
Peter Christen, Bettina Kemme, Erhard Rahm (eds.):

Proceedings of the

VLDB 2017 PhD Workshop

August 28, 2017

Munich, Germany

Preface
This volume contains the proceedings of the VLDB 2017 PhD Workshop, co-located with the
43nd International Conference on Very Large Database (VLDB 2017) and held on August 28,
2017, in Munich, Germany.

The established VLDB PhD Workshop series is a unique opportunity for graduate students to
present and discuss their research in the context of a premier international conference. The
workshop provides a forum that facilitates interactions among PhD students and stimulates
feedback from more experienced researchers—not only in terms of diligent paper reviews but also
at the conference site.

Following the call for papers, 27 papers were submitted for presentation at the workshop. Of these,
the program committee carefully selected a total of 14 papers, with 10 selected for long and 4 for
short presentations, which are contained in this volume.

Long presentation papers:

 Efficient Migration of Very Large Distributed State for Scalable Stream Processing.
Bonaventura Del Monte, DFKI Berlin, Germany

 Spatio-temporal Locality in Hash Tables.
Matthew A Pugh, University of Edingburgh, UK

 Graph Pattern Mining for Business Decision Support.
André Petermann, University of Leipzig, Germany

 Efficient Clustering for Large�Scale, Sparse, Discrete Data with Low Fundamental
Resolution.
Veronika Strnadova�Neeley, UC Santa Barbara, USA

 Query Processing Based on Compressed Intermediates.
Patrick Damme, Technical University Dresden, Germany

 A Hardware�Oblivious Optimizer for Data Stream Processing.
Constantin Pohl, Technical University Ilmenau, Germany

 Generalizing Matching Knowledge using Active Learning.
Anna Primpeli, University of Mannheim, Germany

 Comparing entities in RDF graphs.
Alina Petrova, University of Oxford, UK

 Scalable Linkage across Location Enhanced Services.
Fuat Basik, Bilkent University, Turkey

 Distributed Similarity Joins on Big Textual Data: Toward a Robust Cost�Based Framework.
Fabian Fier, Humboldt University Berlin, Germany

Short presentation papers:

 Facilitating User Interaction With Data.
Zainab Zolaktaf, University of British Columbia Vancouver, Canada

 Processing Moving Object Data Streams with Data Stream Management Systems.
Tobias L Brandt, University of Oldenburg, Germany

 Symmetric and Asymmetric Aggregate Function in Massively Parallel Computing.
Chao Zhang, Blaise Pascale University Aubière, France

 Practical Verification of Hierarchical Artifact Systems.
Yuliang Li, UC San Diego, USA

2

The workshop program also featured a keynote talk by Prof. Dr. Anastasia Ailamaki, (EPFL,
Switzerland) who talked about the past and future of database transaction processing engines. The
workshop ended with a panel consisting of leading database experts including Michael Carey
(University of California, Irvine, USA), Wolfgang Lehner (Technische Universität Dresden,
Germany), and Themis Palpanas (Paris Descartes University, France) who discussed the “life with
a PhD” and provided valuable tips and suggestions to the PhDs who attended the workshop.

We like to thank all authors who submitted papers to the VLDB 2017 PhD workshop, to Anastasia
for her keynote presentation, and to the panel members for interesting discussions.

Our sincere thanks also go to all members of the program committee for their insightful and
valuable reviews. All of you have helped to make the VLDB 2017 PhD Workshop a successful
event.

Peter Christen (The Australian National University, Australia)
Bettina Kemme (McGill, Montreal, Canada)
Erhard Rahm (Univ. of Leipzig, Germany)

PC Co-Chairs
August 2017

PhD Workshop Program Committee
Angela Bonifati (University of Lyon)
Stéphane Bressan (National University of Singapore)
George Fletcher (TU Eindhoven)
Lukasz Golab (University of Waterloo)
Carson Leung (University of Manitoba)
Sebastian Link (University of Auckland)
Rachel Pottinger (University of British Columbia)
Louiqa Raschid (University of Maryland)
Donatello Santoro (Università della Basilicata)
Timos Sellis (Swinburne University of Technology)
Andreas Thor (HFT Leipzig)
Wei Wang (University of New South Wales)
Qing Wang (The Australian National University)

3

Keynote by Prof. Dr. Anastasia Ailamaki (EPFL, Switzerland):

Title: The Next 700 Transaction Processing Engines

Abstract:

For over four decades, throughput has been the target metric of choice for Online
Transaction Processing engines. Around mid-2000s, however, Dennard scaling came to a
crushing halt and now multicore processors provide explicit thread-level parallelism as an
alternative to frequency scaling for increasing throughput. Thus, OLTP research focuses
on developing scalable synchronization techniques for exploiting parallelism provided by
multicore processors. In the late 2000s, DRAM price free-fall made it possible to fit a single
server with Terabytes of memory, and to fit most operational databases, with the exception
of a few rare cases, entirely in memory. This led to a flurry of research on the design of
scalable main-memory OLTP engines that adopt radically different designs compared to
their disk-based counterparts.

Today, state-of-the-art main-memory OLTP engines can handle millions of transactions
per second and provide near-linear scalability under most workloads. However, three
recent trends indicate an impending change in OLTP engine design once again: 1)
changes in application workloads, 2) shifting hardware landscape, and 3) new target
metrics. In this talk, we will discuss the implications of these trends on the design of next-
generation transactional engines, and explore new designs with the twin goal of meeting
changing application demands and optimizing for the new metrics by exploiting emerging
hardware.

Biography:

Anastasia Ailamaki is a Professor of Computer and Communication Sciences at the Ecole
Polytechnique Federale de Lausanne (EPFL) in Switzerland. Her research interests are in
data-intensive systems and applications, and in particular (a) in strengthening the
interaction between the database software and emerging hardware and I/O devices, and
(b) in automating data management to support computationally-demanding, data-intensive
scientific applications. She has received an ERC Consolidator Award (2013), a
Finmeccanica endowed chair from the Computer Science Department at Carnegie Mellon
(2007), a European Young Investigator Award from the European Science Foundation
(2007), an Alfred P. Sloan Research Fellowship (2005), eight best-paper awards in
database, storage, and computer architecture conferences, and an NSF CAREER award
(2002). She holds a Ph.D. in Computer Science from the University of Wisconsin-Madison
in 2000. She is an ACM fellow and the vice chair of the ACM SIGMOD community, a
senior member of the IEEE, and an elected member of the Swiss National Research
Council. She has served as a CRA-W mentor, is a member of the Expert Network of the
World Economic Forum.

4

Efficient Migration of Very Large Distributed State for
Scalable Stream Processing

Bonaventura Del Monte
supervised by Prof. Volker Markl

DFKI GmbH
bonaventura.delmonte@dfki.de

ABSTRACT
Any scalable stream data processing engine must handle the
dynamic nature of data streams and it must quickly react to
every fluctuation in the data rate. Many systems successfully
address data rate spikes through resource elasticity and dynamic
load balancing. The main challenge is the presence of stateful op-
erators because their internal, mutable state must be scaled out
while assuring fault-tolerance and continuous stream processing.
Both rescaling, load balancing, and recovering demand state
movement among work units. Therefore, how to guarantee those
features in the presence of large distributed state with minimal
impact on the performance is still an open issue. We propose an
incremental migration mechanism for fine-grained state shards
through periodic incremental checkpoints and replica groups.
This enables moving large state with minimal impact on stream
processing. Finally, we present a low-latency hand-over protocol
that smoothly migrates tuples processing among work units.

1. INTRODUCTION
Existing scalable Stream Data Processing Engines (SPEs)

offer fast stateful processing of data streams with low latency
and high throughput despite fluctuations in the data rate. To
this end, stateful processing benefits from on-demand resource
elasticity, load balancing, and fault tolerance. Currently, both
research [5, 6, 17, 13] and industry [1, 4, 18] address scaling
up stateful operators while assuring fault tolerance in case of
partitioned or partially distributed large state. Here, large state
means hundreds of gigabytes.
A motivating example. Many streaming applications require
stateful processing. Examples of such applications are the data
analytics stacks behind popular multimedia services, online mar-
ketplaces, and mobile games. These stacks perform complex
event processing on live streams. Multimedia services and on-
line marketplaces recommend new contents or items to their
users through collaborative filtering [16]. Producers of mobile
games track in-game behaviour of players to promote the best
in-app purchase and to detect frauds. The size of the state in
these applications scales with the number of users and their
interactions with the application (e.g., rated items, purchases,
actions of a player) and can grow to terabyte sizes. State in the
size of terabytes introduces a multifaceted challenge. The SPE

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (c) 2017 for this paper by its authors. Copying permitted for
private and academic purposes..

must optimally manage cluster resources respecting the size of
the state. This does not only apply to intra-cluster instances
but also inter-cluster ones, e.g., migrating the SPE among op-
erational environments or to cheaper “pay-as-you-go” instances.
Besides, parallel analytic algorithms need global state. Parallel
instances of an operator work on their state partition and then
update global state, e.g., machine learning models. Therefore,
these analytics result in very large distributed state.
Research goal. Motivated by industrial needs, our goal is to
achieve stream processing with low latency and high throughput
when operators handle very large state. To this end, we focus on
management techniques that enable fault-tolerance, on-demand
resource scaling, and load balancing in the presence of very large
distributed state.
Problem statement. Handling operators with very large dis-
tributed state is cumbersome. Guaranteeing fault-tolerance,
resource elasticity, and dynamic load balancing for these op-
erators (i) require state transfer, (ii) must not undermine the
consistency of distributed state shards, and (iii) demand robust
query processing performance. State transfer introduces latency
proportional to its size. Exactly-once stream processing requires
consistent state, i.e., results must be as accurate as if no failure
happened or the SPE did not perform any rescaling or rebalanc-
ing operation on the state. Besides, a SPE must continuously
process stream tuples despite any of those operations.
Current approaches. To the best of our knowledge, there is
no system that fully features efficient state management when
distributed very large state is involved. Many authors investi-
gated this problem by constraining their scope to partitioned or
partially distributed state [5, 4, 18] and to smaller size [7, 6, 17].
Proposed solution. Our solution is a low-latency incremental
migration mechanism that moves fine-grained state shards by
using periodic incremental checkpoints and replica groups. An
incremental checkpoint is a periodic snapshot of a state shards
that involves only modified values. A replica group is a set of
computing instances holding a copy of a portion of the state.
Our migration mechanism moves large operator states with low
impact on the system performance and without stopping the
streaming topology. Although incremental migration reduces
the transfer overhead, we also provide a placement scheme for
primary state shards and replica groups that minimizes transfer
cost. Our solutions are as follows:

1. a communication-efficient replication protocol that keeps a
replica group consistent with the changes in the state of the
primary operator

2. an optimal primary state shards and replica groups placement
for decreasing migration cost

3. a hand-over protocol that migrates the processing between
two work units with minimal latency.

We point out that this thesis is at an early stage, hence, we do
not have any experimental validation yet.

5

2. RELATED WORK
Castro et al. address the problem of scaling up and recovering

stateful operators in a cloud environment through a set of primi-
tives for state management that enables scaling up and recovery
of stateful operators [5]. Their experiments include operators
with small states and they confirmed that larger state has a
higher recovery time. In a second work, the same authors pro-
pose a new abstraction over large mutable state, called stateful
dataflow graph, which manages partitioned or partial distributed
state [6]. Our aim is to fill the gap in this area by providing
a mechanism that both scales out and recovers a long-running
system with very large distributed state. ChronoStream is a
system that seamlessly migrates and executes tasks [17], whose
authors believe to have achieved costless migration thank to a
locality-sensitive data placement scheme, delta checkpointing,
and a lightweight transactional migration protocol. Although
their experiments look promising, we argue transactional migra-
tion may be avoided by using two different protocols (one for
state migration and one for the hand-over) and delta checkpoints
adds synchronization issues.
Ding et al. deal with finding the optimal task assignment that
minimizes the costs for state migration and satisfies load bal-
ancing constraints [7]. To this end, they introduce a live and
progressive migration mechanism with negligible and controllable
delay. They come to a different conclusion w.r.t. ChronoStream,
because they also argue that synchronization issues may affect
results correctness while performing a migration. The solution
of Ding et al. performs multiple mini-migrations progressively:
each mini-migration migrates a number of tasks smaller than
a given threshold [7]. On the other hand, their experiments do
not cover large state migration and it is unclear how the system
could perform in such task. Furthermore, both ChronoStream
and Ding et al. consider partitioned state.
Nasir et al. present partial key grouping as a solution to handle
load imbalance caused by skewness in the keys distribution of
input streams [14, 15]. The main idea is to keep track of the
number of items in each parallel instance of an operator and
route a new item to the instance with smaller load. Items with
the same key are routed to different parallel instances of the
same operator. An improvement to the solution is to determine
the “hottest” keys in the stream and assign more workers to
those keys. However, they assumed the operator state has the
associative property, thus merging intermediate partitioned sub-
states is possible with an extra aggregate operation. Splitting
the state of a given key, indeed, mitigates its growth on one
working unit, yet aggregating large state will require some po-
tentially expensive network transfers. Our aim is to propose a
load balancing approach that avoids such partial aggregations.
Gedik et al. propose transparent auto-parallelization for stream
processing through a migration mechanism [8]. However, we
argue that their approach does not consider distributed large
state and it is totally decoupled from fault-tolerance.
Many SPEs have effectively implemented state management
techniques (e.g., Apache Flink [1, 4], Apache Spark [18], SEEP
[6], Naiad [13]). In particular, Apache Flink features a technique
that asynchronously checkpoints the global states to minimize
the latency of a snapshot [3].

3. RESEARCH ISSUES
Our goal is to move large operator states with minimal im-

pact on the performance of query processing. Migrating large
states between operator instances in one shot is expensive due to
network transfer, especially if the system is already overloaded
during its regular operation. Our key idea is to incrementally
maintain a replica group for each fine-grained state unit over

different work units. Each replica is updated through incremen-
tal checkpoints generated on the primary operator. In addition,
intrinsic issues of migration pose new challenges, e.g., data con-
sistency, tuples rerouting, physical shards handling, and network
transfer cost. To better explain our key idea, we first define our
data and system models. Then we provide an analysis of our
research goals.

3.1 System Model
Data Model. Let S be a stream of tuples, for each tuple

q∈S, we define kq as the value of the partitioning key and tq
as its monotonically generated time-stamp.
Stream processing. Our system is made of p work units run-
ning on z physical nodes (each of them can run a variable
number of work units). Our system executes jobs/queries ex-
pressed as a dataflow graph. Each operator of the graph runs
on maximum p parallel instances. An operator takes n streams
and outputs m streams. Every parallel instance receives tuples
(sent from upstream operators) w.r.t. a distribution function
that computes the assignments through kq.
State model. The global state of all the operators in the
streaming topology is a distributed logically partitionable data
store (e.g., a distributed K-V store). Partitions of this data
store contain a single state entry, e.g., window content of an
operator, user-defined counters. Each logical partition is made
of physical shards. Every parallel instance of an operator holds
its own shard. Besides, each shard is made of fine grained data
items. Each key of the input stream owns few data item in
every logical partition of the state and each shard holds a range
of keys. Each range of keys can be further partitioned and
optionally split. Distributed state demands some consistency
guarantee in case (i) a key needs to be stored in multiple shards,
and (ii) tuple processing might trigger changes in more than one
shard. The distribution function determines the content of the
shards kept by stateful instances. Thus, each parallel instance
of an operator does not only process tuples with specific keys
but it also holds the data items of state for those keys.

3.2 Incremental Checkpoints
A prerequisite for our set of protocols is an incremental check-

point protocol based on the approach of Carbone et al. [3]. In-
stead of taking a snapshot of the whole state, we asynchronously
checkpoint the modified state values between the previous check-
point and the current one. An asynchronous checkpoint executed
at time time t will not contain updates happened later than t.

3.3 Replication Protocol
We design a replication protocol to keep the global state of

a streaming topology replicated and consistent. This protocol
replicates every primary state of each operator instance on a
given number of work unit, i.e., each sub-range of keys has its
own replica group. The purpose of a replica group is to keep a
copy of different sub-ranges of keys for each operator. A primary
operators sends incremental checkpoints for a given range of
keys to its replica through the network.

3.4 Hand-Over Protocol
The hand-over protocol moves the processing of a given keys

range (ks,ke) between two parallel instance of a target stateful
operator. The system triggers this protocol when it detects
the need of either rescaling an operator, balancing the load
over parallel instances of an operator, or recovering an operator.
Main ideas behind this protocol are the usage of replica groups,
incremental checkpoints and the embedding of the protocol itself
in the dataflow paradigm. Moving the processing of any key
involves tuple rerouting and migration of the state for that key.
This operation is lightweight if the destination instance is in

6

the replica group of the moved key. Indeed, the replica group
misses at most the last incremental checkpoint. Let upstream
be all the operators that send some input tuples to a target
downstream operator, the steps of the protocol are:
1. The system decides to migrate that tuples marked with keys

in range (ks,ke), from downstream instance os to ot, which
is in the replica group of (ks,ke)

2. Upstream injects a key move event in the data flow for keys
ks,...,ke involving operators os and ot

3. Upstream sends its outgoing tuples marked with keys ks,...,ke
to ot, which processes them creating new states s′e,...,s

′
t

4. os generates an incremental checkpoint that contains its
current states se,...,st for keys ks,...,ke and sends it to ot

5. As soon as ot gets the incremental checkpoint, it updates its
current states se,...,st with the received checkpoint

6. Then ot asynchronously merges them with s′e,...,s
′
t. If new

tuples arrive in ot, it generates new states and subsequently
merges them.

As a result, the handover protocol guarantees eventual consis-
tency on every migrated primary state after merging. Moreover,
we assume that user-defined state has update and merge policies;
the former updates state by processing a stream tuple, whereas
the latter merges two partial states for the same key. If merging
of partial state is not semantically possible, then the target
instance buffers incoming tuples and updates the state upon its
full receiving.

3.5 Optimal Placement of Replica Groups
Each keys replica group is composed of q physical nodes,

as we aim to minimize continuous migration cost, the replica
group has to be optimally placed over the streaming topology.
Indeed, transferring an incremental checkpoint from a node a
to b could potentially have a different cost than shipping the
same checkpoint to node c. This problem can be mapped as
a bipartite graph matching problem whose classic solution is
well-know as the Hungarian or Kuhn-Munkres algorithm [11,
12]. Nevertheless, our scenario is not static as we need to deal
with resource scaling and failing nodes. Therefore, a dynamic
approach to the assignment problem [10] is the best fit for our
needs, since we look for an optimal assignment of the state items
to an elastic set of physical nodes. Our optimization problem is
formulated as follows: given l sub-ranges of keys and z physical
nodes, find a placement for each sub-range of keys over q out of
z nodes that minimizes the migration cost. We evaluate the cost
of shipping an incremental checkpoint between two nodes by
considering their workloads and the number of network switches
involved.

4. RESEARCH PLAN
In this thesis, we intend to investigate above research issues

w.r.t. our goal: transparently providing fault-tolerance, resource
elasticity, and load balancing in the presence of very large dis-
tributed state. Our focus is to investigate the trade-offs behind
our proposed solution. First, the hand-over protocol presents
several challenges, e.g., the granularity of the keys ranges, the
concurrent execution of the protocol, and the triggering policy
of the protocol (through either consensus, common knowledge
or centralized entity). Secondly, we plan to investigate the
usage of log-less replication (similarly to Bizur [9]) by using
shared registers [2]. Besides, log-less replication implies no log
compaction overhead. As network is the main bottleneck, we
plan to research orthogonal optimizations to reduce network
overhead, e.g, remote direct memory access, data compression,
and approximation. Lastly, the placement scheme of replica
groups may require further investigation as our initial definition
of migration might neglect significant hidden cost.

4.1 Achievement Plan
We have a clear idea about the achievement of our goal, which

we define in the following sections.
Fault-tolerance. Our replication protocol guarantees that each
replica group holds a copy of some ranges of keys for different
operators. Since each key is replicated in q+1 physical units,
the system can sustain up to q failing instances of an operator
by resuming the computation on one unit in its replica group.
The system may need to replay some tuple unless the group has
the latest state checkpoint and the failing unit did not process
any newer tuple.
Load balancing. Relying on a load balancing policy (e.g.,
shard size or ingested tuples count above a given threshold), the
system triggers the hand-over protocol. Then, the hand-over
protocol seamlessly moves the processing of some keys ranges
from a primary work unit to another in their replica groups.
Determining the placement of ranges of keys for the primary
state is another orthogonal challenge that we plan to overcome.
Resource elasticity. Regardless of the chosen elasticity policy,
we need to efficiently rescale the state of every range of keys
along with its replicas minimizing the transfer cost. Rescaling
possibly involves deleting some replicas, whereas state transfer
can be still done incrementally by using above protocols. As
we consider primary state and replica as one entity, we reassign
them to parallel instances as described in Section 3.5. This
procedure could benefit from current IaaS platforms where
multiple VMs or containers share physical hardware. Indeed, we
may provision new resources on either an already used physical
node or a new node. The last scenario is more challenging as
the system must migrate entire shards of the state to the new
node.

4.2 The system in action
In Figure 1, we show a toy example of our system while it

seamlessly performs resource scaling, state recovery, and load
balancing. The figure shows a simple dataflow graph made of
one source (parallelism=2) and one operator (parallelism=4).
For the sake of simplicity, we marked tuples and state for the
same keys range with the same colour. Each primary state for
every keys range has only one replica group. In Figure 1.A,
the first instance is failing while the third one is overloaded.
In Figure 1.B, the hand-over protocol seamlessly moves the
processing and the state of both yellow and violet keys ranges.
As the state of the yellow key range was on a failing node, our
system must reply lost tuples. Meanwhile, the fourth instance
processes violet tuples and creates a new partial state. The
hand-over protocol merges this partial state with the current
replica and the last incremental checkpoint. Simultaneously, our
system provisions a new instance and migrates the red state
as it detects an overloaded second instance. In Figure 1.C,
the system is finally stable. The violet state is migrated and
replicated on the fourth and second instance, respectively. The
yellow state is restored on the second instance and replicated
on the new instance. The red state is replicated on the new
instance.

4.3 Evaluation Plan
We assess the capabilities of our system through the following

set of Key Performance Indicators (KPIs):

1. the execution of our protocols must have negligible effect on
query processing performance

2. the system must guarantee exactly-once stream processing
and state consistency

3. performing a load balancing or a resources scaling operation
must improve resource utilization of the physical infrastruc-
ture and prevent bottlenecks (e.g., operator back-pressure)

7

SRC2

P4

P3

SRC2

P4

P3

SRC2

P4

P3

SRC1

P2

P1

SRC1

P2

NEW

SRC1

P2

NEW
P1

OP3

normal
instance

failing
instance

overloaded
instance

stream
tuple

primary
state replica incremental

checkpoint
incremental
migration

lost tuple to
replay

new
instance

A B C

Figure 1: Our protocols in action: tuples and state for the same keys range are marked with the same colour. Primary state for every
keys range is incrementally replicated only once. Sensible steps of the hand-over protocol are circled.

To meet above KPIs, we intend to design a suite of benchmarks
that thoroughly stresses our proposed system. We plan to define
a set of metrics (e.g., tuple processing throughput and latency,
migrated state items, checkpoint size) and measure them in our
system on different real-world workloads, with distinct scaling
and balancing policies, and different replica factors. Finally, we
expect to compare our results with baseline systems.

4.4 Future directions
We envision a system able to continuously process stream

tuples despite data rate spikes and failures. This system can
also seamlessly migrate itself among cluster, e.g., from one
IaaS-provider to a cheaper vendor, between two operational
environments. Incremental state migration will be a building
block of such operations. Other orthogonal research areas may
be: (i) investigating the usage of new storage hardware, e.g,
NVRAM and SSD, (ii) considering non-keyed state and query-
able state, (iii) providing elastic job maintenance, (iv) exploring
data compression techniques to reduce state size, and (v) in-
vestigating incremental state migration (and resource elasticity)
in case of Hybrid Transactional-Analytical Processing (HTAP)
workloads.
Acknowledgments: We would like to thank our advisor Prof.
Volker Markl, as well as Prof. Tilmann Rabl for his valuable
guidance, as well as Dr. Asterios Katsifodimos, Dr. Sebastian
Breß, and Dr. Alireza Rezaei Mahdiraji for their support. This
work has been partially supported by the European Commission
through PROTEUS (ref. 687691).

5. REFERENCES
[1] A. Alexandrov, R. Bergmann, et al. The stratosphere

platform for big data analytics. The VLDB Journal, 2014.
[2] H. Attiya, A. Bar-Noy, et al. Sharing memory robustly in

message-passing systems. In ACM PODC. 1990.
[3] P. Carbone, G. Fóra, et al. Lightweight asynchronous

snapshots for distributed dataflows. CoRR,
abs/1506.08603, 2015.

[4] P. Carbone, A. Katsifodimos, et al. Apache flinkTM:
Stream and batch processing in a single engine. IEEE
Data Eng. Bull., 30(40), 2015.

[5] R. Castro Fernandez, M. Migliavacca, et al. Integrating
scale out and fault tolerance in stream processing using
operator state management. In ACM SIGMOD. 2013.

[6] —. Making state explicit for imperative big data
processing. In USENIX ATC. 2014.

