a master node for
coordination and a set of worker nodes for the actual distributed processing.
The input graph is partitioned among all worker nodes, typically using hash or
range-based partitioning on vertex labels. In the vertex-centric model, a worker
node stores for each of its vertices the vertex value, all outgoing edges including
their values and vertex identifiers (ids) of all incoming edges. Figure 5a shows
our example graph partitioned across four worker nodes A, B, C and D. Differ-
ent frameworks extend upon this structure such as Giraph++ [109] where each
worker node also stores a copy of each vertex that resides on a different worker
but has a connection to a vertex on the worker node (Fig. 5b).

All graph processing systems discussed in this section use a directed generic
multigraph model as introduced in Section 2. Vertices have a unique identifier K,



12 Management and Analysis of Big Graph Data

Fig. 5. Partitioned input graph for different computation models.

e.g., of type 64bit-integer. Vertices and edges may store a generic value further
referred to as VV (vertex value) and EV (edge value). All frameworks allow the
exchange of messages passed along edges and denoted by M.

3.2 Think Like a Vertex

The ”Think Like a Vertex” or vertex-centric approach has been pioneered by
Google Pregel in 2010 [78]. Ever since many frameworks have adopted or ex-
tended it [101, 68, 51, 74, 4, 105]. To write a program in a Pregel-like model, a so
called vertex compute function7 has to be implemented. This function consists
of three steps: Read all incoming messages, update the internal vertex state (i.e.,
its value) and send information (i.e., messages) to its neighbors. Note that each
vertex only has a local view of itself and its immediate neighbors. Any other
information about the graph necessary for computation has to be sent along the
edges. This paradigm is similar to the actor-based programming model [20] as
implemented by Akka [1] or Quasar [14].

Vertex functions are executed in synchronized supersteps. In each superstep
each worker node executes the compute function for all of its active vertices,
marks them inactive if the voteToHalt() function is called and gathers their
output messages. When all workers have finished, the gathered messages are
delivered synchronously. Vertices that receive messages are then marked active.
This is repeated until there is no active vertex at the end of a superstep. Note
that the synchronization barrier between supersteps ensures that each vertex
will only receive messages produced in the previous superstep. This execution
model is called the bulk synchronous parallel (BSP) model [111]. Figure 6 shows
an example of such an execution.

Let’s see how WCC can be implemented using Apache Giraph [4], an open-
source implementation of the Pregel model. Listing 1.1 shows a subset of Giraph’s

7 We use vertex compute function and vertex function interchangeably throughout
this section.



Management and Analysis of Big Graph Data 13

1 long getSuperstep (); // returns the current iteration
2 void sendMsg(K id, M msg);
3 void sendMsgToAllEdges(M msg);
4 void voteToHalt ();
5 K getVertexId ();
6 VV getVertexValue ();
7 void setVertexValue(VV vertexValue);
8 Iterator <K> getNeighbors ();
9 Iterable <M> getMessages ();

10 void aggregateValue(aggregatorName , aggregatedValue);
11 AV getAggregatedValue(aggregatorName);

Listing 1.1: Subset of the Apache Giraph API used to write a vertex function.

API that is used to implement the vertex function. The getSuperstep() function
allows to write algorithms that change behavior depending on the current su-
perstep. This is often used for initialization. As mentioned before, voteToHalt()
tells the framework that the vertex program should not be executed for this par-
ticular vertex in the next superstep unless the vertex receives any messages. Note
that this is vital for the termination of the program and should be called. The
other functions allow the user to access the vertex identifier, incoming messages
and neighboring vertex identifiers.

Listing 1.2 shows a (simplified) implementation of WCC using the introduced
API. The basic idea is that vertices propagate their label along the edges until

1 void compute(Vertex v) {
2 if (getSuperstep () == 0)
3 v.setValue(v.getVertexID ())
4 sendMessageToAllEdges(v.getVertexValue ())
5 else
6 minValue = min(v.getMessages ())
7 if (minValue < v.getVertexValue ())
8 v.setVertexValue(minValue)
9 sendMessageToAllEdges(v.getVertexValue ())

10 v.voteToHalt ();
11 }
12
13 void combine(M message1 , M message2) {
14 return min(message1 , message2)
15 }

Listing 1.2: WCC in Apache Giraph. The vertex function will be executed
for each vertex in the graph. Messages sent by the vertices are stored at the
worker and delivered at the end of the current superstep. The execution loops
until no vertex has received any message.



14 Management and Analysis of Big Graph Data

convergence. After termination, each vertex stores a component id which will
be equal to the smallest vertex id that can be reached from this vertex. This
value will be the same for each vertex in a component and thus identifies a
component. In superstep 0, we initialize the component id with the vertex id
and send the value to all neighbors. In each subsequent superstep, each vertex
computes the smallest component id among all received messages; if it is smaller
than the currently stored value, it is replaced and the new value is sent to all
neighbours. Each vertex always votes to halt at the end of each superstep. As a
result, no message will be sent, if no vertex has changed its component id within
a superstep and the algorithm terminates. Figure 6 shows the WCC execution for
the graph shown in Figure 5a resulting in two connected components represented
by the identifiers 1 and 4.

Variants Various vertex-centric graph processing systems provide specific fea-
tures and optimization techniques, for example, to mutate the graph or to reduce
network traffic and computation time. In the following, we will discuss the most
differentiating features as shown in Table 2.

Aggregation: Certain graph algorithms need global knowledge in terms of aggre-
gated values such as the number of vertices in the graph or the total sum of all
vertex values. In the basic model, this can be achieved by creating a vertex that
is connected to all other vertices. However, this approach creates vertices with
a huge amount of incident edges that will take longer to process than a regular
graph vertex. This will decrease performance since workers have to wait for each
other at the end of each superstep. Additionally, these special purpose edges and
vertices require specific programming logic in the vertex program which increases
complexity. Many frameworks (see column aggregation in Table 2) require the
user to provide a function that is run on the master node between supersteps
for this purpose. For example, to calculate the sum of all vertex values, each
vertex would send its value to the master node (API method aggregateValue(),

Fig. 6. Vertex-centric WCC computation for the graph of Figure 4. We show the vertex
value at the end of each superstep. Initially, the vertices use their ids as initial vertex
values. In any superstep, each vertex changes its value to the minimum among all
messages and its own value. A vertex function will only be executed in the initial
superstep of if the vertex has received any messages in the previous superstep. Looking
at vertex 1 and 7, one can see how vertex id 1 is propagated through the component.
Note that we omitted the 4th superstep that solely consists of vertex 6 processing a
message received from vertex 7.



Management and Analysis of Big Graph Data 15

la
n
g
u
a
g
e

P
ro

g
ra

m
m

in
g

M
o
d
el

B
S
P

a
sy

n
ch

ro
n
o
u
s

g
en

er
ic

sc
h
ed

u
le

r
a
g
g
re

g
a
ti

o
n

a
d
d

v
er

te
x
/
ed

g
e

re
m

ov
e

v
er

te
x
/
ed

g
e

co
m

b
in

er

Pregel [78] C++ Pregel X
Giraph [4] Java Pregel X X X X X
GPS [101] Java Pregel X X X
Mizan [68] C++ Pregel X X X
GraphLab [76] C++ GAS X X X X X n.a.
GraphChi [74] C++, Java Pregel X X X X X n.a.
Signal/Collect [105] Java Scatter-Gather X X n.a.
Chaos [98] Java Scatter-Gather X X n.a.
Giraph++ [109] Java Partition-Centric X X X X X
GraphX [52] Scala, Java GAS X X n.a.
Gelly [8] Scala, Java GSA, Scatter-Gather X X X X n.a.

Table 2. Key features of the discussed graph processing systems (n.a., not applicable).

Listing 1.1) which aggregates them and makes the results accessible in the next
superstep (getAggregatedValue() in Listing 1.1). Note, that for associative and
commutative operations, such as counting or summation, this can be done in
an aggregation tree where the worker node will aggregate the values of all its
vertices before sending the aggregated value to the master, therefore reducing
communication costs.

Reducing network communication: A technique, similar to the one used for ag-
gregation, can also be used to reduce the number of messages between different
worker nodes. If a worker node has multiple messages addressing the same ver-
tex, they can potentially be combined into a single message. In some of the
frameworks (Table 2) the user can define a combiner, a dedicated function that
takes two messages as input and combines them into one. Listing 1.2 includes the
combine function for WCC as implemented in Giraph. In our WCC implemen-
tation, we are only interested in the smallest value, so the combiner can discard
the larger message. With this combiner, no vertex will receive more messages
than the number of worker nodes.

Powergraph [51] further extended the idea of the combiner by introducing
the Gather-Apply-Scatter (GAS) model. Instead of a single vertex compute
function, the user has to provide a gather, apply and scatter function. The gather
function has the same functionality as the combiner: it aggregates messages
addressing the same vertex on the sending worker nodes. The apply function
has the incoming messages as input and updates the vertex state. The scatter
function has the vertex state as input and produces the outgoing messages.
Similar to the gather function, the scatter function can be executed on the
worker nodes. Instead of sending multiple messages from one vertex to vertices
on the same worker node, only the vertex value is send and the messages are



16 Management and Analysis of Big Graph Data

then created locally. This execution is transparent to the user which only has to
provide the three functions. The GAS model is especially effective on graphs with
highly skewed degree distributions. It not only reduces the amount of network
traffic, but also helps balancing the workload between worker nodes by spreading
out the computation. One downside of the GAS model is that all information
about messages that should eventually be sent needs to be part of the vertex
value. In case of WCC, we need to extend the vertex value by a boolean field
that reflects if the vertex value has changed or not to decide if messages should
be sent.

The systems Signal/Collect [105] and Chaos [98] introduced the Scatter-
Gather model. This model requires the user to provide an edge and a vertex
function. The vertex function has all incoming messages as input and can mod-
ify the vertex value. The edge function takes the vertex value as input and can
then generate a message. Compared to the GAS model, in the scatter-gather
model, the computation is parallelized across the vertices, which may lead to
unbalanced load, if the edge degree distribution is skewed. Depending on the
computation, the execution time for high-degree vertices increases as they need
to process more messages and thus the synchronization barrier is eventually
delayed.

