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ABSTRACT
The temporal linkage of census data allows the detailed anal-
ysis of population-related changes in an area of interest. It
should not only link records about the same person but also
support the linkage of groups of related persons such as
households. In this paper, we thus propose a new approach
to both temporal record and group (household) linkage for
census data and study its application for change analysis.
The approach utilizes the relationships between individu-
als to determine the similarity of groups and their members
within a graph-based method. The approach is also itera-
tive by first identifying high quality matches that are sub-
sequently extended by matches found with less restrictive
similarity criteria. A comprehensive evaluation using histor-
ical census data from the UK indicates a high effectiveness
of the proposed approach. Furthermore, the linkage enables
an insightful analysis of household changes determined by
so-called evolution patterns.

1. INTRODUCTION
Census data provides valuable information about individ-

uals and households within cities or regions at a specific
point in time [18]. Moreover, the temporal linkage of dif-
ferent census datasets allows analyzing the changes that oc-
cur in a population which is of increasing importance for
social, demographic, economic and health-related studies
[8, 13, 18]. In general, the temporal analysis of changing
information about individuals and other entities is seen as
a major requirement and challenge for future data analysis
[6].

There is a large number of available census datasets for
different regions of interest. Normally such census datasets
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are collected on a regular basis, e.g., every ten years, so
that multiple successive versions can be utilized to analyze
population- and household-related changes. A key prerequi-
site for such change studies is the temporal linkage of per-
son records as well as of households, representing a group
of individuals living together. There has been a modest
amount of previous work on such temporal linkage problems,
mainly focusing on temporal record linkage taking into ac-
count that linkage-relevant attributes such as surname, ad-
dress or occupation may change over time [2, 5, 15, 17] (see
Section 6). These studies mostly ignore the relationships be-
tween individuals, e.g., people living together in a household.
Moreover, they do not consider the linkage and evolution of
groups of related individuals, such as in a household, which
is a main focus of this paper.

Fig. 1 illustrates the problem for two successive histori-
cal census datasets from 1871 and 1881. In each dataset,
individuals are associated to a single household and have a
household-specific relationship or role, such as head of house-
hold or daughter (of the head of household). These relation-
ships can be represented in household graphs as shown in
the lower part of Fig. 1. To understand the changes between
the two considered points in time, one has to find matching
individuals and their changes which is challenging, in par-
ticular due to the occurrence of frequent names (first names
like ’John’ and ’Elizabeth’ or surnames like ’Ashworth’ and
’Smith’ in our dataset) and attribute changes. Of course,
we also need to identify people who occur only in one of
the datasets because of deaths, emigration, births and im-
migration. Obviously, a person in one census dataset should
match to at most one person in another census dataset so
that temporal linkage aims at a 1:1 mapping between person
records. Moreover, we want to identify household-related
changes, e.g., to what degree the individuals in a household
have stayed together or moved to other households. In this
case, we have to identify a many-to-many mapping between
households.

In our example in Fig. 1, the daughter of the head of
household in ga1871 (Alice) married Steve from household
gb1871 and they both moved into the new household gc1881
as shown in the 1881 census data (see blue nodes in house-
hold graphs). John Riley died within the considered time
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𝑫𝟏𝟖𝟕𝟏 groupID recordID first name surname sex age role address

𝑔1881
𝑎

1881_1 john ashworth m 49 head
fearn hill 

terr
1881_2 elizabeth ashworth f 47 wife

1881_3 william ashworth m 12 son

𝑔1881
𝑏 1881_4 john smith m 48 head hippins 

terrace1881_5 elizabeth smith f 44 wife

𝑔1881
𝑐

1881_6 steve smith m 20 head

thorn hill1881_7 alice smith f 18 wife

1881_8 mary smith f 1 daughter

𝑔1881
𝑑

1881_9 john ashworth m 49 head

fearn hill1881_10 elizabeth ashworth f 47 wife

1881_11 william ashworth m 72 father

𝑫𝟏𝟖𝟖𝟏groupID recordID first name surname sex age role address

𝑔1871
𝑎

1871_1 john ashworth m 39 head

fern hill 

terrace

1871_2 elizabeth ashworth f 37 wife

1871_3 alice ashworth f 8 daughter

1871_4 william ashworth m 2 son

1871_5 john riley m 72 father in law

𝑔1871
𝑏

1871_6 john smith m 38 head
hippins 

terrace
1871_7 elizabeth smith f 34 wife

1871_8 steve smith m 10 son

Elizabeth Ashworth
1871_2

John Riley 
1871_5

William Ashworth 
1871_4

wife father 
in law

𝒈𝟏𝟖𝟕𝟏
𝒂

𝒈𝟏𝟖𝟕𝟏
𝒃

daughter son

wife son

head 
John Ashworth

1871_1

Alice Ashworth
1871_3

head 
John Smith

1871_6
Elizabeth Smith

1871_7
Steve Smith

1871_8

Elizabeth Ashworth
1881_2

William Ashworth 
1881_3

wife son

wife

head 
John Ashworth

1881_1

head 
John Smith

1881_4
Elizabeth Smith

1881_5

wife

head 
Steve Smith

1881_6
Alice Smith

1881_7
Mary Smith

1881_8

𝒈𝟏𝟖𝟖𝟏
𝒂

𝒈𝟏𝟖𝟖𝟏
𝒃

𝒈𝟏𝟖𝟖𝟏
𝒄

Elizabeth Ashworth
1881_10

William Ashworth 
1881_11

wife father

head 
John Ashworth

1881_9

𝒈𝟏𝟖𝟖𝟏
𝒅

daughter

Figure 1: Example census data for two points in time (1871 and 1881). Red / green / blue colored nodes
denote individuals who disappear / newly appear / moved to another household.

period (red node for the first census), while the child Mary
Smith was born (green node for the second census). Further-
more, a new family (household gd1881) moved into the region.
Note that the groups ga1881 and gd1881 have highly similar at-
tribute values, but only ga1871 should be linked to ga1881. To
overcome such ambiguities of person-related attributes, our
linkage approach will utilize stable attributes (such as birth
year) as well as stable relationships between records, such
as family relations or age differences.

In this paper, we propose and evaluate a novel approach
for temporal group and record linkage for historical cen-
sus data that considers the relationships between individ-
uals. Moreover, we use the linked information for an initial
change analysis for individuals and households. Specifically,
we make the following contributions:

• We propose a new graph-based approach to linking
households and person records between successive ver-
sions of census data. The approach works in sev-
eral steps and utilizes an approximate record match-
ing approach to identify pairs of related households.
The linkage of households is based on their graph rep-
resentation, and identifies common subgraphs refer-
ring to individuals with stable attributes and relation-
ships. The final record links are derived from the
linked subgraphs. The approach is iterative and de-
termines group and record links in multiple rounds
with decreasing restrictiveness. In this way we start
with finding the best matches and apply less restric-
tive similarity criteria only for the more difficult to
match records and groups.