[7] J. Ding, T. Fu, et al. Optimal operator state migration for
elastic data stream processing. CoRR, abs/1501.03619,
2015.

[8] B. Gedik, S. Schneider, et al. Elastic scaling for data
stream processing. IEEE Trans. Parallel Distrib. Syst.,
2014.

[9] E. Hoch, Y. Ben-Yehuda, et al. Bizur: A key-value
consensus algorithm for scalable file-systems. CoRR,
abs/1702.04242, 2017.

[10] G. A. Korsah, A. T. Stentz , et al. The dynamic
hungarian algorithm for the assignment problem with
changing costs. Tech. Rep. CMU-RI-TR-07-27, 2007.

[11] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 1955.

[12] J. Munkres. Algorithms for the assignment and
transportation problems. Journal of the Society of
Industrial and Applied Mathematics, 1957.

[13] D. Murray, F. McSherry, et al. Naiad: A timely dataflow
system. In ACM SOSP. 2013.

[14] M. Nasir, G. Morales, et al. The power of both choices:
Practical load balancing for distributed stream processing
engines. CoRR, abs/1504.00788, 2015.

[15] —. When two choices are not enough: Balancing at scale
in distributed stream processing. CoRR, abs/1510.05714,
2015.

[16] R. Sumbaly, J. Kreps, et al. The big data ecosystem at
linkedin. In ACM SIGMOD. 2013.

[17] Y. Wu and K. Tan. Chronostream: Elastic stateful stream
computation in the cloud. In IEEE ICDE. 2015.

[18] M. Zaharia, T. Das, et al. Discretized streams:
Fault-tolerant streaming computation at scale. In ACM
SOSP. 2013.

Spatio-Temporal Locality in Hash Tables

Matt A. Pugh
Supervised by Prof. Stratis Viglas

University of Edinburgh
10 Crichton St.

Scotland
matt.pugh@ed.ac.uk

ABSTRACT
The overall theme of this Ph.D. is looking at ways to use
emerging NVM (Non-Volatile Memory) technologies in real-
world data-science scenarios. It is hoped that the exploita-
tion of the characteristics of the technology will result in
performance improvements, defined as being either/or an
increase in computational throughput and energy-use reduc-
tion. Primarily, this has been through the inclusion of tem-
poral locality into HopH (Hopscotch Hashing) by [2]. The
problem of highly-skewed access patterns affecting lookup
time and required computation is shown through a simple
model. A simulator is then used to measure the expected
performance gains of incorporating temporal locality, given
different HT (Hash Table) configurations. This work was
originally motivated by NVM, as a way to mask the extra
latency anticipated, but the work is applicable to HTs in
DRAM (Dynamic Random-Access Memory) also. The sec-
ond area of interest in the Ph.D. is looking at exploiting
the characteristics of NVM for different families of machine
learning algorithms, though this paper focuses solely on the
former.

1. INTRODUCTION
At this stage, the primary focus has been at introducing

spatial and temporal locality into HopH – taking the concept
of minimising amortised average lookup time into HopH will
provide spatio-temporal locality with an amortised complex-
ity of O(1) for the typical HT operations; Get(), Insert(),
and Delete(). Details on the approaches undertaken are
provided in Section 3. This is motivated by skewed access
patterns, following Zipf’s law, and high-performance sys-
tems, such as RDBMS (Relational DataBase Management
System) join operators.

In its simplest form, a Hash Table (HT) T is an M -bucket
long associative array-like data structure that maps a key k
of any hashable type to value v. A given bucket Bi in T
can have S slots for key/value tuples. The occupancy (or

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017.
Munich, Germany.
Copyright (C) 2017 for this paper by its authors. Copying permitted for
private and academic purposes.

load factor) of a HT is 0 ≥ L ≥ 11. The benefit of a HT is
that the associated value’s position i in memory is calculated
directly using a hash function h(k), i = h(k) mod M .

1.1 Self-Reorganising Data-Structures
A ST (Splay Tree) is a self-adjusting binary search tree

introduced by [6] that has the property that the most fre-
quently accessed node is near the head of the tree. STs have
the amortised time-complexity for Get() and Insert() op-
erations of O(logn), and the goal of their invention was to
minimise average time of lookups in worst-case scenario in
real-time terms. Their solution to achieving this is to min-
imise the number of node traversals by ensuring the most-
frequently-accessed nodes are as close to the head as pos-
sible, a property which is closely tied to temporal locality,
although not exactly the same thing. [6] acknowledge that
the computational cost of ongoing reordering is high, and
may be problematic given the target application workload.
This is clear when considering the rotation of sub-trees in
a Splay() operation – there is no spatial locality, or cache-
friendliness, guaranteed by the structure of the tree in mem-
ory, as such pointer-chasing in rotations is inevitable.

In databases, [3] describe cracking; a method of self or-
ganisation data by query workload. This process is tuned
for a RDBMS in which a column of interest ACRK is re-
tained as a copy, and is continuously reorganised based on
the queries touching it. This is analogous to data hotness
as we wish to view it, and can be considered a cache-tuning
problem, similar to a LRU (Least Recently Used) cache. As
ACRK is a column, they are able to effectively partition the
data itself to improve probing response times significantly.
Partitioning within a HopH context is less intuitive as there
are, at any position, H overlapping neighbourhoods.

2. MODEL AND SIMULATOR
The structure of a HT is entirely dependent on the order in

which keys were inserted into it. For example, the hottest
element of the neighbourhood, or even entire table, over
some given time period, may be in the last available bucket
in a neighbourhood, leading to multiple evaluations before
finding the tuple required.

2.1 Model
Assume a constructed Hash Table T , of which we have a

set of all keys K in T . Let X be the sequence of accesses,

1Assuming no chained-structures resulting in L > 1 load
factor

9

T[0] - T[H-1]

T[0] - T[H-1]

k1 k2 k3 k4

i= 0 1 ...

#reads=

...

H-1

k4 k3 k1 k2

i= 0 1 ...

#reads=

...

H-1

C C C δC C

H-2

H-2

R
ed

is
tri

bu
te

()

Figure 1: This figure illustrates buckets (coloured blocks)
in neighbourhoods (colours) over some contiguous range of
buckets within the table T . For a given neighbourhood, ac-
cess patterns may naturally fall as the above distribution,
where C is the cache-line size and each blue block represents
a constant number of accesses to the associated key ki. Sup-
pose a request is made for the hottest item k4, there will be
3 + δ cache-invalidations before hitting the hottest data k4
if T [h(k4)] is not already cached. Reordering the data such
that k4 is in position 0, minimising cache-invalidations, is the
optimal distribution. Note that the distribution of colours
in T does not change.

such that every element x ∈ X exists in K. We define a
simple cost model Φ(T,X) that gives a unit cost of a bucket
traversal as β, and a slot traversal and key comparison as
σ unit cost, where α and γ are the number of respective
operations.

Φ(T,X) = αβ + γσ (1)

It is simple to use this model with a sufficient access-skew
in X to show good potential gains in the worst case of the
configuration of T . Consider a RO (Read-Only) T where
some key k has hashed into bucket Bi, but the only available
slot in the otherwise fully-occupied neighbourhood νi is at
Bi+H−1, slot S. Assume that X is completely skewed, such
that there is only one k present, repeated A times. In this
case, the cost of accesses is:

Φ(T,X) = AH(β) +ASH(σ)

In this example, it is clear to see that minimising the
values of α = AH and/or γ = ASH are the only areas of
movement upon which we can optimise, if we assign some
real-world values, where S = 3, H = 64, σ = 15, β = 15, A =
1× 109, we obtain a cost of:

Φ(T,X) ' 3.84× 1012

When we assume that X ′ the hottest element k′ in the
first slot of the first bucket in a neighbourhood, the cost is
naturally far lower:

Φ(T,X ′) = A(β + σ) ' 3.0× 1010

This is the lowest possible cost incurred for T and X ′, and
is therefore referred to as the oracle. With this reordering,

99.22% of cycles would be saved versus T with X. This ap-
proach has the problem that manually attempting to cover
a number of configurations of T to find the expected benefit
of rearrangement would be tedious. To deal with this, we
employ a simulator.

2.2 Simulator
The developed simulator provides the estimated perfor-

mance benefit of performing reordering for varying table
sizes, load factors and skews. This is done using a num-
ber of discrete probability distributions to obtain different
configurations of T , in order to explore the problem space
we are interested in:

1. The number of slots that each bucket will have popu-
lated in the simulator’s construction is sampled from
a Multinomial distribution, for bucket Bi this is ςi.

2. N = bS×M×Lc samples are drawn from a Zipfian dis-
tribution Z(α). These are the random hotness values
that are then inserted into each bucket Bi ∈ T over ςi
slots in each bucket. This approach gives a load factor
L and skew α over the data. T is then randomly per-
muted to distribute the remaining (for L < 1) empty
buckets throughout the table.

3. As the number of buckets occupied within a neigh-
bourhood νi is not a constant, either bξc or dξe buck-
ets per neighbourhood are allocated with probability
πβ = dξe − bξc, where ξ is the expected number of el-
ements in a neighbourhood, given in [5]. πβ must be
within the [0, 1] interval, and is interpreted as the prob-
ability that the neighbourhood contains the upper-
bound of entries. At each neighbourhood root, neigh-
bourhood occupancy is sampled from a Binomial dis-
tribution with probability πβ .

4. Finding the locations within the neighbourhood for oc-
cupancy should not be done linearly, and must be at
least partly stochastic to emulate the chronological in-
sertions over multiple neighbourhoods. Approaching
this in a linear manner would construct T such that
all insertions happened to populate the table in exactly
linear order; this behaviour is not realistic. Instead,
we randomly draw samples from a Poisson distribu-
tion that has a mean λ = 2, in order that the mass of
the distribution is towards the beginning of the neigh-
bourhood, but may be further on.

2.2.1 Output & Discussion
Table 1 shows the output obtained thus far from the sim-

ulator, this shows that even on a coarse reordering policy,
we begin to approx a factor of 2 improvement in terms of
work performed. Performing fine reordering over the same
configuration invariably leads to better results than coarse.
A key caveat is that this metric concerns itself only with
the hottest element in the table, extensions are underway to
take a more wholistic view of potential performance gains.
The fact that as L→ 1, gains appear to disappear is entirely
expected. This is due to the fact that as a table becomes
full, it is to be expected that most neighbourhoods will only
have one bucket in T , therefore reordering is not possible.

10

Table 1: Simulator results showing the oracle measurements
for the simulator, in terms of percentage of instructions
avoided.

Size M Load L Skew α Coarse (%) Fine (%)

1.00E+03 0.7 1.1 30.59 92.1
1.00E+03 0.7 2.1 31.49 99.53
1.00E+03 0.7 3.1 1.13 3.53
1.00E+03 0.8 1.1 27.86 83.61
1.00E+03 0.8 2.1 44.04 96.3
1.00E+03 0.8 3.1 0.58 2.08
1.00E+03 0.9 1.1 47.5 95.7
1.00E+03 0.9 2.1 48.43 99.04
1.00E+03 0.9 3.1 0.83 1.71
1.00E+03 1 1.1 0.99 2.64
1.00E+03 1 2.1 9.36 14.9
1.00E+03 1 3.1 0.59 1.1
1.00E+05 0.7 1.1 29.86 82.3
1.00E+05 0.7 2.1 35.39 98.92
1.00E+05 0.7 3.1 35.74 95.81
1.00E+05 0.8 1.1 32.82 93.67
1.00E+05 0.8 2.1 33.68 99.64
1.00E+05 0.8 3.1 32.64 95.69
1.00E+05 0.9 1.1 32.97 99.33
1.00E+05 0.9 2.1 35.43 97.79
1.00E+05 0.9 3.1 31.42 97.17
1.00E+05 1 1.1 0.01 0.02
1.00E+05 1 2.1 0.65 1.96
1.00E+05 1 3.1 0.01 0.01
1.00E+07 0.7 1.1 34.16 97.81
1.00E+07 0.7 2.1 34.14 99.2
1.00E+07 0.7 3.1 33.8 97.37
1.00E+07 0.8 1.1 33.03 98.04
1.00E+07 0.8 2.1 32.52 96.91
1.00E+07 0.8 3.1 31.81 94.19
1.00E+07 0.9 1.1 31.87 95.88
1.00E+07 0.9 2.1 26.05 77.39
1.00E+07 0.9 3.1 33.89 99.79
1.00E+07 1 1.1 0 0
1.00E+07 1 2.1 0 0
1.00E+07 1 3.1 0 0

3. METHODS
HopH is used as the basis for the solution. The argument

of reordering based on the hotness of the data itself given by
[1] is highly aligned with the goals for this work. This work
differs as the specific objective is achieving spatio-temporal
locality, in order to minimise average lookup times. The
value of S is selected such that a bucket Bi fits within a
cache-line size C = 64B. In order that the size of the bucket
|Bi| ≤ C, we choose S, where the size of a tuple |τ | =
8 + 8 = 16B, and µ is the size of any required meta-data,

to be S =
⌊
C−µ
|τ |

⌋
. Different access patterns are simulated

by drawing samples from a Zipfian distribution Z, whose
parameter α affects the skew of the samples obtained.

3.1 Reordering Strategies
This section describes a number of re-ordering strategies

for the placement of data in a neighbourhood. These meth-
ods look at coarse, down to fine tuple-level, and heuristic
reordering operations.

3.1.1 Fine - Intra-Bucket (FIntrB)
This method simply sorts the tuples within a bucket Bi

(that must be of the same neighbourhood) by hotness. This
is performed using a priority queue, inserting the tuples
and ordering by their number of accesses, before reinsert-
ing them into Bi. As we know that |Bi| ≤ C, there are no
further bucket traversals required, and any potential gains
are purely in terms of operations performed within Bi for a
Contains() or Get() and, as such, will be minimal.

3.1.2 Coarse Inter-Bucket (CIB)
We can express the overall hotness of a bucket Bi by

the summation of accesses to all tuples contained within
it. With this method, we do not care about the order of the
tuples within slots, but simply that the most-frequently-hit
bucket is closest to the neighbourhood root. A clear com-
promise of this strategy is that it does not care about the
distribution of accesses within Bi; in the example where
S = 3 and Bi has one element with many accesses, but
two without, and Bj has a uniform distribution whose total
(summed) access is more than Bi, Bj will be promoted first.

3.1.3 Fine Inter-Bucket (FIB)
By far the most expensive operation, this seeks to redis-

tribute the neighbourhood at a tuple-level using a priority
queue to order tuples by hotness, before reinserting them
into all buckets within the neighbourhood. The positions of
buckets within the neighbourhood do not change. In terms
of memory use, this strategy is the most demanding. Poten-
tially, if every possible bucket in a neighbourhood νi belongs
to that neighbourhood, there will be many elements to copy
and reinsert over H buckets. Although the memory traversal
will be sequential, this will involve H−1 cache-invalidations.
The trade-off for this cost is that we are guaranteed to have
all tuples in correct order, with none of the compromises of
FIB (Fine Inter-Bucket) or CIB (Coarse Inter-Bucket).

3.1.4 Heuristic
The simplest approach is a direct-swap heuristic, which

simply compares the current tuple τi with the first tuple of
the neighbourhood, τr, if the τi is the hotter of the two. This
approach should not have a high computational overhead,
as in traversing the neighbourhood to find τi, we already
stored a reference to τr upon first encountering it. If τi is
hotter than τr, swap them and their distribution entries.

3.1.5 Approximate Sorting
This approach exploits the spatial locality afforded by

HopH; we are guaranteed that all H buckets within neigh-
bourhood νi are in the same, homogeneous region of mem-
ory. Once these pages are in the cache-hierarchy, latencies
in accessing them are reduced and, depending on the cache
layer, very efficient. As the Get() or Contains() opera-
tion traverses νi, a Bubblesort-like operation can be applied
based on hotness.

3.2 Epochs & Squashing
In order to be adaptive over time, there must be a series of

rules that govern how the hotness of data changes over times
and accesses. For approaches where there is an absolute trig-
ger for reordering, an epoch is defined at a neighbourhood
level, and is its state before a reordering method is invoked.

11

For non-triggered reordering methods, there must be a con-
tinual state of adaptation for the associated meta-data.

Once tuples in νi have been rearranged, and the numeric
values of tuple accesses have been reduced in some manner,
the hottest element in νi should remain so (preservation of
hotness). For epoch-based approaches, this means the skew
and shape of the distribution should be roughly equal after
an epoch, but smaller in magnitude. For non-epoch-based
approaches, the distribution should be more fluid, dynami-
cally changing all values in νi regularly. Those tuples in νi
that have not had many accesses should have historic ac-
cess counts reduced, until sufficient epochs have passed that
they no longer have any hotness in epoch-based reordering
(cooling).

3.3 Deletions
Handling deletions in HotH (Hotscotch Hashing) should

follow two principles further to a baseline HopH deletion:

1. For per-slot level meta-data, the distribution entry
(number of reads) for the tuple to be deleted should
also be deleted from any per-bucket counter if present,
before being erased itself.

2. If any slot that is not the first slot of a bucket contains
the tuple to be deleted, subsequent slots should be
shift towards the first slot, to minimise unnecessary
traversal gaps in the bucket structure.

After this, should the bucket be empty after tuple dele-
tion, the standard HopH process is followed.

3.4 Invocation
Finding the balance between the severity of the reordering

strategy employed, and how and when to trigger it are key
points in this work. We explore a number of invocation
strategies, and the various forms of meta-data required to
permit them.

3.4.1 Trigger-based
The simplest method of invocation is that of setting a min-

imum number of accesses to a bucket or neighbourhood, de-
pendant upon the reordering strategy used, where a counter
ρ = 0 is meta-data within the bucket structure. Upon every
Get() or Contains() call, ρ is incremented and evaluated.
Once ρ exceeds some instantiation-defined value σ, the re-
ordering is invoked.

3.4.2 Probabilistic-based
Instead of storing any meta-data at a bucket/neighbour-

hood level, we can simply state that with some probability
πr = P(Perform Redistribution), we will perform a reorder-
ing. A key point in using this method is to avoid paying
the cost of the given reordering strategy often; however the
generation and evaluation of PRN (Pseudo Random Num-
ber)s is itself a non-zero cost. Conclusions drawn from ex-
perimentation using a number of PRNG (Pseudo Random
Number Generator)s show that the xorshift a good candi-
date. Further work is looking into simpler masking / shifting
of an integer value, as statistically-sound randomness isn’t
mandatory.

4. EXPERIMENTS

1. The base experiment looks at the Avg.CPU (Aver-
age CPU Cycles) metric of creating tables based on
the same input data, and performing the same set of
queries, in the same order, amongst different table con-
figurations and comparing their results. Input data is
randomly generated, and HopH is used as a baseline.

2. A SHJ (Symmetric Hash Join) is constructed of two
tables. A HotH configuration is compared with one
backed by HopH, to measure the difference the adap-
tive approach we propose makes to realistic scenario.
Experiments evaluating SHJ performance will use ex-
isting data-sets, over different relation sizes.

5. DISCUSSION
Implementations of all methods described have been com-

plete, with results expected soon. As the overarching theme
of this thesis is NVM, work will be conducted to exploit its
characteristics to aid HotH. An approach by [4] provides a
way for leaf nodes being stored in a DRAM/NVM hybrid
B+Tree, where the system prefers Contains() operations
to Get(), as keys are stored in quick DRAM and values in
NVM. Following a similar methodology for hybrid NVM /
DRAM should provide a fast key lookup for Contains(), as
we can now fit many keys within C, but also gives slower
reordering due to the extra cost of moving around NVM
vs. DRAM. Unlike the problem solved by [4], we must still
ensure spatial and temporal locality. Intuitively, this could
mean analog structures of M elements in DRAM and NVM
with a translation function t(i, s)→ j that takes the bucket
and slot numbers i, s respectively, and maps it to a position
(offset) j in the NVM table.

6. ACKNOWLEDGMENTS
This work was supported in part by the EPSRC Centre

for Doctoral Training in Data Science, funded by the UK
Engineering and Physical Sciences Research Council (grant
EP/L016427/1) and the University of Edinburgh.

7. REFERENCES
[1] S. Albers and M. Karpinski. Randomized splay trees:

Theoretical and experimental results. Information
Processing Letters, 81(4):213–221, 2002.

[2] M. Herlihy. Hopscotch Hashing. pages 0–15.

[3] S. Idreos, M. Kersten, and S. Manegold. Database
Cracking. CIDR ’07: 3rd Biennial Conference on
Innovative Data Systems Research, pages 68–78, 2007.

[4] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and
W. Lehner. FPTree: A Hybrid SCM-DRAM Persistent
and Concurrent B-Tree for Storage Class Memory.
Proceedings of the 2016 International Conference on
Management of Data - SIGMOD ’16, pages 371–386,
2016.

[5] R. Pagh and F. F. Rodler. Cuckoo Hashing. Journal of
Algorithms, 51(2):122–144, 2004.

[6] D. D. Sleator and R. E. Tarjan. Self-adjusting Binary
Search Trees. Journal of the ACM, 32(3):652–686, 1985.

12

Graph Pattern Mining for Business Decision Support

André Petermann
supervised by Erhard Rahm

Database Research Group
University of Leipzig

petermann@informatik.uni-leipzig.de

ABSTRACT
To which extent can graph pattern mining enrich business
intelligence? This question was the seed whose sprout be-
came my PhD research. To find an answer, I investigated
graph-based data integration, the calculation of business
measures from graphs and suitable data mining techniques
based thereon. The latter should identify correlations be-
tween occurrences of specific graph patterns and values of
business measures. Finally, interesting patterns should be
presented to decision makers. With real world applications
in mind, I additionally considered the requirements of big
data scenarios at all stages. In this paper, I summarize my
recent contributions and give an outlook on the work re-
quired to finally answer the motivating question.

1. INTRODUCTION
To make good decisions, enterprises have a permanent de-

sire to understand the reasons for certain values of business
measures. In a classical business intelligence development
lifecycle a domain expert is choosing potential impact fac-
tors and the analytical model is tailored to evaluate mea-
sures by these factors. However, this approach often leads
to oversimplified models and, thus, unexpected patterns may
remain hidden. Hence, the use of graph models for business
intelligence is a promising approach for two reasons: First,
some patterns are too complex to be represented using tu-
ples. In particular, this applies to patterns where most of
the information is about relationships.

Second, graphs can loosen the coupling of experts’ bias
and analytical results because data represented by rich graph
models like the property graph model [20] allows not only
to evaluate instance data but also metadata occurrence, i.e.,
schema-related information is part of the result and must no
be specified in a query. For example, to reveal patterns be-
tween objects of classes A and B, ideally analysts just want
to ask ”Which patterns typically connect As and Bs?” and
expect an answer like ”Mostly via a sequence of Cs and Ds,
but sometimes only via Es”. In contrast, using a structured

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (c) 2017 for this paper by its authors. Copying permitted for
private and academic purposes.

model like common data warehouse models, they need to ask
several questions like ”Are As and Bs frequently connected
via Ds?” and get simple ”Yes” or ”No” answers.

Summarized, wrapping the schemas of data sources into a
graph super-model enables more generic queries and mining
of self-descriptive patterns. In my PhD research, I developed
the BIIIG approach (Business Intelligence with Integrated
Instance Graphs) to enable such flexible graph-based anal-
yses of business data. Figure 1 provides an overview of the
approach. In the remainder of this paper, I will give a brief
overview of my past and future work.

2. CONTRIBUTIONS
In the following, I will provide an overview of the contri-

butions made during my past PhD research.

2.1 Graph Representation of Business Objects
Business data of a company implicitly describes a graph

but is typically stored in one or more business information
systems based on relational databases. Thus, I first had
to consider the process of turning data organized in tables
into graphs. In [16], I proposed a semi-automated solution
to this problem and implemented a prototype based on a
productive graph database [19]. The approach was evalu-
ated using real and synthetic data. In the following, I will
briefly discuss my approach to graph-based data transfor-
mation and integration but, due to limited space, only for
relational databases.

In the initial step (step 1 of Figure 1) metadata of one
or more data sources is acquired, stored in a graph model
(unified metadata graph) and enriched by a domain expert.
In this graph, every vertex represents a class of domain ob-
jects (class-like tables) and every edge an association be-
tween classes (foreign keys or m:n tables). Both, vertices
and edges, further contain information about their source
system, semantic type, keys and attributes.

In the second step (step 2 of Figure 1), vertices and edges
of the metadata graph are interpreted to generate SQL state-
ments. These are used to query instances (data objects and
relationships) from the source databases. Afterwards, all
data objects are transformed into vertices and all relation-
ships into edges of a so-called integrated instance graph. I
decided to use the property graph model [20], i.e., a di-
rected labeled multigraph with named attributes (proper-
ties). For both, vertices and edges, labels represent their
semantic type and all attributes are stored using properties.
Another popular model to represent such graphs is the re-
source description framework (RDF) [10]. However, RDF is

13

Figure 1: Overview of the BIIIG approach [16]

more general and provides no dedicated structures for logical
relationships, labels and properties. In consequence every
attributed relationship must be represented by a subgraph
[7] and the total number of edges would be much higher.