Asynchronous execution: Looking at Figure 6, one can see that worker node A
takes longer to compute the vertex function on all of its vertices. In consequence,
the faster working nodes B, C, and D have to wait. Not all algorithms require
the strict synchronization offered by the BSP execution model. Our WCC imple-
mentation in Listing 1.2 tries to find the minimum vertex id in each component.
Finding the minimum of a set does not require a specific execution order and
can be executed without synchronization. If a worker node is a superstep behind
and does not deliver its messages in time, the minimum of each component will
eventually be found once the delayed messages are delivered. The overall exe-
cution time can be potentially reduced since worker nodes do not spend time
waiting for other workers to finish. Furthermore, some algorithms [29, 73] con-
verge much faster on an asynchronous execution model up to the point where
running them in a BSP model will not converge in reasonable time. Other graph
algorithms such as Ja-be-Ja [93], a peer-to-peer inspired graph partitioning al-
gorithm, can only be implemented using an asynchronous execution model. To
address these challenges GraphLab [76], Signal/Collect and GraphChi [74] al-
low for asynchronous execution. Instead of waiting for a synchronization barrier,
in these models, messages produced by a vertex will be delivered to the target
vertex directly. Each worker node processes its vertices in order, thus, within a
partition, each vertex will be executed with the same frequency. However, in Fig-
ure 5a, vertex 6 on worker node C might already have executed ten times while
vertex 1 on worker node A has only executed once. GraphLab and GraphChi
also allow the user to provide a scheduler function that changes the execution
order, for example, to prioritize vertices with a high value. This allows to focus
an algorithm on a certain part of the graph, which can lead to faster convergence
in some cases.



Management and Analysis of Big Graph Data 17

boolean containsVertex(K id);
boolean isInternalVertex(K id);
boolean isBoundaryVertex(K id);
Vertex <K, VV, EV, M> getVertex(K id);
Collection <Vertex <K, VV, EV, M>> internalVertices ();
Collection <Vertex <K, VV, EV, M>> activeInternalVertices ();
Collection <Vertex <K, VV, EV, M>> boundaryVertices ();
Collection <Vertex <K, VV, EV, M>> allVertices ();

Listing 1.3: Additional functions in the Giraph++ API.

Note, that optimizations such as combiners or the GAS model cannot use
their full potential when executed asynchronously since messages are not neces-
sarily batched together. As a result, asynchronous execution generally uses more
network resources. Performance gains are hard to quantify since the speedup
highly depends on the graph structure and to which degree work is equally dis-
tributed between worker nodes. For our WCC example, each superstep might
be faster due to the removal of the synchronization barrier but the algorithm
might require more steps to terminate. In the BSP execution, the number of re-
quired steps is equal to the longest shortest path in the graph since each vertex
processes the data from all its neighbors in each superstep. In an asynchronous
execution it is possible that the message with the true minimum is delayed so
that there are additional steps finding the minimum between larger values before
the true minimum is found.

Graph mutation: Transformational algorithms such as graph coarsening or com-
puting the minimum spanning tree need to modify the graph structure during
execution. This is a non-trivial task since it may lead to load imbalances, perfor-
mance loss and memory overflow. Currently, only few frameworks support these
operations. For example, while Giraph supports adding and removing vertices
and edges, GraphLab only allows addition. Vertices are added or removed from
inside the vertex function and the changes to the graph, similar to messages, be-
come visible in the next superstep. Newly created vertices are always marked as
active in the superstep they appear in and therefore guaranteed to be executed.

3.3 Think like a Graph

Instead of writing a compute function executed on each vertex, in a graph-
/partition-centric model, the user provides a compute function that takes all
vertices managed by a worker node as input. These functions are then executed
using the BSP model. This approach requires additional support structures when
distributing the graph. The input graph is distributed across worker nodes in
the same way as for vertex-centric computations. The vertices of worker node n
are called internal vertices to n. On each worker node n we then create a copy
of each vertex that is not internal to n, but is directly connected to an internal



18 Management and Analysis of Big Graph Data

1 void compute () {
2 if (getSuperstep () == 0)
3 sequentialCC ();
4 for (bV in boundaryVertices ())
5 sendMsg(bV.getVertexId (), bV.getVertexValue ())
6 else
7 equiCC = new MultiMap;
8 for (iV in activeInternalVertices ())
9 minValue = min(iV.getMessages ())

10 if (minValue < iV.getVertexValue ())
11 equiCC.add(iV.getVertexValue (), minValue)
12 for (v in allVertices ())
13 minValue = equiCC.getMinFor(v.getVertexValue ())
14 if (minValue < v.getVertexValue ())
15 v.setVertexValue(minValue)
16 if (isBoundaryVertex(v.getId())
17 sendMsg(v.getVertexId (), vertex.getVertexValue ())
18 allVoteToHalt ()
19 }
20
21 void combine(M message1 , M message2) {
22 return min(message1 , message2)
23 }

Listing 1.4: WCC in Giraph++. First each worker node finds all internal
connected components. Then it iteratively shares the information with other
worker nodes that have vertices connected.

vertex of n. These vertices are called boundary vertices and represent the cached
vertex values of copied vertices. Every internal vertex may have up to one of
these boundary vertices on each worker node. Figure 5b shows the distributed
graph with internal and boundary vertices on the four worker nodes.

Listing 1.3 shows the additional methods of the Giraph++ [109] API. Hav-
ing a partition compute function instead of a vertex compute function allows
direct access to all internal and local boundary vertices and thus computing the
entire subgraph. Each worker node executes its user-defined function and after-
wards sends messages from all boundary vertices to their internal representation.
The partition-centric model can mimic a vertex centric execution by iterating
through all active internal nodes once in each superstep. Listing 1.4 shows a
partition-centric implementation of WCC. In the initialization step, a sequential
connected component algorithm is executed finding all local connected compo-
nents. The locally computed component label for each boundary vertex is then
sent to its corresponding internal vertex. In each of the subsequent supersteps,
the algorithm processes all the incoming messages and merges labels represent-
ing the same component. Although the implementation of this approach is more
complex, it can reduce the amount of iterations and thus improve performance.



Management and Analysis of Big Graph Data 19

Vertex Step 0 Step 1 Step 2 Step 3

1 1 1 1 1
2 2 1 1 1
3 3 1 1 1
4 4 4 4 4
5 5 4 4 4
6 6 3 1 1
7 7 6 3 1
8 8 4 4 4

Table 3. Vertex states/values in
vertex-centric iteration.

Vertex Step 0 Step 1

1 1 1
2 1 1
3 1 1
4 4 4
5 4 4
6 6 1
7 7 1
8 8 4

Table 4. Vertex state/values in graph-
centric iteration.

The number of steps required to converge is smaller or equal to the longest
shortest path in the graph. The precise number of saved iteration steps depends
on the graph structure, in particular on how vertices are distributed among the
worker nodes.

Tables 3 and 4 show the convergence in vertex- and graph-centric iterations
respectively. One can see, that it takes four supersteps for a vertex-centric itera-
tions whereas using a graph-centric approach, the components can be computed
in only two supersteps. Notice that the reduction in supersteps depends on the
partitioning of the input graph. A partitioning where each component resides
on a single worker node requires zero supersteps, while the worst case parti-
tion would require the same amount of supersteps as a vertex centric program.
The performance gain can be hard to predict and cannot justify the additional
complexity of the program in all cases.

In this section we gave an overview about the different dedicated graph pro-
cessing frameworks available. We summarized the most common programming
models and shown their variants. In real-world scenarios, graph processing is
often only a single step of a longer pipeline consisting of data transformations.
Therefore modern processing frameworks such as Apache Spark and Apache
Flink provide graph processing libraries that can be directly integrated into
a larger program. These libraries support vertex-centric graph processing with
additional graph operations that can be combined with general-purpose data
operations on structured and unstructured data.

4 Graph Dataflow Systems

In the previous section, we introduced specialized systems providing tailored
programming abstractions for the fast execution of a single iterative graph al-
gorithm on large graphs with billions of vertices and edges. However, complex
analytical problems often require the combination of multiple techniques, for ex-
ample, to create combined graph structures based on unstructured or structured
data originated from different sources (e.g., distributed file systems, database
systems) or to combine graph algorithms and non-graph algorithms (e.g., for
machine learning). In such cases, using dedicated systems for each part of an
analytical program increases the overall complexity and leads to unnecessary
data movement between systems and respective data duplication [52, 116].



20 Management and Analysis of Big Graph Data

By contrast, distributed in-memory dataflow systems such as Apache Spark
[52, 116, 115, 118], Apache Flink [21] or Naiad [82, 85] provide general-purpose
operators (e.g., map, reduce, filter, join) to load and transform unstructured
and structured data as well as specialized operators and libraries for iterative
algorithms (e.g., for machine learning and graph analysis). Using such a system
for the implementation of complex analytical programs reduces the overall com-
plexity for the user and may lead to performance improvements since the holistic
view on the whole program enables optimizations, such as operator reordering
or caching of intermediate results.

In this section, we will discuss graph analytics on distributed dataflow sys-
tems using Apache Flink as a representative system. We briefly introduce Apache
Flink and its concept for iterations and will then focus on Gelly, a graph process-
ing library integrated into Apache Flink. Gelly implements the Scatter-Gather
and Gather-Sum-Apply programming abstractions for graph processing and pro-
vides additional operators for graph transformation and computation. We will
finish the section with a brief comparison to GraphX, a graph library on Apache
Spark.

4.1 Apache Flink
Apache Flink is the successor of the former research project Stratosphere [21]
and supports the declarative definition and distributed execution of analytical
programs on batch and streaming dataflows.8 The basic abstractions of such
programs are datasets and transformations. A dataset is a collection of arbi-
trary data objects and transformations describe the transition of one dataset
to another one. For example, let X,Y be datasets, then a transformation could
be seen as a function t : X → Y . Example transformations are map, where for
each input object xi ∈ X there is exactly one output object yi ∈ Y , and reduce,
where all input objects are aggregated to a single one. Further transformations
are well known from relational databases, e.g., join, group-by, project, union and
distinct. To express application logic, transformations are parameterized with
user-defined functions. A Flink program may include multiple chained transfor-
mations. When executed, Flink handles program optimization as well as data
distribution and parallel execution across a cluster of machines.

We give an exemplary introduction to the dataset API using a simple word
count program to compute the frequency of each word in an input text (Listing
1.5). We first create a Flink execution environment (Line 1), which abstracts
either a local machine (e.g., for developing and testing) or a cluster. In Line 2,
we define an input data source, here a file from HDFS, the Hadoop Distributed
File System.9 The resulting dataset contains strings whereas each string rep-
resents a line in our input file. In Line 6, we use flatMap to declare the first
transformation on our input dataset. This transformation allows us to output

8 In its core, Flink is a distributed streaming system and provides streaming as well
as batch APIs. We focus on the batch API, as Gelly is currently implemented on
top of that.

9 Flink supports further systems as data source and sink, e.g., relational and NoSQL
databases or queuing systems.



Management and Analysis of Big Graph Data 21

1 ExecutionEnvironment env = getExecutionEnvironment ();
2 DataSet <String > text = env.readTextFile ("hdfs :/// text");
3
4 DataSet <Tuple2 <String , Integer >> wordCounts = text
5 // splits the line and outputs (word , 1) tuples
6 .flatMap(new LineSplitter ())
7 // group tuples by word
8 .groupBy (0)
9 // add together the "1"s in all tuples per group

10 .sum(1);
11
12 wordCounts.print();

Listing 1.5: Word Count in Flink

an arbitrary number of objects for each input object. Here, the user-defined
function LineSplitter is applied on each line in the input dataset and splits
it into words. For each word, the function outputs a tuple containing the word
and the frequency 1, for example, the line ”graphs are everywhere” results in
the tuples (”graphs”, 1), (”are”, 1) and (”everywhere”, 1). In Line 8, we per-
form a group-by transformation on the output dataset of the previous flatMap
transformation to gather all tuples that represent the same word. In Line 10, we
add together the single frequencies to get the total frequency for each word us-
ing sum, a predefined aggregation transformation. Flink programs are executed
lazily, i.e., program execution needs to be started explicitly. Here, we trigger the
execution by printing the dataset to system console (Line 12). When triggered,
Flink analyzes the program, optimizes it and executes it in the specific environ-
ment. Data lines are read in parallel from the data source and ”flow” through
the transformations which are scaled-out to all workers in the cluster.