• We utilize the determined record and group links for
an initial change analysis based on different evolution
patterns, including the splitting and merging of house-
holds.

• We apply and evaluate the proposed approaches for six
historical UK census datasets. The evaluation shows
that the proposed linkage approaches are highly effec-
tive and that they allow insightful observations regard-
ing the changes over time.

In the next section, we formalize our problem of tempo-
ral record and group linkage. The linkage approach is de-
scribed in Section 3, while Section 4 discusses the use of evo-
lution patterns for change analysis. In Section 5, we evaluate
our temporal linkage approach and analyze the evolution of
households for the considered census datasets. We then dis-
cuss related work and conclude.

2. PROBLEM DEFINITION
Our approaches to temporal linkage and evolution analy-

sis work on a set of census datasets D referring to different
points in time. Each dataset Di of time ti consists of a set of
person records Ri and a set of groups Gi representing house-
holds. The records in Ri are homogeneously structured and
have attributes such as first name, surname, age, occupation,
and so on. A group gi ∈ Gi consists of associated person
records (household members) of Ri as well as relationships
between them. Each record is part of one group (household)
only, i.e., groups are not overlapping.

Groups are represented as (household) graphs gi=(Vi,Ei)
where the vertices of Vi correspond to the group members
and the edges of Ei represent their relationships. Relation-
ships (edges) have attributes or properties, in particular a
relationship type or role, e.g., daughter. Such relationships
can be part of the input data (as in Fig. 1) or can be derived
later, e.g., the age difference between two persons. For our
example, we may record in the graph for group ga1871 not only
the role daughter between Alice and her father John but also
the age difference 31 (39-8). Our algorithm not only deter-
mines additional properties such as age differences but also
additional relationships among group members, e.g., that
Alice and William are siblings with an age difference of 6.

Given these datasets and graphs, we want to determine
for each pair Di = (Ri, Gi) and Di+1 = (Ri+1, Gi+1) of suc-
cessive census datasets a so-called record mapping Mi,i+1

R

and a group mapping Mi,i+1
G . The record mapping Mi,i+1

R

includes all pairs of records referring to the same real-world
person (person links). The mapping is of cardinality 1:1
since each person in Ri can match with at most one person
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in Ri+1 and vice versa:

Mi,i+1
R : = {(ri, ri+1)|(ri, ri+1) ∈ Ri ×Ri+1∧

∃(ri, r′i+1) ∈MR → r′i+1 = ri+1∧
∃(r′i, ri+1) ∈MR → r′i = ri}

(1)

A group mapping Mi,i+1
G consists of group pairs where a

group gi of Gi corresponds completely or partially to a group
gi+1 of Gi+1 according to the common records:

Mi,i+1
G : = {(gi, gi+1)|(gi, gi+1) ∈ Gi ×Gi+1} (2)

Group mappings can be of cardinailty many-to-many (N:M)
since persons of a household can match persons of several
households in a different census.

For our running example of Fig. 1, the record mapping in-
cludes seven person links between the white and blue colored
graph vertices, e.g. link (1871 1, 1888 1) for John Ashworth
and (1871 3, 1888 7) for the link between Alice Ashworth
and Alice Smith. The two groups in the first census dataset
are split among two groups each in the second dataset, so
that there are four group links including (ga1871, g

a
1881). In our

evolution analysis, we will also consider person records and
groups that are not reflected in these mappings, e.g. relating
to newly occurring or disappeared persons and households.

3. TEMPORAL GROUP LINKAGE
Determining the record and group mappings for the tem-

poral linkage of census datasets is challenging not only due
to changing attribute values for the same person (e.g., for
surname or occupation) but also due to the high ambiguity
and frequent occurrence of certain attribute values, as well
as because of data quality issues, e.g., misspelled names,
errors for age etc. Group linkage has hardly been studied
before 1 and requires a flexible approach to determine many-
to-many mappings taking into account that households may
split or merge. Similar in spirit to collective entity reso-
lution [1, 20], we determine the similarity between records
not only based on attribute values but also considering re-
lationships between records (persons) within a graph-based
approach. Furthermore, we not only address record linkage
but solve record and group linkage jointly within a combined
approach. To better deal with the partially low similarity of
matching person records and the need to determine many-
to-many group mappings we propose an iterative approach
for temporal linkage. We first identify safe matches with
a high similarity and then continuously relax the similarity
criterion to find additional record and group links.

Algorithm 1 describes our approach for determining a
group mapping Mi,i+1

G and a record mapping Mi,i+1
R be-

tween two successive census datasets Di and Di+1. The
input of the algorithm includes two similarity functions for
record matching and parameters for the iterative adjustment
of a similarity threshold δ. We first give a high-level descrip-
tion of the algorithm and its main steps. These steps are
then explained in more detail in the four following subsec-
tions of this section.

1We are only aware of one approach for group-based linkage
of census data [8] that is non-iterative and less sophisticated
regarding the use of relationships. In our evaluation in Sec-
tion 5, we will compare the results for this scheme with our
approach.

At first, we enrich the graphs for each group (household)
in the two input datasets by adding implicit relationships
between group members, such as derivable family relations.
Moreover, we compute for each relationship between persons
the age difference as an additional relationship property for
later use in the similarity computations.

The main part of the algorithm is a loop to iteratively
identify and extend the group mappingMi,i+1

G and the record

mappingMi,i+1
R . In each iteration, we first apply a similar-

ity function Sim func to determine an initial linking and
clustering of person records based on attribute similarities
only (pre-matching step). The similarity function Sim func
specifies the person attributes, a weighting vector ω, and a
similarity threshold δ (i.e., two persons are considered to
match if the weighted sum of their attribute similarities ex-
ceeds δ). In the first iteration, we apply a high value δ high
for δ to start with identifying safely matching persons as a
basis for also finding safe group matches. Group matches
are only determined for pairs of groups connected by at
least one (initial) person link. For such group pairs, we
apply a subgraph matching to determine shared subgraphs

Algorithm 1: Iterative record and group linkage

Input:
-Di: old census dataset
-Di+1: new census dataset
-Sim func: similarity function for initial record matching
-∆: delta for relaxing similarity threshold
-δ high: upper bound of similarity threshold
-δ low: lower bound of similarity threshold
-Sim funcrem: similarity function for remaining records
Output:

-Mi,i+1
R : record mapping

-Mi,i+1
G : group mapping

// initialization

1 Mi,i+1
R ← ∅,Mi,i+1

G ← ∅
2 Mp

R ← ∅,M
p
G ← ∅

3 Gi ←completeGroups (Gi)
4 Gi+1 ←completeGroups (Gi+1)
5 Sim func.δ ← δ high

// iterative subgraph matching
6 repeat

// identification of candidates
7 C ← prematching (Ri, Ri+1, Sim func)