Besides model transformation, the second step may also
include data integration. Every vertex has a globally unique
source identifier composed from identifiers for source sys-
tem, class and record. Thus, the approach supports rela-
tionships across data sources. Such relationships may exist
for two reasons: First, data objects of different systems may
reference each other, for example, a ticket of a customer is-
sue tracking system may reference an invoice stored in an
accounting system. Second, certain master data is held re-
dundantly and copies refer to a global business key (e.g.,
customer number). For the latter case, I proposed vertex
fusion, a strategy to automatically merge the resulting ver-
tices and to redirect their relationships.

2.2 Business Transaction Graphs
Data warehouse models use a schema (e.g., star schema)

that needs to be defined in advance to link facts and dimen-
sions. Data mining techniques based thereon can evaluate
the co-occurrence of certain dimensional values (e.g., fea-
ture vectors). The major aim of the BIIIG approach was
to enable an additional evaluation of the relationship struc-
ture among interrelated facts as well as between facts and
dimensions. Analyzing such structural patters is promis-
ing, for example, to reveal interaction patterns between cus-
tomers and certain employees that lead to high sales profit.
Here, the first challenge was to find a suitable abstraction
to enable such analyses. For this reason, I introduced the
concept of business transaction graphs [16] as the base for
measure aggregation (Section 2.3) and graph pattern mining
(Section 2.5). A business transaction graph represents, for
example, a single execution of a business process like trading
or manufacturing goods.

I proposed a domain-specific algorithm to automatically
extract a collection of such graphs from the integrated in-
stance graph (step 3 in Figure 1). Figure 2 shows four exam-
ple business transaction graphs of a sales process. For sake of
ease, edge types are omitted. The algorithm is based on the
observation that transactional data (e.g., Email, Quotation,
SalesOrder) only link each other in the case of a causal
connection. Here, causally connected means object B (e.g.,
an invoice) would not exist without the prior existence of
object A (e.g., a quotation). Thus, the algorithm first iden-
tifies connected components of transactional data and, af-
terwards, adds all master data (e.g., Customer, Employee,
Product) that is directly connected to one of the compo-

nent’s vertices. In consequence, every transactional vertex
belongs to exactly one graph while master data instances
may be part of many graphs. The algorithm’s only require-
ment is the categorization of vertices to represent either mas-
ter or transactional data. This categorization is done by a
domain expert at the class level and taken over by their
instances.

Due to the bad availability of datasets from real business
information systems, I designed and implemented FoodBro-
ker [17], a data generator based on business process simula-
tion. The generated data’s schema is inspired by real busi-
ness information systems. Further on, every master data
object has a quality criterion and will, if participating, in-
fluence the process execution positively or negatively. For
example, the more poor master data objects interact in a
process the higher is the chance for a bad process outcome
like financial loss. Thus, data generated by FoodBroker is
suitable to evaluate the BIIIG approach.

2.3 Business Measure Aggregation
To analyze graph collections, first, measures need to be

calculated on the graph-level. For this reason, I proposed the
graph aggregation operation [14, 16]. Aggregation derives a
scalar value from an input graph’s vertices and edges includ-
ing labels and properties, e.g., to count contained vertices
of a certain type or to sum all values of a specified property.
The actual calculation is specified by a user-defined func-
tion γ that is executed for every graph of a collection. For
example, the attributes isClosed and soCount attached to
the graphs of Figure 2 represent the results of two different
aggregation functions γisClosed and γsoCount. While γsoCount
counts vertices of type SalesOrder, γisClosed will check, if
the graph contains a closed sales quotation, i.e., if the sales
process is finished. The result of an aggregation function
can be used to filter a graph collection. In our example, only
graphs with γisClosed = true were selected to apply γsoCount.
Since vertices of type SalesOrder only exist in the case of a
confirmed (won) Quotation, this aggregation result can be
used to categorize graphs into won (γsoCount > 0) and lost
(γsoCount = 0) ones.

2.4 Scalable Frequent Subgraph Mining
To find correlations between certain business measures

values and graph patterns, pattern frequencies need to be
computed. This primitive operation is the well known prob-
lem of frequent subgraph mining [5]. Since the problem is
NP-complete and graph collections in business applications
can be very large I required a massive parallel solution to
minimize total response times. There are three distributed

14

approaches to (exact and complete) frequent subgraph min-
ing based on MapReduce [4, 11, 12]. However, none of these
approaches is capable to mine directed multigraphs.

Thus, I discussed an extension of the popular gSpan algo-
rithm [22] to support directed multigraphs in [15] and pro-
posed DIMSpan [18], the first approach to frequent subgraph
mining based on distributed in-memory dataflow systems
like Apache Spark [23] or Apache Flink [2]. In comparison
to the existing MapReduce based approaches, DIMSpan not
only requires fewer disk access but also shuffles less data
over the network and can reduce the total number of ex-
pensive isomorphism resolutions to a minimum. In exper-
imental evaluations I have shown that a lightweight data
structure as well as effective and fast compression techniques
based thereon are key techniques for good scalability in big
data scenarios. Figure 3 shows example evaluation results of
DIMSpan. The chart on the left hand side shows a perfect
scalability for increasing input data volume, since compu-
tation time for a portion of 100K graphs is decreasing for
a growing number of graphs at different minimum support
thresholds smin. The chart on the right hand side shows
good speedup for an increasing cluster size.

2.5 Category Characteristic Patterns
Since we are able to categorize graphs based on aggre-

gated measures and can compute pattern frequencies, we
can also mine correlations between categories and certain
patterns. In [14] I proposed an analytical workflow to iden-
tify such category characteristic patterns. Figure 2 shows
four example graphs where the top 3 represent finished exe-
cutions of a sales process (γisClosed = true) categorized into
won (γsoCount > 0) and lost ones (γsoCount = 0). Blue and red
color are used to highlight example patterns. The pattern
in blue color represents ’a phone call made by Alice’ and
the one in red color ’an email sent by Bob’. To enable the
extraction of patterns combining labels and values of cer-
tain properties I additionally use a specific transformation
between categorization and mining.

In contrast to basic frequent subgraph mining, I require
patterns not just to be frequent but to be characteristic for
a measure category. For example, the blue pattern is in-
teresting, as it occurs in all of the won cases but not in the
lost one. By contrast, the red pattern occurs in all graphs of
both categories and, thus, is considered to be trivial. There-
fore, I use an interestingness measure comparing a pattern’s
frequency in different categories. The measure is a func-
tion that evaluates the relative support of a pattern within
a category in relation to its average relative support in all
categories. Based on this measure, the analyst sets an in-
terestingness threshold to prune patterns by minimum in-
terestingness. Additionally, there is a candidate threshold
to specify the minimum support of a pattern inside a cate-
gory to be considered as a candidate. This parameter is used
to save computations in exchange for result completeness.

2.6 Framework Integration
The implementation of the initial prototype [19] only cov-

ered data integration and simple analytical queries. To find
a suitable platform for complex workflows including mea-
sure calculation and pattern mining, I performed an in-
depth comparison of graph databases [7] and examined the
suitability of different graph processing technologies [14]. I
found out that none of the existing systems could satisfy my

Figure 2: Example Business Transaction Graphs [14]

requirements, especially they miss support for graph collec-
tions and graph properties. Thus, I joined the development
of Gradoop [9], a scalable framework supporting complex
workflows [15] of multiple operations on both graphs and
graph collections.

The aggregation and vertex fusion operators proposed in
[16] became part of Gradoop’s extended property graph
model. Additionally, DIMSpan [18] as well as the algo-
rithms to extract business transaction graphs [16] and the
one to identify category characteristic patterns [14] were im-
plemented to fit a dedicated interface for plug-in algorithms
and are part of Gradoop’s open source repository1. Be-
sides operators related to the BIIIG approach, the frame-
work provides further valuable analytical operators such as
graph grouping [8] and graph pattern matching [6].

3. PROBLEMS AND FUTURE WORK
In first evaluations of mining characteristic patterns from

FoodBroker data I found out that the expected result was
returned but the number of patterns quickly became very
large and may overwhelm analysts. However, I was already
able to identify two particular ”data science” problems and
their potential solutions: First, the method described in Sec-
tion 2.5 eliminates trivial patterns for each category but not
combinations of trivial and characteristic patterns. Thus,
I’ll investigate ranking results using a fast analytical method
of graph p-value calculation [13]. Based thereon most sig-
nificant patterns should be presented first.

1www.gradoop.com

15

Second, patterns should contain different levels of dimen-
sional attributes. To provide a simple example, on the one
hand an analyst won’t be interested in the pattern bread
and butter, if there are more specific patterns like wholegrain
bread and butter. On the other hand, if bread and butter is
not returned, the more general pattern of bakery products
and butter could be. Thus, I will extend the DIMSpan algo-
rithm to mine dimensional attributes across multiple levels.
This approach has already been studied for itemsets [3] but
not for graphs.

Finally, I will evaluate BIIIG in a real world scenario in
cooperation with a large-scale enterprise. The evaluation
will be based on Gradoop and cover all steps of my ap-
proach. The company will not only provide real business
data but also valuate analytical results and scalability.

4. SUMMARY
In my past PhD research, I contributed to the fields of

graph data management and graph data mining. In contrast
to other graph-based approaches to business intelligence [1,
21], BIIIG covers all steps from data integration to analyti-
cal results and requires no advance definition of an analytical
schema. To the best of my knowledge, I proposed the first
approach to integrate data from multiple source into a single
instance graph and the first one using metadata-driven au-
tomation. Further on, I was the first who discussed the usage
of graph collections to analyze the structure of interrelated
business objects and to enable novel data mining techniques
based thereon. Additionally, I presented the first horizon-
tally scalable approach to transactional frequent subgraph
mining using a distributed in-memory dataflow system and
the first supporting directed multigraphs. To finish my PhD
research, I will improve applicability by returning cross-level
results and ranking them by significance.

5. ACKNOWLEDGMENTS
This work is partially funded within the EU program Eu-

ropa fördert Sachsen of the European Social Fund and by the
German Federal Ministry of Education and Research under
project ScaDS Dresden/Leipzig (BMBF 01IS14014B).

6. REFERENCES
[1] D. Bleco and Y. Kotidis. Business intelligence on complex

graph data. In Proceedings of the 2012 Joint EDBT/ICDT
Workshops, pages 13–20. ACM, 2012.

[2] P. Carbone et al. Apache flink: Stream and batch
processing in a single engine. Data Eng., 38(4), 2015.

[3] T. Eavis and X. Zheng. Multi-level frequent pattern
mining. In International Conference on Database Systems
for Advanced Applications, pages 369–383. Springer, 2009.

[4] S. Hill et al. An iterative mapreduce approach to frequent
subgraph mining in biological datasets. In Conference on
Bioinformatics, Computational Biology and Biomedicine,
pages 661–666. ACM, 2012.

[5] C. Jiang, F. Coenen, and M. Zito. A survey of frequent
subgraph mining algorithms. The Knowledge Engineering
Review, 28(01):75–105, 2013.

[6] M. Junghanns, M. Kieling, A. Averbuch, A. Petermann,
and E. Rahm. Cypher-based graph pattern matching in
gradoop. In Proc. 5th Int. Workshop on Graph Data
Management Experiences and Systems. ACM, 2017.

[7] M. Junghanns, A. Petermann, N. Neumann, and E. Rahm.
Management and analysis of big graph data: Current
systems and open challenges. Big Data Handbook,
Springer, 2017.

Figure 3: DIMSpan: Scalability for increasing data
volume (left) and cluster size (right) [18]

[8] M. Junghanns, A. Petermann, and E. Rahm. Distributed
grouping of property graphs with gradoop. In 17th
Conference on Database Systems for Business, Technology,
and Web (BTW), 2017.

[9] M. Junghanns, A. Petermann, N. Teichmann, K. Gómez,
and E. Rahm. Analyzing extended property graphs with
apache flink. In 1st SIGMOD Workshop on Network Data
Analytics, page 3. ACM, 2016.

[10] G. Klyne and J. J. Carroll. Resource description framework
(RDF): Concepts and abstract syntax. 2006.

[11] W. Lin, X. Xiao, and G. Ghinita. Large-scale frequent
subgraph mining in mapreduce. In Int. Conf. on Data
Engineering (ICDE), pages 844–855. IEEE, 2014.

[12] W. Lu, G. Chen, A. Tung, and F. Zhao. Efficiently
extracting frequent subgraphs using mapreduce. In Int.
Conf. on Big Data, pages 639–647. IEEE, 2013.

[13] G. Micale, R. Giugno, A. Ferro, M. Mongiov́ı, D. Shasha,
and A. Pulvirenti. Fast analytical methods for finding
significant colored graph motifs. To be published in Data
Mining and Knowledge Discovery, 2017.

[14] A. Petermann and M. Junghanns. Scalable business
intelligence with graph collections. it-Information
Technology, 58(4):166–175, 2016.

[15] A. Petermann, M. Junghanns, S. Kemper, K. Gómez,
N. Teichmann, and E. Rahm. Graph mining for complex
data analytics. In Int. Conf. on Data Mining Workshops
(ICDMW), pages 1316–1319. IEEE, 2016.

[16] A. Petermann, M. Junghanns, R. Müller, and E. Rahm.
BIIIG: Enabling Business Intelligence with Integrated
Instance Graphs. In Int. Conf. on Data Engineering
Workshops (ICDEW), pages 4–11. IEEE, 2014.

[17] A. Petermann, M. Junghanns, R. Müller, and E. Rahm.
Foodbroker-generating synthetic datasets for graph-based
business analytics. In Workshop on Big Data Benchmarks,
pages 145–155. Springer, 2014.

[18] A. Petermann, M. Junghanns, and E. Rahm.
Dimspan-transactional frequent subgraph mining with
distributed in-memory dataflow systems. arXiv preprint
arXiv:1703.01910, 2017.

[19] A. Petermann et al. Graph-based Data Integration and
Business Intelligence with BIIIG. PVLDB, 7(13), 2014.

[20] M. A. Rodriguez and P. Neubauer. Constructions from dots
and lines. Bulletin of the American Society for Information
Science and Technology, 36(6):35–41, 2010.

[21] Z. Wang et al. Pagrol: Parallel graph olap over large-scale
attributed graphs. In 30th Int. Conf. on Data Engineering
(ICDE), pages 496–507. IEEE, 2014.

[22] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In International Conference on Data
Mining (ICDM), pages 721–724. IEEE, 2002.

[23] M. Zaharia et al. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing.
In Proc. of the 9th USENIX conference on Networked
Systems Design and Implementation, pages 2–2, 2012.

16

Efficient Clustering for Large-Scale, Sparse, Discrete Data
with Low Fundamental Resolution

Veronika Strnadová-Neeley,
supervised by John R. Gilbert

University of California, Santa Barbara

veronika@cs.ucsb.edu

ABSTRACT
Scalable algorithm design has become central in the era of
large-scale data analysis. My contribution to this line of re-
search is the design of new algorithms for scalable clustering
and data reduction, by exploiting inherent low-dimensional
structure in the input data to overcome the challenges of
significant amounts of missing entries. I demonstrate that,
by focusing on a property of the data that we call its funda-
mental resolution, we can improve the efficiency of clustering
methods on sparse, discrete-valued data sets.

1. INTRODUCTION AND BACKGROUND
The necessity for efficient algorithms in large-scale data

analysis has become clear in recent years, as unprecedented
scaling of information has sprung up in a variety of domains,
from bioinformatics to social networks to signal processing.
In many cases, it is no longer sufficient to use even quadratic-
time algorithms for such data, and much of recent research
has focused on developing efficient methods to analyze vast
amounts of information.

Here we focus on scalable clustering algorithms, a form of
unsupervised learning that is invaluable in exploratory data
analysis [16]. Many successes in the effort to design these
algorithms have focused on leveraging an inherent structure
in the data, and its structure may be best expressed in var-
ious ways. The data may be best described as lying in an
inherently low-dimensional Euclidean space, along a low-
dimensional manifold, or it may have certain self-repeating,
or fractal properties. All these structural properties have
been explored to some degree in order to design more effi-
cient clustering algorithms.[11, 2, 6, 7, 8, 17]

My work focuses on leveraging a property of large-scale,
discrete-valued data that I call its fundamental resolution,
a concept that can be explained by comparing the images
in Figure 1. More pixels produce a clearer image, but only
up to a point – we cannot distinguish the leftmost image
from that in the middle, even though more pixels are used to
render the image in the leftmost position. Similarly, in many

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany. Copyright (C) 2017 for this paper by its authors. Copying
permitted for private and academic purposes.

Figure 1: Fundamental resolution of an image: the more pixels
we use, the clearer it gets, but only up to a point.

large, discrete-valued data sets, the fundamental resolution,
rather than the number of data points, determines the extent
to which we can distinguish points from one another before
the data becomes redundant. If we know a large data set
with many missing values has a fundamental resolution, we
can more easily single out data points that are noise and fill
in missing entries.

In the following, I present efficient algorithms for cluster-
ing large-scale, discrete-valued data sets with missing values
by leveraging the fundamental resolution of the data. Pre-
viously, my collaborators and I have demonstrated that the
underlying fundamental resolution of binary-valued genetic
mapping data can be used to quickly cluster large genetic
mapping data sets. I am now generalizing this clustering
approach to large-scale, discrete-valued data, such as that
found in the recommender systems domain. Genetic map-
ping and recommender systems present similar challenges
to clustering algorithms, due to the large degree of sparsity
and the sheer scale of the input data in these domains.

2. RELATED WORK
Much attention has been paid to the intuition that many

large-scale data sets lie in an inherently low-dimensional
space, which explains the popularity of matrix factoriza-
tion methods for large scale data analysis. Methods such
as principal component analysis rely on an SVD decompo-
sition in order to project a high-dimensional data set into
a lower dimensional space [10, 9]. Spectral clustering is an-
other such example, and has been modified in recent years
to improve in running time [11]. More recently, the CUR
decomposition [12] has gained popularity as a sparse matrix
factorization method that is both fast and in some cases
more interpretable than a decomposition based on eigenvec-
tors. With matrix factorization approaches, clustering the
projected data in the lower-dimensional space often results
in better clustering performance. However, my work focuses
on data that does not necessarily lie in a low-dimensional
Euclidean subspace – many dimensions in the input may be
relevant in data with a low fundamental resolution. In ad-
dition, there is no clear answer on how to deal with noise
and missing entries when factorizing a large data matrix,
whereas my work takes these issues into account.

17

Other forms of lower-dimensional inherent structure have
also been explored to speed up the clustering of large-scale
data. A data set’s fractal dimension has been exploited for
clustering [8], but this method is not scalable to large data
sets. An approach based on exploiting a low fractal dimen-
sion and entropy of a data set has been successfully applied
to quickly search massive biological data sets.[17] However,
here we focus here on efficient clustering, not efficient search.

Older, popular methods such as the well-known DBSCAN[6],
algorithm seek to preserve the shape of data, but rely on
the input lying in a metric space. In addition, these meth-
ods typically require at least quadratic time when the input
data lies in three or more dimensions[7], and again do not
account for missing values. Popular nonlinear dimensional-
ity reduction methods, such as Laplacian eigenmaps[2], also
don’t account for missing data and noise, and many such
approaches do not scale well.

3. EXPLOITING THE FUNDAMENTAL RES-
OLUTION OF GENETIC MAP DATA

Genetic map data for a homozygous mapping population
can be represented as a binary matrix X, composed of rows
xu, where each entry xui can take on one of two values a
or b, or it can be missing. [4] In this application domain,
errors occur when an entry was erroneously recorded during
sequencing – that is, it was flipped from a to b or from b to
a – and errors typically occur at a fixed rate ε. The goal of
genetic mapping is to produce a map of the genome, which
shows the correct clustering and ordering of the input xu.
Such maps have applications in health, agriculture, and the
study of biodiversity.

Producing a genetic map typically requires three stages:
1) Clustering the vectors xu into linkage groups, 2) Ordering
the vectors within each linkage group, and 3) Determining
the correct genetic distance between the ordered vectors. In
previous work ([13], [14]), we showed that by exploiting the
fundamental resolution of genetic map data, we can quickly
and accurately cluster the input vectors and reduce them
from a large-scale, noisy, and incomplete data set into a
small set of bins that more accurately represent the genome.

3.1 Scalable Clustering
We have shown that, using the well-known LOD score

similarity that is ubiquitous in genetics, we can design a
fast and accurate algorithm to cluster input data for genetic
mapping [13]. The LOD score is a logarithm of odds, com-
paring the likelihood of two vectors being in the same cluster
to the likelihood that they were generated by chance:

LOD(xu, xv) = log10

P(data|xu and xv in same linkage group)

P(data| pure chance)

Because we have binary data, the denominator in the LOD
fraction is simply (1

2
)η, where η is the number of entries

that are non-missing in both xu and xv. For example, if
xu =

[
a b b − b

]
and xv =

[
a a − − a

]
,

then the denominator is (1
2
)3, because the first, second, and

last entries are non-missing entries in both xu and xv. The
numerator is a function of the estimated recombination frac-
tion of the genetic data, and is explained in more detail in
our previous work [13]. The LOD score does not obey the tri-
angle inequality, which together with the presence of errors
(flipped entries) and missing values, eliminates the possibil-
ity of accurately clustering the data with existing efficient
algorithms.

BubbleCluster
Dataset Input Size F -score Time

Barley 64K 0.9993 15 sec
Switchgrass 113K 0.9745 8.9 min
Switchgrass 548K 0.9894 1.9 hrs

Wheat 1.582M N/A 1.22 hrs

Table 1: Clustering performance on Barley, Switchgrass, and
Wheat from the Joint Genome Institute using BubbleCluster.
State-of-the-art mapping tools are unable to cluster data sets at
this scale. (Table originally appeared in [13])

Our algorithm BubbleCluster, which resembles the DB-
SCAN method [6], utilizes the LOD score to efficiently clus-
ter the data. First, we build a sketch of the clustering by
linking together points that exceed a high LOD threshold,
which only occurs for vectors with many matching binary
values. Then, points with more missing values are linked to
the point in the skeleton attaining the highest LOD score.
The fundamental resolution limits the number of unique in-
put vectors and thus as the data size grows, it is more likely
that enough high-quality points exist to build the skeleton
and accurately place the remaining points.

BubbleCluster allows for efficient clustering of genetic map
input data into linkage groups. As Table 1 shows, our
method achieved both high precision and recall (expressed
as the F -score) on real genetic data. It was also the first
method to successfully cluster genetic map data at large
scales, including the grand challenge hexaploid bread wheat
genome [3], and outperformed state-of-the-art mapping tools
in terms of clustering performance on simulated data [13].

To further aide the efficiency and accuracy of the ge-
netic mapping process, we introduced a fast data reduction
method that quickly converts the large-scale, noisy, and in-
complete input data into a small-scale, more accurate and
more complete set of points which more clearly represent
the genetic map. I will next describe this data reduction
method, based on the fundamental resolution of the genetic
mapping input data.

3.2 Efficient Data Reduction
Genetic map data has a fundamental resolution that is

linear in the dimensionality of the input vectors. We can
leverage this property of the data to efficiently reduce it to
a much smaller and more accurate set of vectors we call bins,
that represent positions along the genetic map as illustrated
in Figure 2. The data reduction process uses a recursive
bisection method to quickly reduce the input vectors within
each linkage group to bins [14].

The binary nature of the data limits the number of possi-
ble unique input points to 2n, where n is the dimensionality
of the data. However, the fundamental resolution of the data
limits this number much further – the fundamental resolu-
tion of a genetic map is equivalent to the number of possible
unique positions on the map. With a homozygous map-
ping population (binary data), this number is O(kn), where
k is the number of linkage groups (clusters) [14]. There-
fore, when the number of input points is much larger than
the fundamental resolution, many points must be identical,
helping us filter out errors. Furthermore, the large data set
size allows us to fill in missing data if we can cluster together
points that belong to the same unique map position.

If we know two points belong in the same position on the

18

x1
b b - - a

x2
a b a a b

x3
a a - - b

x4
a - b - b

x5
b - b a -

x6
a a b a -

x7
- - - a b (missing data) Genetic Map

Input Data Matrix

(error)
a - b a b

b - b a -

Linkage Group 1 Linkage Group 2

b b - - a

a b a a b

a a b a b

x
1

x
2

x
3
, x

6

x
5

x
4
, x

7

G
en

et
ic

 M
ar

ke
rs

 Individuals

Figure 2: The fundamental resolution of genetic map data allows
us to reduce the large-scale, incomplete and noisy input to a more
complete set of representative vectors that more clearly describe
positions along the genetic map.

12.5K 25K 50K 100K 200K 400K 800K 1.6M

Data set size

0%

20%

40%

60%

80%

100%

R
ec

al
l

Bin Recall (% bins found perfectly) at ε = 0.5%

15% missing

35% missing

50% missing

Figure 3: As the data size grows, more map position vectors
(bins) are recovered perfectly, while lower missing rates allow our
algorithm to recover the bins with less data.

genetic map, we can infer which values are errors and what
the missing data should be. In Figure 2, for example, x3 and
x6 belong to the same position, so we can fill in the missing
data in both x3 and x6 based on each other’s values. A
similar idea applies to errors – the more points belong to
the same position, the more clear it becomes which values
are errors, as long as ε is fairly low.

We designed an algorithm that uses recursive bisection to
quickly clusters together points in the same genetic map po-
sition. At each step, we use a maximum a posteriori (MAP)
estimate of ε in order to find the best dimension along which
to split the point set. The algorithm returns both an esti-
mated error rate and a set of bins that represent unique
positions on the genetic map. We showed that the number
of bins and the error rate is consistent with existing real-
world maps of wheat and barley[14].