Iterations in Apache Flink Our word count example represents a dataflow
whose execution graph is a directed acyclic graph of transformations. However,
iterative or recursive graph and machine learning algorithms require cyclic exe-
cution graphs. To support cyclic dataflows, Flink offers two specialized operators:
Bulk and Delta Iteration [46, 45].

With Bulk Iteration (Fig. 7a), each iteration computes a new solution based
on the previous iteration result which is then used as input for the next itera-
tion. Conceptually, Flink’s Bulk Iteration can be separated into four phases: (1)
the iteration input is the initial dataset for the first iteration; (2) the step func-
tion takes the output of the previous iteration as input and executes an acyclic
dataflow containing arbitrary transformations on that dataset to create a new
dataset; (3) the result of the step function is the next partial solution, which is
used as input for the next iteration; (4) the iteration result is the dataset created
by the last iteration and can be used in subsequent dataflows. The convergence
criterion for the Bulk Iteration is either a maximum number of iterations or a
custom convergence criterion.



22 Management and Analysis of Big Graph Data

Fig. 7. Iteration Operators in Apache Flink [3].

With Delta Iteration, each iteration computes only incremental updates for
an evolving global solution set instead of a completely new solution set. The
motivation for this approach are algorithms where an update on one element has
a direct impact only on a small number of other elements, such that different
parts of the solution may converge at different speeds [45]. When applicable, this
leads to faster convergence as large parts of the solution are computed in the
first iterations so that later iterations compute on much smaller subsets. Figure
7b shows the phases of Flink’s Delta Iteration: (1) In contrast to Bulk Iteration,
we now have two input datasets: a) the initial workset and b) an initial solution
set which evolves with each iteration; (2) the step function again performs an
acyclic dataflow of arbitrary transformations on both the current workset and
the solution set; (3) the outputs of the step function are a) the update solution
set, which contains incremental updates for the initial solution set and b) the
next workset, which is the input for the next iteration; (4) the solution set after
the last iteration is the iteration result and can again be used in subsequent
dataflows. In contrast to Bulk Iteration, the iteration terminates if the produced
next workset is empty or a maximum number of iterations is reached. However,
it is also possible to define a custom convergence criterion.

With reference to the introduced programming models for graph processing
in Section 3, each iteration in the Bulk and Delta Iteration can be seen as a super
step in a synchronous BSP process. Multiple instances of the step function are
executed in parallel and synchronized at the end of each iteration. In Section
3, we also showed that for specific graph algorithms, for example, connected
components or single-source-shortest-path, not all vertices are necessarily active
in each super step.10 The Delta Iteration is a good foundation for this class of
algorithms which is why Gelly uses it to implement vertex-centric programming
abstractions, which we will discuss next.

4.2 Apache Flink Gelly

Flink Gelly [8] is a graph library integrated into Apache Flink and implemented
on top of its dataset API. Besides dedicated graph processing abstractions, Gelly
provides a wide set of additional operators to simplify the definition of graph

10 When implemented using a synchronous graph-processing system.



Management and Analysis of Big Graph Data 23

analytical programs. The provided data model is a directed, labeled multigraph
where vertex and edge labels are generic, i.e., vertices and edges can carry arbi-
trary user-defined payload ranging from basic data types such as numbers and
strings to complex domain objects. In the following, we will discuss the graph
representation on Flink’s dataset API, transformation methods and how graph
processing abstractions are mapped to the Delta Iteration.

Graph Representation Gelly uses two classes to represent the elements of
a graph: Vertex and Edge. A Vertex comprises a comparable, unique identifier
(id) and a value, an Edge consists of a source vertex id, a target vertex id and
an edge value. Identifiers and values are generic and need to be declared upon
graph creation. Internally, a graph is represented by a dataset of vertices and a
dataset of edges as shown below:

class Graph <K, VV, EV> {
DataSet <Vertex <K, VV>> vertices
DataSet <Edge <K, EV>> edges

}

The generic type K represents the vertex id type, VV the vertex value type
and EV the edge value type. Since Gelly offers methods to return the vertex and
edge datasets, an analytical program can combine those datasets with any other
library in Flink (e.g., for machine learning) as well as third-party libraries that
are implemented on the dataset API (e.g., Gradoop in Section 5). A Gelly
graph provides basic methods for creating graphs and returning simple metrics
such as vertex count, edge count or in- and out-degrees of vertices, which result
in new datasets for further processing.

Graph Transformations Graph transformation methods are applied on an
input graph and return a new, possibly modified graph, hence enabling the com-
position of multiple graph transformations in an analytical program. Internally,
Gelly translates each graph transformation to a series of transformations on
the vertex and edge datasets. Similar to other graph dataflow frameworks, e.g.,
GraphX [52, 116, 115], Gelly offers the following transformation methods:

– Mutation methods enable adding and removing of vertices and edges. The
result is a new graph with an updated vertex and edge dataset respectively.

– Map allows the modification of vertex and edge values by applying user-
defined transformation functions on all elements in the corresponding datasets.

– Subgraph enables the extraction of a new graph based on user-defined
vertex and edge predicates. If an element in the input graph satisfies the
predicate, it is contained in the output graph.

– Join allows the combination of vertex and edge datasets with additional
input datasets. The transformation applies a user-defined function on each
matching pair and returns a graph with a updated datasets. This can be
useful to attach external data, e.g., from a relational database, to the graph.

– Undirected can be used to transform a directed graph into an undirected
graph by cloning and reversing all edges.



24 Management and Analysis of Big Graph Data

– Union/Difference/Intersect enable merging of two graphs into a new
graph based on the respective set-theoretical method applied on vertex and
edge datasets.

Neighborhood Methods Neighborhood methods are applied on all incident
edges and adjacent vertices of each vertex and can be used to aggregate edge and
vertex values (e.g., average/min/max values, vertex degree, etc.). Gelly provides
two variants of neighborhood methods:

– reduceOnEdges/Neighbors allow the aggregation of edge and vertex val-
ues by providing a user-defined, associative and commutative function on
pairs of values. The methods result in a new dataset containing exactly one
aggregate per vertex.

– groupReduceOnEdges/Neighbors allow the aggregation of edge and
vertex values by providing a user-defined, non-associative, non-commutative
function on all respective values. This is useful, if one needs to have all
values available in the function or if more than one aggregate needs to be
computed per neighborhood. The methods result in new datasets containing
an arbitrary amount of aggregates for each vertex.

Graph Processing In Section 3, we introduced various programming abstrac-
tions for graph processing. Gelly currently adopts two variants of vertex-centric
iterations: Scatter-Gather and Gather-Sum-Apply. Both are implemented using
the Delta Iteration operator and are thus executed in synchronous super steps.
In the following, we will discuss both abstractions in further detail.

The Scatter-Gather abstraction is adopted from the Signal/Collect model
[105] and divides a super step in two phases. In the Scatter (or messaging) phase,
the messages sent to other vertices are being produced, while in the Gather (or
update) phase each vertex updates its value using the received messages. The
user needs to implement both, a messaging and an update function, which are
applied during the computation. Picking up the running example of Section 3,
Listing 1.6 shows a WCC implementation using the Scatter-Gather abstraction.
While the Scatter function sends the updated vertex value to all neighbors, the
Gather function searches for the smallest value among all messages and updates
the vertex value if necessary.

Figure 8a illustrates the implementation of the Scatter-Gather abstraction
using Delta Iteration. Here, the initial workset and solution set is the vertex
dataset. In the step function, Scatter and Gather functions are applied using
Flinks coGroup transformation.11 First, an adjacency list is built by grouping
each vertex with all of its incident edges. For each row in that adjacency list,
Gelly applies the Scatter function to create new messages. That messages are
again grouped with the vertex values (solution set) and fed into the Gather
function. The output of that transformation is a dataset containing all vertices

11 The coGroup transformation groups each input dataset on one or more fields and
then joins the groups.



Management and Analysis of Big Graph Data 25

class WCCMessenger extends MessagingFunction {
void sendMessages(Vertex <K, VV> v) {

sendMessageToAllNeighbors(vertex.getValue ())
}

}
class WCCUpdater extends VertexUpdateFunction {

void updateVertex(Vertex <K, VV> v, Iterator <VV> messages) {
VV current = v.getValue ()
VV min = current
for (Message message in messages)

if (message < min) min = m
if (current != min) v.setValue(min)

}
}

Listing 1.6: Scatter/Messaging and Gather/Update functions for WCC.
MessagingFunction and VertexUpdateFunction are provided by Gelly and
need to be extended by the user.

that changed their value. This dataset is then used to update the solution set
and also as workset for the next iteration.

In contrast to Scatter-Gather, where information is pushed to a vertex, in
the Gather-Sum-Apply (GSA) abstraction, each vertex instead pulls information
from its neighbors.12 One iteration is divided into three phases: In the Gather
phase, a user-defined function is applied on the neighborhood of each vertex.
Here, each pair of incident edge value and corresponding adjacent vertex value
produces a partial value. In the Sum phase, a second user-defined function ag-
gregates the partial values for each neighborhood to a single value. In the final
Apply phase, the aggregated value and the current vertex value are used to pro-
duce a new vertex value. For a WCC computation, the user-defined functions
are presented in Listing 1.7. In the Gather function, we select the value stored
at each adjacent vertex.13 After that, we compute the minimum among those
values by reducing them pair-wise in the Sum function. In the Apply function,
we finally update the vertex value if the reduced value is smaller than the current
vertex value.

Figure 8b illustrates the GSA abstraction implemented using Delta Iteration.
In contrast to the Scatter-Gather implementation, vertices are first joined with
their incident edges to construct neighbors as input for the Gather function.
The latter is applied using a map transformation and returns a value for each
neighbor. Those values are reduced for each neighborhood by applying the Sum
function and finally joined with the vertices to update their values using the Ap-

12 GSA is a variant of the GAS abstraction introduced by PowerGraph [51] and dis-
cussed in Section 3.

13 The Neighbor class allows access to the incident edge value and the adjacent vertex
value.



26 Management and Analysis of Big Graph Data

Fig. 8. Scatter-Gather and Gather-Sum-Apply abstraction using Delta Iteration [8].
Input for both iterations are the vertex dataset V (initial working and solution set),
the edge dataset E and the respective user-defined functions. In both cases, the output
dataset V ′ contains the updated vertex values.

ply function. As with Scatter-Gather, the result is a dataset of updated vertices
which is used to evolve the solution set and as workset for the next iteration.