// subgraph matching and criteria computation
8 SubG ←subgroups (C, Gi, Gi+1, Sim func)

9 Mp
G ←selectGroupMatches (SubG)

// extend group mapping

10 Mi,i+1
G ←Mi,i+1

G ∪Mp
G

// extend record mapping

11 Mp
R ←extractRecordMapping (Mp

R, SubG, Ri, Ri+1)

12 Mi,i+1
R ←Mi,i+1

R ∪Mp
R

// extract unlinked records and records that are
related to unlinked records

13 Ri ← nonMatchedRecords (Ri,Mi,i+1
R )

14 Ri+1 ← nonMatchedRecords (Ri+1,Mi,i+1
R )

15 Sim func.δ ← Sim func.δ −∆

16 untilMp
G = ∅ ∨ Sim func.δ < δ low

// match remaining records

17 Mp
R ←match (Ri, Ri+1, Sim funcrem)

18 Mi,i+1
R ←Mi,i+1

R ∪Mp
R

19 Mi,i+1
G ←Mi,i+1

G ∪ extractGroupLinks(Mp
R, Gi, Gi+1)

20 return <Mi,i+1
R ,Mi,i+1

G >
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with both matching persons and matching relationships. In
general, a group of the first census dataset has several can-
didate group matches in the second dataset so that we select
the best group matches considering multiple criteria such as
the degree of record and relationship similarity. The match-
ing subgraphs of linked groups are then used to extract the
matching records for inclusion into the record mapping (line
10 of Algorithm 1).

Further iterations only process records not yet included
in the record mapping determined so far. We continuously
relax the similarity threshold by a decrement ∆ until a
minimal similarity threshold δ low is reached (or no fur-
ther group links are identified). Using such relaxed similar-
ity thresholds aims at finding additional matches between
records and groups even in the presence of erroneous or
changed attribute values.

After all iterations are performed we have finished sub-
graph -based group linkage. For the remaining records not
yet associated within matching subgraphs, we apply a sec-
ond attribute-based similarity function Sim funcrem to iden-
tify further person links for inclusion into the record map-
ping (line 17). Moreover, we extend the group mapping by
adding the group pairs that are now linked by the newly
found record links Mi,i+1

G (line 19).
In the following subsections, we describe the discussed

steps in more detail. We start with explaining the pre-
processing step to enrich the existing household graphs by
implicit relationships and additional relationship properties
(Subsection 3.1). In Subsection 3.2, we describe the pre-
matching step of records. In Subsection 3.3, we outline our
subgraph matching approach to identify common subgraphs.
We then introduce the criteria and algorithm used to select
the group matches (Subsection 3.4).

3.1 Group Enrichment
In the initialization phase, we enrich each household group

by adding implicit relationships and stable properties such
as age differences between persons. In our case, each in-
dividual of a household is given a role related to the head
of household (which is a special role). This role may not
be preserved in future census datasets since individuals may
become members of a different household and the head of
household may change as well. Hence, comparing house-

Rnew

groupID recordID first name surname sex age role address

𝑔1871
𝑏

1871_6 john smith m 38 head
hippins 

terrace
1871_7 elizabeth smith f 34 wife

1871_8 steve smith m 10 son

𝒈𝟏𝟖𝟕𝟏
𝒃

wife son
head 

John Smith
1871_6

Elizabeth Smith
1871_7

Steve Smith
1871_8

Group Enrichment

rel_type: husband-wife
age_diff: 4

John Smith
1871_6

Elizabeth Smith
1871_7

Steve Smith
1871_8

rel_type:son-father
age_diff: 28

rel_type: son-mother
age_diff: 24

Figure 2: Example of the group enrichment phase
for group gb1871.

holds based on these relations only is insufficient in the pres-
ence of household changes. We therefore enrich the house-
hold graphs by implicit relationships for each record pair
of the original group and replace the head-dependent rela-
tionship types by a unified type. To increase the semantics
of a relationship, we further add the age difference between
two household members as a time-independent relationship
property. Fig. 2 shows an example of the group enrichment
phase for group gb1871. The relationship between Elizabeth
Smith and Steve Smith is added. Moreover, the age differ-
ences age diff between persons as well as the relationship
types rel type are added to the relationships.

3.2 Pre-Matching
Pre-matching clusters similar records in the census data-

sets based on their attribute similarity and assigns a cluster
label to each record. These labels are utilized to simplify
subgraph matching since the labels identify similar records
without further similarity computation.

Pre-matching first applies similarity function Sim func
to compare each record of Ri with each record of Ri+1. The
similarity function specifies the attributes to be compared
as well as the attribute-specific similarity function, e.g., q-
gram string matching [4]. Furthermore, it uses a weighting
vector ω and a required minimum similarity δ. Applying the
attribute-specific similarity functions to a pair of records ri
and ri+1 results is a similarity vector ~sim(ri,ri+1). Using ω
we determine an aggregated similarity agg sim(ri,ri+1) by
calculating a weighted sum of the attribute similarities:

agg sim(ri,ri+1) = ω · ~sim(ri,ri+1) (3)

We then keep only the record pairs whose similarity is above
the specified threshold δ as potential record matches. Fur-
thermore, we determine the transitive closure or connected
components of these match pairs (record links) to cluster
together all directly and indirectly matching records. We

Cluster label recordID first name surname

A

1871_1 john ashworth

1881_1 john ashworth

1881_9 john ashworth

B

1871_2 elizabeth ashworth

1881_2 elizabeth ashworth

1881_10 elizabeth ashworth

C

1871_4 william ashworth

1881_3 william ashworth

1881_11 william ashworth

D
1871_6 john smith

1881_4 john smith

E
1871_7 elizabeth smith

1881_5 elizabeth smith

F
1871_8 steve smith

1881_6 steve smith

G 1881_8 mary smith

H 1871_5 john riley

I 1871_3 alice ashworth

K 1881_7 alice smith

Figure 3: Pre-matching result for running example.
Records with the same cluster label represent simi-
lar records.

623



assign to each record of a cluster a unique label, so that
records of the same cluster have the same label.

Fig.3 shows the resulting clusters for the running exam-
ple by using the attributes first name and surname, ω =
(0.5, 0.5) and similarity threshold 1. Pre-matching results
in the shown ten clusters where all records of a cluster share
the same first name and surname. We then assign the cluster
labels A, B etc. to the respective records of the clusters.

3.3 Subgraph Matching
Subgraph matching looks for common subgraphs in each

pair of groups gi and gi+1 of Gi ×Gi+1 to determine likely
group links. To avoid the computation of the cross product
between Gi and Gi+1, subgraph matching is only applied
for pairs of groups sharing at least one similar record, i.e.,
having the same cluster label.