We also simulated genetic map data with realistic error
rates and a variety of missing data rates. Our algorithm
scaled linearly with data set size for all tested missing rates
and error rates in synthetic data. As Figure 3 shows, the bin
recall, or fraction of bins we can recover perfectly, improves
at each missing rate with more data. Note that although
an error rate of 0.5% seems low, it is actually much higher
than encountered in practice.

4. GENERALIZING TO DISCRETE-VALUED
DATA WITH MISSING VALUES

Next, I will describe the last portion of my thesis work,
clustering large discrete-valued data sets with missing val-
ues. One example of such data is found in the Recommender
Systems (RS) domain, and much of the experimentation of
these clustering methods will be on RS data.

x1 5 - 1 1 - 1 4 - 2 -

x2 - 1 - 5 1 - - 5 - -

x3 5 - 5 2 - 3 - - 3 -

x4 4 - - - 1 - 2 - 5 -

x5 - 1 3 - - 3 3 4 - 1

x6 3 - 5 - 5 - 3 2 - 3

x7 4 - - 1 4 - 4 - 3 -

Movies

U
se

rs

x1 5 - 1 1 - 1 4 - 2 -

x4 4 - - - 1 - 2 - 5 -

x6 3 - 5 - 5 - 3 2 - 3

x2 - 1 - 5 1 - - 5 - -

x5 - 1 3 - - 3 3 4 - 1

x7 4 - - 1 4 - 4 - 3 -

x3 5 - 5 2 - 3 - - 3 -

Cluster 1

Cluster 2

Cluster 3

Input Data Matrix

Figure 4: Fundamental resolution in Recommender Systems data
equates to finding the vectors that best represent user sub-groups
with low disagreement rates.

My hypothesis is that a fundamental resolution exists in
many discrete-valued data sets, and can be exploited to ef-
ficiently cluster these data at large scales. In the RS do-
main, we often have a discrete-valued input matrix with
many missing values as shown in Figure 4, where an en-
try Xui represents the rating that user u gave to item i,
with ratings typically taking values on a discrete scale. The
methods for clustering and reducing the binary genetic map
data can be adapted to this more general setting.

The fundamental resolution in RS data can be expressed
as the number of unique user sub-groups that rate items very
similarly. Recently, Christakopoulou et al.[5]have shown
that utilizing user clusters to improve prediction of rating
values and recommend better items is an extremely effective
approach. An efficient, accurate clustering method for RS
data has the potential to enhance such approaches to rating
prediction as well as the top-n recommendation problem [1].

4.1 The LiRA Similarity Score for Recommender
Systems

We have developed a statistical score analogous to the
LOD score for RS data called LiRa, based on a likelihood ra-
tio. We assume that RS data has a fundamental resolution,
and thus users (rows of the input matrix) can be clustered
into groups with vectors representing the rating trends of
each group. LiRa compares the likelihood of observing the
values in two user vectors xu and xv assuming the users are
in the same cluster, to the likelihood of observing the same
data by chance, based on differences in their rating values:

LiRa(xu, xv) = log10

p(differences in xu and xv | same cluster)

p(differences in xu and xv | pure chance)
(1)

LiRa generalizes the LOD score by assuming that differ-
ences in two discrete-valued vectors from the same cluster
follow a particular multinomial distribution, which is used
to compute the numerator. The LiRa score is useful in the
RS setting because it leverages more data to make a more
accurate judgment of similarity.

We have shown that using the LiRa score to find nearest
neighbors in a k-nearest neighbors approach outperforms
the popular and widely used Pearson and Cosine similarity
scores in terms of rating prediction error [15]. I am cur-
rently expanding on the clustering model used to compute
the likelihood of users belonging to the same cluster in the
LiRa score, which will be useful for efficient data reduction
in the discrete-value setting.

19

4.2 Generalizing Efficient Data Reduction to
the Discrete-Valued Domain

As noted previously, my goal is to generalize my previous
work on efficient clustering and data reduction in genetic
map data to the more general setting of large-scale, discrete-
valued data with missing values and noise. The LiRa score
from section 4.1 is the first step in this direction, and can
be used to produce an initial clustering of the input using a
thresholding scheme similar to the BubbleCluster algorithm.
The threshold LiRa score within which points will belong to
the same cluster will rely on the clustering model used to
represent the data. For RS data, a working model is already
presented in previous work [15].

After an initial fast clustering, I hope to generalize the
data reduction stage to discrete-valued data also. Here, fu-
ture work involves more precisely defining the point at which
the fundamental resolution has been reached. In RS data,
the idea is to cluster together users who have very similar
rating patterns. One possibility is to only cluster together
users if the distribution of their rating differences follows a
clustering model. For example, in Cluster 1 in Figure 4,
only one pair of ratings for the same item differs signifi-
cantly: x13 = 1 and x33 = 5, giving a rating difference of 4.
The remaining ratings are all close together. The recursive
bisection method for data reduction in genetic mapping can
be modified to this more general case, by dividing user clus-
ters with large differences in rating values, based on MAP
estimates of the proportion of each rating difference.

I am currently formalizing the notion of fundamental res-
olution in the general case, and experimenting with the best
clustering model for RS data. As the final piece to my thesis,
I hope to demonstrate that the efficient clustering and data
reduction methods can be applied to more general data sets,
and will be useful in the RS domain for rating prediction.

5. CONCLUSION
I have shown that the concept of fundamental resolution

can be exploited to design efficient and accurate clustering
algorithms in the genetic mapping domain, and I am ex-
tending this concept to the more general setting of discrete-
valued data. The methods presented here are useful for ap-
plications with large-scale, discrete input data with many
missing values, such as that found in the Recommender Sys-
tems domain. Future directions beyond my thesis work in-
clude exploring the connection between fractal dimension
and fundamental resolution, as well as defining new cluster-
ing models for data sets with a low fundamental resolution.

6. ACKNOWLEDGMENTS
This work is supported by the Applied Mathematics Pro-

gram of the DOE Office of Advanced Scientific Computing
Research under contract number DE-AC02-05CH11231 and
by NSF Award CCF-1637564.

7. REFERENCES
[1] D. C. Anastasiu, E. Christakopoulou, S. Smith,

M. Sharma, and G. Karypis. Big data and
recommender systems. 2016.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation.
Neural computation, 15(6):1373–1396, 2003.

[3] J. A. Chapman, M. Mascher, A. Buluç, K. Barry,
E. Georganas, A. Session, V. Strnadova, J. Jenkins,
S. Sehgal, L. Oliker, et al. A whole-genome shotgun
approach for assembling and anchoring the hexaploid
bread wheat genome. Genome biology, 16(1):26, 2015.

[4] J. Cheema and J. Dicks. Computational approaches
and software tools for genetic linkage map estimation
in plants. Briefings in bioinformatics, 10(6):595–608,
2009.

[5] E. Christakopoulou and G. Karypis. Local item-item
models for top-n recommendation. In Proceedings of
the 10th ACM Conference on Recommender Systems,
pages 67–74. ACM, 2016.

[6] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Kdd, volume 96,
pages 226–231, 1996.

[7] J. Gan and Y. Tao. Dbscan revisited: mis-claim,
un-fixability, and approximation. In Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data, pages 519–530. ACM, 2015.

[8] A. Gionis, A. Hinneburg, S. Papadimitriou, and
P. Tsaparas. Dimension induced clustering. In
Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in
data mining, pages 51–60. ACM, 2005.

[9] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8), 2009.

[10] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining
of massive datasets. Cambridge University Press, 2014.

[11] F. Lin and W. W. Cohen. Power iteration clustering.
In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 655–662, 2010.

[12] M. W. Mahoney and P. Drineas. Cur matrix
decompositions for improved data analysis.
Proceedings of the National Academy of Sciences,
106(3):697–702, 2009.

[13] V. Strnadová, A. Buluç, J. Chapman, J. R. Gilbert,
J. Gonzalez, S. Jegelka, D. Rokhsar, and L. Oliker.
Efficient and accurate clustering for large-scale genetic
mapping. In Bioinformatics and Biomedicine (BIBM),
2014 IEEE International Conference on, pages 3–10.
IEEE, 2014.

[14] V. Strnadová-Neeley, A. Buluç, J. Chapman, J. R.
Gilbert, J. Gonzalez, and L. Oliker. Efficient data
reduction for large-scale genetic mapping. In
Proceedings of the 6th ACM Conference on
Bioinformatics, Computational Biology and Health
Informatics, pages 126–135. ACM, 2015.

[15] V. Strnadová-Neeley, A. Buluç, J. R. Gilbert,
L. Oliker, and W. Ouyang. Lira: A new
likelihood-based similarity score for collaborative
filtering. arXiv preprint arXiv:1608.08646, 2016.

[16] R. Xu and D. Wunsch. Survey of clustering
algorithms. IEEE Transactions on neural networks,
16(3):645–678, 2005.

[17] Y. W. Yu, N. M. Daniels, D. C. Danko, and
B. Berger. Entropy-scaling search of massive biological
data. Cell systems, 1(2):130–140, 2015.

20

Query Processing Based on Compressed Intermediates

Patrick Damme
Supervised by Wolfgang Lehner

Database Technology Group
Technische Universität Dresden, Germany

patrick.damme@tu-dresden.de

ABSTRACT
Modern in-memory column-stores employ lightweight data
compression to tackle the growing gap between processor
speed and main memory bandwidth. However, the com-
pression of intermediate results has not been investigated
sufficiently although accessing intermediates is as expensive
as accessing the base data in these systems. Therefore, we
introduce our vision of a balanced query processing based on
compressed intermediates to improve query performance. In
this paper, we provide an overview of the important research
challenges on the way to this goal, present our contributions
so far, and give an outlook on our remaining steps.

1. INTRODUCTION
With increasingly large amounts of data being collected in

numerous areas ranging from science to industry, the impor-
tance of online analytical processing (OLAP) workloads in-
creases constantly. OLAP queries typically address a small
number of columns, but a high number of rows and are,
thus, most efficiently processed by column-stores. The sig-
nificant developments in the main memory domain in recent
years have rendered it possible to keep even large datasets
entirely in main memory. Consequently, modern column-
stores follow a main memory-centric architecture. These
systems have to face some new architectural challenges.

Firstly, they suffer from the new bottleneck between main
memory and the CPU caused by the contrast between in-
creasingly fast multi-core processors and the comparably low
main memory bandwidth. To address this problem, column-
stores make extensive use of data compression. The reduced
data sizes achievable through compression result in lower
transfer times, a better utilization of the cache hierarchy,
and less TLB misses. However, classical heavyweight com-
pression algorithms such as Huffman [10] or Lempel Ziv [20]
are too slow for in-memory systems. Therefore, numerous
lightweight compression algorithms such as differential cod-
ing [14, 16] and null suppression [1, 16] have been proposed,
which are much faster and, thus, suitable for in-memory

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (c) 2017 for this paper by its authors. Copying permitted for
private and academic purposes.

column-stores. Furthermore, especially for lightweight com-
pression algorithms, many operators can directly process the
compressed data without prior decompression.

Secondly, in main memory-centric column-stores, access-
ing the intermediate results during query processing is as
expensive as accessing the base data, since both reside in
main memory. Thus, intermediates offer a great potential
for performance improvement, which can be exploited in two
orthogonal ways: (1) intermediates should be avoided when-
ever possible [12, 15], or (2) intermediates should be repre-
sented in a way that facilitates efficient query processing.

In this thesis, we focus on the second approach by inves-
tigating lightweight compression of intermediates in main
memory-centric column-stores. This direction has not been
investigated sufficiently in the literature so far. Existing sys-
tems usually keep the data compressed only until an opera-
tor cannot process the compressed data directly, whereupon
the data is decompressed, but not recompressed – due to the
resulting computational overhead. However, using modern
hardware and state-of-the-art lightweight compression algo-
rithms, this computational overhead can be outweighed by
the benefits of compressed data. Thus, our vision is a bal-
anced query processing based on compressed intermediates.
That is, in a query execution plan of compression-aware
physical operators, every intermediate result shall be rep-
resented using a suitable lightweight compression algorithm
which is selected in a compression-aware query optimization
such that the benefits of compression outweigh its costs. To
achieve this goal, this thesis addresses three aspects of the
problem: the structural aspect on the basics of lightweight
compression (Section 2), the operational aspect on physical
operators for compressed data (Section 3), and the opti-
mization aspect on compression-aware optimization strate-
gies (Section 4). These aspects are designed to build upon
each other, as will become clear in the following sections.

2. STRUCTURAL ASPECT
The structural aspect lays the foundations of this thesis by

focusing on the basics of lightweight compression algorithms
and on efficient transformations between the compressed for-
mats of different algorithms. Thereby, our primary focus is
on integer sequences due to their outstanding importance in
column-stores: Other fixed-width data types, such as dec-
imals, can be stored as integers and variable-width data
types, such as strings, usually need to be represented by
fixed-width integer codes from a dictionary to enable effi-
cient processing. We have already completed our planned
research in this aspect of the thesis.

21

2.1 Lightweight Data Compression
In the field of lossless lightweight data compression, we

distinguish between techniques, i.e., the abstract ideas of
how compression works conceptually, and algorithms, i.e.,
concrete instanciations of one or more techniques. So far,
we consider five lightweight compression techniques for se-
quences of integers: frame-of-reference (FOR) [8, 21], differ-
ential coding (DELTA) [14, 16], dictionary coding (DICT)
[1, 21], run-length encoding (RLE) [1, 16], and null suppres-
sion (NS) [1, 16]. FOR and DELTA represent each data
element as the difference to either a certain given reference
value (FOR) or to its predecessor (DELTA). DICT replaces
each value by its unique key in a dictionary. The objective of
these three well-known techniques is to represent the origi-
nal data as a sequence of small integers, which is then suited
for the actual compression using the NS technique. NS is
the most studied lightweight compression technique. Its ba-
sic idea is the omission of leading zero bits in small integers.
Finally, RLE tackles uninterrupted sequences of occurrences
of the same value, so called runs. Each run is represented
by its value and length. Obviously, these techniques exploit
different data characteristics, such as the value range, the
number of distinct values, and repeated values.

In the literature, numerous algorithms have been proposed
for these techniques, e.g., [1, 8, 14, 16, 17, 19, 21], to name
just a few examples. For our purposes of applying decom-
pression and recompression during query execution, we de-
pend on highly efficient implementations of these existing
algorithms. One way to achieve these is to use single instruc-
tion multiple data (SIMD) extensions of modern processors,
such as Intel’s SSE and AVX, which allow the application
of one operation to multiple data elements at once. In fact,
the employment of SIMD instructions has been the major
driver of the research in this field in recent years [14, 17,
19]. We have contributed to the corpus of proposed efficient
implementations, e.g., through our vectorized algorithm for
RLE [5], which is based on vectorized comparisons.

As lightweight compression algorithms are always tailored
to certain data characteristics, their behavior in terms of
performance and compression rate depends strongly on the
data. Selecting the best algorithm for a given base column
or intermediate requires a thorough understanding of the al-
gorithms’ behaviors subject to the data properties. Unfor-
tunately, a sufficient comparative analysis had been miss-
ing in the literature. Thus, we conducted an experimental
survey of several vectorized state-of-the-art compression al-
gorithms from all five techniques as well as combinations
thereof on numerous datasets, whereby we systematically
varied the data characteristics [4, 5]. Figure 1a-c provide a
sample of our results (the code was compiled using g++ -O3

and the evaluation system was equipped with an Intel Core
i7-4710MQ and 16 GB RAM). Our comparative analysis re-
vealed several new insights. For instance, we could show
how different data distributions affect the algorithms. We
found that especially outliers in the distributions lead to a
significant degradation in the performance and/or compres-
sion rate of certain algorithms. Furthermore, for fixed data
characteristics, the best algorithm regarding performance
is not necessarily the best regarding compression rate. Fi-
nally, we could show that combinations of different tech-
niques can heavily improve the compression rate and even
the (de)compression speed depending on the data. Summing
up our findings, we can state that there is no single-best

DS 1 DS 2 DS 3
0.0

0.2

0.4

0.6

0.8
(a) compr. time [sec]

DS 1 DS 2 DS 3
0.00

0.05

0.10

0.15

0.20
(b) decompr. time [sec]

DS 1 DS 2 DS 3
0

16

32

48

64
(c) compr. rate [bits/int]

DS 1 DS 2 DS 3
0.00

0.02

0.04

0.06
(d) SUM op. time [sec]

4Wise NS SIMDFastPFOR RLE

DS Value distribution Run length

1 normal(µ = 210, σ = 20) constant(1)
2 67% normal(µ = 26, σ = 20) constant(1)

33% normal(µ = 227, σ = 20)
3 uniform([0, 232 − 1]) normal(µ = 20, σ = 2)

Figure 1: Behavior of three compression algorithms
(a-c) and a SUM operator on the respective com-
pressed formats (d) for three datasets with different
characteristics, each having 100M data elements.

compression algorithm, but the choice depends on the data
properties and is non-trivial. Our extensive experimental
survey was made feasible by our benchmark framework for
compression algorithms [6], which facilitates an efficient and
organized evaluation process.

2.2 Direct Data Transformation
Assuming that the optimal compression algorithm was

selected for a column, this algorithm might become sub-
optimal if the data properties change after the decision. The
properties of the base data might change over time through
DML operations. While this case might be handled offline,
the problem is more urgent for intermediates, whose proper-
ties can change dramatically through the application of an
operator. For instance, a column containing outliers might
be stored in a format that can tolerate these, perhaps at the
price of a slow decompression. A selection operator might re-
move the outliers, making a faster non-outlier-tolerant algo-
rithm a better choice than the original one. This motivates
the need for a transformation of the compressed represen-
tation of the data in some source format to the compressed
representation in some destination format.

A näıve approach would take two steps: (1) Apply the
decompression algorithm of the source format to the data,
thereby materialize the entire uncompressed data in main
memory. (2) Apply the compression algorithm of the des-
tination format to that uncompressed data. The advan-
tage of this approach is that it builds only upon existing
(de)compression algorithms. However, since it materializes
the uncompressed data in main memory, it is prohibitively
expensive from our point of view, since we need to transform
intermediates during query execution.

22

To address this issue, we introduced direct transformation
algorithms in [7]. This novel class of algorithms is capable
of accomplishing the transformation in one step, i.e., with-
out the materialization of the uncompressed data. To pro-
vide an example, we proposed a direct transformation from
RLE to 4-Wise NS. In 4-Wise NS [17], the compressed data
is a sequence of compressed blocks of four data elements
each. The direct transformation algorithm RLE-2-4WiseNS
roughly works as follows: For each pair of run value and run
length in the RLE-compressed input, it creates one block of
four copies of the run value, compresses it once, and stores
it out multiple times until it reaches the run length. That
way, it saves the intermediate store and load as well as the re-
peated block compression performed by the näıve approach.
Our experiments showed that this and other direct transfor-
mations yield significant speed ups over the näıve approach,
if the data characteristics are suitable.

3. OPERATIONAL ASPECT
In our currently ongoing work in the operational aspect,

we investigate how to integrate lightweight data compres-
sion into the query execution. Thereby, we assume that
a multitude of compression algorithms is available to the
system. We addressed the challenge of easily fulfilling this
prerequisite in [9].

3.1 Processing Model for Compressed Data
Our vision of a query processing based on compressed

intermediates can best be investigated using a processing
model that actually materializes all intermediates. Further-
more, since we focus on column-stores and since lightweight
compression algorithms are designed for sequences of val-
ues, all intermediates should use a columnar representation.
Hence, we chose column-at-a-time as the processing model.

One example of a system that uses this processing model
is MonetDB [11], which internally expresses queries in the
Monet Algebraic Language (MAL) [2]. The central data
structure of MAL is the binary association table (BAT),
which is used to represent both, base data and intermedi-
ates. Conceptually, a BAT consists of a head containing
record ids and a tail containing the actual data. However,
since the head always contains a dense sequence of integers,
it can be omitted. Thus, a BAT is essentially just an array
of data elements, making it a perfect target for lightweight
compression. MAL formally defines a set of operators that
consume and produce BATs, such as selection, join, and
projection. We decided to use MAL as the foundation of
our work, but intend to adapt MAL operators to multiple
compressed formats, which we discus in the next section.

3.2 Physical Operators for Compressed Data
When adapting MAL operators to compressed data, dif-

ferent degrees of integration are possible. Figure 2 presents
the cases we plan to investigate. In general, an operator
might consume i inputs and produce o outputs, each of
which might be represented in its individual compressed for-
mat. Figure 2a shows the baseline case of processing only
uncompressed data. In the following, we assume we want to
support n compressed formats for one operator.

A first approach to support compressed intermediates is
shown in Figure 2b. The original operator for uncompressed
data is surrounded by a wrapper, which temporarily de-
compresses the inputs and recompresses the outputs. This

OPU

U U

U

(a)

A B

OPU

U
C

U U

(b)

A

OPB

B
C

B B

(c)

OPABC

A B

C

(d)

baseline
operator

wrapper with
(de)compression

wrapper with
transformation

specialized
operator

Figure 2: Integration of compression and operators.
A to C are compressed formats; U is uncompressed.

approach is called transient decompression and was pro-
posed in [3], but to the best of our knowledge, it has never
been investigated in practice. For efficiency, the decom-
pression(recompression) should not work on the entire in-
puts(outputs), but on small chunks fitting into the L1 cache.
Changing the compressed format of the intermediates is pos-
sible by configuring the wrapper’s input and output formats
accordingly. The advantage of this approach is its simplicity:
It reuses the existing operator and relies only on n already
existing (de)compression algorithms. However, it does not
exploit the benefits of working directly on compressed data.

The second approach is to adapt the operator such that
it can work directly on compressed data (Figure 2c). Exist-
ing works such as [1, 13, 18] have already proposed certain
operators on certain compressed formats. We plan to con-
tribute to this line of research by covering the formats of
recent vectorized compression algorithms. We have already
investigated a SUM operator on compressed data and Fig-
ure 1d illustrates how significantly its performance depends
on the data properties. We assume a common format for all
inputs and outputs of the operator; for arbitrary combina-
tions of formats, the operator is again wrapped. However,
in this case the wrapper utilizes the direct transformation
algorithms we developed in the structural aspect. Note that
transformations are required only for those inputs(outputs)
that are not represented in the operator’s native format.
The idea of bringing compressed inputs into a common for-
mat has already been proposed in [13], but only for joins on
dictionary encoded data – and without direct transforma-
tions. We expect this approach to yield considerable speed
ups compared to the first approach, since (i) the compressed
data inside the wrapper is smaller, and (ii) the operator
works directly on the compressed representation, such that
it might, e.g., process more data elements in parallel using
SIMD instructions. This approach requires n variants of the
operator and n2−n transformations, whereby the latter can
be reused for all other operators. Nevertheless, the existence
of a wrapper still causes a certain overhead.

The final approach tries to maximize the efficiency by
tailoring the operator to a specific combination of formats
(Figure 2d), making a wrapper unnecessary. Unfortunately,
this approach implies the highest integration effort, requir-
ing ni+o operator variants. Thus, we intend to evaluate the
potential of this approach first by considering a few promis-
ing combinations. If the results show significant improve-
ments over the second approach, we could address the high
integration effort, e.g., using code generation techniques.

The investigation of the above approaches is our current
work-in-progress. Our ultimate goal is to integrate them
into an existing column-store, most likely into MonetDB.

23

4. OPTIMIZATION ASPECT
There is no single-best compression algorithm, but the

decision depends on the data characteristics [5]. Thus, com-
pression must be employed wisely in a query plan to make
its benefits outweigh its computational overhead. This moti-
vates the development of compression-aware query optimiza-
tion strategies, our future work in the optimization aspect.

The query optimizer is one of the most complex compo-
nents of a DBMS. The crucial tasks it fulfills – such as al-
gebraic restructuring and mapping logical to physical oper-
ators – are still fundamental for compressed query execu-
tion. Due to the high complexity, deeply integrating our
compression-aware strategies into an existing optimizer is
beyond the scope of this thesis. Instead, we envision a sec-
ond optimization phase. This phase takes the optimal plan
output by an existing optimizer as input and enriches it with
compression by selecting an appropriate compressed format
for each intermediate and replacing the physical operators
by our derived operators for compressed data (Figure 3). In
the following, we briefly describe the research challenges we
will have to face to achieve this goal.

Local vs. global optimization. A simple approach
could be to select the best format for each intermediate in
isolation. While this implies a small search space, it might
fail to find the optimal plan, e.g., by changing the format
too often. A global optimization, on the other hand, requires
effective pruning rules to cope with the huge search space.

Creation of a cost model. Due to the complex be-
havior of lightweight compression algorithms and, therefore,
the operators based on them, the comparison of alternative
decisions should be based on a cost model. Given a set of
data properties, this model must provide estimates for, e.g.,
the compression rate and operator runtimes.

Estimation of the data characteristics. To use the
cost model effectively, the characteristics of the data must
be known. However, estimating the properties of all inter-
mediates prior to query execution is non-trivial. Erroneous
estimates might result in sub-optimal decisions. Therefore,
adaptive optimization strategies might be a solution.