As denoted in Section 3, the main difference between Scatter-Gather and
GSA computations is that in the Gather phase of GSA, the computation is
parallelized over the edges, while in the Scatter phase, it is parallelized over
the vertices. Through this, GSA is advantageous if the Gather phase contains
expensive computation or if the graph shows a skewed degree distribution. Also,
since the Sum phase of a GSA computation exploits a reduce transformation,
the results computed on a single worker are internally combined before they are
sent to other workers which decreases network traffic and computation times
[8]. However, in contrast to Scatter-Gather, the GSA composition prohibits the
communication between vertices that are not adjacent in the graph.

4.3 Comparison to other graph dataflow frameworks

Another prominent implementation of a graph dataflow framework is GraphX
[52, 116, 115] which is integrated into Apache Spark [118]. GraphX provides a
similar API for graph transformation and neighborhood methods that can be
composed with other Spark libraries. For iterative graph processing, GraphX im-
plements the Gather-Apply-Scatter abstraction introduced by Powergraph [51]
and discussed in Section 3. Like Gelly, GraphX is built on top of the underlying
batch API and uses two distributed collections, so-called Resilient Distributed
Datasets (RDD), to manage vertices and edges. RDDs are similar to the con-
cept of a dataset in Flink and support transformations (e.g., map, reduce, join)
which result in new RDDs. However, in contrast to Gelly, GraphX offers various
optimizations tailored for graph analytics. One important optimizations is the
partitioning of edges based on vertex-cut algorithms like 2D hash partitioning.
Here the edge collection is equally distributed across all workers by minimizing
the number of times each vertex is cut. A second optimization is the reduction



Management and Analysis of Big Graph Data 27

class GatherNeighborValues extends GatherFunction {
VV gather(Neighbor n) {

return n.getVertexValue ()
}

}
class GetMiniumValue extends SumFunction {

VV sum(VV newValue , VV currentValue) {
return (newValue < currentValue) ? newValue : currentValue

}
}
class UpdateComponent extends ApplyFunction {

void apply(VV sumValue , VV originalValue) {
if (sumValue < originalValue) setResult(sumValue)

}
}

Listing 1.7: Gather, Sum and Apply functions for WCC in Gelly.

of network traffic between workers by introducing so called mirror vertices in
combination with multicast joins [52]. Here, a join operation between vertex and
edge RDD transfers only those vertices to edge partitions that are incident to
the contained edges.

5 Gradoop

The distributed graph processing and graph dataflow approaches presented in
the preceding sections are well suited for scalable graph analytics, especially
to execute iterative graph algorithms on large graphs. The graph dataflow ap-
proaches also support a flexible combination of graph processing with general
data transformation operators provided by the underlying frameworks. However,
the implemented graph data models are largely generic and do not meet the re-
quirements posed in the introduction, in particular schema-flexible support for
semantic graph data with vertices and edges of different types and varying at-
tributes. Without this support, graph operators such as evaluations on vertex
or edge attributes need to be user-defined making the analysis of heterogeneous
real-world data a laborious programming task. Moreover, none of the graph sys-
tems discussed so far has built-in support to manage collections of graphs, e.g.,
application-specific subgraphs such as communities in social networks. Finally,
the graph data model should provide a set of declarative operators on graphs and
graph collections that can be used for the simplified development of advanced
graph analysis programs.

The Gradoop framework (Graph data management and analytics with
Hadoop) [64, 65] aims at meeting these requirements and improving current
graph dataflow systems. It is built on the so-called Extended Property Graph
Model [65] supporting semantically rich, schema-free graph data within many



28 Management and Analysis of Big Graph Data

distinct graphs. A set of high-level operators is provided for analyzing both single
graphs and collections of graphs. These operators fulfill the closure property14 as
they take single graphs or graph collections as input and result in single graphs
or graph collections thus enabling their composition to complex analytical pro-
grams. Gradoop is GPLv3-licensed and publicly available.15 In the following
subsections, we will first introduce the architecture of Gradoop and then focus
on the data model including its operators. Finally, we illustrate the capabilities
of Gradoop with an exemplary analytical dataflow program.

5.1 Architecture

Gradoop aims at providing a framework for scalable graph data management
and analytics on large, semantically expressive graphs. To achieve horizontal
scalability of storage and processing capacity, Gradoop runs on shared nothing
clusters and utilizes existing Hadoop-based software for distributed data storage
and processing.

Figure 9 shows the high-level architecture of Gradoop. Analysts declare
graph analytical programs using a domain specific language, called Graph Ana-
lytical Language (GrALa). The language contains analytical operators for single
graphs and graph collections as well as general operators to read and write graph
data from and to data stores. GrALa has been developed on top of the Extended
Property Graph Model (EPGM) that will be discussed in the next section.

To execute analytical programs in a distributed environment, the EPGM and
GrALa are implemented on top of Apache Flink. This way, Gradoop provides
new features for graph analytics while benefitting from existing Flink capabilities
for large-scale data and graph processing. Flink handles program optimization
as well as data distribution and parallel execution across a cluster of machines.
Furthermore, Gradoop can be easily integrated with other Flink libraries, like
Gelly or Machine Learning.

The distributed graph store offers the possibility to manage a persistent graph
database structured according to the EPGM and is implemented in Apache
HBase16, a distributed, non-relational database running on the Apache HDFS
(Hadoop Distributed File System). The graph store offers basic methods to read
and write a database and therefore serves as data source and sink for graph
analytical programs. Additionally, Gradoop allows reading from and writing
to any data store which is supported by Apache Flink (e.g., HDFS files, relational
databases, NoSQL databases).

5.2 Extended Property Graph Model

The EPGM extends the popular property graph model [97] (Section 2.2) by sup-
porting graph collections and composable analytical operators. Graph collections

14 An operator fulfills the closure property if the execution of that operator on members
of an input domain results in members of the same domain.

15 http://www.gradoop.com
16 http://hbase.apache.org



Management and Analysis of Big Graph Data 29

Fig. 9. Gradoop High-Level Architecture.

are a natural way to represent logical partitions of a graph, e.g., communities
in a social network [47] or business process executions [88]. Further on, graph
collections are the result of certain graph algorithms, e.g., embeddings found by
graph pattern matching [48] or frequent subgraph mining [63]. Using GrALa, the
EPGM operators for graphs and graph collections can be used together within
analytical programs. In the following, we present the EPGM graph representa-
tion and operators in more detail.

Graph Representation A property graph is a directed, labeled and attributed
multigraph. To express heterogeneity, type labels can be defined for vertices and
edges (e.g., Person or likes). Attributes have the form of key-value pairs (e.g.,
name:Alice or age:42) and are referred to as properties. Such properties are
set at the instance level without an upfront schema definition. In an extended
property graph, a database consists of multiple property graphs which are called
logical graphs. These graphs are application-specific subsets from shared sets of
vertices and edges, i.e., may have common vertices and edges. Additionally, not
only vertices and edges but also logical graphs have a type label and can have
different properties.

Figure 10 shows an example EPGM database DB of a simple social net-
work. Formally, DB consists of the vertex set V = {v1, .., v6} and the edge set
E = {e0, .., e6} where each element has a unique identifier (e.g., [1]). Vertices
represent users, groups and interest tags, denoted by corresponding type labels
(e.g., User) and are further described by their properties (e.g., name:Alice).
Edges describe the relationships between vertices and also have type labels (e.g.,
memberOf) and properties. Type labels do not determine a schema, as elements
with the same type label may have different property keys, e.g., v1 and v4.

The sample database contains the set of logical graphs L = {G1, G2}, where
each graph represents a community inside the social network, in particular spe-
cific interest groups (e.g., Graphs). Each logical graph has a dedicated subset
of vertices and edges, for example, V (G1) = {v1, v2, v4} and E(G0) = {e1, e2}.



30 Management and Analysis of Big Graph Data

Fig. 10. Example EPGM database representing a simple social network containing two
logical graphs. Each logical graph describes a community inside the social network,
for example, people that are member of a group related to graphs form the Graphs
community.

One can see that vertex (and also edge sets) of logical graphs may overlap since
V (G1) ∩ V (G2) = {v4}. Note that also logical graphs have type labels (e.g.,
Community) and may have properties to annotate the graph with specific metrics
or descriptive information (e.g., interest:Big Data). Logical graphs, such as
those of our example, are either declared explicitly or output of a graph algo-
rithm, e.g., community detection or graph pattern matching. In both cases, they
can be used as input for subsequent operators.

Operators The EPGM provides operators for single logical graphs and graph
collections; operators may also return single logical graphs or graph collections.
Here, a graph collection G ∈ Ln is a n-tuple of logical graphs and thus may con-
tain duplicate elements. Collections are ordered to support application-specific
sorting and position-based selection of logical graphs. In the following, we use
the terms collection and graph collection as well as graph and logical graph in-
terchangeably. Table 5 lists the analytical operators together with their corre-
sponding pseudocode syntax for calling them in GrALa. The syntax adopts the
concept of higher-order functions for several operators (e.g., to use aggregate or
predicate functions as operator arguments). Based on the input of operators,
GrALa distinguishes between graph operators and collection operators as well
as unary and binary operators (single graph/collection vs. two graphs/collec-
tions as input). There are also auxiliary operators to apply graph operators on
collections or to call specific graph algorithms. In addition to the listed ones
GrALa provides operators to create graphs, vertices and edges including respec-
tive labels and properties. In the following, we will present a subset of available



Management and Analysis of Big Graph Data 31

Graph Analytical Language

Operator Operator Signature Output
U
n
a
r
y

Aggregation Graph.aggregate(propertyKey, aggregateFunction) Graph
Transformation Graph.transform(graphFunction, vertexFunction, edgeFunction) Graph
Pattern Matching Graph.match(patternGraph) Collection
Subgraph Graph.subgraph(vertexPredicateFunction, edgePredicateFunction) Graph
Grouping Graph.groupBy(vertexGroupingKeys, vertexAggregateFunction,

edgeGroupingKeys, edgeAggregateFunction) Graph
Selection Collection.select(predicateFunction) Collection
Distinct Collection.distinct() Collection
Limit Collection.limit(n) Collection
Sorting Collection.sortBy(propertyKey, [:asc|:desc]) Collection

B
in

a
r
y

Equality Graph.equals(otherGraph, [:identity|:data]) Boolean
Combination Graph.combine(otherGraph) Graph
Exclusion Graph.exclude(otherGraph) Graph
Overlap Graph.overlap(otherGraph) Graph

Equality Collection.equals(otherCollection, [:identity|:data]) Boolean
Difference Collection.difference(otherCollection) Collection
Intersect Collection.intersect(otherCollection) Collection
Union Collection.union(otherCollection) Collection

A
u
x
. Apply Collection.apply(unaryGraphOperator) Graph

Reduce Collection.reduce(binaryGraphOperator) Graph
Call [Graph|Collection].callForGraph(algorithm, parameters) Graph

[Graph|Collection].callForCollection(algorithm, parameters) Collection

Table 5. Overview of operators provided by the domain specific language GrALa.

operators, a detailed discussion of all operators and their implementation can be
found in [64].