The subgraph gsub between two groups gi and gi+1 (repre-
sented by their enriched graphs with gi=(Vi,Ei) and gi+1=
(Vi+1,Ei+1) consists of a set of vertices Rsub and a set of
edges Esub. Each vertex in Rsub represents a pair of equally
labeled (i.e., similar) records vi from Vi and vi+1 from Vi+1.
Two vertices (v1i, v1i+1) and (v2i, v2i+1) of Rsub are con-
nected by an edge of Esub if both the old records v1i, v2i

and the new records v1i+1, v2i+1 of these vertices are con-
nected within their enriched graphs of gi and gi+1, respec-
tively. Furthermore, we require that these edges must have
the same relationship type and highly similar relationship
properties, in our case regarding the age differences.

Fig. 4 illustrates subgraph matching for group ga1871 from
the first census dataset and the two groups ga1881 and gd1881
from the second dataset. For the group pair (ga1871, g

a
1881)

we have three matching vertices with labels A, B and C.
The three edges have the same relationship types and the
same or very similar age differences. The second group pair
(ga1871, g

d
1881) also shares three vertices with labels A, B and

C but only one of the edges has the same relationship type
and similar age difference. Hence the common subgraph is
reduced to the one shown in the bottom right of Fig.4.

3.4 Selection of Group Links
Subgraph matching generates candidates for group link-

age based on common subgraphs for different group pairs.
There may be several linkage candidates per group in Gi

and in Gi+1 so that we have to find the best matching group
pairs. The necessary selection should especially guarantee
that each record of a group is only linked to one record of
another group (This is not the case for the example in Fig.4
where we have two linkage candidates for members of group
ga1871). However, a group can link to more than one group
if their subgroups are disjoint.

To select for a certain group gi the best-matching groups
in Gi+1 we consider all subgraphs gsub=(Rsub,Esub) involv-
ing gi and apply an aggregated similarity measure. This
measure combines three scores capturing the record similar-
ity (Eq. 5), edge similarity (Eq. 6) and the uniqueness (Eq.
7) of a subgroup gsub. The results of the similarity functions
are aggregated according to Eq. 4 whereby α determines the
influence of record similarity and β represents the weight of
edge similarity.

g sim = α · avg sim+ β · e sim+ (1− α− β) · unique
(4)

• Average Record Similarity

For this score we determine the average of the aggre-
gated similarities agg sim for the record pairs of Rsub.
These aggregated similarities are already determined
during pre-matching for each record pair (see section
3.2) and can be obtained from the respective clusters
in C .

avg sim(gi, gi+1, gsub) =

∑
(ri,ri+1)∈Rsub

agg sim(ri,ri+1)

|Rsub|
(5)

• Edge Similarity
The edge similarity e sim evaluates the similarity of
the relationship properties rp sim in the edges in a
subgraph, for example the similarity of the age differ-
ences between two individuals in the older group gi vs.
the age difference in the newer group gi+1. Further-
more, we apply an aggregation measure similar to the
Dice-Coefficient to relate the edge similarities to the
total number of relationships of the considered groups
gi and gi+1 thereby giving higher weight to those sub-
graphs covering a large portion of their relationships.

e sim(gi, gi+1, gsub) =

2 ·

∑
e∈Esub

rp sim(oldEdge(e), newEdge(e))

|Ei|+ |Ei+1|

(6)

• Uniqueness
If two group pairs are similar w.r.t both the aver-
age record similarity as well as the edge similarity, we
like to prefer the group link between the two groups
containing records that are less ambiguous than the
records of other group pairs. Therefore, we define the
uniqueness for a group pair based on the number of
vertices of Rsub of gsub and the aggregated number of
records that are assigned to the same label like the
records of Rsub. The uniqueness is defined as follows:

unique(gi, gi+1, gsub) = 2 · |Rsub|∑
ri∈Rsub

|label(ri)| (7)

The uniqueness of a group pair gi and gi+1 is 1, if the
labels are only assigned to the common records of gi
and gi+1 and there exists no other record of Ri or Ri+1

that has the same label.

For the example of Fig. 4, we obtain the following similar-
ity values for the group pairs (ga1871, g

a
1881) and (ga1871, g

d
1881):

avg sim(ga1871, g
a
1881, gsub) =

1 + 1 + 1

3
= 1

e sim(ga1871, g
a
1881, gsub) = 2 · 1 + 1 + 1

10 + 3
= 0.46

unique(ga1871, g
a
1881, gsub) = 2 · 3

3 + 3 + 3
= 0.66

avg sim(ga1871, g
d
1881, gsub) =

1 + 1

2
= 1

e sim(ga1871, g
d
1881, gsub) = 2 · 1

10 + 3
= 0.15

unique(ga1871, g
d
1881, gsub) = 2 · 2

3 + 3
= 0.66

(8)
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A1871_1

B1871_2

I1871_3 C1871_4

E1871_5

husband_wife
age diff1871 = 2
age diff1881 = 2

𝑔1871
𝑎

𝑔1881
𝑑 A1881_9

B1881_10 C1881_11

𝑔1881
𝑎 A1881_1

B1881_2 C1881_3

sf- 37 

son_father- 23

daughterInLaw_fatherInLaw-2

1871_2, 1881_2 1871_4, 1881_3

son_father
age diff1871 = 37
age diff1881 = 37

son_mother
age diff1871 = 35
age diff1881 = 35
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Figure 4: Subgraphs for group pairs (ga1871, g
b
1881) and (ga1871, g

d
1881) of the running example. For (ga1871, g

d
1881), the

red-coloured edges are not matched due to a different relationship type or non-similar age difference.

Algorithm 2: Selection of group links

Input:
-SubG: set of quadruples of <gi, gi+1, gsub, g sim>
Output:
-Mp

G: partial group mapping

1 Mp
G ← ∅

2 lookup← ∅
// initialize priority queue ordered by g_sim

3 for (gi, gi+1, gsub, g sim) ∈ SubG do
4 pq ← pq.insert(gi, gi+1, gsub, g sim)

5 while pq 6= ∅ do
6 < gi, gi+1, gsub, g sim >← pq.max()
7 pq ← pq.remove()

// sets of linked records of gi and gi+1

8 linked Ri ← lookup.get(gi)
9 linked Ri+1 ← lookup.get(gi+1)

// records of gi and gi+1 contained in gsub
10 Ri

sub ← getOldRecords(gsub)

11 Ri+1
sub ← getNewRecords(gsub)

12 if linked Ri ∩Ri
sub = ∅ ∧ linked Ri+1 ∩Ri+1

sub = ∅ then
13 Mp

G ←M
p
G ∪ {(gi, gi+1)}

14 linked Ri ← linked Ri ∪Ri
sub

15 linked Ri+1 ← linked Ri+1 ∪Ri+1
sub

16 lookup← lookup.update(gi, processed Ri)
17 lookup← lookup.update(gi+1, processed Ri+1)

18 returnMp
G

The aggregated similarity of these values reaches a higher
value for group pair (ga1871, g

a
1881) than for (ga1871, g

d
1881) due

to the higher edge similarity of the former pair. As a re-
sult, we would only include group pair (ga1871, g

a
1881) in the

group mapping and derive the record mapping only for the
common subgraph of this pair.