5. CONCLUSIONS
Modern in-memory column-stores address the RAM-CPU-

bottleneck through lightweight data compression. However,
employing compression has not been investigated sufficiently
for intermediate results, although they offer great potential
for performance improvement. In this context, we intro-
duced our vision of a balanced query processing based on
compressed intermediates. We discussed all relevant aspects
of the problem in detail: (1) Our completed work in the
structural aspect, where we contributed (i) an extensive ex-
perimental survey of lightweight compression algorithms and
(ii) direct transformation algorithms. (2) Our ongoing work
in the operational aspect, where we contribute different vari-
ants of physical operators on compressed data. (3) Our fu-
ture work in the optimization aspect, where we will con-
tribute compression-aware query optimization strategies.

Acknowledgments
This work was partly funded by the German Research Foun-
dation (DFG) in the context of the project ”Lightweight
Compression Techniques for the Optimization of Complex
Database Queries” (LE-1416/26-1).

existing
query optimizer

2 1 3

compr.-aware
opt. strategies

2 31

S
Q

L
q
u
e
ry

b
e
st

 p
la

n
w

/o
 c

o
m

p
r.

b
e
st

 p
la

n
w

/
co

m
p
r.

o
u
r

co
n
tr

ib
u
ti

o
n

SE
LE

CT

∙∙
∙

Figure 3: Compression-aware query optimization.
Colors in the query plans stand for different com-
pressed formats; grey stands for uncompressed data.

6. REFERENCES
[1] D. J. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented database
systems. In SIGMOD, pages 671–682, 2006.

[2] P. A. Boncz and M. L. Kersten. MIL primitives for querying a
fragmented world. The VLDB Journal, 8(2):101–119, 1999.

[3] Z. Chen, J. Gehrke, and F. Korn. Query optimization in
compressed database systems. In SIGMOD, pages 271–282,
2001.

[4] P. Damme, D. Habich, J. Hildebrandt, and W. Lehner. Insights
into the comparative evaluation of lightweight data
compression algorithms. In EDBT, pages 562–565, 2017.

[5] P. Damme, D. Habich, J. Hildebrandt, and W. Lehner.
Lightweight data compression algorithms: An experimental
survey (experiments and analyses). In EDBT, pages 72–83,
2017.

[6] P. Damme, D. Habich, and W. Lehner. A benchmark
framework for data compression techniques. In TPCTC, pages
77–93, 2015.

[7] P. Damme, D. Habich, and W. Lehner. Direct transformation
techniques for compressed data: General approach and
application scenarios. In ADBIS, pages 151–165, 2015.

[8] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing
relations and indexes. In ICDE, pages 370–379, 1998.

[9] J. Hildebrandt, D. Habich, P. Damme, and W. Lehner.
Compression-aware in-memory query processing: Vision,
system design and beyond. In ADMS/IMDM@VLDB, pages
40–56, 2016.

[10] D. A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the Institute of
Radio Engineers, 40(9):1098–1101, 1952.

[11] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender,
and M. L. Kersten. MonetDB: Two decades of research in
column-oriented database architectures. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering,
35(1):40–45, 2012.

[12] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner. QPPT:
query processing on prefix trees. In CIDR, 2013.

[13] J. Lee, G. K. Attaluri, R. Barber, N. Chainani, O. Draese,
F. Ho, S. Idreos, M. Kim, S. Lightstone, G. M. Lohman,
K. Morfonios, K. Murthy, I. Pandis, L. Qiao, V. Raman, V. K.
Samy, R. Sidle, K. Stolze, and L. Zhang. Joins on encoded and
partitioned data. PVLDB, 7(13):1355–1366, 2014.

[14] D. Lemire and L. Boytsov. Decoding billions of integers per
second through vectorization. Software – Practice and
Experience, 45(1):1–29, 2015.

[15] T. Neumann. Efficiently compiling efficient query plans for
modern hardware. PVLDB, 4(9):539–550, 2011.

[16] M. A. Roth and S. J. Van Horn. Database compression.
SIGMOD Record, 22(3):31–39, 1993.

[17] B. Schlegel, R. Gemulla, and W. Lehner. Fast integer
compression using SIMD instructions. In DaMoN, pages 34–40,
2010.

[18] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier,
and J. Schaffner. SIMD-Scan: Ultra fast in-memory table scan
using on-chip vector processing units. PVLDB, 2(1):385–394,
2009.

[19] W. X. Zhao, X. Zhang, D. Lemire, D. Shan, J. Nie, H. Yan, and
J. Wen. A general simd-based approach to accelerating
compression algorithms. ACM Transactions on Information
Systems, 33(3):15:1–15:28, 2015.

[20] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory,
23(3):337–343, 1977.

[21] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz. Super-scalar
RAM-CPU cache compression. In ICDE, 2006.

24

A Hardware-Oblivious Optimizer for Data Stream
Processing

Constantin Pohl
supervised by Prof. Dr. Kai-Uwe Sattler

Technische Universität Ilmenau
Ilmenau, Germany

constantin.pohl@tu-ilmenau.de

ABSTRACT
High throughput and low latency are key requirements for
data stream processing. This is achieved typically through
different optimizations on software and hardware level, like
multithreading and distributed computing. While any con-
cept can be applied to particular systems, their impact on
performance and their configuration can differ greatly de-
pending on underlying hardware.

Our goal is an optimizer for a stream processing engine
(SPE) that can improve performance based on given hard-
ware and query operators, supporting UDFs. In this paper,
we consider different forms of parallelism and show mea-
surements exemplarily with our SPE PipeFabric. We use a
multicore and a manycore processor with Intel’s AVX/ AVX-
512 instruction set, leading to performance improvements
through vectorization when some adaptations like micro-
batching are taken into account. In addition, the increased
number of cores on a manycore CPU allows an intense ex-
ploitation of multithreading effects.

Keywords
Data Stream Processing, AVX, Xeon Phi, SIMD, Vectoriza-
tion, Parallelism

1. INTRODUCTION
Technological advancement leads to more and more op-

portunities to increase application performance. For stream
processing, data arrives continuously at different rates and
from different sources. A stream processing engine (SPE)
has to execute queries fast enough that no data is lost and
results are gathered before the information is already out-
dated. A solution to achieve this is a combination of software
optimizations paired with modern hardware for maximizing
parallelism. It is difficult to find an optimal parametrization
though, e.g. for the number of threads or load balancing
between them. It gets even worse when different hardware

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (c) 2017 for this paper by its authors. Copying permitted for
private and academic purposes..

properties come into play, like memory hierarchies or CPU
core count.

For this paper, we consider different aspects and para-
digms of parallelization that are applicable on data stream
processing. In addition, first measurements on SIMD and
multithreading realized on an Intel Core i7 and Intel Xeon
Phi Knights Landing (KNL) with our SPE PipeFabric are
shown. Our final goal is a full optimizer on a SPE capable
of dealing with unknown UDFs in queries as well as with ar-
bitrary hardware the system uses. Two consequential tasks
arise from this.

• Exploitation of opportunities given by modern hard-
ware, like wider CPU registers on Intel’s AVX-512 in-
struction set, manycore processors with 60+ cores on
a chip or increased memory size.

• Analysis of performance impacts by possible UDFs and
operations, like computational effort or possible paral-
lelization degree in case of data dependencies.

The rest of this paper is organized as follows: Next Sec-
tion 2 is a short recapitulation about stream processing,
possible parallelism and opportunities given by hardware.
Section 3 summarizes related work done on SIMD paral-
lelism, hardware-oblivious operations and stream partition-
ing in context of data stream processing. Our results are
presented in Section 4, followed by Section 5 with future
work. Section 6 with conclusions tops off this work.

2. PREREQUISITES
This section shortly summarizes requirements on stream

processing and parallelization opportunities in addition to
information on used hardware, like supported instruction
sets.

2.1 Data Stream Processing
As already mentioned, high throughput and low latency

are main requirements for stream processing. A data stream
delivers continuously one tuple of data after another, possi-
bly never ending. Queries on data streams have to consider
that tuples can arrive at alternating rates and they get out-
dated after a while, because storing all of them is impossible.
Operating with windows of certain sizes are a common so-
lution for this property.

As a consequence, a query has to be processed fast enough
to produce no outdated results as well as keeping up with
eventually fast tuple arrival rates. Handling multiple tuples

25

at once through partitioning of data or operators exploiting
parallelism possibilities is therefore a must.

2.2 Parallelism Paradigms
There are mainly three forms of parallelism on stream

processing that can be exploited.
Partitioning. Partitioning can be used to increase speedup

through splitting data on different instances of the same op-
erator. Therefore every instance executed in parallel has to
add its function on a fraction of data, increasing throughput
of a query. However, additional costs for assigning data to
instances and merging results afterwards arise, influencing
the optimal partitioning degree.

Task-Parallelization. Operators of a query can execute
in parallel if data dependencies allow such parallelism. A
pipelining schema provides possibilities to achieve this, re-
alized by scheduling mechanisms.

Vectorization. A single instruction can be applied on mul-
tiple data elements, called SIMD. For stream processing,
some preparatory work is necessary to use this form of par-
allelism, like storing a number of tuples before processing
them at once with SIMD support. On the one hand, it in-
creases the throughput of a query while on the other hand
batching up tuples worsens latency.

We focus on partitioning and vectorization, because task-
parallelism is mainly a scheduling problem that is not of
further interest at this point.

2.2.1 Partitioning
A speedup through partitioning is achieved mainly with

multithreading. Each partition that contains operators pro-
cessing incoming tuples uses a thread, which leads to chal-
lenges on synchronization or load balancing, especially on
manycores, as shown by Yu et al. [6] for concurrency con-
trol mechanisms. Partitioning is a key for high performance
when using a manycore processor, which provides support
for 200+ threads at the cost of low clock speed. To investi-
gate the right partitioning degree between reduced load on
each partition and increased overhead from threads as well
as an appropriate function for forwarding tuples to parti-
tions additional observations have to be made. Statistics
are a common solution, but can be far away from optimal
performance in worst cases.

2.2.2 Vectorization
To use vectorization, certain requirements must be ful-

filled. Without batching up tuples it is impossible to ap-
ply a vector function on a certain attribute. This leads to
the next challenge, the cache-friendly formation of a batch.
Without careful reordering, any vectorization speedup is lost
through expensive scattered memory accesses. A possible
solution for this is provided by gather and scatter instruc-
tions that index through masking certain memory addresses
for faster access. Additional requirements on vectorization
arise through the used operator function and data depen-
dencies between tuples. The function must be supported by
used instruction set, while dependencies are solved through
rearrangements or even fundamental changes on the func-
tion of the operator.

Figure 1 shows the processing model of a query with batch-
ing. Tuples arrive one at a time on the data stream, being

Batch

Data Stream

Op . . .

Tuple T

<A1...An>

Batch B

<T1.A1...Tm.A1>
...

<T1.An...Tm.An>

T B

Figure 1: Processing Model

gathered first on a batching operator with attribute group-
ing in memory realized by vectors until batch size is reached
and then forwarded to the next operator.

2.3 Hardware Opportunities
There are mainly two different ways to increase compu-

tational speed on hardware, distributed and parallel com-
puting. Distributed computing uses usually many high-end
processors connected to each other, sharing computational
work between them. The disadvantage comes with commu-
nication costs. With requirements of low latency, we focus
on parallel computing. Manycore processors like the Xeon
Phi series from Intel use simpler cores, but many of them in-
side their CPU. This eliminates most of the communication
costs, improving latency while providing wide parallelization
opportunities compared to a single multicore processor.

The latest Xeon Phi KNL uses up to 72 cores with 4
threads each, available through hyperthreading. In addi-
tion, the AVX-512 instruction set can be used for 512bit
wide operations (SIMD). This leads to great possibilities on
partitioning and vectorization to reduce latency of a query.
There are more interesting improvements on KNL like clus-
tering modes, huge page support or high-bandwidth memory
on chip (MCDRAM) which we will address in future work.

3. RELATED WORK
For parallelism through vectorization and partitioning on

data streams, a lot of research has been done already, espe-
cially since manycore processors are getting more and more
common. To achieve performance benefits, those manycore
CPUs rely massively on SIMD parallelism and multithread-
ing for speeding up execution time.

For data stream processing, the functionality of operations
like joins or aggregations to give an example, are basically
the same. However, for realization the stream processing
properties have to be taken into account.

Polychroniou et al. [4] take a shot on different database
operators, implementing and testing vectorized approaches
for each one. Results show a performance gain up to a mag-
nitude higher than attempts without SIMD optimization. In
addition to this, their summary of related work gives a good
review about research done with SIMD on general database
operations.

For stream partitioning, the degree in terms of numbers of
partitions as well as the strategy like the used split function
for data tuples are the main focus of research. Gedik et al.
[2] visited elastic scaling on stream processing where paral-
lelization degree on partitioning is dynamically adjusted on

26

runtime, even for stateful operations. They reviewed typi-
cal problems when auto-parallelization is used like in most
of other approaches.

For an optimizer that is hardware-oblivious, additional
points must be considered. Hardware-oblivious means, that
the optimizer is able to maximize performance on any hard-
ware used, e.g a multicore or a manycore processor. Heimel
et al. [3] implemented an extension for MonetDB called
Ocelot, which is a proof of concept for hardware-oblivious
database operators. They show that such operators can
compete with hand-tuned operators that are fitted exactly
for used processing units, like CPUs and GPUs. Teubner et
al. [5] attended to the same topic before, looking deeper into
hardware-conscious and hardware-oblivious hash joins.

4. EXPERIMENTS
With our experiments, we want to show the grade of im-

pact on vectorization and multithreading for data stream
processing. We therefore use two different processors, an
Intel Core i7-2600 multicore CPU as well as an Intel Xeon
Phi KNL 7210. As already mentioned before, KNL sup-
ports AVX-512 with 512bit register size and 256 threads, in
contrast to i7s AVX with 256bit and 8 threads.

4.1 Preliminary Measurements
First measurements in Table 1 show needed runtime for

corresponding CPUs when vectorization is enabled or dis-
abled. Therefore an array with 64*1024*1024 elements is
traversed, applying an addition operator (using 32bit preci-
sion) or square root operator (using 64bit precision) on each
of the elements.

With vectorization, the speedup gain ideally corresponds
directly with the number of elements processed at once, e.g.
when using 32bit integers and the register size is 512bit, 16
elements are processed with one operator execution, leading
to an expected 1/16th of runtime. However, this is not the
case, because these elements needed to be accessed in mem-
ory (ideally in cache). With increased complexity (in terms
of CPU cycles) this accessing costs are reduced compared to
operators costs, as it can be seen in Table 1 with simple ad-
dition and complex square root. When computing the root,
vectorization effectively doubles the execution speed on i7
processor and even more on KNL. On KNL, the registers
can hold up to 8 64bit floating point numbers, resulting in
around eight times faster execution on square root. On ad-
dition, however, even with prefetching mechanism it is not
possible to pull data fast enough into the registers, because
a simple addition just uses one CPU cycle. Therefore the
full speedup cannot be achieved.

Results on square root on i7 processor can be explained
through underlying hardware. Ideally, with AVX, 256bit
registers and 64bit numbers, the speedup should result in

Processor Vectorization Addition Square Root

i7-2600 disabled 42ms 187ms
enabled 30ms 92ms

KNL 7210 disabled 98ms 998ms
enabled 40ms 129ms

Table 1: Vectorization Runtime
Traversing array of 64*1024*1024 elements

Figure 2: Query with Multithreading

around four times faster execution, however, it is only dou-
bled. Further research points to how 256bit register are
realized on i7-2600 (Sandy Bridge) - as processor of the first
generation of AVX instruction set, it still uses two 128bit
registers combined to achieve 256bit width. On performance
there is only a small benefit of using 256bit loads and stores
compared to 128bit, leading to only doubled speedup.

4.2 SPE Tests
Our SPE PipeFabric is a framework for data stream pro-

cessing, written in C++. The data streams as source of
tuples can be constructed for example through network pro-
tocols. A query consists out of different stream processing
operators that combined are forming a dataflow graph. It
supports selections, projections, aggregates, groupings, joins
and table operations, as well as complex event processing.
The focus of the framework lies on low latency, realized
through efficient C++ template programming.

For the tests, the data stream produces tuples through
a generator. Increasing the number of attributes or using
different data types just add a constant delay for each tu-
ple, increasing runtime without changing the curves signif-
icantly. Therefore only a single integer as an attribute is
counted up. In Figure 2, the needed time to produce a cer-
tain amount of tuples (up to 109) is measured (note the
logarithmic scale of y-axis). With low number of produced
tuples, the overhead through thread generation worsens ex-
ecution time. This changes very quick, providing an intense
speedup. When generation is singlethreaded, KNL performs
worse than i7-2600 caused by slower clock speed. But when
cores are fully utilized, running maximum number of threads
through OpenMP, KNL can outperform the multicore CPU
easily.

Figure 3 shows speedup achieved on i7-2600 and KNL
on queries with vectorization. Therefore tuples are batched
first with different batch sizes on each run, followed by an
aggregation operator which applies a simple addition or a
complex square root on single attributes. These aggrega-
tions are performed with and without vectorization, the dif-
ference on runtime results directly into speedup, e.g. when
runtime is halved, the speedup is 100%.

27

Figure 3: Query with SIMD

Taking a further look on Figure 3 reveals that speedup in-
creases with batch size. This is relatively obvious, because
with more tuples that can be processed at once by increased
throughput, runtime of the query gets lower. However, this
comes with the cost of latency, because results are delayed
until a batch is full. An additional observation between
addition and square root as aggregation operator can be
made. With addition function, the performance gain is rel-
atively low. This is because accessing the batch in cache
takes longer than applying vectorized addition on it, even
with prefetching mechanism. With square root, the opera-
tion takes significantly longer (in CPU cycles), so it is not
limited that much by memory access on cache anymore.

5. RESEARCH PLAN
Vectorization and partitioning are the main two strategies

which provide the most performance gain when set up ac-
cordingly to stream and query properties. Regarding vector-
ization, a batching mechanism is needed to exploit the full
parallelism of wider CPU registers. With increased batch
size, results of the query are delayed leading to increased
latency but higher throughput. For partitioning, too many
or too few partitions apart from optimum can even worsen
the query execution time, same with uneven load balanc-
ing between partitions as shown by Fang et al. [1]. It is
all a matter of right parametrization, depending on query,
operators and underlying hardware.

This leads to our future work, where we will analyze im-
pact on performance for certain strategies to finally come to
an hardware-oblivious optimizer for queries on data stream
processing, capable of dealing with UDFs as well as with
different hardware sets. In difference to hardware-conscious
optimizers which deliver only good precision for optimiza-
tions on certain hardware, our optimizer should generally
being able to adapt its strategy on any given modern hard-
ware.

However, it is a tradeoff between speedup and latency,
greatly influenced by hardware used. We focus on par-
allelization on multicore and manycore CPUs, especially
the latter one, because it is the most promising architec-
ture for performance increasements with given requirements.

With technical advancement additional chances are given,
e.g. memory on package with high bandwidth, called MC-
DRAM on the latest manycore Xeon Phi KNL processor.
When UDF support is realized, it is necessary to investigate
key parameters for optimization, e.g. complexity of used
function and data dependency.

6. CONCLUSION
For data stream processing, high throughput in terms of

being able to process as many data as possible at the same
time as well as low latency with fast responses on queries are
main requirements. Exploiting parallelism is the answer,
which is possible at different levels and degrees. In this
paper, we show influence of parallelism on instruction level
with vectorization as well as multithreading with our SPE
PipeFabric and compare first results between multicore and
manycore CPU.

SIMD effects improve performance when data is stored
in a cache-friendly way within contiguous memory. For
stream processing, each tuple cannot be processed one after
another, therefore a batching mechanism is needed. This
batching has to take care of storing data carefully for SIMD
processing. Increased register width of Intel’s Xeon Phi
KNL with AVX-512 support leads to significant performance
gains when not blocked by slow memory accesses. On the
one hand, the computational workload must be high enough
to surpass memory or cache accesses. This is not the case
when additions on an aggregation operator are performed,
as we showed in our experiments. On the other hand, with
increased complexity SIMD operations are difficult to realize
and must be supported by used instruction set.

Multithreading is another important factor when it comes
to a manycore processor. Slow clock speed leads to poor
singlethreaded performance compared to a multicore pro-
cessor. This disadvantage is negated when enough cores can
be utilized and parallelism is maximized. However, commu-
nication between threads, memory accesses and scheduling
from threads to cores are no trivial tasks for optimizing per-
formance, therefore more measurements are needed to prove
results.

7. REFERENCES
[1] J. Fang, R. Zhang, T. Z. Fu, Z. Zhang, A. Zhou, and

J. Zhu. Parallel Stream Processing Against Workload
Skewness and Variance. CoRR, 2016.

[2] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu.
Elastic Scaling for Data Stream Processing. IEEE’14,
pages 1447–1463, 2014.

[3] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious Parallelism for
In-memory Column-stores. VLDB, pages 709–720, 2013.

[4] O. Polychroniou, A. Raghavan, and K. A. Ross.
Rethinking SIMD Vectorization for In-Memory
Databases. SIGMOD, pages 1493–1508, 2015.

[5] J. Teubner, G. Alonso, C. Balkesen, and M. T. Ozsu.
Main-memory Hash Joins on Multi-core CPUs: Tuning
to the Underlying Hardware. ICDE, pages 362–373,
2013.

[6] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and
M. Stonebraker. Staring into the Abyss: An Evaluation
of Concurrency Control with One Thousand Cores.
VLDB, pages 209–220, 2014.

28

Generalizing Matching Knowledge using Active Learning

Anna Primpeli
supervised by Christian Bizer

Data and Web Science Group
University of Mannheim

anna@informatik.uni-mannheim.de

ABSTRACT
Research on integrating small numbers of datasets suggests
the use of customized matching rules in order to adapt to
the patterns in the data and achieve better results. The
state-of-the-art work on matching large numbers of datasets
exploits attribute co-occurrence as well as the similarity of
values between multiple sources. We build upon these re-
search directions in order to develop a method for generaliz-
ing matching knowledge using minimal human intervention.
The central idea of our research program is that even in large
numbers of datasets of a specific domain patterns (matching
knowledge) reoccur, and discovering those can facilitate the
integration task. Our proposed approach plans to use and
extend existing work of our group on schema and instance
matching as well as on learning expressive rules with ac-
tive learning. We plan to evaluate our approach on publicly
available e-commerce data collected from the Web.

1. INTRODUCTION
Data integration is a long standing and very active re-

search topic dealing with overcoming the semantic and syn-
tactic heterogeneity of records located in the same or sep-
arate data sources [3]. While early work focused on inte-
grating data from small numbers of datasets in a corporate
context, there is an increasing body of research on integrat-
ing large numbers of datasets in the Web context, where an
increased level of heterogeneity exists on both the instance
and schema-level.

The matching approaches dealing with the task of inte-
grating large numbers of datasets can be categorized by the
addressed integration scenario. One scenario is the N:1,
in which multiple datasets are matched against a central
source; for instance, web tables against DBpedia [8] or prod-
uct entities against a central catalog. The second scenario
is the N:M, in which datasets are matched with each other
without the help of an intermediate schema or a knowledge
base.

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (c) 2017 for this paper by its authors. Copying permitted for
private and academic purposes.

Widely used matching systems such as COMA [2] indi-
cate the need of rich matcher and aggregator libraries in
order to solve different types of heterogeneity and find cor-
respondences. A major finding of our group on integrating
small numbers of datasets is that specific matchers and ag-
gregators deriving from such rich libraries as well as property
specific data normalization techniques can be combined into
high quality, domain specific matching rules [5]. Such rules
achieve a twofold goal: firstly, they give an insight into the
current task by encoding matching knowledge, and secondly
they achieve high quality correspondences by adapting to
the nature of every matching scenario.

Research on integrating large numbers of datasets has
shown that it is valuable to exploit attribute co-occurrence
in the schema corpus as well as the similarity of data values
not only between a central data source and a single external
data source, but also the similarities of data values between
multiple sources [4, 10]. A weak spot that can be observed
in these approaches is that the employed data normaliza-
tion techniques, similarity functions, and matching rules are
not customized for the different types of entities and thus
produce lower quality results than customized techniques.

The proposed research program builds upon this work and
aims as its first goal to investigate the extent to which it is
possible to generalize matching knowledge in order to im-
prove matching quality in large-scale N:1 and N:M match-
ing situations. The rationale for this approach is that typical
patterns reoccur among entities of a certain domain. An ex-
ample of such a pattern would be ”When matching entities
representing the product type phones, it is effective to com-
pare the attributes [brand, producer] using the following pre-
processing methods [tokenization, lowercasing], the following
similarity function [Levenshtein distance] and the following
threshold [0.75]”.

In most matching situations, collaboration between hu-
mans and machines is helpful in order to judge corner cases
or to boot-strap matching with a certain amount of supervi-
sion [12]. Previous work of our group on guiding collabora-
tion between humans and machines on small-scale matching
scenarios has shown that using active learning can produce
high quality matching results even with a small amount of
human interaction [6]: The employed active learning ap-
proach was evaluated against six different datasets reaching
between 0.8 and 0.98 F1 score after asking the human an-
notator to label ten pairs of entities as positive or negative
matches. Building upon this work and extending certain
steps of the active learning process, we formulate the sec-
ond goal of the thesis, which is steering human attention in

29

Figure 1: Proposed matching approach pipeline

large-scale matching situations with the aim to learn rele-
vant, high quality matching knowledge.