Aggregation An operator often used in analytical applications is aggregation,
where a set of values is mapped to a single value of significant meaning. The
EPGM supports aggregation at the graph level. Formally, the operator maps an
input graph G to an output graph G′ and applies the user-defined aggregate
function α : L → A. Thus, the resulting graph is a modified version of the input
graph with an additional property k. In the following, we show a simple vertex
count example:

alpha = (g => g.V.count())
outGraph = inGraph.aggregate(’vertexCount ’, alpha)

Here, a user-defined aggregate function alpha computes the cardinality of the
vertex set g.V of an input graph g. The aggregation operator is called on the log-
ical graph referred to by the variable inGraph. The operator takes property key
vertexCount and aggregate function alpha as arguments. The resulting logical
graph is assigned to the variable outGraph and provides a property vertexCount
storing the result of alpha. Basic aggregate functions such as count, sum, min
and max are predefined in GrALa and can be applied to vertex and edge collec-
tions.

Pattern Matching A fundamental operation of graph analytics is the retrieval of
subgraphs isomorphic to a user-defined pattern graph [48]. The operator results



32 Management and Analysis of Big Graph Data

Fig. 11. Example of a pattern matching execution where Figure (a) represents the
pattern which is applied on the graph of Figure 10 and Figure (b) shows the resulting
graph collection containing all subgraphs that match the pattern.

in a graph collection containing all embeddings of that pattern graph in the
input graph. For example, in Figure 11a, a simple pattern graph describes the
membership relation between an arbitrary user and an arbitrary group. Applied
on our example graph in Figure 10, the operator returns the collection shown in
Figure 11b. Each logical graph in that collection represents an embedding of the
pattern graph. To support such queries, GrALa provides the pattern matching
operator, where a pattern graph G∗ and a predicate ϕ : L → {true, false} are
the operator arguments. Pattern matching is applied to a graph G and returns
a graph collection G′ = {G′ ⊆ G | G′ ' G∗ ∧ ϕ(G′) = true} containing all
matches, for example:

embeddings = db.G.match ("(a:User)-[e:memberOf]-(b:Group))")

The shown pattern graph reflects our membership query. GrALa adopts the
basic concept of describing graph patterns using ASCII characters from Neo4j
Cypher [7], where (a)-[e]->(b) denotes an edge e from vertex a to vertex b.
The predicate function ϕ is embedded into the pattern by defining type labels
and properties. In the example, we describe a pattern of two vertices and one
edge, which are assigned to variables (a,b for vertices; e for the edge). Variables
are optionally followed by a label (e.g., a:User) and properties (e.g., {name =
’Alice’}). The operator is called for the logical graph representing the whole
database DB (db.G) of Figure 10 and returns a collection assigned to variable
embeddings and containing four new logical graphs.

Grouping The groupBy operator determines a structural grouping of vertices
and edges to condense a graph and thus helps to uncover insights about pat-
terns hidden in the graph. Let G′ be the grouped graph of G, then each vertex in
V (G′) represents a group of vertices in V (G); edges in E(G′) represent a group
of edges between the vertex group members in V (G). Vertices are grouped based



Management and Analysis of Big Graph Data 33

Fig. 12. Example of the grouping operator applied on the graph of Figure 10. The
graph is grouped by vertex and edge label and a count aggregate is used to compute
the number of elements represented by each resulting super vertex/edge.

on selected property values (including their type label) while edges are grouped
along their incident vertices and optionally by selected property values. Vertices
and edges in the grouped graph are called super vertices and super edges, re-
spectively. Additionally, the vertex and edge aggregate functions can be used
to compute aggregated property values for super vertices and edges, e.g., the
average age of users in a group or the number of group members. The aggregate
value is stored at the super vertex and super edge, respectively. The following
example shows the application of the grouping operator:

1 outGraph = db.G.groupBy(
2 [:label],
3 (suVertex , vertices => suVertex[’count ’] = vertices.count()),
4 [:label],
5 (suEdge , edges => suEdge[’count ’] = edges.count()))

The goal of this example is to group vertices and edges in the graph of
Figure 10 by their corresponding type label. Furthermore, we want to count
the number of vertices and edges represented by each label. In line 2, we define
the vertex grouping keys. Here, we want to group vertices by their type label.
However, it is also possible to define property keys which are used to select
property values for grouping (e.g., to group users by their age). Edges are also
grouped by type label (line 4). In lines 3 and 5, we define the vertex and edge
aggregate functions. Both receive the super entity (i.e., suVertex, suEdge) and
the set of group members (i.e., vertices, edges) as input. Both functions apply
the aggregate function count() on the set of grouped entities to compute the
group size. The resulting value is stored as a new property count at the super
vertex and super edge respectively. Figure 12 shows the resulting logical graph
of the grouping example.

Analytical Example Finally, we illustratete the capabilities of Gradoop using
an exemplary analytical program based on social network data. We assume a
heterogeneous network including various vertex and edge types including users
and their mutual friendship relations similar to Figure 10. Vertices and edges
have properties, for example, user vertices store the corresponding name, gender
and the city the user lives in.



34 Management and Analysis of Big Graph Data

1 Graph socialNetwork = EPGMDatabase.fromHBase ().getDBGraph ()
2 Graph result = socialNetwork
3 .subgraph(
4 (vertex => vertex [:label] == ’User ’),
5 (edge => edge[:label] == ’knows ’))
6 .transformVertices(currentVertex , transformedVertex => {
7 transformedVertex[’city ’] = currentVertex[’city ’]
8 transformedVertex[’gender ’] = currentVertex[’gender ’])
9 .callForCollection (: LabelPropagation , [:id, 5]))

10 .apply(g => g.aggregate(’vertexCount ’, (h => h.V.count())))
11 .select(g => g[’vertexCount ’] > 50_000)
12 .reduce(g, h => g.combine(h))
13 .groupBy([’city ’,’gender ’],
14 (suVertex , vertices => suVertex[’count ’] = vertices.count()),
15 [], (suEdge , edges => suEdge[’count ’] = edges.count()))
16 .aggregate(’vertexCount ’, (g => g.V.count()))
17 .aggregate(’edgeCount ’, (g => g.E.count()))
18 result.writeAsJSON(’hdfs :/// output/’)

Listing 1.8: Analytical program which shows the combination of EPGM op-
erators.

The graph analytical program used for our example is shown in Listing 1.8
and includes several operators from Table 5 not discussed before. The input is
an entire social network represented as a single logical graph. Here, the graph
is stored in HBase and distributed across a cluster of machines. In line 1, we
load the graph and refer to it using the variable socialNetwork. Starting from
Line 2, we define our analytical program as a composition of GrALa operators.
First, we extract the subgraph containing only users and their mutual friendship
relationships by applying user-defined vertex and edge predicate functions. The
vertices of the resulting graph are then transformed to a representation which
is limited to information necessary for subsequent operators. The user-defined
transformation function takes the current vertex and a copy of that vertex with
omitted label and properties as input and determines, which data gets trans-
ferred from the current to the copied vertex. Here, we adopt only the gender
and city properties. The transformed subgraph is then used as input for the call
operator in line 9. That operator allows us to call specific graph algorithms on
logical graphs (e.g., pagerank) or graph collections (e.g., common subgraph de-
tection). Here, we use Label Propagation [92], a community detection algorithm
that is already implemented in Flink Gelly. The algorithm propagates the value
associated with a given property key (we use the vertex id) through the graph
in five iterations. The result is a graph collection containing all found commu-
nities. In line 10, we apply the aggregate operator on each of these communities
to compute their respective vertex counts. Then, we use the selection operator
to filter communities that have more than 50K users. The filtered graphs are
then combined to a single logical graph by applying the reduce operator on the



Management and Analysis of Big Graph Data 35

filtered collection. The result is a single logical graph containing all vertices and
edges from all graphs in the collection. We further group this graph by the vertex
properties city and gender to see the relations between those groups. Edges are
grouped along their incident vertices. By applying group-wise counting, we can
find out how many vertices and edges are represented by their respective super
entities. In lines 16 and 17, we use aggregation to compute how many super
entities are contained in the resulting logical graph. As Gradoop is build on
top of Apache Flink, program execution needs to be triggered explicitly. In the
last line, we start the program by writing the resulting logical graph to HDFS
using a dedicated JSON output format.

The example illustrates that Gradoop allows the combined application of
graph queries and transformations as well as the execution of graph algorithms
such as for community detection within a compact dataflow program. The entire
program can be automatically executed in parallel on distributed clusters since
all operators are implemented using Flink operators.

6 Comparison

In our introduction we stated various requirements for flexible and efficient man-
agement and analysis of big graph data. In the previous sections, we discussed
three system categories in detail: graph database, graph processing and graph
dataflow systems. We now want to compare these categories based on the stated
requirements. Table 6 highlights the features of the respective categories.

– Powerful graph data model: The need to process graphs with heterogeneous
vertices and edges of varying types and with different attributes is currently
addressed best by graph database systems that offer schema-free, flexible
data models like the PGM or RDF. From the considered distributed frame-
works for graph analytics, only Gradoop supports such a graph data model.
Its EPGM is the only data model with versatile support for graph collections.

– Powerful query and analysis capabilities: We saw that each system category
has its own approach for querying and analyzing the graph. While declarative
languages, like Cypher or SPARQL, are unique for graph database systems,
graph processing systems provide vertex- and graph-centric programming
abstractions that simplify the implementation of distributed graph algo-
rithms. In contrast, graph dataflow systems combine vertex-centric compu-
tation with additional libraries and general-purpose data operators for pre-
and post-processing. While Gelly and GraphX provide transformation and
aggregation methods for single graphs, Gradoop in addition offers opera-
tors that exploit the expressiveness of the underlying graph data model.

– High performance and scalability: The main focus of graph database systems
are OLTP applications with demand for very low query execution times. To
achieve that, those systems focus on query optimization, indexing, efficient
physical storage and data replication. Graph processing and dataflow sys-
tems on the other hand, focus on analytical programs involving graphs that



36 Management and Analysis of Big Graph Data

Graph Graph Graph

Database Processing Dataflow

Systems Systems Systems

Examples Neo4j, Marklogic Pregel, Giraph Gelly, GraphX Gradoop

Data Model PGM/RDF Generic Graph Generic Graph, EPGM,

Datasets Datasets

Graph Collections No No No Yes

Query approach Query Vertex-/Graph-centric Vertex-centric Computation,

Languages Computation models Dataflow Programs

Scope OLTP/Queries Analytics Analytics Analytics

Scalability Up/(Out) Out Out Out

Persistency Yes No No Yes

Transactions Yes No No No

Graph Interactive No No No

Visualization Traversal

Table 6. Feature comparison of different approaches to graph data management and
analytics.

span an entire cluster of machines. Here, the focus is on balanced load distri-
bution, reducing network traffic and fault-tolerance in case of system-failures
during long running programs. While the architecture of graph processing
as well as dataflow systems is built with data distribution in mind, only a
subset of available graph databases provides that feature. The actual system
performance depends on many implementation decisions as well as on the
data and workload characteristics - an extensive benchmarking could help
clarify differences between the different approaches (see Section 7.2).