After the determination of the introduced similarity val-
ues per subgroup, we apply Algorithm 2 for the selection
of the best-matching group pairs. The algorithm follows
a greedy strategy by considering subgraphs in the order of
their aggregated similarity score. It also considers the dis-
jointness of subgraphs and can determine group mappings
of cardinality N:M.

In each iteration, we select the group pair with the highest
group similarity from a priority queue pq. The selected pair

(gi, gi+1) is added to the group mapping Mp
G if the over-

lap between the already linked records of gi as well as gi+1

and the records of the record pairs of gsub is empty (line
12). Thus, we ensure that a record is linked at most to one
record. The linked records are represented by linked Ri

resp. linked Ri+1. Moreover, the records of gi and gi+1

that correspond to a record pair of Rsub of gsub are repre-
sented by the sets Ri

sub and Ri+1
sub . These sets are returned

by getOldRecords and getNewRecords respectively for a
certain subgroup gsub. If a group link is added, we update
sets of linked records linked Ri and linked Ri+1 for gi resp.
gi+1 (line 14 to 17).

Based on the selected group matches, we are able to iden-
tify the record matches contained in the corresponding sub-
graph gsub. The record links are included in each vertex of
gsub since Rsub is defined as a set of pairs ri and ri+1. These
pairs are the most appropriate links since the related groups
are linked.

4. EVOLUTION ANALYSIS
We will now use the results of the temporal record and

group linkage to detect changes between different census
datasets in order to support the comprehensive evolution
analysis of temporal census data. Such a change analysis
should not be restricted to a low-level evaluation of indi-
vidual links but should be realized at a higher, application-
specific level to generate relevant and expressive change pat-
terns. We will also include disappearing as well as newly
appearing records and groups that are not reflected in the
identified mappings but appear only in one of the census
datasets. The analysis should further not be limited to two
datasets but involve a series of successive census datasets
covering longer periods of time.

In this initial study, we use the given census datasets and
the determined linkage results to identify a set of basic and
more complex changes for records and groups of records that
can be identified with the help of so-called evolution pat-
terns (Subsection 4.1). Furthermore, we propose the use
of a so-called evolution graph (Subsection 4.2) to provide
an aggregated change representation that is extensible to
more than two census datasets. Such an evolution graph
is a promising basis for advanced graph mining techniques,
e.g., to determine frequent or unusual change scenarios.
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Figure 5: (a) Record and group evolution patterns for the running example. (b) Evolution graph and patterns
for two successive census datasets Di and Di+1. Gray dotted lines represent record links, blue arrows indicate
evolution patterns between related households.

4.1 Evolution Patterns
We define evolution patterns on individual records and on

groups of records. There are three record evolution patterns
called preserveR, removeR and addR. We identify these
patterns by utilizing the record mapping M i,i+1

R as well as
record sets Ri and Ri+1 for two successive census datasets
Di and Di+1 as follows:

• preserveR is a record pair representing one individual
linked between Ri and Ri+1.
∀ri, ri+1 ∈ Ri ×Ri+1 :
preserveR(ri, ri+1)↔ ∃(ri, ri+1) ∈Mi,i+1

R

• addR denotes an individual ri+1 ∈ Ri+1 that is not
linked to any record of Ri.
∀ri+1 ∈ Ri+1 : addR(ri+1)↔ @(ri, ri+1) ∈Mi,i+1

R

• removeR denotes an individual ri ∈ Di that is not
linked to any record of Di+1.
∀ri ∈ Ri : removeR(ri)↔ @(ri, ri+1) ∈Mi,i+1

R

To analyze the dynamics of groups, we further define group
evolution patterns based on changes within groups. These
patterns are addG and removeG as well as the more complex
patterns preserveG, move, split and merge. The patterns
preserveG and move both relate to pairs of linked groups
but differ on whether the linked groups contain at least two
preserved members (preserveG) or only one (move). Each
pattern is identified by utilizing the census datasets, the
group mapping Mi,i+1

G and the record mapping Mi,i+1
R :

• addG denotes a new group gi+1 ∈ Gi+1 that did not
exist in Di. Thus, the group mappingMi,i+1

G does not
contain any link with gi+1.

• Similarly, removeG contains a group of gi ∈ Gi that
does not exist in Gi+1 anymore.

• preserveG is a group pair connected by a 1:1 link.
Moreover, each group consists of at least 2 individ-
uals satisfying the preservedR pattern. This condi-
tion allows us to identify preserving households across

censuses. The requirement that a ’preserved’ house-
hold should have at least two remaining members is
influenced by real-world situations such as households
where only the parents remain after their children have
moved to another household.

• move identifies pairs of linked groups with only one
member in common (determined by the preserveR pat-
tern) that has moved from the old to the new group
(household).

• split identifies a change situation between a group gi ∈
Di from the old dataset and a set of groups gai+1,
gbi+1, ..., g

k
i+1 ∈ Gi+1 in the new dataset, where at least

two individuals of gi must overlap with each of the
groups from Gi+1. Note, that each individual record
can only be contained in one group, i.e., gai+1, g

b
i+1, ...,

gki+1 are disjoint.

• merge covers the opposite situation between a set of
groups gai , gbi , ..., g

k
i ∈ Gi from the old dataset and

one group gi+1 ∈ Gi+1 from the new dataset, where at
least two individuals from groups in Gi must overlap
with the merged group gi+1. Each individual record
can only be contained in one group, i.e., gai , g

b
i , ..., g

k
i

are disjoint.

Fig. 5(a) shows the corresponding record and group evo-
lution patterns for our running example from Fig. 1. Seven
records have been preserved from D1871 to D1881. Moreover,
there are 4 record additions and one removal. According to
the defined group evolution patterns, two groups have been
preserved (ga and gb), two groups newly appeared in 1881
(addG for gc and gd) and two persons, Alice (1871 3) and
Steve (1871 8), moved from their parents’ households (ga1871
and gb1871) to their own new household gc1881.