Summing up, in the context of this work, we aim to answer
the following research questions:

• Are domain specific patterns transferable within large-
scale matching situations?

• How can we maximize the benefit of human supervi-
sion with respect to the discovery of those patterns?

In order to answer the above stated research questions,
we will experiment with the N:1 and N:M matching scenar-
ios using datasets created in the context of the Web Data
Commons project1 such as web tables, schema.org data and
product data.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed matching approach. Section
3 presents the data which we plan to use for evaluation.
Finally, Section 4 gives a short overview of our workplan.

2. PROPOSED MATCHING APPROACH
This section gives an overview of the current plan for gen-

eralizing matching knowledge using active learning for the
N:1 matching scenario. The planned approach involves three
main steps. The first step is matching on the instance and
schema-level with the goal to generate a preliminary set of
schema correspondences which forms the basis for later re-
finement. Next, we build upon the concepts of the Active-
GenLink algorithm [6], an active learning approach based
on genetic programming, which uses human supervision to
evolve matching rules applicable on the instance-level. The
final step is the refinement of the schema correspondences
based on the instance-level matching results. The two last
steps are iterated until the desired accuracy or the max-
imum amount of questions to the human annotator have
been reached.

Figure 1 shows the steps of the matching process which
will be the main guideline of this research. Below the indi-
vidual steps are further explained, and the related state-of-
the-art work upon which we build our proposed approach is
presented together with our suggested methodological con-
tributions.

2.1 Initial matching
The first step of our algorithm involves matching on the

instance and schema-level with the goal to generate an ini-
tial set of correspondences which will be refined in the next
steps of the algorithm. To achieve this, we employ existing
techniques for large-scale matching.

For the N:1 scenario we use the T2K matching algorithm
which involves cycles of instance and schema matching and

1http://webdatacommons.org/

achieves an F1 score of 0.8 on the instance-level and 0.7
on the schema-level for the task of matching web tables to
DBpedia [11].

The resulting schema correspondences of this step are
grouped into clusters, with each cluster representing a spe-
cific property such as product name or brand. The motiva-
tion behind property clusters is that matching information
concerning one property can further affect the other ele-
ments of the cluster, as it will be later explained in Section
2.6.

In this step, we plan to reuse existing work to form our
baseline for further improvement using active learning.

2.2 Construction of unlabeled instance pair
pool

The second step involves the construction of an unlabeled
pool of pairs of instances that are potential candidates for
labeling by the user. Considering the complexity involved
with matching large-scale data as well as our goal for creat-
ing generalized matching rules, the unlabeled instance pair
pool should be constructed on the basis of two guidelines:
computational space reduction and preservation of matching
knowledge.

To achieve computational space reduction we propose an
indexing and a blocking technique. We use three types of
information to build an index value out of every instance:
the instance name, the attribute labels and the attribute
values using words or n-grams. After indexing, we make
sure that the candidates for the unlabeled instance pair
pool hold valuable information while eliminating the rest of
them. To ensure this, different pair characteristics are eval-
uated. Such possible entity characteristics aside being likely
matches, would be if the involved entities are described by
many frequent properties and if they are head or tail entities,
based on how often they occur in the data corpus.

After defining such informativeness criteria, we linearly
scan over the entity names of the central source and we
generate a pair if it is considered informative. Next, the
generated pair is added in the unlabeled instance pair pool.

Thus, in this step we need to discover which characteris-
tics make a pair a good candidate for the instance pair pool
and how to combine them in order to draw the line between
informative and non-informative pairs.

2.3 Construction of initial population of match-
ing rules

As a next step, the initial linkage rules are created. We
build upon the linkage rule definition introduced in [6]. A
linkage rule is defined as a combination of different operators
having a tree representation that gradually transforms with
the evolution of the GenLink algorithm, a variation of the
genetic algorithm [5]. A linkage rule contains the following
set of operators:

30

Figure 2: An example matching rule

(a) Property Operator: Selects the values of a property.

(b) Transformation Operator: Defines the transformation
functions for the selected property values. Such trans-
formations may be: case normalization, address stan-
dardization, stop-word removal, and structural trans-
formations such as segmentation and extraction from
values from URIs [5].

(c) Comparison Operator: Defines the distance metric and
threshold that should be used to compare the selected
values.

(d) Aggregation Operator: Defines the way to combine
the results of the different comparison operators of the
previous level.

The difference in our setting is that the property operators
do not refer to specific properties but to property clusters,
as introduced in Section 2.1. Thus, when a rule is applied to
a specific instance pair from the pool of unlabeled pairs, the
property operator checks if both entities contain a property
which is part of any property cluster. If this is the case,
the property operator outputs a pair of values. Otherwise
it outputs an empty set of values. The functionality of the
other operators remains the same.

Figure 2 shows an example rule of our matching approach.
In the illustrated example the property operator selects the
clusters that represent the product brand and the product
name properties. In the next level, the values of the prop-
erty brand are lowercased and a specific comparison operator
is defined. Based on the weights and threshold the compar-
ison operators normalize the similarity score to the range
[0,1]. Finally, the results of the comparison operators are
aggregated into a single score using the average aggregator
which finally decides if the pair is a positive or a negative
correspondence.

2.4 Pair selection from instance pool
In this step a pair of instances is selected from the instance

pool and presented to the human annotator who provides a
label as matching or non-matching. The goal of this step is

to define a query strategy that selects the most informative
pair to be labeled, thus minimizing the human involvement
in the whole process.

For this we build on the three query strategies employed
by [6]: 1. query by committee evaluates the unlabeled pairs
against the current population of matching rules and selects
the pair that causes the biggest disagreement, 2. query by
divergence selects one pair out of every group in the similar-
ity space, thus considering pairs which convey different sim-
ilarity patterns, and 3. query by restricted committee uses
the query by committee strategy but only considers the dis-
agreements between the top K optimal matching rules of the
current population.

Our strategy will build upon the existing ones and further
clarify which other criteria should be considered in order to
maximize the benefit of the selected pair. One possible di-
rection of our query strategy could be to prefer pairs that
contain many properties so that information about a bigger
variety of properties can be learned after a pair has been an-
notated. In addition, the usage of a mixture between head
and tail entities can prove effective in revealing information
concerning the whole domain and not focus only on the fre-
quent entities. Another possible component of our query
strategy could be the characteristics of the properties of the
selected pairs. Such characteristics might be frequency and
the size of the cluster to which they belong. The ratio-
nale behind using those features is that if the answer of the
human annotator gives further insight for a centroid of a
property cluster then other properties may be indirectly af-
fected, as described more detailed later in Section 2.6, thus
leading to a faster convergence of the algorithm.

2.5 Linkage rule population evolution
In this step, we exploit the information provided in the

previous step by the human annotator as supervision to
evolve the population of matching rules. The goal is to grad-
ually generate more customized and accurate matching rules
which evaluate correctly against the labeled set of pairs. To
achieve this we use the GenLink algorithm [5].

GenLink evolves the population of linkage rules in two
steps, selection and transformation. Firstly, the matching
rules are evaluated on the basis of their fitness on the current
set of labeled pairs and selected using tournament selection
[7]. The selected rules are then transformed by applying
certain crossover operations. More specifically, a crossover
operator accepts two linkage rules and returns an updated
linkage rule that is built by recombining parts of the parents.
In our setting we use the specific set of crossover operations
of GenLink : transformation, distance measure, threshold,
combine operators, aggregation function, weight, and aggre-
gation hierarchy.

2.6 Evolution of property clusters
In the final step of our approach, the evolution of the

property clusters which preserve the schema-level correspon-
dences takes place. The goal is to gradually improve the
matching accuracy on the schema-level whilst exploiting the
information on the instance-level.

To achieve this we select the top rules of the current link-
age rule population based on their fitness score and apply
them on the unlabeled candidates. Possible metrics for cal-
culating the fitness score are F1 or Matthews correlation
coefficient in the case that the set of reference links is un-

31

balanced. As a result, we retrieve instance-level correspon-
dences which we use as input for duplicate-based schema
matching with the goal to refine the property clusters.

We follow the approach of DUMAS (Duplicate-based Match-
ing of Schemas) [1] for improving schema correspondences
based on instance-level duplicates. In their work, they evolve
the meta-level similarities gradually by calculating similar-
ities on the instance-level using the SoftTFIDF measure
and then solving the transformed problem as a bipartite
weighted matching one. In every iteration, schema-level
matches are either confirmed, doubted, or rejected.

After calculating the schema-level similarities, the prop-
erty clusters of our setting are refined. We will investigate
how the move of one element from a cluster may affect the
rest of the related elements. The indirect effects may be a
result of frequent co-occurence or strong similarity. For ex-
ample, consider the property cluster setting C1 = {A,B,C}
and C2 = {D,E}. Assuming that property A matches to
properties D and E, we move A to cluster C2. If we ad-
ditionally know that property B is very close on the simi-
larity space to property A, then B follows A thus formulat-
ing the final state of property clusters as: C1 = {C} and
C2 = {A,B,D,E}.

2.7 Convergence and output
The process iterates by selecting a new pair from the un-

labeled instance pair pool, evolving the linkage rules, and
further property cluster refinement as described in Sections
2.4, 2.5 and 2.6. The cycle of iterations terminates when
either the evolved linkage rules achieve the desired fitness
score or the maximum number of questions to the user has
been reached.

The outputs of the proposed matching approach are in-
stance and schema-level correspondences as well as gener-
alized matching knowledge deriving from the linkage rules
with the best fitness score. In the N:1 matching scenario the
acquired knowledge can be used to annotate the knowledge
base with rules concerning attribute relevance for matching,
appropriate similarity functions, data normalization trans-
formations, aggregation functions, and thresholds. In the
N:M matching scenario we aim to exploit the resulting match-
ing knowledge rules to annotate the implicit, mediated schema
created through holistically matching entities.

3. EVALUATION
We plan to evaluate our approach on e-commerce data we

already created in the context of the Web Data Commons
project. The dataset contains 13 million product-related
web pages retrieved from the 32 most frequently visited web-
sites. We have manually annotated 500 electronic product
entities and created a product catalog with 160 products of
the same electronic categories. The total number of cor-
respondences contained in our gold standard is 75,000, of
which 1,500 are positive [9].

Other possible use cases for evaluating our approach would
be web tables, linked open data and schema.org annota-
tions. Web Data Commons provides the WDC Web Tables
Corpus2, the largest non-commercial corpus of web tables
deriving from 1.78 billion HTML pages with 90.2 million
relational tables.

2http://webdatacommons.org/webtables/

4. WORKPLAN
The outlined research program is currently in its first year.

As an initial step towards accomplishing the goals defined in
the context of this work we will focus on the N:1 matching
scenario by applying the steps presented in Section 2. Next
we will move on to the N:M matching scenario for which spe-
cial indexing and blocking techniques need to be defined in
order to deal with the increased complexity. Finally, grant-
ing that our proposed approach meets our goals, we aim to
enhance existing knowledge bases by annotating them with
matching knowledge.

5. REFERENCES
[1] A. Bilke and F. Naumann. Schema matching using

duplicates. In Proc. of the 21st Int. Conf. on Data
Engineering, pages 69–80. IEEE, 2005.

[2] H.-H. Do and E. Rahm. COMA: a system for flexible
combination of schema matching approaches. In Proc.
of the 28th Int. Conf. on Very Large Data Bases,
pages 610–621. VLDB Endowment, 2002.

[3] A. Halevy, A. Rajaraman, and J. Ordille. Data
integration: The teenage years. In Proc. of the 32nd
Int. Conf. on Very large data bases, pages 9–16.
VLDB Endowment, 2006.

[4] B. He and K. C.-C. Chang. A holistic paradigm for
large scale schema matching. SIGMOD Record,
33(4):20, 2004.

[5] R. Isele. Learning Expressive Linkage Rules for Entity
Matching using Genetic Programming. PhD thesis,
University of Mannheim, 2013.

[6] R. Isele, A. Jentzsch, and C. Bizer. Active learning of
expressive linkage rules for the web of data. In Proc.
of the 12th Int. Conf. on Web Engineering, pages
411–418. Springer, 2012.

[7] J. R. Koza, M. A. Keane, M. J. Streeter,
W. Mydlowec, J. Yu, and G. Lanza. Genetic
programming IV: Routine human-competitive machine
intelligence, volume 5. Springer Science & Business
Media, 2006.

[8] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch,
D. Kontokostas, P. Mendes, S. Hellmann, M. Morsey,
P. Van Kleef, S. Auer, and C. Bizer. DBpedia–a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web Journal, 2014.

[9] P. Petrovski, A. Primpeli, R. Meusel, and C. Bizer.
The WDC gold standards for product feature
extraction and product matching. In Proc. of the 17th
Int. Conf. on Electronic Commerce and Web
Technologies, pages 73–86. Springer, Cham, 2016.

[10] E. Rahm. The case for holistic data integration. In
Proc. of the 20th Advances in Databases and
Information Systems Conf., pages 11–27. Springer,
2016.

[11] D. Ritze, O. Lehmberg, and C. Bizer. Matching
HTML tables to DBpedia. In Proc. of the 5th Int.
Conf. on Web Intelligence, Mining and Semantics,
page 10. ACM, 2015.

[12] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales,
M. Cherniack, S. B. Zdonik, A. Pagan, and S. Xu.
Data Curation at Scale: The Data Tamer System. In
Proc. of the Conf. on Innovative Data Systems
Research, 2013.

32

Comparing entities in RDF graphs

Alina Petrova
supervised by Prof. Ian Horrocks
and Prof. Bernardo Cuenca Grau

Department of Computer Science
University of Oxford

alina.petrova@cs.ox.ac.uk

ABSTRACT
The Semantic Web has fuelled the appearance of numerous
open-source knowledge bases. Knowledge bases enable new
types of information search, going beyond classical query an-
swering and into the realm of exploratory search, and pro-
viding answers to new types of user questions. One such
question is how two entities are comparable, i.e., what are
similarities and differences between the information known
about the two entities. Entity comparison is an important
task and a widely used functionality available in many in-
formation systems. Yet it is usually domain-specific and de-
pends on a fixed set of aspects to compare. In this paper we
propose a formal framework for domain-independent entity
comparison that provides similarity and difference explana-
tions for input entities. We model explanations as conjunc-
tive queries, we discuss how multiple explanations for an
entity pair can be ranked and we provide a polynomial-time
algorithm for generating most specific similarity explana-
tions.

1. INTRODUCTION
Information seeking is a complex task which can be ac-

complished following different types of search behaviour.
Classical information retrieval focuses on the query-response
search paradigm, in which a user asks for entities similar to
the input keywords or fitting the formal input constraint.
Yet there exists a broad area of exploratory search that is
characterized by open-ended, browsing behaviour [18] and
that is much less well studied. Exploratory search encom-
passes activities like information discovery, aggregation and
interpretation, as well as comparison [13].

Comparing entities, or rather, information available about
the entities, is an important task and in fact a widely-used
functionality implemented in many tools and resources. On
the one hand, systems that highlight similarities between
entities can focus on how much entities are alike, giving a
similarity score to a pair (or a group) of entities [6]. On
the other hand, systems can focus on how or why, in which

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (c) 2017 for this paper by its authors. Copying permitted for
private and academic purposes..

aspects two entities are similar and different, by compar-
ing entities and finding similar features. Such comparison
is done in many domains and for various types of entities:
hotels,1 cars,2 universities,3 shopping items,4 to name a few.
However, as a rule, such systems perform a side-by-side com-
parison of items in a domain-specific manner, i.e., following
a fixed, hard-coded template of aspects to compare (e.g., in
case of hotels, it could be price, location, included break-
fast, rating etc.). In a few more advanced systems, similar-
ities are computed with respect to the type of information
available about the input entities rather than following a
rigid pattern. One such example is the Facebook Friendship
pages.5 Given two Facebook users, a friendship page con-
tains all their shared information, be it public posts, photos,
likes or mutual friends, as well as their relationship, if any
(e.g., married, friends etc.). However, as in the aforemen-
tioned examples, comparison is done over a limited set of
attributes.

Relying on a fixed set of aspects is a reasonable solution
for tabular data with rigid and stable structure. On the
other hand, a more flexible approach to entity comparison is
needed for Linked Data, namely for loosely structured RDF
graphs. However, all current systems with such functionality
compare items following a predefined, domain-specific list of
values to compare. Thus, an interesting research problem
would be to create a framework for entity comparison that
is domain- and attribute-independent.

The Semantic Web has fuelled the appearance of numer-
ous open-source knowledge bases (KBs). Such KBs enable
both automatic information processing tasks and manual
search, and they facilitate new types of information search,
going beyond classical query answering and providing an-
swers to new types of user questions. For example, using
KBs one can answer questions like how are the two entities
similar or what differs them, i.e., perform entity comparison.

In this paper we propose to study such questions posed
over one of the most common types of KBs — RDF graphs.
In particular, we provide a formal framework for posing such
questions and we model answers to these questions as sim-
ilarity and difference explanations. We then discuss how

1www.flightnetwork.com/pages/
hotel-comparison-tool/
2http://www.cars.com/go/compare/modelCompare.jsp
3http://colleges.startclass.com/
4http://www.argos.co.uk/static/Home.html
5Original announcement (cashed by the Wayback Machine):
https://web.archive.org/web/20101030105622/http:
//blog.facebook.com/blog.php?post=443390892130

33

multiple explanations to a question can be ranked and we
provide a polynomial-time algorithm for generating most
specific similarity explanations. Finally, we outline direc-
tions of future research.

2. PRELIMINARIES
In what follows we use the standard notions of conjunctive

queries (CQs), query subsumption and homomorphism. We
disallow trivial CQs of the form >(X). We model RDF
graphs as finite sets of triples, where a triple is of the form
p(s, o), p and s being URIs and o being a URI or a literal.
Furthermore, we use the notion of a direct product of two
graphs, adapted to RDF graphs:

Definition 1. Let I and J be RDF graphs, t1 = R(s1, o1)
and t2 = R(s2, o2) be two triples. The direct product of t1
and t2, denoted as t1 ⊗ t2, is the triple R(〈s1, s2〉, 〈o1, o2〉).
The direct product I ⊗ J of I and J is the instance:

{t1 ⊗ t2 | t1 ∈ I and t2 ∈ J}.

3. COMPARISON FRAMEWORK
There are multiple ways of how we can define similarity

and difference explanations and how we can model entity
comparison. In our framework the formalism of choice is
conjunctive queries (CQs). We model formal explanations
as conjunctive queries and we consider the problem of find-
ing such explanations as an instance of the query reverse
engineering problem.

3.1 Similarity explanations
We would like similarity explanations to highlight com-

mon patterns for input entities. Thus, we model them as
queries that return both of these entities, i.e, they match
patterns fitting both entities. Let 〈I, a, b〉 be a tuple con-
sisting of an RDF graph I and two URIs from the domain
of I a, b ∈ dom(I) representing input entities. Furthermore,
given a query Q, let Q(I) be the answer set returned by Q
over I.

Definition 2. Given 〈I, a, b〉, a similarity explanation for
a and b is a unary connected conjunctive query Qsim such
that {a, b} ⊆ Qsim(I).

Example 1. Given two entities Marilyn Monroe and Eliza-
beth Taylor and the Yago RDF graph [14], a possible simi-
larity explanation is:

Qsim(X) =hasWonPrize(X,Golden Globe),

diedIn(X, Los Angeles),

hasGender(X, female),

actedIn(X,Y 1),

isLocatedIn(Y 1,United States),

isMarriedTo(X,Y 2),

hasGender(Y 2,male),

hasWonPrize(Y 2,Tony Award), etc.

Qsim can be interpreted the following way: both Monroe
and Taylor received a Golden Globes award, died in Los
Angeles, acted in movies that were shot in the US and were
married to men who received a Tony Award.

Using this definition, we can formulate the following de-
cision problem: given 〈I, a, b〉, SimExp is a problem of
whether there exists a CQ Q such that {a, b} ⊆ Q(I). The
corresponding functional problem is to compute a query Q
such that {a, b} ⊆ Q(I), given 〈I, a, b〉. Note that both the
definition of Qsim and SimExp can be easily generalized
from a pair of entities to a set of input entities.

We specifically chose the condition to be {a, b} ⊆ Q(I)
for two reasons. Firstly, the form of Q does not depend on
the rest of the data: it does not matter whether there exist
other entities that match the graph pattern described by the
query; moreover, queries fitting the subsumption condition
will not be affected if new data is added. This is very im-
portant in the context of RDF graphs, since web data is
intrinsically incomplete.

Secondly, it is known that the definability problem is
coNExpTime-complete for conjunctive queries [3,15]. On
the other hand, SimExp can easily be shown to be in PTime:
for conjunctive queries, it is sufficient to take the full join of
all tables in the database instance.

Let Sim(a, b) be the set of all similarity explanations for
a given 〈I, a, b〉. Obviously Sim(a, b) can be quite big, con-
taining numerous explanations, however, we are interested
in the most informative ones. Our assumption is that the
more specific a similarity explanation is, the better.

Definition 3. Given 〈I, a, b〉, a most specific similarity ex-
planation is a similarity explanation Qmsp

sim s.t. for all simi-
larity explanations Q′sim wrt 〈I, a, b〉: Qmsp

sim ⊆ Q′sim.

The decision problem SimExpmsp is the problem of decid-
ing whether Qsim is a most specific similarity explanation
for the given 〈I, a, b〉.The related functional problem is to
compute a most specific Qsim.

The subsumption relation divides the set of all similarity
explanations Sim(a, b) into⊆-equivalent classes. If Sim(a, b)
is not empty, then Sim(a, b)msp is not empty, and there ex-
ists a finite most specific similarity explanation Qmsp

sim , whose
size is bounded by the size of I. This explanation can in fact
be constructed in PTime (see Section 4).

3.2 Difference explanations
Analogous to similarity explanations, we model difference

explanations as CQs, but this time we require only one of
the input entities to be in the answer set.

Definition 4. Given 〈I, a, b〉, a difference explanation for
a wrt b is a unary connected conjunctive query Qa

dif such
that a ∈ Qa

dif (I), but b /∈ Qa
dif (I).

The notion of a difference explanation can be generalized
to sets of entities: given an RDF graph I, a set of entities
Pos and a set of entities Neg, a difference explanation for
I and Pos wrt Neg is a unary connected CQ QPos

dif s.t.

∀p ∈ Pos: p ∈ QPos
dif and Neg ∩QPos

dif = ∅.
Given 〈I, a, b〉, DifExp is the problem of deciding whether

there exists a difference explanation Qa
dif . The generalized

difference explanation problem DifExp can be solved using
the most specific similarity explanation problem SimExpmsp:
given I, Pos and Neg, first construct a most specific sim-
ilarity explanation Q for entities in Pos (done in PTime),
and then check whether none of the elements of Neg are in

34

the answer set of Q (conjunctive query evaluation is NP-
complete). Hence, the complexity of generalized DifExp
is NP-complete.

Furthermore, we would like to introduce another defini-
tion of a difference explanation that is dependent on the
similarities between a and b. We would like the difference
explanation for a to be as relevant as possible, hence we
model it to be dependent not only on the information about
b, but also on the common patterns for a and b. One pos-
sible way to do so is the following: let const(Q) be the set
of constants appearing in a query Q and let const(R(x̄)) be
the set of constants appearing in an atom R(x̄).

Definition 5. Given 〈I, a, b〉, a difference explanation for
a wrt b and Qsim is a different explanation Qa,sim

dif such that

∀R(x̄) ∈ Qa,sim
dif : const(R(x̄)) ∩ const(Qsim) 6= ∅.

Example 2. Let the input entities be a = John Travolta
and b = Quentin Tarantino. Let Qsim for a and b be an expla-
nation that both persons starred in Pulp Fiction: Qsim(X) =
starredIn(X,Pulp Fiction). Relevant difference explanations
could be that Travolta also starred in Grease and other
movies, while Tarantino has directed several movies, in-
cluding Pulp Fiction: Qa

dif (X) = starredIn(X,Grease) and

Qb
dif (X) = directed(X,Pulp Fiction). On the other hand, an

explanation that Travolta (unlike Tarantino) is married to
Kelly Preston is rather irrelevant, since we have not com-
pared the two persons with respect to their marital status.

4. TECHNICAL RESULTS

4.1 Algorithm for computing a most specific
similarity explanation

We compute a most specific similarity explanation by con-
structing the direct product of the RDF graph, similar to the
construction of the direct product of a database instances
with itself [15]. Any RDF graph I a ∈ dom(I) can be asso-
ciated with a canonical unary conjunctive query qI(xa) such
that for each fact R(c, d) in I there is an atom R(xc, xd) in
qI , where xc and xd are variables and xa is a free variable.
Note that a is an answer to qI(xa) over I. The following
algorithm produces a most specific similarity explanation.
In it, we first produce an instance with the domain from
dom(I)2, i.e., tuples 〈c, d〉 for c, d ∈ dom(I), and then con-
struct a canonical conjunctive query of this instance.

Claim 1. If J 6= ∅, then J is a maximal connected com-
ponent of I ⊗ I such that a⊗ b = 〈a, b〉 ∈ dom(J).