– Persistent graph storage and transaction support: As stated before, graph
databases focus on OLTP applications, hereby offering support for ACID
compliant transactions on persistent data. Graph processing and dataflow
systems solely focus on reading the graph from data sources, process it in
a distributed manner and write the results back to an arbitrary data sink.
Gradoop offers rudimentary support for managing graphs in a persistent
database. Those graphs can be either used in further analytical programs or
be queried directly in the graph store. However, some graph databases, for
example Titan [17], already provide APIs to execute ACID compliant graph
processing algorithms.

– Ease of use / graph visualization: The growing interest in graph-based data
systems indicates that the use of graphs is intuitive for many use cases.
However, if it comes to meaningful visualization of graphs, there is only



Management and Analysis of Big Graph Data 37

limited support in some graph database systems for navigating through the
graph. Hence, support for versatile visualization and interactive exploration
for large graphs or the results of graph analytics is still missing and a topic
for future research and development (see Section 7.5).

7 Current research and open challenges

The development of systems for graph analytics has made great progress in the
past decade but there are still several areas requiring significant further improve-
ment and research. In the following, we discuss some of these areas together with
a brief outline of initial results that have already been achieved.

7.1 Graph data allocation and partitioning

The efficiency of distributed graph processing substantially depends on a suit-
able data allocation (partitioning) of the graph data among all nodes of the
processing system. This data allocation should enable graph processing with a
minimum of inter-node communication and data transfer while at the same time
ensure a good load balancing such that all nodes can be effectively utilized. The
associated optimization objective is to find a balanced distributed of vertices
and their edges such that the each partition includes about the same number of
vertices while the sum of edges crossing partitions is minimized (”vertex cut”).
The graph partitioning problem is known to be NP-hard and has attracted a
large amount of research, in particular in graph theory [32]. The most promising
approximate solutions are multilevel approaches such as METIS [67] that include
steps for coarsening graphs to find partitions for condensed graphs and uncoars-
ening to the detailed graph while keeping the partitioning from the coarse graph
[32]. Although these approaches can be run in parallel they are still expensive
and thus likely of limited scalability to very large graphs [81]. A further problem
is that even a near-perfect static data allocation is not sufficient since during
the execution of long-running analysis, e.g., in a Pregel-like system, the process-
ing of some partitions may have already terminated while others still have to
be processed. Furthermore, some graphs may quickly change, e.g., in social net-
works, so that the data allocations needs to be quickly adapted without causing
a completely new static data allocation [60].

Current distributed graph data systems mostly follow a simple hash-based
partitioning of the vertices across all nodes. This approach achieves an even dis-
tribution of vertices and thus good load balancing and does not require a data
structure to locate vertices. On the other hand, it frequently assigns neighboring
vertices to different partitions leading to poor locality of processing and high
communication overhead for many algorithms. A number of proposals has been
made to address these limitations and also support adaptive data allocation to
deal with changing graphs or load imbalances during analytical processing. Stan-
ton and Kliot [104] propose a locality-aware data allocation that incrementally
assigns vertices to the partition where most of the already assigned neighbors



38 Management and Analysis of Big Graph Data

have been placed without causing significant load imbalances. This approach
is also suitable for changing graphs to allocate new vertices. PowerGraph [51]
as well as Spark GraphX [52] support an edge-based partitioning rather than
a vertex-driven approach so that the number of edges is balanced across par-
titions and vertices are replicated along with their edges (”vertex cut”). Such
an approach is especially valuable for graphs with a highly uneven distribution
of vertex degrees such that a large fraction of the edges is associated with few
vertices that could easily lead to load imbalances with a vertex-based data par-
titioning. The replication of vertices has also been proposed for an adaptive data
allocation for dynamically evolving graphs [84, 60]. Furthermore, graph reparti-
tioning approaches based on the dynamic migration and replication of vertices
have been proposed to deal with load imbalances during analytical processing in
graph processing systems such as GPS and XPregel, but the associated overhead
has not always resulted in significantly improved execution time [81].

The discussion shows that graph data allocation is a challenging problem that
is not sufficiently solved with a single solution such as hash partitioning. This
is because a good data allocation depends on the characteristics of the graph
data as well on the intended kinds of graph analytics. It would be desirable
to have support of a spectrum of allocation approaches from which the system
can automatically choose depending on the graph and workload characteristics
(similar as for data allocation in parallel database systems [95, 86]). Furthermore,
it would be desirable to find a data allocation that can deal with mixed workloads
including different kinds of complex analytical tasks as well as diverse kinds of
interactive queries.

7.2 Benchmarking and evaluation of graph data systems

The large number of existing systems for analyzing graph data poses the question
for potential users of such systems which of the systems performs best for which
kind of analysis tasks, datasets and platforms. This asks for a comprehensive
and comparative performance evaluation or benchmarking of the different im-
plementations under comparable conditions. Such evaluations are also expected
to help identify existing bottlenecks that may be addressed in the further de-
velopment of systems. A large number of studies has addressed these issues by
comparing the performance of selected systems, in particular for graph database
and graph processing systems, e.g., [42, 53, 56, 77, 80, 102, 121]. While these stud-
ies have been insightful, their results are mostly not comparable as each study
has chosen a different set of systems, different sets of real or synthetically gener-
ated graph datasets, different sets of queries and analytical tasks (ranking from
pagerank to collaborative filtering and graph coloring) as well as different en-
vironments in terms of number of worker nodes and their characteristics such
as memory size and number of cores. The different studies thus have only few
observations in common such that graph processing systems significantly out-
perform MapReduce-based implementations [42, 53] and that Giraph is mostly
slower than other graph processing systems such as GraphLab or GPS [53, 56,
77, 102, 121].



Management and Analysis of Big Graph Data 39

A few studies also considered Apache Spark [121] and Stratosphere (the pre-
decessor of Flink) [42, 53], but comparative performance evaluations for GraphX
and Gelly are still missing. Here, it is of great interest, how the underlying
dataflow systems behave for graph analytical workflows involving multiple graph
and non-graph transformations as well as iterative algorithms. For example,
Flink optimizes dataflow programs with cost-based query-optimization tech-
niques that are similar to the ones used in database systems, e.g., to reorder
transformations. As the optimizer assumes independent datasets, such generic
program optimizations may, however, cause problems for the processing of graph
data with strongly interrelated vertex and edge datasets. It would thus be inter-
esting to evaluate the performance of different kinds of graph dataflow programs
in more detail and develop optimization techniques customizable for graph pro-
cessing and analysis, e.g., to automatically repartition the graph during program
execution.

In addition to the individual performance studies there are also several recent
attempts for the definition of graph analysis benchmarks, namely Linkbench
[25], LDBC [44, 24] and gMark [26]. These benchmarks specify the synthetic
generation of datasets of different sizes, the workloads and performance metrics
together with rules on how to perform the evaluation in order to achieve compa-
rable results between different systems. Furthermore, there are proposals for the
synthetic generation of graph datasets, e.g., for business intelligence [89]. From
the mentioned benchmarks, the LDBC (Linked Data Benchmark Council) effort
is the most ambitious as it consists of two benchmarks for semantic publishing
and social network benchmarking (SNB) and different sets of query and analysis
workloads exhibiting several ”choke points” to stress-test the systems. Unfor-
tunately, there are only few evaluations so far for all benchmarks so that they
could not yet demonstrate their usefulness.

7.3 Analysis of dynamic graphs

Previous approaches for graph analytics focus on static graphs that remain sta-
ble. Most graphs, e.g., social networks, however are constantly changing so that
the results of analytical processes, e.g., for community detection or on metrics
such as pagerank or centrality, need to be updated or refreshed. Furthermore,
there is a need for fast, one-pass graph analysis in data streams, e.g., to quickly
identify new topics and correlations in Twitter data, to determine online rec-
ommendation for users based on their current website usage (clickstream) or to
identify potentially criminal acts such as credit card misuse or planned terror
attacks.

According to [19], dynamic graphs fall into two categories: slowly evolving
graphs (e.g., co-authorship networks) and streaming networks. In the first case,
it is possible to maintain different snapshots of the graph as the basis for an
offline analysis while in the second case a near real-time analysis is necessary.
The analysis can further focus on understanding the evolution, e.g., by compar-
ing different snapshots, or on refreshing previous analysis results for the new
graph data. A large amount of research has already dealt with these topics as



40 Management and Analysis of Big Graph Data

surveyed in [19]. Typical observations show that the number of edges grows
stronger than the number of vertices leading to increasingly denser networks
(reduced distances between vertices). Many studies focused on analyzing the
evolution of communities, e.g., by applying a clustering-based community detec-
tion on different snapshots and analyzing the cluster changes. Graph analysis for
streamed data has also found interest already, e.g., to detect outliers such as a
new co-author link between authors of different communities (linkage anomaly).
There is also some work to incrementally update complex graph metrics such
as betweenness centrality17 for streamed data, e.g., using approximation tech-
niques and specific index structures [59]. The Kineograph system [37] supports
the dynamic graph-based analysis of Twitter data (correlations between users
and hashtags) by continuously creating new in-memory graph snapshots that
can then be evaluated by conventional mining approaches for static graphs, e.g.,
for ranking or community detection.

Despite the relatively large body of previous theoretical and experimental
work on dynamic networks, little work has been done for big graph data uti-
lizing current distributed graph data platforms as discussed in this chapter.
Analyzing massive amounts of changing graph data in a distributed way poses
many new algorithmic and data management challenges including the need for
adaptive data allocation (as discussed in Section 7.1 above). Data management
and graph analytics is challenging on a sequence of large graph snapshots as well
as for streaming data and needs much further research. Most studies for graph
evolution and dynamic graph analytics focused on structural changes such as the
addition of new vertices and edges; more work is needed for considering both
changes in structure and content, e.g., new publication topics or changing inter-
ests of users in social networks. Furthermore, the graph changes may have to be
associated with information in different data sources, e.g., to better understand
certain changes or identify potential criminal acts. The latter aspects might im-
ply the need to develop application-specific approaches to take the specific kinds
of changes and additional information to correlate with into account.