4.2 Evolution Graph
Based on the evolution patterns we want to realize further

comprehensive evolution analyses for dynamically changing
family structures and individual person histories. We pro-
pose the use of a so-called evolution graph reflecting the
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history of households across two or more successive census
datasets. The graph G Evolution captures both the records
and groups per census dataset as vertices and interconnects
them across successive datasets by edges that are typed ac-
cording to the identified evolution patterns (change types).
Fig. 5(b) shows a sample evolution graph and evolution pat-
terns for two successive versions Di and Di+1. Blue boxes
represent group vertices and blue arrows represent group
evolution patterns, i.e., the changes between households.
Two groups have been preserved and are linked via the group
pattern preserveG and one household has been split into
two households. One individual moved between two house-
holds that are thus connected in the evolution graph. The
figure also shows the mapping between individual records
(gray dotted lines) as well as a new (addR) and a removed
(removeR) record without incoming/outgoing edges.

The evolution graph enables the application of several
graph mining approaches such as cluster analysis, pattern
matching or finding frequent subgraphs. One analysis might
be to identify households that are preserved across several
census periods. A second use case is to identify clusters of
related households that can be used for studies of genetic
diseases. In Fig. 5(b), a simple computation of connected
components on the exemplary evolution graph for two points
in time leads to two components consisting of 4 (CC1) and
3 (CC2) households, respectively. Running such a compu-
tation for larger households graphs for many successive ver-
sions can produce longer chains of connected households,
e.g., indicating relationships between many generations of
families.

5. EVALUATION
In this section, we evaluate the introduced approaches for

temporal record and group linkage for different historical
census datasets from the UK that have also been used in
a previous study [8]. We first describe these datasets and
the evaluation setup in Subsection 5.1. We then evaluate
the linkage quality of the new approaches for different con-
figurations (Subsection 5.2). In Subsection 5.3 we compare
our approach with the results of the previous study [8] as
well as with the collective record linkage approach [14]. Fi-
nally, we discuss results of an initial evolution analysis for
the considered census datasets.

5.1 Datasets and Setup
In our evaluation, we use six census datasets collected

from 1851 to 1901 in ten-year intervals from the district of
Rawtenstall in North-East Lancashire in the United King-
dom. Table 1 shows an overview of these datasets according
to the number of records and households for the different
time periods. The table also shows the number of unique
value combinations of the first name and surname attributes
to illustrate the degree of ambiguity for these attributes.
Furthermore, we report the ratio of missing attribute values.
The table shows that the number of households and persons
has almost doubled within the 50 years period indicating a
substantial population growth. There is a high degree of
name ambiguity since each combination of first name and
surname is far from unique but has an average frequency of
up to 2.23 (for 1851) with a highly skewed frequency dis-
tribution due to the presence of frequent surnames such as
Ashworth and Smith. Up to 6.5% of the attribute values are

missing, which leads to in additional difficulties for finding
correct temporal links.

ti 1851 1861 1871 1881 1891 1901
|Rti

| 17033 22429 26229 29051 30087 31059
|Gti

| 3298 4570 5576 6025 6378 6842
|fn + sn| 7652 10198 13198 15505 17130 19910
ratiomv 4.67% 4.19% 3.03% 4.09% 6.33% 6.51%

Table 1: Overview of the census datasets according
to the number of records, households, unique com-
binations of first name and surname |fn+sn| and the
ratio of missing values ratiomv.

To evaluate the quality of the group and record mappings
in terms of precision, recall and F-measure [4], we use the
reference mapping determined in [8]. It covers a subset of
1250 matching households from the 1871 and 1881 datasets
that consist of 6864 and 6851 members resp. These house-
hold were manually linked by experts by focusing on person
records found in both datasets.

In our evaluation, we compare different settings for the
similarity function considering the string similarity for five
attributes and different weight vectors ω1 and ω2 as shown
in Table 2. We also evaluate different similarity thresholds
for pre-matching as well as different weights for determining
the aggregated group similarity for selecting group links.

Attribute Matching method ω1 ω2

First name q-gram 0.2 0.4
Sex exact 0.2 0.2
Surname q-gram 0.2 0.2
Address q-gram 0.2 0.1
Occupation q-gram 0.2 0.1

Table 2: Compared set of attributes and the corre-
sponding weighting vector ω to identify the set of
blocks B that are used for the subgraph matching.

5.2 Linkage Evaluation
We first analyze the influence of different similarity func-

tions during pre-matching and then discuss the impact of
different similarity functions for selecting matching group
pairs. Afterwards we study the effectiveness of incremental
linkage.

5.2.1 Influence of pre-matching configuration
The proposed linkage approach builds on the initial record

matching and clustering performed in the pre-matching step.
We thus start our analysis by comparing the results for de-
termining the attribute similarities based on the two weight-
ing schemes ω1 and ω2 (Table 2) and different lower similar-
ity threshold bounds δ low. For iterative matching we use
a start value δ high = 0.7 for the similarity threshold δ and
∆ = 0.05 for decrementing the threshold until the minimal
value δ low is reached.

Table 3 shows the resulting group and record mapping
quality in terms of precision, recall and F-measure for the
two weighting schemes and four values of δ low ranging
from 0.4 to 0.55. We observe for all configurations high
F-Measure results between 94% and 96% for both the deter-
mined record mappings and the group mappings, indicating
a very high effectiveness of the proposed approach. The best
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parameter
ω ω1 ω2

δ low 0.4 0.45 0.5 0.55 0.4 0.45 0.5 0.55

group mapping
Precision (%) 96.1 96.5 96.7 97.0 97.1 97.1 97.3 97.3
Recall (%) 92.2 92.2 92.0 91.7 94.8 94.8 94.8 94.6
F-measure (%) 94.1 94.3 94.3 94.2 96.0 96.0 96.0 95.9

record mapping
Precision (%) 96.6 96.8 96.8 96.8 97.5 97.5 97.5 97.5
Recall (%) 91.9 91.9 91.9 91.8 93.7 93.7 93.7 93.7
F-Measure (%) 94.2 94.3 94.3 94.3 95.6 95.6 95.6 95.5

Table 3: Quality of group and record mappings for different weighting vectors ω and lower bounds δ low.
parameter (α, β) (1.0,0.0) (0.0,1.0) (0.5,0.5) (0.33,0.33) (0.2,0.7)

group mapping
Precision (%) 92.3 96.7 96.6 96.7 97.3
Recall (%) 89.1 94.1 94.3 94.4 94.8
F-Measure (%) 90.7 95.4 95.5 96.0 96.0

record mapping
Precision (%) 96.2 97.4 97.3 97.3 97.5
Recall (%) 89.8 93.4 93.4 93.4 93.7
F-Measure (%) 92.9 95.4 95.3 95.3 95.6

Table 4: Quality of the group and record mappings for different weights α and β to select matching groups.

F-measure results are generally achieved for δ low = 0.5, al-
though the differences are small for the other choices. The
simple weighting scheme ω1 giving equal weight to each of
the five considered attributes is consistently outperformed
by the alternate approach giving higher weight to attribute
first name and only reduced weight for the less stable at-
tributes address and occupation. Pre-matching with weight
vector ω2 thus improves F-measure by around 1.7% for the
group mapping and up to around 1.3% for the record map-
ping.