Proof sketch: Firstly, if J 6= ∅, then 〈a, b〉 ∈ dom(J), by Step
1. Secondly, the while-loop on Step 5 is in fact the greedy
procedure that generates the maximal connected component
in I ⊗ I. Indeed, the condition R(c, e), R(d, f) ∈ I ensures
that the fact R(〈c, d〉, 〈e, f〉) is in I ⊗ I, and the condition
that there must exist a fact in J that contains 〈c, d〉 or 〈e, f〉
ensures connectedness.

Claim 2. Let 〈I, a, b〉 be an input of Algorithm 1. Let
qJ(x〈a,b〉) be the output, and J the instance obtained after
the while loop on Step 5. Then all of the following hold.

(i) {a, b} ⊆ qJ(I),

Algorithm 1: Algorithm for computing a most specific
similarity explanation

Input: an RDF graph I, entities a, b from dom(I).
Output: a most specific similarity explanation for a

and b.
1 Let J = {R(〈a, b〉, 〈c, d〉) | R(a, c), R(b, d) ∈

I} ∪ {R(〈c, d〉, 〈a, b〉) | R(c, a), R(d, b) ∈ I};
2 if J = ∅ then
3 return empty query;

4 Let J∗ = ∅;
5 while J 6= J∗ do
6 J∗ := J ;
7 J := J ∪ {R(〈c, d〉, 〈e, f〉) 6∈ J | R(c, e), R(d, f) ∈

I, and ∃ a fact in J that contains 〈c, d〉 or 〈e, f〉};
8 Construct qJ(x〈a,b〉);
9 foreach x〈c,c〉 in qJ , c 6∈ {a, b} do

// Replace x〈c,c〉 with constant c
10 qJ(x〈a,b〉) := qJ(x〈a,b〉)[x〈c,c〉 → c];

11 return qJ(x〈a,b〉).

(ii) For a connected unary conjunctive query q′(x), if there
exist homomorphisms h1, h2 : q′ → I such that h1(x) =
a and h2(x) = b, then there exists a homomorphism
h : q′ → J such that h(x) = 〈a, b〉.

Corollary 1. Algorithm 1 produces a most specific simi-
larity explanation.

4.2 Properties of the resulting query
The algorithm 1 runs in time polynomial to the size of

the input RDF graph, and the size of resulting most specific
similarity explanation is also polynomial to I. It should be
noted that the output query tends to be non-minimal. For
example, since Marilyn Monroe and Elizabeth Taylor acted in
several movies that were shot in the US, Q(X) will contain
atoms like:

actedIn(X,Y 1), isLocatedIn(Y 1,United States),
actedIn(X,Y 2), isLocatedIn(Y 2,United States),
actedIn(X,Y 3), isLocatedIn(Y 3,United States), etc.

To avoid such redundancy, we can take the core of the query
(i.e., apply the query minimization algorithm). Taking the
core is an NP-complete problem [9, 11], hence, obtaining
a most specific similarity explanation without redundant
atoms is an NP-complete task.

5. RELATED WORK
So far only few works have studied explanations over RDF

graphs [5, 10, 12], and there is no single formal definition
of an explanation over RDF data. A lot of attention has
been paid to discovering connections (“associations”) be-
tween nodes [12], which boils down to finding and grouping
together paths in the graph that connect one input node to
another one. Such connectedness explanations are orthogo-
nal (rather than alternative) to the similarity explanations
modelled as queries, which we propose to study. The two
types of explanations are intended to capture different rela-
tions between nodes: the former explore possible paths that
link the two nodes together, while the latter seek to find
commonalities in the neighbourhoods of the input nodes.

35

The problem of reverse engineering a query given some
examples originated in late 1970s and was first introduced
for the domain of relational databases [20]. Later it was ex-
tensively researched with respect to different query formats:
regular languages [1], XML queries [7], relational database
queries [16,17,19], graph database queries [4] and SPARQL
queries [2]. The problem of QRE for RDF data was first
studied by Arenas et al. [2] and was implemented by Diaz et
al. [8]. In [2], the authors consider three different variations
of QRE problem: the basic variation that requires the input
mappings to be part of the answer set (Ω ⊆ JQKG); the one
that allows positive examples Ω together with negative ex-
amples Ω̄ (such that Ω ⊆ JQKG and Ω̄ ∩ JQKG = ∅); and the
variation that requires the examples from Ω to be exactly
the answer set of Q (Ω = JQKG). The complexity of these
three variations is then provided for fragments of SPARQL
with AND, FILTER and OPT.

6. FUTURE WORK
As part of my PhD, I would like to continue studying the

problem of entity comparison using RDF graphs in several
research directions. So far we have investigated similarity
and difference explanations, and we rank the former accord-
ing to the preference condition based on subsumption. In
particular, we assume that the highest ranked explanations
are most specific similarity explanations. On the one hand,
we would like to apply a similar rationale to difference expla-
nations and to study most general difference explanations as
most preferred ones. On the other hand, these may not be
the optimal choices for a given user, hence we need to inves-
tigate other possible ranking conditions as well as means of
user-specific ranking of explanations.

RDF graphs are inherently incomplete, hence it would be
useful to consider a scenario where an explanation is pro-
duced over an RDF graph and a domain ontology that con-
tains knowledge not explicitly present in the graph. Con-
sider a graph G consisting of two facts: Teacher(Bob) and
teaches(Alice, CS), — and a simple EL ontology O consist-
ing of one axiom: ∃teaches.Class v Teacher. Let the two
input entities be Alice and Bob. Then a similarity explana-
tion wrt G,O could be Q(X) = Teacher(X), while we are
unable to generate such a CQ using only graph data.

In our framework explanations are modelled as CQs, and
while CQs are formulas with relatively high readability for
a user, it is of interest to be able to verbalize explanations,
transforming them into natural language sentences. For ex-
ample, a formal explanation Q(X) = livesIn(X, London),
friendsWith(X,Y),worksAt(Y,Oracle) could be transformed
into an English sentence “Both input entities live in London
and are friends with someone who works at Oracle”.

While CQs correspond to a large part of queries issued
over relational databases, i.e., they have relatively high ex-
pressivity, they cannot express things like negation or dis-
junction, which is a limitation. Hence, an interesting prob-
lem would be to consider more expressive languages, in par-
ticular, union of CQs and CQs with inequalities and numeric
comparison.

Lastly, we are planning to implement a comprehensive
comparison system that would compute most specific simi-
larity explanations and most general difference explanations,
to test it on real-world RDF graphs and to perform usability
tests.

7. REFERENCES
[1] D. Angluin. Queries and concept learning. Machine

learning, 2(4):319–342, 1988.

[2] M. Arenas, G. I. Diaz, and E. V. Kostylev. Reverse
engineering SPARQL queries. In Proc. of the 25th Int.
Conf. on World Wide Web, pages 239–249, 2016.

[3] P. Barcelo and M. Romero. The complexity of reverse
engineering problems for conjunctive queries. In Proc.
of 20th Int. Conf. on Database Theory, 2017.

[4] A. Bonifati, R. Ciucanu, and A. Lemay. Learning path
queries on graph databases. In 18th Int. Conf. on
Extending Database Technology (EDBT), 2015.

[5] G. Cheng, Y. Zhang, and Y. Qu. Explass: exploring
associations between entities via top-k ontological
patterns and facets. In International Semantic Web
Conference, pages 422–437. Springer, 2014.

[6] S.-S. Choi, S.-H. Cha, and C. C. Tappert. A survey of
binary similarity and distance measures. J. Systemics,
Cybernetics and Informatics, 8(1):43–48, 2010.

[7] S. Cohen and Y. Y. Weiss. Learning tree patterns
from example graphs. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 31, 2015.

[8] G. Diaz, M. Arenas, and M. Benedikt. SPARQLByE:
Querying RDF data by example. Proceedings of the
VLDB Endowment, 9(13), 2016.

[9] G. Gottlob and A. Nash. Efficient core computation in
data exchange. Journal of the ACM, 55(2):9, 2008.

[10] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann, and
T. Stegemann. RelFinder: Revealing relationships in
RDF knowledge bases. In Int. Conf. on Semantic and
Digital Media Technologies, pages 182–187, 2009.

[11] P. Hell and J. Nešetřil. The core of a graph. Discrete
Mathematics, 109(1):117–126, 1992.

[12] J. Lehmann, J. Schüppel, and S. Auer. Discovering
unknown connections - the DBpedia relationship
finder. CSSW, 113:99–110, 2007.

[13] G. Marchionini. Exploratory search: from finding to
understanding. Communications of the ACM,
49(4):41–46, 2006.

[14] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago:
A large ontology from wikipedia and wordnet. Web
Semantics: Science, Services and Agents on the World
Wide Web, 6(3):203–217, 2008.

[15] B. ten Cate and V. Dalmau. The Product
Homomorphism Problem and Applications. In 18th
International Conference on Database Theory (ICDT
2015), pages 161–176, 2015.

[16] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query
by output. In Proc. of the 2009 ACM SIGMOD Int.
Conf. on Management of data, pages 535–548, 2009.

[17] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query
reverse engineering. The VLDB Journal,
23(5):721–746, 2014.

[18] R. W. White and R. A. Roth. Exploratory search:
beyond the query-response paradigm, 2009.

[19] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join
queries. In Proc. of the 2013 ACM SIGMOD Int.
Conf. on Management of Data, pages 809–820, 2013.

[20] M. M. Zloof. Query-by-example: A data base
language. IBM systems Journal, 16(4):324–343, 1977.

36

Scalable Linkage across Location Enhanced Services

Fuat BASIK
Supervised By: Hakan Ferhatosmanoğlu and Buğra Gedik

Department of Computer Engineering, Bilkent University, Turkey

fuat.basik@bilkent.edu.tr

ABSTRACT
In this work, we investigate methods for merging spatio-
temporal usage and entity records across two location-
enhanced services, even when the datasets are semantically
different. To address both effectiveness and efficiency, we
study this linkage problem in two parts: model and frame-
work. First we discuss models, including k-l diversity— a
concept we developed to capture both spatial and temporal
diversity aspects of the linkage, and probabilistic linkage.
Second, we aim to develop a framework that brings efficient
computation and parallelization support for both models of
linkage.

1. INTRODUCTION
An important portion of digital footprint left behind by enti-
ties interacting with online services contains spatio-temporal
references. This footprint is a fertile resource for business
intelligence applications [11]. We refer to the services that
create spatio-temporal records of their usage as Location En-
hanced Services (LES). For instance, Foursquare/Swarm1 —
a popular social networking service, records the locations
of users when they check-in at a point-of-interest (POI)
registered in the system. Similarly, mobile phone service
providers generate a record every time a call is made, which
includes the cell tower whose coverage area contains the
user’s location.

Records with similar location and time naturally observe
similar phenomena. The data analyst can gather such data
from multiple sources, which are typically anonymized due
to privacy concerns. These sources could generate seman-
tically different datasets, or the semantic link between the
sources could have been lost due to anonymization. As most
data science tasks require large amount of data for accurate
training with higher confidence, scientists need to combine
data from multiple sources to produce accurate aggregate
patterns. For example, spatio-temporal usage records be-
longing to the same real-world user can be matched across

1www.foursquare.com / www.swarmapp.com

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (c) 2017 for this paper by its authors. Copying permitted for
private and academic purposes..

records from two different location-enhanced services, even
when the datasets are semantically different. Another ex-
ample would be linkage of the sensor data from different
vendors that are embedded to the same moving system, i.e.
self-driving cars. This linkage enables data scientists and
service providers to obtain information that they cannot de-
rive by mining only one set of usage records. Consider a LES
provider who combines user segmentation results derived
from its own usage records with social segmentation results
derived from the publicly available Swarm records. There
are several algorithmic and systems challenges to merge
information from multiple sources of anonymized spatio-
temporal data that are collected with necessary permissions.
To cover both effectiveness and efficiency, we divide this link-
age problem into two parts: model and framework.

To develop effective models, one needs to define a simi-
larity or probabilistic measure for linkage, which considers
time, location, and the relationship between the two. This
is relatively simpler for many record linkage tasks [4], where
linkage is defined based on a similarity measure defined over
records (such as Minkowski distance or Jaccard similarity).
In spatio-temporal linkage, for a pair of users from two dif-
ferent datasets to be considered as matching, their usage
history must contain records that are close both in space
and time; and there must not be negative matches, such as
records that are close in time, but far in distance. We call
such negative matches, alibis. To address these challenges,
we introduce two linkage models. The first one is based on
k-l diversity — a new concept we have introduced to capture
both spatial and temporal diversity aspects of the linkage.
A pair of entities, one from each dataset, is called k-l diverse
if they have at least k co-occurring records (both temporally
and spatially) in at least l different locations, and, such pairs
of entities must not have any alibis. The second model we
aim to develop is based on probabilistic linkage — in which
we seek to model the matching probability of two entities
based on their spatio-temporal history. A pair of entities
are called match, or linked with probability P , which is pro-
portional to their common events aggregated on grids, and
timestamps. P is inversely proportional to number of all
other entities simultaneously acting at the same grid.

Considering that location-based social networks get mil-
lions of updates every day, linkage over hundreds of days of
data would take impractically long amount of time. Näıve
record linkage algorithms that compare every pair of records
take O(n2) time [6], where n is the number of records. The
generic entity matching tools do not provide the necessary
optimization for scalability and efficiency of spatio-temporal

37

linkage [3]. In order to merge data sets in a reasonable
time, we will develop a scalable framework that takes ad-
vantage of the spatio-temporal structure of the data. The
ST-Link algorithm we have recently modeled to realize the
k-l diversity model in real world, uses two filtering steps
before pairwise comparisons of candidate users, and makes
use of spatial index trees, temporal sliding windows and log-
structured merge trees [7]. In addition to effective indexing
techniques, we believe efficiency could benefit from paral-
lelization of computation.

2. LINKAGE MODELS
Datasets. We denote the two spatio-temporal usage record
datasets from the two LES across which the linkage is to be
performed as I and E .

Entities and events. Entities, or users, are real-world
systems or people who use LES. We use the terms user and
entity interchangeably. They are represented in the datasets
with their ids, potentially anonymized, which are different
for the two LES. Events correspond to usage records gen-
erated by a LES as a result of users interacting with the
service. For an event e ∈ E (or i ∈ I), e.u (or i.u) represents
the entity associated with the event. We use UE and UI to
denote the set of entity ids in the datasets E and I, respec-
tively. We have UE = {e.u : e ∈ E} and UI = {i.u : i ∈ I}.

Location and time. Each event in the dataset contains
location and time information. The location information is
in the form of a region, denoted as e.r for event e. We do
not use a point for location, as for most LES the location
information is in the form of a region. We assume the time
information is a point in time.

2.1 k-l Diversity
The core idea behind the k-l diversity model is to locate
pairs of entities whose events satisfy k-l diversity. Further-
more, such pairs of entities must not have any alibis.

Co-occurrence. Two events from different datasets are
called co-occurring if they are close in space and time. For
two records i ∈ I and e ∈ E , closeness is defined in terms of
intersection of regions. To capture closeness in time, we use
a parameter α, and call two events are close in time if they
are within a window of α time units of each other.

Alibi. While a definition of similarity is necessary to link
events from two different datasets, a definition of dissimilar-
ity is also required to rule out pairs of entities as potential
matches in our linkage. Such negative matches enable us to
rule out incorrect matches and also reduce the space of pos-
sible matches throughout the linkage process. We refer to
these negative matches as alibis. In this work, we use alibi
to define events from two different datasets that happened
around the same time but at different locations, such that it
is not possible for a user to move from one of these locations
to the other within the duration defined by the difference of
the timestamps of the events.

Entity linkage. Let x ∈ UI and y ∈ UE be two entities.
In order to be able to decide whether two entities are the
same, we search for k co-occurring event pairs and at least l
of them are at diverse locations. However, each co-occurring
event pair does not count as 1, since each of these events
could co-occur with many other events. Let C(i, e) be the

x y

a

b

c

d

e

f

1/6

1/2

1/4

1

Figure 1: The co-occurring event pairs are shown
using dashed lines. Events from a given entities are
shown within circles. Entities a, b, c, and y are from
one LES, and the entities d, e, f , and x are from the
other LES.

function to represent aforementioned co-occurrence relation
of records i, and e, We weight these co-occurring event pairs
as:

w(i, e) =|{i1.u : C(i1, e) ∧ i1 ∈ I}|−1·
|{e1.u : C(i, e1) ∧ e1 ∈ E}|−1

(1)

Given a co-occurring event pair between two entities, we
check how many possible entities’ events could be matched
to these events. For instance, in Figure 1, consider the solid
line at the top with the weight 1/6. The event on its left
could be matched to events of 2 different entities, and the
event on its right could be matched to events of 3 differ-
ent entities. To compute the weight of a co-occurring pair,
we multiply the inverse of these entity counts, assuming the
possibility of matching from both sides are independent. As
such, in the Figure 1, we get 1/2 · 1/3 = 1/6.

l diverse event pairs. For the same entity pair to be
considered l-diverse, there needs to be at least l unique lo-
cations for the co-occurring event pairs in it. However, for a
location to be counted towards these l locations, the weights
of the co-occurring event pairs for that location must be at
least 1. Here, one subtle issue is defining a unique loca-
tion. Intuitively, when datasets have different granularities
for space, using the higher granularity ones to define unique-
ness would give more accurate results. This could simply be
a grid-based division of the space.

Entities x and y could be linked to each other, if they have
k co-occurring event pairs in l diverse locations and their
datasets do not contain alibi event pairs. Moreover, we only
consider entity pairs for which there is no ambiguity, i.e.
no two pairs (x, y) and (x, z) that are k-l diverse. Setting
too low k-l values would lead many ambiguous pairs while
too high values would lead many false negatives. To find
the balance in between these two, we apply elbow detection
techniques on k, and l distributions.

2.2 Probabilistic Linkage
Besides k-l diversity, we aim to model the spatio-temporal
linkage problem using a probabilistic model. For consis-
tency, we try to use the same notation with k-l diversity
model as much as possible.

38

Figure 2: An example of 5 co-occurring events in 3
diverse locations from real world data. All weights
are assumed to be 1

Probabilistic model starts by aggregating all of the entities
on a common grid using the spatio-temporal features of the
datasets. Gk denotes the set of entities in a specific cell
in the grid and |GIk (t)| denotes the number of entities from
dataset I in cell Gk at some time interval [t − t + α]. Let
x ∈ UI and y ∈ UE be two entities, and set of entities co-
located with entity x in UE , and set of entities co-located
with entity y in UI at time [t − t + α], in the grid is given
as Gx(t), and Gy(t) respectively.

Assuming two sets, S1 and S2, where |S1| = |S2| = n, the
number of possible different complete matches (CM) (each
element in S1 has a partner in S2) between the elements of
these sets is n!, using trivial combinations without repeti-
tion. If the number of elements in the sets are not equal, i.e.
|S1| = n 6= |S2| = m then the problem turns into choosing
m out of n (where n ≥ m) and calculating complete match
with m elements, i.e. CM(n,m) =

(
n
m

)
m!.

As the user set of one LES is typically not a subset of the
second, we define the partial match (PM) where only k out
of the m elements in S2 match with k out of n elements in
S1. In this case we also need to choose k out of m and use
the complete match, i.e. PM(n,m, k) =

(
m
k

)
CM(n, k) =(

m
k

)(
n
k

)
k!.

Let x ≡ y represents entities x, and y are the same real-
world entity (match), the probability of a pair of specific
two items to match each other is calculated by the number
of events where x and y match divided by the number of
events in the universal set of all possibilities.

If we are given a single snapshot of the grid at time t the
probability of a randomly chosen pair of co-located entities
in the different services being the same entity (we are assum-
ing a complete match case only) can be found as following:

P (x ≡ y) =
PM(n− 1,m− 1,m− 1)

PM(n,m,m)
(2)

=
CM(n− 1,m− 1)

CM(n,m)
=

1

n
(3)

=

{
1

max(|GI
k
(t)|,|GE

k
(t)|) , if Gx(t) = Gy(t) = Gk

0, otherwise

(4)

This is an intuitive result since a random entity from the
smaller set can be equal to any element in the larger set
with an equal probability.

If we have more than one sample of the entity (for time
slots t0 to time slot tT where we don’t necessitate the slots
to be sequential in time) and the grid we can then use the
history of the entity. The probability is similar except taking
the tracks of the entities into account:

P (x ≡ y) =

{∑m
k=1 PM(n−1,m−1,k−1)∑m

k=1
PM(n,m,k)

, Gx(ti) = Gy(ti) ∀ti
0, otherwise

(5)

where n > m.

An important issue is the decision on the values of n and
m. If the entities x and y have l events sharing the same
cell and time interval, one must look for all possible pairs
that satisfy this property. Since the number of users in the
intersection are smaller and is expected to decrease rapidly
for large l values the probability of two users in respective
services being the same user with the same track will be
considerably high.

It is fair to assume that both the systems have consid-
erable amount of common entities which will match. This
commonality needs to be calculated empirically by ground
truth values. After this value is found we can use this value
to limit the k values (e.g. k ∈ [k1 : k2]) when calculating
the probabilities and the probability in Theorem turns to:

P (x ≡ y) =

∑k=k2
k=k1

PM(n− 1,m− 1, k − 1)∑k=k2
k=k1

PM(n,m, k)
(6)

One can relax the condition of equality for the tracking
based on the location accuracy of the services and the cho-
sen grid sizes. Moreover, similar to the diversity concept of
the k-l diversity model, the distance among the shared cells
could be used to distinguish between multiple pairs shar-
ing a common user, with close matching probabilities, i.e.
P (x ≡ y) = P (x ≡ z).

3. FRAMEWORK
The second component of this doctoral work is the frame-
work to perform the linkage efficiently. Näıve record linkage
algorithms that compare every pair of records take O(n2)
time [6], where n is the number of records. Therefore, there
are number of techniques implemented, i.e. indexing, block-
ing, to prune search space of linkage. To perform the linkage
in reasonable time, we take advantage of the spatio-temporal
structure of the data. To realize effectiveness of the k-l di-
versity model, we develop an algorithm called ST-Link [2].
Our implementation for the probabilistic model is still on-
going.

The ST-Link algorithm uses two filtering steps before
pairwise comparisons of candidate entities are performed to
compute the final linkage. It first distributes entities (users)
over coarse-grained geographical regions that we call domi-
nating grid cells. Such grid cells contain most of the activ-
ities of their users. For two users to link, they must have a
common dominating grid. Once this step is over, the linkage
is independently performed over each dominating grid cell.
To identify the dominating grids, we make a sequential scan
over all records, and utilize a quad-tree based index, which
limits the area of the smallest grid from below. During the
temporal filtering step, ST-Link uses a sliding window based
scan to build candidate user pairs, while also pruning this

39

list as alibis are encountered for the current candidate pairs.
Finally, our complete linkage model is evaluated over candi-
date pairs of users that remain following the spatial and tem-
poral filtering steps. During this linkage step, we will need
the time sorted events of the users at hand. For that pur-
pose, during the forward scan, we also create a disk-based
index sorted by the user id and event time. This index en-
ables us to quickly iterate over the events of a given user in
timestamp order, which is an operation used by the linkage
step. Also, if one of the datasets is more sparse than the
other, it performs the linkage by iterating over the users of
the dense datasets first, making sure their events are loaded
only once. This is akin to the classical join ordering heuristic
in databases.

Our experimental evaluation shows that k-l diversity model
is effective (up to 89% precision and 61% recall), yet the effi-
ciency could benefit from a distributed approach. However,
distributed processing is challenging due to mobility of users,
and the scale of the data. First, distributing records based
on their spatio-temporal features would spread records of a
single user to multiple processing nodes, hence lead to high
inter-machine communications cost. While the concept of
dominating grid cells addresses this issue, scalability would
still suffer from spatial skew of real data (in our experiments
%18 of all records were residing on a single grid out of 120
grids). Since the temporal filtering techniques requires at
least one batch of data to reside at the same machine (this
issue exists in both models either for filtering or aggregat-
ing), records cannot be written to machines in parallel which
would lead to low write performance. With these challenges
identified, we are going to focus on optimizations of both
models to create a single optimized framework which could
efficiently perform linkage for both models. Such framework
would be beneficial for both industry and academia when
performing aggregation of semantically different datasets for
social good applications, and when benchmarking the link-
age research.

4. RELATED WORK
Record Linkage. One of the earliest appearances of the
term record linkage is by Newcombe et al. [9]. In the liter-
ature, it is also referred to as entity resolution (ER), dedu-
plication, object identification, and reference reconciliation,
discussed in [4]. Most of the work in this area focus on a
single type of databases and define the linked records with
respect to a similarity metric. To the best of our knowledge,
linking the users of the usage records, specifically targeted
at spatio-temporal datasets is novel.

Spatial Record Linkage and Spatial Joins. Many join
algorithms are proposed in the literature for spatial data [8].
Spatial record linkage and join algorithms are not directly
applicable for spatio-temporal data as they are based on in-
tersection of minimum bounding boxes, one-sided nearest
join, or string similarity. Spatio-temporal joins have con-
straints on both spatial and temporal domains [1]. [10] is
a recent work with similar motivation in which calculates
weights of matching between users and applies maximum
weight partitioning techniques. Their experiments validate
the accuracy of this approach, but they do not focus on scal-
ability.

User Identification. Our work has commonalities with
the work done in the area of user identification. For instance,

de Montjoye et al. [5] have shown that, given a spatio-
temporal dataset of call detail records, one can uniquely
identify the 95 % of the population by using 4 randomly
selected spatio-temporal points. However, linking users is
different from identification, as identification leaves whose
data to aggregate question unanswered.