7.4 Graph-based data integration and knowledge graphs

Before graph data can be analyzed it is necessary to construct and store the
graphs for further processing. As for big data analysis in general, the graph
data typically needs to be extracted from the original data sources (e.g., from
social networks, web pages, tweets, relational databases, etc.), transformed and
cleaned. Furthermore, it is often necessary to combine and interrelate data from
multiple sources into the combined graph. These steps are typically carried out
within so-called ETL (extract-transform-load) workflows that may be performed
in parallel on Hadoop platforms, e.g., using MapReduce or other frameworks such
as Hive, Spark or Flink [28, 54, 69]. A particularly important and expensive step

17 The betweenness centrality of a vertex is defined as the number of shortest paths in
a network pathing through the vertex. A high value thus indicates that a vertex is
centrally located so that it plays an important role in a network.



Management and Analysis of Big Graph Data 41

is the matching of equivalent entities (users, products, etc.) from different sources
so that they can be fused together, e.g., within one graph vertex. Map-reduce-
based tools such as Dedoop [72] have been developed for scalable entity matching.
So far, relatively little work has focused on ETL for graph data, although there
are new challenges in all steps of a typical ETL pipeline, e.g., to extract graphs
from certain data sources such as relational databases, for data cleaning and
for data integration. GraphBuilder is one of the few tools for graph ETL [62].
It utilizes MapReduce jobs to extract data from sources based on user-defined
parsers and to generate vertices and edges. It also provides different options for
distributed storage of the resulting graph data. The BIIIG system supports the
extraction of graph data from several relational databases to support a graph-
based business intelligence [88, 90].

A particularly challenging kind of graph-based data integration becomes nec-
essary for the generation and continuous maintenance of so-called knowledge
graphs [41, 87, 94] providing a large amount of interrelated information about
many real-world entities (persons, locations, ...) and their describing metadata
concepts, typically extracted and combined from several other sources. Non-
commercial knowledge graph projects include YAGO18, DBpedia19, Freebase
and its successor Wikidata20. Companies such as Yahoo! [28], Google, Microsoft
or Facebook utilize even larger knowledge graphs [87] combining information
from more resources including web pages and search queries. Most of the sys-
tems make use of the RDF data model to express the contained knowledge.

A massive problem is the typically low data quality, high diversity and large
volume of the automatically extracted information to be integrated into knowl-
edge graphs. Dealing with these issues requires scalable and largely automatic
(learning-based) approaches for information extraction, cleaning, classification
and matching [28, 41, 94].

Low data quality including incomplete and contradicting information from
the information to be integrated into a knowledge graphs is a huge challenge to
deal with requiring scalable and largely automatic (learning-based) approaches
for information extraction, cleaning, classification and matching [28, 41, 94].

7.5 Interactive graph analytics

Interactive graph analytics supported by suitable visualizations is highly de-
sirable to put the human in the loop for exploring and analyzing graph data.
However, interactive graph analysis is currently only supported for query pro-
cessing with graph databases (Section 2) while graph analytics with the discussed
distributed frameworks is largely batch-oriented. For example, Neo4j allows such
an interactive and visual exploration of the immediate neighborhood of selected
vertices21. Screen size and human recognition capabilities limit this approach to

18 www.mpi-inf.mpg.de/yago-naga/yago/
19 http://dbpedia.org/
20 www.wikidata.org
21 http://neo4j.com/graph-visualization-neo4j/



42 Management and Analysis of Big Graph Data

inspecting only tens to a few hundreds of vertices at a time. More promising
is the exploration and visualization of summarizing graph data, similar to mul-
tidimensional OLAP queries for data warehouses. Several approaches for such
graph summaries [108, 119], graph OLAP [36, 50, 113, 120] and grouping (Sec-
tion 5.2) have already been proposed and can potentially be applied for large
graphs. For example, k-SNAP [108] automatically creates summarized graphs
with k vertices, where the change of parameter k enables an OLAP-like roll-up
and drill-down within a dimension hierarchy [36]. However, the approach is not
yet fully interactive as it depends on a pre-determined parameter.

To improve ease-of-use there is a strong need for extending interactive and
visual analysis to more kinds of graph analysis, from OLAP-style aggregations
for single large graphs and graph collections to exploring evolution in dynamic
graphs. Furthermore, it should be possible to interactively evaluate the results
of expensive graph analytics, e.g., to inspect parts of the graphs with a high cen-
trality, certain communities of interest, etc. The currently existing separation
between interactive query processing with graph databases and batch-oriented
graph analytics should thus be overcome by providing all kinds of analysis in
a unified, distributed platform with support for interactive and visual analysis.
Some of the graph databases of Section 2, e.g., Blazegraph, System G and Ti-
tan, try to go into this direction, but there are still many open issues in finding
suitable visualizations and interaction forms for the different kinds of analy-
sis. Furthermore, the combined processing of mixed workloads with queries and
heavy-weight graph algorithms should also be possible with the graph processing
frameworks for Hadoop-based clusters.

8 Conclusions and outlook

The analysis of graph data has become of great interest in many applications
and a major focus of big data platforms. We have posed major requirements
for big data graph analytics and surveyed current systems in three categories:
graph database systems, distributed graph processing systems and distributed
graph dataflow systems. The summarizing comparison of these system cate-
gories with respect to the posed requirements in Section 6 showed that there
are still big differences between the query-focused graph database systems and
the distributed platforms focusing on large-scale iterative graph analysis. While
distributed graph analysis platforms generally lack an expressive graph data
model, the distributed dataflow approach Gradoop provides an extended prop-
erty graph model with powerful support for analyzing collections of graphs.

Despite the significant advances made in the last few years, the development
and use of distributed graph data systems are still in an early stage. Hence, the
posed requirements are not yet fully achieved and there are many opportunities
for improvement and future research. As discussed in Section 7, this is especially
the case for evaluating and improving the performance and scalability of graph
data systems, for graph data partitioning and load balancing, for the analysis of
dynamic graph data, for graph-based data integration, and for interactive and
visual graph analytics.



Management and Analysis of Big Graph Data 43

References

1. Akka. http://www.akka.io, Accessed: 2016-03-10
2. AllegroGraph. http://franz.com/agraph/allegrograph/, Accessed: 2016-03-10
3. Apache Flink Iteration Operators. https://ci.apache.org/projects/flink/

flink-docs-master/apis/batch/index.html#iteration-operators, Accessed:
2016-03-09

4. Apache Giraph. http://www.giraph.apache.org, Accessed: 2016-03-10
5. Apache Jena - TBD. https://jena.apache.org/documentation/tdb/, Accessed:

2016-03-09
6. Big Data Spatial and Graph User’s Guide and Reference. http://docs.oracle.

com/cd/E69290 01/doc.44/e67958/toc.htm, accessed: 2016-03-16
7. Cypher Query Language. http://neo4j.com/docs/stable/cypher-query-lang.

html, Accessed: 2016-03-16
8. Gelly: Flink Graph API. https://ci.apache.org/projects/flink/

flink-docs-master/apis/batch/libs/gelly.html, Accessed: 2016-03-15
9. GraphDB: At Last, the Meaningful Database. http://ontotext.com/documents/

reports/PW Ontotext.pdf, Whitepaper July 2014
10. InfiniteGraph: The Distributed Graph Database. http://www.objectivity.com/

wp-content/uploads/Objectivity WP IG Distr Benchmark.pdf, Whitepaper 2012
11. Key Features - ArangoDB. https://www.arangodb.com/key-features/, Accessed:

2016-03-10
12. MarkLogic Semantics. http://www.marklogic.com/resources/

marklogic-semantics-datasheet/, Datasheet March 2016
13. Oracle Spatial and Graph: Advanced Data Management. http:

//www.oracle.com/technetwork/database/options/spatialandgraph/
spatial-and-graph-wp-12c-1896143.pdf, Whitepaper September 2014

14. quasar. http://www.paralleluniverse.co/quasar, Accessed: 2016-03-10
15. Stardog 4 - The Manual. http://docs.stardog.com/, Accessed: 2016-03-10
16. The bigdata RDF Database. https://www.blazegraph.com/whitepapers/bigdata

architecture whitepaper.pdf, Whitepaper May 2013
17. TITAN: Distributed Graph Database. http://thinkaurelius.github.io/titan/,

Accessed: 2016-03-10
18. Why OrientDB? http://orientdb.com/why-orientdb/, Accessed: 2016-03-10
19. Aggarwal, C., Subbian, K.: Evolutionary network analysis: A survey. ACM Com-

puting Surveys (CSUR) 47(1), 10 (2014)
20. Agha, G.A.: Actors: A model of concurrent computation in distributed systems.

Tech. rep., DTIC Document (1985)
21. Alexandrov A. et al.: The Stratosphere Platform for Big Data Analytics. VLDB

Journal 23(6) (2014)
22. Angles, R.: A comparison of current graph database models. In: Proc. ICDEW

(2012)
23. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Computing

Surveys (CSUR) 40(1) (2008)
24. Angles R. et al.: The linked data benchmark council: a graph and RDF industry

benchmarking effort. Proc. SIGMOD 43(1) (2014)
25. Armstrong T. G. et al.: Linkbench: a database benchmark based on the facebook

social graph (2013)
26. Bagan G. et al.: gMark: Controlling Diversity in Benchmarking Graph Databases.

CoRR abs/1511.08386 (2015)



44 Management and Analysis of Big Graph Data

27. Batarfi O. et al.: Large scale graph processing systems: survey and an experimen-
tal evaluation. Cluster Computing 18(3) (2015)

28. Bellare K. et al.: Woo: A scalable and multi-tenant platform for continuous knowl-
edge base synthesis. PVLDB 6(11) (2013)

29. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation: numerical
methods, vol. 23 (1989)

30. Bolouri, H.: Modeling genomic regulatory networks with big data. Trends in Ge-
netics 30(5) (2014)

31. Brickley, D., Miller, L.: Foaf vocabulary specification 0.98. Namespace document
9 (2012)

32. Buluç A. et al.: Recent advances in graph partitioning. CoRR (2013)
33. Canim, M., Chang, Y.C.: System G Data Store: Big, Rich Graph Data Analytics

in the Cloud. In: IEEE Cloud Engineering (IC2E) (March 2013)
34. Carothers, G.: RDF 1.1 N-Quads: A line-based syntax for RDF datasets. W3C

Recommendation (2014)
35. Cattell, R.: Scalable SQL and NoSQL data stores. Proc. SIGMOD 39(4) (2011)
36. Chen C. et al.: Graph OLAP: Towards online analytical processing on graphs. In:

IEEE Data Mining (ICDM) (2008)
37. Cheng R. et al.: Kineograph: taking the pulse of a fast-changing and connected

world. In: Proc. EuroSys (2012)
38. Das S. et al.: A Tale of Two Graphs: Property Graphs as RDF in Oracle. In:

EDBT (2014)
39. Diestel, R.: Graph Theory, 4th Edition, Graduate texts in mathematics, vol. 173

(2012)
40. Ding, Y.: Scientific collaboration and endorsement: Network analysis of coauthor-

ship and citation networks. Journal of informetrics 5(1) (2011)
41. Dong X. et al.: Knowledge Vault: A Web-Scale Approach to Probabilistic Knowl-

edge Fusion. In: Proc. SIGKDD (2014)
42. Elser, B., Montresor, A.: An evaluation study of bigdata frameworks for graph

processing. In: IEEE Big Data (2013)
43. Erling, O., Mikhailov, I.: RDF support in the Virtuoso DBMS. In: Networked

Knowledge-Networked Media (2009)
44. Erling O. et al.: The ldbc social network benchmark: interactive workload. In:

Proc. SIGMOD (2015)
45. Ewen S. et al.: Spinning fast iterative data flows. PVLDB 5(11) (Jul 2012)
46. Ewen S. et al.: Iterative Parallel Data Processing with Stratosphere: An Inside

Look. In: Proc. SIGMOD (2013)
47. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5) (2010)
48. Gallagher, B.: Matching structure and semantics: A survey on graph-based pat-

tern matching. AAAI FS 6 (2006)
49. Gao J. et al.: Glog: A high level graph analysis system using mapreduce. In: Proc.