Of course, there are many more possibilities to define the
similarity function and we could also apply learning-based
methods to find a near-optimal weight vector [4]. Still our
results show that using the similarity function with weight
vector ω2 and δ low = 0.5 achieve good and stable results
making it an effective default configuration.

5.2.2 Similarity weights for selecting matching groups
We now evaluate the influence of the different weights

α and β for determining the aggregated group similarity
g sim = α · avg sim + β · e sim + (1 − α − β) · rel driving
the selection of matching groups. Table 4 shows the results
of the different weights. The quality of the group mapping
highly depends on the edge similarity underlining the im-
portance of considering the structural similarity within our
household graphs. Without considering the edge similarity
(β = 0), the F-measure for the group mapping drops to
90.7%, i.e. around 5.3% less than for the best configura-
tion (α = 0.2, β = 0.7) and also far less than when ignoring
the record similarity (α = 0). The uniqueness score can
also improve the overall F-measure. For (α = 0.2, β = 0.7)
its weight is 0.1 which helped to achieve an improved F-
measure compared to the three configurations where it is
ignored (when the sum of α and β equals already 1). The
best record mapping is also achieved for (α = 0.2, β = 0.7)
making it a good default configuration for our datasets.

5.2.3 Iterative vs non-iterative linkage
We now want to analyze to what degree the iterative

group and record linkage with decreasing similarity thresh-
olds is really helpful compared to a non-iterative, one-shot
approach applying only a fixed minimal similarity threshold.

method non-iterative iterative

group
mapping

Precision (%) 94.5 97.3
Recall (%) 93.1 94.8
F-measure (%) 93.8 96.0

record
mapping

Precision (%) 91.8 97.5
Recall (%) 93.1 93.7
F-measure (%) 92.5 95.6

Table 5: Quality of the group mapping and record
mapping by using the iterative vs. non-iterative ap-
proach.

To evaluate such a non-iterative approach we apply similar-
ity functions with ω2, δ high = 0.5 and δ low = 0.5 resulting
in only one iteration. The results are shown in Table 5. We
observe that the iterative approach indeed outperforms the
non-iterative approach with an F-Measure improvement of
≈ 2.2% for the group mapping and 3.1% for the record map-
ping. The improved quality mainly results from a substan-
tially higher precision of more than 97% for both the group
and record mapping. This is achieved because the iterative
approach finds high-quality matches for the more restrictive
thresholds while the more relaxed similarity threshold, with
an increased risk of finding wrong matches, is limited to a
subset of the records.

5.3 Comparison with Existing Approaches
We compare our approach with two previously proposed

methods: the collective entity resolution approach of [14] to
determine a record mapping as well as the previous group
linkage approach [8] for census data.

In [14], the authors propose a collective approach that is a
specialization of [1]. It initially determines seed record links
by applying a high record similarity. The seed links are used
to incrementally identify additional links from the neighbor-
hood of the linked records based on their attribute similar-
ity and relational similarity. The overall algorithm follows
a greedy strategy that selects in each iteration the record
pair with the highest similarity. The related records update
their similarities according to the selected record pair. In
our implementation, we use the same similarity function as
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method CL iter-sub
Precision (%) 93.5 97.5
Recall (%) 81.2 93.7
F-measure (%) 86.9 95.6

Table 6: Comparison of our approach with the col-
lective linkage approach of [14] (CL) to determine a
record mapping.

method GraphSim iter-sub
Precision (%) 97.6 97.3
Recall (%) 90.1 94.8
F-measure (%) 93.7 96.0

Table 7: Comparison of our approach with the
household linkage approach of [8] (GraphSim).

in our approach (Table 2). Moreover, we filter all record
pairs where the normalized age difference is more than 3
years2. To generate the seed link, we select the record links
with a minimal similarity of 0.9. Table 6 shows the results of
the record mapping obtained by collective linking. Our ap-
proach outperforms the collective approach w.r.t the record
mapping quality by 8.6% for F-measure. The difference be-
tween our approach and the collective approach is that we
can better link moved records with changed attribute values
since we do not only link highly similar records (which is
not sufficient for temporal linkage). Furthermore, our sub-
graph matching utilizes different relationships more compre-
hensively and benefits from incremental linkage.

The previous group linkage approach of [8] initially gener-
ates a highly selective record mapping consisting of 1:1 corre-
spondences only. Based on this record mapping, the method
calculates an average record similarity and an edge similar-
ity between each group pair. Contrary to our approach, they
calculate the similarities based on the initial 1:1 mapping. If
correct record pairs are filtered out due to the 1:1 constraint,
the approach is not able to identify these links. Hence, this
filter step influences the average record similarity as well as
the edge similarity, so that correct group links are not iden-
tified. Table 7 shows the results of the quality of the group
mappings. Our approach achieves a significantly better F-
measure for the group mapping compared to [8] (≈3.7%).
This improvement is mainly because of a much higher recall
that is limited in the previous approach mainly because of
the use of the initial 1:1 mapping.

5.4 Analysis of Household Dynamics
Finally, we analyze the evolution of households from 1851

to 1901. For this purpose, we determine the evolution pat-
terns for each successive census dataset pair based on the
identified group and record mapping with the best parame-
ter setting. Fig. 6 shows the frequency of each group evolu-
tion pattern for each pair of census datasets. In general, we
observe an increasing number of households since the num-
ber of addG patterns is higher than the number of removeG
patterns for each new census. Moreover, we observe an in-
creasing number of preserveG patterns due to the general
increase in the number of households over time. From 1891
to 1901, there is also a high number of removeG patterns

2In our approach, subgraph matching ensures that such age
differences are not accepted.
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Figure 6: Quantitative Analysis of evolution pat-
terns for census datasets from 1851 to 1901.

time interval |preserveG|
10 15705
20 7731
30 3322
40 1116
50 260

Table 8: Number of preserving households
|preserveG| according to different time intervals (in
years) from 1851 to 1901.

(up to ≈ 2200) indicating that many households may have
moved to a new region. The complex patterns such as split
and merge occur only rarely with an average occurrence of
≈ 100 for split and ≈ 70 while the move patterns are more
frequent (≈ 1600 on average).

To analyze dependencies between households for the whole
time period, we exploit the evolution graph and determine
the largest connected component representing all households
from 1851 to 1901 that are connected by group patterns.
We identified the largest connected component with 17150
households over the complete interval from 1851 to 1901
thereby covering ≈52% of all households. Furthermore, we
identify the number of preserved households according to
different time intervals for the whole time period from 1851
to 1901. For instance, if we like to identify households that
are preserved for 20 years, we define a graph pattern that
consists of 2 edges with the pattern type preserveG since the
difference between two census datasets is 10 years. Table 8
shows the number of preserved households for the different
time intervals. The number of preserving households for all
10 year intervals (1851-61, 1861-71, 1871-81 etc.) represents
the overall number of preserveG patterns of the quantitative
analysis. Moreover, 260 household are preserved over the
whole time period from 1851 to 1901.