ICDE (2014)
50. Ghrab A. et al.: A Framework for Building OLAP Cubes on Graphs. In: Advances

in Databases and Information Systems (2015)
51. Gonzalez J. E. et al.: Powergraph: Distributed graph-parallel computation on

natural graphs. In: Proc. OSDI (2012)
52. Gonzalez J. E. et al.: GraphX: Graph Processing in a Distributed Dataflow Frame-

work. In: Proc. OSDI (2014)
53. Guo Y. et al.: How well do graph-processing platforms perform? an empirical per-

formance evaluation and analysis. In: Proc. Parallel and Distributed Processing
Symp. (2014)



Management and Analysis of Big Graph Data 45

54. Haas D. et al.: Wisteria: Nurturing scalable data cleaning infrastructure. PVLDB
8(12) (2015)

55. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery.
ACM Computing Surveys 15(4) (1983)

56. Han M. et al.: An experimental comparison of pregel-like graph processing sys-
tems. PVLDB 7(12) (2014)

57. Harris, S., Seaborne, A., Prudhommeaux, E.: SPARQL 1.1 query language. W3C
Recommendation 21 (2013)

58. Hartig, O., Thompson, B.: Foundations of an alternative approach to reification
in RDF. Tech. Rep. arXiv:1406.3399 (2014)

59. Hayashi, T., Akiba, T., Yoshida, Y.: Fully dynamic betweenness centrality main-
tenance on massive networks. PVLDB 9(2) (2015)

60. Huang, J., Abadi, D.J.: LEOPARD: Lightweight Edge-Oriented Partitioning and
Replication for Dynamic Graphs. PVLDB 9(7) (2016)

61. Iordanov, B.: HyperGraphDB: a generalized graph database. In: Web-Age Infor-
mation Management (2010)

62. Jain, N., Liao, G., Willke, T.L.: Graphbuilder: scalable graph ETL framework.
In: Int. Workshop on Graph Data Management Experiences and Systems (2013)

63. Jiang C. et al.: A survey of Frequent Subgraph Mining algorithms. Knowledge
Eng. Review 28(1) (2013)

64. Junghanns M. et al.: GRADOOP: Scalable Graph Data Management and Ana-
lytics with Hadoop. Tech. Rep. arXiv:1506.00548 (2015)

65. Junghanns M. et al.: Analyzing Extended Property Graphs with Apache Flink.
In: Proc. SIGMOD Workshop on Network Data Analytics (2016)

66. Kaoudi, Z., Manolescu, I.: RDF in the Clouds: A Survey. VLDB Journal 24(1)
(2015)

67. Karypis, G., Kumar, V.: Multilevelk-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed computing 48(1) (1998)

68. Khayyat Z. et al.: Mizan: A System for Dynamic Load Balancing in Large-scale
Graph Processing. In: Proc. EuroSys (2013)

69. Khayyat Z. et al.: Bigdansing: A system for big data cleansing. In: Proc. SIGMOD
(2015)

70. Klyne, G., Carroll, J.J.: Resource description framework (RDF): Concepts and
abstract syntax (2006)

71. Kolb, L., Sehili, Z., Rahm, E.: Iterative Computation of Connected Graph Com-
ponents with MapReduce. Datenbank-Spektrum 14(2) (2014)

72. Kolb, L., Thor, A., Rahm, E.: Dedoop: efficient deduplication with Hadoop.
PVLDB 5(12) (2012)

73. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques
(2009)

74. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: Large-Scale Graph Computa-
tion on Just a PC. In: Proc. OSDI (2012)

75. Lin, J., Schatz, M.: Design Patterns for Efficient Graph Algorithms in MapRe-
duce. In: Proc. 8th Workshop on Mining and Learning with Graphs (2010)

76. Low Y. et al.: Distributed GraphLab: A Framework for Machine Learning and
Data Mining in the Cloud. PVLDB 5(8) (2012)

77. Lu, Y., Cheng, J., Yan, D., Wu, H.: Large-scale distributed graph computing
systems: An experimental evaluation. PVLDB 8(3) (2014)

78. Malewicz G. et al.: Pregel: A System for Large-scale Graph Processing. In: Proc.
SIGMOD (2010)



46 Management and Analysis of Big Graph Data

79. Martinez-Bazan, N., Gomez-Villamor, S., Escale-Claveras, F.: DEX: A high-
performance graph database management system. In: Proc. ICDEW (2011)

80. McColl R. et al.: A Performance Evaluation of Open Source Graph Databases.
In: Proc. PPAAW (2014)

81. McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex: a survey of
vertex-centric frameworks for large-scale distributed graph processing. ACM
Computing Surveys (CSUR) 48(2) (2015)

82. McSherry F. et al.: Composable incremental and iterative data-parallel computa-
tion with naiad. Tech. Rep. MSR-TR-2012-105 (October 2012)

83. Miller, J.J.: Graph database applications and concepts with Neo4j. In: Proc.
Southern Association for Information Systems Conf. vol. 2324 (2013)

84. Mondal, J., Deshpande, A.: Managing large dynamic graphs efficiently. In: Proc.
SIGMOD (2012)

85. Murray D. G. et al.: Naiad: A Timely Dataflow System. In: Proc. 24th ACM
Symposium on Operating Systems Principles. SOSP ’13 (2013)

86. Nehme, R., Bruno, N.: Automated partitioning design in parallel database sys-
tems. In: Proc. SIGMOD (2011)

87. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1) (2016)

88. Petermann A. et al.: BIIIG: Enabling Business Intelligence with Integrated In-
stance Graphs. In: Proc. ICDEW (2014)

89. Petermann A. et al.: FoodBroker-Generating Synthetic Datasets for Graph-Based
Business Analytics. In: Big Data Benchmarking (2014)

90. Petermann A. et al.: Graph-based Data Integration and Business Intelligence with
BIIIG. PVLDB 7(13) (2014)

91. Poulovassilis, A., Levene, M.: A nested-graph model for the representation and
manipulation of complex objects. ACM Transactions on Information Systems
(TOIS) 12(1) (1994)

92. Raghavan U. N. et al.: Near linear time algorithm to detect community structures
in large-scale networks. Phys. Rev. E 76, 036106 (2007)

93. Rahimian F. et al.: Distributed vertex-cut partitioning. In: Distributed Applica-
tions and Interoperable Systems (2014)

94. Rahm, E.: The case for holistic data integration. In: Advances in Databases and
Information Systems (2016)

95. Rao J. et al.: Automating physical database design in a parallel database. In:
Proc. SIGMOD (2002)

96. Rodriguez, M.A.: The gremlin graph traversal machine and language (invited
talk). In: Proc. 15th Symposium on Database Programming Languages (2015)

97. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bulletin of
the American Society for Information Science and Technology 36(6) (2010)

98. Roy A. et al.: Chaos: Scale-out graph processing from secondary storage. In: Proc.
25th Symposium on Operating Systems Principles (2015)

99. Rudolf M. et al.: The graph story of the SAP HANA database. In: Proc. BTW
(2013)

100. Sakr, S., Liu, A., Fayoumi, A.G.: The family of mapreduce and large-scale data
processing systems. ACM Computing Surveys (CSUR) 46(1) (2013)

101. Salihoglu, S., Widom, J.: GPS: A Graph Processing System. In: Proc. 25th Inter-
national Conference on Scientific and Statistical Database Management. SSDBM
(2013)

102. Satish N. et al.: Navigating the maze of graph analytics frameworks using massive
graph datasets. In: Proc. SIGMOD (2014)



Management and Analysis of Big Graph Data 47

103. Shim, K.: MapReduce Algorithms for Big Data Analysis. PVLDB 5(12) (2012)
104. Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs.

In: Proc. SIGKDD
105. Stutz, P., Bernstein, A., Cohen, W.: Signal/collect: Graph algorithms for the

(semantic) web. In: ISWC (2010)
106. Sun W. et al.: SQLGraph: an efficient relational-based property graph store. In:

Proc. SIGMOD (2015)
107. Teixeira C. et al.: Arabesque: a system for distributed graph mining. In: Proc.

25th Symposium on Operating Systems Principles (2015)
108. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summariza-

tion. In: Proc. SIGMOD (2008)
109. Tian Y. et al.: From ”Think Like a Vertex” to ”Think Like a Graph”. PVLDB

7(3) (Nov 2013)
110. Turk-Browne, N.B.: Functional interactions as big data in the human brain. Sci-

ence 342(6158) (2013)
111. Valiant, L.G.: A bridging model for parallel computation. CACM 33(8) (1990)
112. Wang X.H. et al.: Ontology based context modeling and reasoning using owl. In:

Pervasive Computing and Communications Workshops (2004)
113. Wang Z. et al.: Pagrol: parallel graph olap over large-scale attributed graphs. In:

Proc. ICDE (2014)
114. Xia Y. et al.: Graph analytics and storage. In: IEEE Big Data (2014)
115. Xin R.S. et al.: GraphX: A Resilient Distributed Graph System on Spark. In: First

International Workshop on Graph Data Management Experiences and Systems.
GRADES ’13 (2013)

116. Xin R.S. et al.: GraphX: Unifying Data-Parallel and Graph-Parallel Analytics.
Tech. Rep. arxiv/1402.2394 (2014)

117. Yuan P. et al.: Triplebit: a fast and compact system for large scale rdf data.
PVLDB 6(7) (2013)

118. Zaharia M. et al.: Spark: Cluster Computing with Working Sets. In: Proc. 2Nd
USENIX Conference on Hot Topics in Cloud Computing. HotCloud’10 (2010)

119. Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In: Proc.
ICDE (2010)

120. Zhao P. et al.: Graph cube: on warehousing and OLAP multidimensional net-
works. In: Proc. SIGMOD (2011)

121. Zhao Y. et al.: Evaluation and Analysis of Distributed Graph-Parallel Processing
Frameworks. Journal of Cyber Security and Mobility 3(3) (2014)