6. RELATED WORK
Record linkage or entity resolution has been intensively

studied in the past (see [4, 7, 12] for overviews). While
the majority of approaches focus on evaluating the simi-
larity of record attributes only, collective or context-based
approaches additionally consider the similarity of relation-
ships between entities for improved linkage decisions (e.g. [1,
8, 11, 14, 20, 23]). This idea has also been utilized in our
approach but in a tailored way for use within groups such as
households. Our approach is especially powerful as it con-
siders different kinds of semantic relationships as well as the
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similarity of relationship attributes. Previous collective ap-
proaches have also not addressed temporal record linkage in
contrast to our scheme.

Relatively few studies have investigated temporal record
linkage (e.g., [2, 15, 17]) to link records within dynami-
cally changing data. Existing approaches explicitly consider
changing attribute values when matching individual records
over time, e.g., by computing value transition probabili-
ties [15]. Temporal clustering approaches as proposed in [3]
group temporal records that belong to the same entity to re-
flect the entity history. Temporal record linkage approaches
typically focus on matching individual person records while
we also match groups of individuals and identify a record
as well as group mapping to interconnect temporal records
from census data.

Most closely related to our work is the group-based ap-
proach of [8] for matching households in historical census
datasets. Our evaluation in Subsection 5.3 has shown that
this previous scheme is outperformed by our approach due to
its novel features such as an iterative group linkage and sub-
graph matching based on different semantic relationships.
Richards and colleagues investigate in [21] the use of learning-
based methods to optimize the use of attribute similarities
for temporal record linkage (not group linkage) for census
datasets. The observations of this study are complementary
to ours and could be used for choosing alternate similarity
functions for record matching.

Our work is further related to research on time and evolu-
tion-based analysis that is gaining increasing interest. For
instance, there are studies analyzing historical web contents
to find interesting patterns and trends [25], analyzing per-
son histories on Twitter [16], or collecting and analyzing
temporal knowledge from Wikipedia [24]. Our definition of
change patterns is further related to previous work in the do-
main of ontology evolution [10, 22], in particular regarding
change detection and diff computation (e.g. [9, 19]). These
approaches typically identify basic and complex change op-
erations between different ontology versions. We used this
idea to identify time dependent patterns between groups of
records to represent the semantics of changes in households
over time. Based on the change patterns we are able to real-
ize more comprehensive analysis, e.g., on complex evolution
graphs.

7. CONCLUSIONS
We outlined and evaluated a new approach for temporal

record and group linkage for the analysis of census data.
The approach follows an iterative linkage strategy that first
identifies high quality links thereby limiting the more error-
prone identification of links between less similar records and
groups to subsets of the input data. Group linkage is based
on the identification of common subgraphs between groups
such as households where we utilize the semantic relation-
ships within groups and relationship properties such as the
age differences between individuals. The evaluation showed
the high effectiveness of the proposed approach that also
outperforms a previous approach for linking census data.

We showed that the linkage results support a detailed evo-
lution analysis of census data at both the level of individu-
als and groups. We proposed several evolution patterns to
identify relevant changes including different kinds of group
changes such as splits, merges and the movement of individ-
uals from one group to another. All changes can be main-

tained within an evolution graph that can be used for a wide
spectrum of change analysis, e.g., to identify frequent change
patterns or to find connected groups over several census pe-
riods.

In future work, we plan to extend the change analysis
of census data using the evolution graph and graph mining
techniques. We also aim to apply and evaluate the proposed
approach on larger census datasets. Furthermore, we want
to study additional applications for group linkage, e.g., to
analyze the changes in research teams or groups of coauthors
over time.
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[12] H. Köpcke and E. Rahm. Frameworks for entity match-
ing: A comparison. Data & Knowledge Engineering,
69(2):197 – 210, 2010.

[13] H. C. Kum, A. Krishnamurthy, A. Machanavajjhala,
and S. Ahalt. Social genome: Putting big data to
work for population informatics. Computer, 47(1):56–
63, 2014.

[14] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci,
T. Graepel, and Z. Ghahramani. Sigma: Simple greedy
matching for aligning large knowledge bases. In Pro-
ceedings of the 19th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
572–580. ACM, 2013.

[15] F. Li, M. L. Lee, W. Hsu, and W.-C. Tan. Linking
temporal records for profiling entities. In Proceedings
of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’15, pages 593–605,
New York, NY, USA, 2015. ACM.

[16] J. Li and C. Cardie. Timeline generation: Tracking
individuals on twitter. In Proceedings of the 23rd inter-
national conference on World wide web, pages 643–652.
ACM, 2014.

[17] P. Li, X. Dong, A. Maurino, and D. Srivastava. Link-
ing temporal records. Proceedings of the VLDB Endow-
ment, 4(11):956–967, 2011.

[18] V. M. Moceri, W. A. Kukull, I. Emanual, G. van Belle,
J. R. Starr, G. D. Schellenberg, W. C. McCormick, J. D.
Bowen, L. Teri, and E. B. Larson. Using census data
and birth certificates to reconstruct the early-life socioe-
conomic environment and the relation to the develop-
ment of alzheimer’s disease. Epidemiology, 12(4):383–
389, 2001.

[19] N. F. Noy and M. A. Musen. PromptDiff: A
fixed-point algorithm for comparing ontology versions.
AAAI/IAAI, 2002:744–750, 2002.

[20] V. Rastogi, N. Dalvi, and M. Garofalakis. Large-scale
collective entity matching. Proceedings of the VLDB
Endowment, 4(4):208–218, 2011.

[21] L. Richards, L. Antonie, S. Areibi, G. W. Grewal, K. In-
wood, and J. A. Ross. Comparing classifiers in histor-
ical census linkage. In Proc. ICDM Workshops, pages
1086–1094, 2014.

[22] L. Stojanovic, A. Maedche, B. Motik, and N. Sto-
janovic. User-Driven Ontology Evolution Management,
pages 285–300. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2002.

[23] A. Thor and E. Rahm. Moma-a mapping-based object
matching system. In CIDR, pages 247–258, 2007.

[24] Y. Wang, M. Zhu, L. Qu, M. Spaniol, and G. Weikum.
Timely yago: harvesting, querying, and visualizing
temporal knowledge from wikipedia. In Proceedings
of the 13th International Conference on Extending
Database Technology, pages 697–700. ACM, 2010.

[25] G. Weikum, N. Ntarmos, M. Spaniol, P. Triantafil-
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