5. CONCLUSIONS & RESEARCH PLAN
In this paper, we introduced two linkage models for match-
ing users across location enhanced services, and discussed
implementation techniques. We have already realized a sin-
gle machine implementation of the k-l diversity model with
ST-Link algorithm. We are now working on validation and
implementation of the probabilistic model, and aim to com-
pare these two models with each other. Our single ma-
chine implementations showed that both models could ben-
efit from a parallelized distributed implementation. There-
fore, we set the development of a distributed and generic
framework as the future goal of this doctoral work.

6. REFERENCES
[1] P. Bakalov and V. Tsotras. Continuous spatiotemporal

trajectory joins. In GeoSensor Networks, volume 4540
of Lecture Notes in Computer Science, pages 109–128.
Springer Berlin Heidelberg, 2008.

[2] F. Basik, B. Gedik, C. Etemoglu, and
H. Ferhatosmanoglu. Spatio-temporal linkage over
location-enhanced services. IEEE Trans. on Mobile
Computing, PP(99):1–1, 2017.

[3] O. Benjelloun, H. Garcia-Molina, D. Menestrina,
Q. Su, S. E. Whang, and J. Widom. Swoosh: A
generic approach to entity resolution. The VLDB
Journal, 18(1):255–276, Jan. 2009.

[4] P. Christen. Data matching: concepts and techniques
for record linkage, entity resolution, and duplicate
detection. Springer Science & Business Media, 2012.

[5] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and
V. D. Blondel. Unique in the crowd: The privacy
bounds of human mobility. Scientific reports, 3, 2013.

[6] L. Getoor and A. Machanavajjhala. Entity resolution:
Theory, practice & open challenges. In VLDB
Conference (PVLDB), 2012.

[7] S. Ghemawat and J. Dean. LevelDB.
https://github.com/google/leveldb, 2015.

[8] E. H. Jacox and H. Samet. Spatial join techniques.
ACM Trans. Database Syst., 32(1), Mar. 2007.

[9] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and
A. P. James. Automatic linkage of vital records:
Computers can be used to extract ”follow-up”
statistics of families from files of routine records.
Science, 130(3381):954–959, 1959.

[10] C. Riederer, Y. Kim, A. Chaintreau, N. Korula, and
S. Lattanzi. Linking users across domains with
location data: Theory and validation. In Proc. of the
25th Int. Conf.on WWW, pages 707–719, 2016.

[11] A. Skovsgaard, D. Sidlauskas, and C. Jensen. Scalable
top-k spatio-temporal term querying. In IEEE Int.
Conference on Data Engineering (ICDE), pages
148–159, March 2014.

40

Distributed Similarity Joins on Big Textual Data:
Toward a Robust Cost-Based Framework

Fabian Fier
Supervised by Johann-Christoph Freytag

Humboldt-Universität zu Berlin
Unter den Linden 6

10099 Berlin, Germany

fier@informatik.hu-berlin.de

ABSTRACT
Motivated by increasing dataset sizes, various MapReduce-
based similarity join algorithms have emerged. In our past
work (to appear), we compared nine of the most prominent
algorithms experimentally. Surprisingly, we found that their
runtimes become inhibitively long for only moderately large
datasets. There are two main reasons. First, data grouping
and replication between Map and Reduce relies on input
data characteristics such as word distribution. A skewed
distribution as it is common for textual data leads to data
groups which reveal very unequal computation costs, leading
to Straggling Reducer issues. Second, each Reduce instance
only has limited main memory. Data spilling also leads to
Straggling Reducers. In order to leverage parallelization,
all approaches we investigated rely on high replication and
hit this memory limit even with relatively small input data.
In this work, we propose an initial approach toward a join
framework to overcome both of these issues. It includes
a cost-based grouping and replication strategy which is ro-
bust against large data sizes and various data characteristics
such as skew. Furthermore, we propose an addition to the
MapReduce programming paradigm. It unblocks the Re-
duce execution by running Reducers on partial intermedi-
ate datasets, allowing for arbitrarily large data sets between
Map and Reduce.

1. INTRODUCTION
Similarity joins are an important operation for user rec-

ommendations, near-duplicate detection, or plagiarism de-
tection. They compute similar pairs of objects, such as
strings, sets, multisets, or more complex structures. Simi-
larity is expressed by similarity (or distance) functions such
as Jaccard, Cosine, or Edit. A naive approach to compute
a similarity self-join is to build the cross product over an
input dataset and filter out all non-similar pairs. This ap-
proach has a quadratic runtime. In the literature, there
are various non-distributed non-parallelized approaches for

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (C) 2017 for this paper by its authors. Copying permitted for
private and academic purposes.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

#I
ns

ta
nc

es

Time

Figure 1: Straggling Reducer Issue.

similarity joins based on a two-phase approach [1, 2, 3, 10,
14]. They compute a set of candidate pairs which is usually
orders of magnitudes smaller than the cross product. Sub-
sequently, they verify if the candidates are similar. We refer
to them as filter-and-verification approaches. Motivated by
increasing dataset sizes, MapReduce-based distributed ap-
proaches have emerged [5, 12, 13]. We conducted an exten-
sive experimental study on nine current MapReduce-based
set similarity join algorithms on textual data (to appear).
There are two key findings. First, we compared the runtime
of the MapReduce join algorithms to the runtime of compet-
ing non-distributed algorithms from the recent experimental
survey of Mann et al. [11]. The runtime of MapReduce join
algorithms on small datasets is inferior to the runtime of
non-distributed approaches. This is not surprising due to
the MapReduce overhead. The second finding is that none
of the approaches can compute the join on larger (or even
arbitrarily large) datasets. The runtimes increase so drasti-
cally that we terminated the executions after a long timeout.

We identified two main reasons for these runtime issues
on large datasets. First, for every MapReduce-based simi-
larity join algorithm we investigated we found non-optimal
input datasets that lead to only a few running join Reduce
instances while all other instances were left idle. That is,
we often observed Straggling Reducers. Figure 1 shows the
compute instance usage of a non-optimal join execution on
a cluster of 48 compute instances. After roughly half the
execution time, only a few instances are used. The instance
usage is directly connected to data grouping and replication
between Map and Reduce. All algorithms under investiga-
tion exploit and thus rely on certain data characteristics for
replication and grouping. The most relevant characteristics
are the global token frequency of the input dataset and the
number of tokens in each record of a dataset. Stop words,
which occur in a majority of records of a dataset, cause
skewed data groups within most join approaches we inves-
tigated. As second cause, we identified memory overload
within Reduce instances. All approaches heavily replicate
data to leverage parallelization. The original MapReduce

41

programming paradigm as introduced by Dean et al. [4] re-
quires the Reduce instances to wait for the Map steps to
finish before the intermediate data groups are sorted and
grouped by key. When the Reduce buffers are filled, data
is spilled to disk, often causing high runtime penalties. The
use of Combiners is not possible for similarity joins, because
Reducers are stateful. This limitation is inherent to stan-
dard MapReduce.

In this paper, we propose an initial approach toward a
robust framework to compute distributed similarity joins.
It overcomes the Straggling Reducer issues and the input
dataset size limitation we experienced in our past experi-
ments. Our approach is twofold. First, we find a group-
ing and replication strategy which distributes compute load
evenly over the existing compute instances. This is challeng-
ing since it is not sufficient to generate data groups of equal
size. The runtime of a join computation within one group is
dependent on characteristics of the data in the group such
as record lengths. Second, we enable MapReduce to handle
large intermediate datasets by proposing an extension for
MapReduce which unblocks the Reduce execution based on
statistical information gathered in a preprocessing step.

The idea of load balancing in MapReduce based on statis-
tics is not new. The TopCluster algorithm [8] is an online
approach which includes cardinality estimations at runtime.
Our approach on the other hand needs exact data statistics
in order to unblock the Reduce execution. These statistics
have to be collected before the join execution. Our approach
is comparable to the one by Kolb et al. [9], which involves a
preprocessing MR job to collect data statistics and a join job
which uses the statistics for an optimal data grouping and
replication. We extend this approach by using the knowlege
of the group sizes to unblock the Reduce execution. Further-
more, we tailor the grouping and replication to the specific
problem of set similarity joins.

The contributions of this paper are as follows:

• We propose a first approach toward a robust distributed
similarity join framework.

• We define a robust grouping and replication strategy
leading to evenly distributed compute loads amongst
the available compute nodes.

• We extend the MapReduce programming paradigm to
unblock Reduce execution to handle (potentially arbi-
trarily) large datasets.

The structure of the paper is as follows. In Section 2, we
give an overview on the similarity join problem, algorithmic
approaches, and motivate the need for research with the
runtime issues we experienced in our past experiments. In
Section 3, we introduce our approach for a robust join frame-
work and its interaction with an extension of MapReduce to
unblock Reduce execution. In Section 4, we conclude our
work and give an outlook on future work.

2. BACKGROUND
Without loss of generality, we use the set similarity self-

join as a running example. Our framework can be applied
to other filter-and-verification-based similarity joins as well.
The set similarity join computes all pairs of similar sets
(s1, s2) within a set of records S. A similarity function
sim(s1, s2) expresses the similarity between two records. For

sets, there are similarity functions such as Jaccard, Cosine,
or Dice. The user chooses a threshold t above which two
sets are considered being similar. Formally, given a set S,
a similarity function sim(s1, s2), and a similarity thresh-
old t, the set similarity join computes the set {(s1, s2) ∈
S × S|sim(s1, s2) ≥ t, s1 6= s2}.

A naive approach computes the similarity on all pairs
(s1, s2). Since it has a quadratic runtime, it is not feasi-
ble even for small datasets. In the literature, filter-and-
verification approaches emerged. Their basic idea is to gen-
erate an (inverted) index over all input records. For each
postings list, they compute the cross product (half of it in
the self-join case to be exact) and the union of all these
cross products. Each distinct record ID pair in the union is
a candidate pair, because the two records contain at least
one common token. These candidate pairs are further veri-
fied to compute the end result. Sophisticated filtering tech-
niques keep the indexes and the number of candidate pairs
small. The most prominent filter is the prefix filter [1, 2, 3].
Given a record length, a similarity function, and a similar-
ity threshold, the prefix length is the minimum number of
tokens which need to be indexed to guarantee an overlap of
at least one common token if it is similar to another record.

Motivated by increasing dataset sizes, MapReduce-based
versions of the filter-and-verification approach emerged [5,
12, 13]. The main idea is identical to the non-distributed
approaches. It is to compute an inverted index, to com-
pute the cross product on each postings list, and to verify
the resulting candidate pairs. The inverted index is built
as follows. A Map step computes key-value pairs with a to-
ken or a more complex signature as key. The MapReduce
framework groups key-value pairs with the same key to one
Reduce instance. This instance computes the cross product
on the postings list. Depending on the value of the key-value
pair (all tokens of the input record vs. only the record ID),
the verification takes place within the Reduce, or there are
further MapReduce steps to join the original records to the
candidate pairs for the verification.

The key generation of all algorithms known to us relies
on characteristics of the input data. In the most basic algo-
rithm [7], each token in the input record is used as key. Obvi-
ously, the number of record groups is equal to the number of
distinct tokens in the input dataset. The size of each record
group depends on the global frequency of its key token. The
data replication is dependent on the record lengths. For
sufficiently large datasets with stop words (tokens which oc-
cur in almost every record) and/ or many long records, the
Straggling Reducer effect occurs. More sophisticated ap-
proaches use a prefix filter, which reduces the number of
tokens for replication to a prefix, which is shorter than the
record length, but still dependent on it. The use of such
filters shifts the Straggling Reducer issue to larger datasets
and/ or datasets with longer records, but does not solve it
for arbitrarily large datasets.

We expect the input of the similarity join to be text, which
is integer-tokenized by a preprocessing step. The tokeniza-
tion may include changing letter cases, stemming, or stop
word removal. Depending on the preprocessing, the proper-
ties of input datasets vary by token distribution (stop words,
infrequent tokens), dictionary size, and record size. The to-
ken distribution of textual data is usually Zipfian, which
means that there are few very frequent tokens. This is a
challenge for approaches relying on token distribution.

42

3. APPROACH
In Figure 2, we illustrate the dataflow of our framework.

The first step computes exact data statistics. It computes
record length frequencies and global token frequencies. These
statistics can be computed in linear time and are highly par-
allelizable. Furthermore, it estimates runtime costs for the
join execution, based on data samples with differing aver-
age record lengths. The second step computes the actual
join. Every Map instance obtains the statistics from the
first step via a setup function which is called once before the
input data is read. Based on these statistics, it determines
a suitable data grouping and replication and assigns keys
to its output accordingly. Each join Reducer also obtains
the statistics via the setup function. Using the statistics,
it can compute the exact size of each group and start com-
puting the join on this group once all data for it has com-
pletely arrived. This can happen before all Mappers have
finished their execution. Note that this requires a change
in the original MapReduce. The Reduce-side shuffling peri-
odically counts the occurrences of each key in its input. It
triggers the execution of the first-order function once one of
the groups is complete. The Reducer can run any existing
state-of-the art non-distributed similarity join.

In the following, we describe how to find a suitable group-
ing and replication based on the statistics. We use the Jac-
card similarity function as an example, because it is the
most commonly used function in the literature. Our frame-
work is also applicable to any other set-based similarity func-
tion. Jaccard is defined by the intersection divided by the

union of two records |a∩b|
|a∪b| . Note that records with differing

lengths can be similar. Figure 3 shows this length rela-
tionship for a similarity threshold of 0.7. For each record
length on the y axis, it shows on the x axis, which record
lengths have to be considered as join candidates. Let us
assume the input has a length distribution as depicted in
Figure 4. In order to obtain data groups which can be self-
joined independently, we group together all records with the
same length and replicate each group to all larger length
groups it can be similar to. The resulting groups would be
{1}, {2}, {3, 4}, {4, 5, 6, 7}, {5, 6, 7, 8}, {6, 7, 8, 9, 10} etc. Note
that these groups have very uneven cardinalities, for exam-
ple |{1}| = 8.000, |{6, 7, 8, 9, 10}| = 688.000 etc.

In order to distribute the cardinalities evenly, we propose
to apply a hash-based grouping and replication on these
groups. Figure 5 shows an example for a hashing factor
of 4. A hashing function assigns each record to one of 4
groups. Each record is distributed 4 times, so that it joins
each other record in exactly one of the squares in the figure.
Note that there is a tradeoff related to the hashing factor.
If it is very low, there are only few large groups and the
replication is low. If it is high, there are many small groups
and the replication is high.

Partition
Replication

Map

Statistics
Map

Join
Reduce

Statistics
Reduce

Output
Dataset

Input
Dataset

Sta-
tistics Join

Setup

Figure 2: Dataflow Graph of our Execution Framework.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

In
p

u
t

R
e

c
o

rd
 L

e
n

g
th

Possible Similar Record Lengths

Figure 3: Possible Similar Record Lengths for Jaccard and
Similarity Threshold 0.7.

Seite 1

2 4 6 8 10 12 14 1618 20 2224 26283032343638 404244 46 48 50 52 54 56
57

58
59

60
0

20000

40000

60000

80000

100000

120000

140000

160000

Length

N
u

m
b

e
r

o
f R

e
co

rd
s

Figure 4: Example Record Length Distribution.

1 2 3 4

1

2

3

4

Figure 5: Hash-Based Grouping and Replication with hash-
ing factor h=4.

An even data distribution is not sufficient to prevent Strag-
gling Reducer effects. The costs of joining a partition with
long records is higher than the cost of joining a partition
with equally many short records. Let us assume that the
Reducer of the join step has a quadratic runtime, which rep-
resents the worst case. The runtime costs of computing a
self-join on one group of records with cardinality groupSize
and with an average record length of avgRecLen can be es-
timated with Equation 1, assuming that the tokens in the
records are sorted by a global token order allowing for a
merge-join. In Figure 6, we show a plot of this cost esti-
mation function. It shows that the costs grow exponentially
with regard to the number of records in the group. The
power of the increase grows exponentially with regard to
the average length of the records in the group. In order

43

Number of Records/Group

20000
40000

60000

80000
Avg

 Le
ng

th
of

Rec
or

ds
/G

ro
up

20

40

60

80
100

C
osts/G

roup

Figure 6: Cost Estimation for one data group.

to avoid a Straggling Reducer effect, our aim is to find a
data grouping and replication which at least limits the max-
imum compute costs over all groups or ideally imposes equal
computation costs for each data group. In Figure 6, equal
computation costs would occur if all groups would exhibit a
combination of number of records and average record lengths
on an intersection of the graph with a horizontal plane.(

groupSize

2

)
∗ 2 ∗ avgRecLen (1)

Our idea is to optimize the overall computation costs with
the hashing factor h as variable (Equation 2) and the con-
straint that the computation cost of each group may not be
larger than the maximum cost threshold m, which ensures
that no Reducer gets overloaded.

min
h∈N+

∑
group

costs(group, h), costs(group, h) ≤ m (2)

The group-wise costs within this equation could either be
estimated by Equation 1 or it might use runtimes on sampled
data from the statistics MapReduce step.

4. CONCLUSIONS, FUTURE WORK
In this paper, we introduced a first approach toward a dis-

tributed similarity join framework which is robust against
arbitrary input dataset sizes and data characteristics such
as skew. We plan to detail it out, implement it and run ex-
periments with it. One crucial detail is to ensure that there
is a sufficient number of record groups which is complete. If
a Reduce instance collects only non-complete groups, strag-
gling will still occur. Another open detail is the choice of
the hash function for the join. Grouping and replication
strategies from existing MapReduce-based similarity join ap-
proaches could be integrated in the proposed strategy. Es-
pecially signature creating approaches like MassJoin [5] and
sophisticated grouping strategies like MRGroupJoin [6] us-
ing the pigeonhole principle are promising.

In future experiments, we are especially interested in the
tradeoff between replication and group size. Furthermore, it
is interesting if it pays off to use empirical runtime statistics
for the join costs or simply estimate the runtime analytically.

5. ACKNOWLEDGMENTS
This work was supported by the Humboldt Elsevier Ad-

vanced Data and Text (HEADT) Center.

6. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In Proceedings of the 32nd
international conference on Very large data bases,
pages 918–929. VLDB Endowment, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In Proceedings of the 16th
international conference on World Wide Web, pages
131–140. ACM, 2007.

[3] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In Data
Engineering, 2006. ICDE’06. Proceedings of the 22nd
International Conference on, pages 5–5. IEEE, 2006.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. OSDI, pages
137–150, 2004.

[5] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng.
Massjoin: A mapreduce-based method for scalable
string similarity joins. In Data Engineering (ICDE),
2014 IEEE 30th International Conference on, pages
340–351. IEEE, 2014.

[6] D. Deng, G. Li, H. Wen, and J. Feng. An efficient
partition based method for exact set similarity joins.
Proceedings of the VLDB Endowment, 9(4):360–371,
2015.

[7] T. Elsayed, J. Lin, and D. W. Oard. Pairwise
document similarity in large collections with
mapreduce. In Proceedings of the 46th Annual Meeting
of the Association for Computational Linguistics on
Human Language Technologies: Short Papers, pages
265–268. Association for Computational Linguistics,
2008.

[8] B. Gufler, N. Augsten, A. Reiser, and A. Kemper.
Load balancing in mapreduce based on scalable
cardinality estimates. In Data Engineering (ICDE),
2012 IEEE 28th International Conference on, pages
522–533. IEEE, 2012.

[9] L. Kolb, A. Thor, and E. Rahm. Load balancing for
mapreduce-based entity resolution. In Data
Engineering (ICDE), 2012 IEEE 28th International
Conference on, pages 618–629. IEEE, 2012.

[10] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A
partition-based method for similarity joins.
Proceedings of the VLDB Endowment, 5(3):253–264,
2011.

[11] W. Mann, N. Augsten, and P. Bouros. An empirical
evaluation of set similarity join techniques. Proceedings
of the VLDB Endowment, 9(9):636–647, 2016.

[12] A. Metwally and C. Faloutsos. V-smart-join: A
scalable mapreduce framework for all-pair similarity
joins of multisets and vectors. Proceedings of the
VLDB Endowment, 5(8):704–715, 2012.

[13] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In Proceedings of
the 2010 ACM SIGMOD International Conference on
Management of data, pages 495–506. ACM, 2010.

[14] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang.
Efficient similarity joins for near-duplicate detection.
ACM Transactions on Database Systems (TODS),
36(3):15, 2011.

44

Facilitating User Interaction With Data

Zainab Zolaktaf
Supervised by Rachel Pottinger
University of British Columbia

Vancouver, B.C, Canada
{zolaktaf, rap}@cs.ubc.ca

ABSTRACT
In many domains, such as scientific computing, users can
directly access and query data that is stored in large, and
often structured, data sources. Discovering interesting pat-
terns and efficiently locating relevant information, however,
can be challenging. Users must be aware of the data con-
tent and its structure, before they can query it. Further-
more, they have to interpret the retrieved results and pos-
sibly refine their query. Essentially, to find information, the
user has to engage in a repeated cycle of data exploration,
query composition, and query answer analysis. The focus of
my PhD research is on designing techniques that facilitate
this interaction. Specifically, I examine the utility of recom-
mender systems for the data exploration and query compo-
sition phases, and propose techniques that assist users in the
query answer analysis phase. Overall, the solutions devel-
oped in my thesis aim to increase the efficiency and decision
quality of users.

1. INTRODUCTION
With the advent of technology and the web, large volumes

of data are generated and stored in data sources that evolve
and grow over time. Often, these sources are structured as
relational databases that users can directly query and ex-
plore. For instance, astronomical measurements are stored
in a large relational database, called the Sloan Digital Sky
Survey (SDSS) [19, 21]. Climate data collected from various
sources is integrated in relational databases and offered for
analysis by users [5].

At a high level, user interaction with data involves two
phases: a query composition phase, where the user com-
poses and submits a query, and a query answer analysis
phase, where the user analyses query answers produced by
the system. During both phases, however, users can face
problems in understanding the data.

Consider, for example, the scientific computing domain.
The SDSS schema has over 88 tables, 51 views, 204 user-
defined functions, and 3440 columns [14]. A variety of users,

c© Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Mu-
nich, Germany.
Copyright (C) 2017 for this paper by its authors. Copying permitted for
private and academic purposes.

ranging from high school students to professional astronomers,
with varied levels of skills and knowledge, interact with this
database. Furthermore, scientific databases are typically
used for Interactive Data Exploration (IDE), where users
pose exploratory queries to understand the content and find
patterns [13]. Efficiently composing queries over this data to
discover interesting patterns, is one of their main challenges.

After successfully composing the query, the next step is
to interpret query answers. However, the retrieved results
can often be difficult to understand. For example, consider
an aggregate query SELECT AVG(TEMPERATURE) over climate
data. In the weather domain, observational data regard-
ing atmospheric conditions is collected by several weather
stations, satellites, and ships. For the same data point, e.g.,
temperature on a given day, there can be conflicting and du-
plicate values. Consequently, the aggregate query can have
an overwhelming number of correct and conflicting answers.
Here, mechanisms that aid the user in understanding the
query answers are required.

In my thesis, I develop techniques that assist user inter-
action with data. I consider the data exploration and query
composition phase, and examine the utility of recommen-
dation systems for this phase. Furthermore, I consider the
query answer analysis phase and devise efficient techniques
that provide insights about query answers. More precisely,
I study three problems: 1. how do classical recommenda-
tion systems perform with regards to exploration tasks in
standard recommendation domains, and how can we mod-
ify them to facilitate data exploration more rigorously (Sec-
tion 2)? 2. what are the challenges of recommendation in the
relational database context and which algorithms are appro-
priate for helping users explore data and compose queries
(Section 3)? 3. how can we assist users in the query an-
swer analysis phase (Section 4)? Overall, I aim to develop
techniques that help users explore data and increase their
decision quality.

2. FACILITATING DATA EXPLORATION WITH
RECOMMENDER SYSTEMS

One way to facilitate data navigation and exploration is to
find and suggest items of interest to users by deploying a rec-
ommendation system [6, 16, 29]. Classical recommendation
systems are categorized into content-based and collaborative
filtering methods.

Content-based methods use descriptive features such as
genre of movies, or user demographics, to construct informa-
tive user and item profiles, and measure similarity between

45

them. But descriptive features might not be available. Col-
laborative filtering methods instead infer user interests from
user interaction data. The main intuition is that users with
similar interaction patterns have similar interests.

The interaction data may include explicit user feedback on
items, such as user ratings on movies, or implicit feedback,
such as purchasing history, browsing and click logs, or query
logs [11]. An important property of the interaction data is
that the majority of items (users) receive (provide) little
feedback and are infrequent, while a few receive (provide)
lots of feedback and are frequent. But many models only
work well when there is a lot of data available, i.e., they make
good recommendations for frequent users, and are biased
toward recommending frequent items [6, 15, 17].

However, recommending popular items is not sufficient for
exploratory tasks. Users are likely already aware of popu-
lar items or can find them on their own. Concentrating on
popular items also means the system has low overall cover-
age of the item space in its recommendations. It is essential
to develop methods that help users discover new items that
may be less common but more interesting. Therefore, we
investigate the following research question:

How do existing recommendation models perform with
regard to data exploration tasks in standard recom-
mendation domains, and how can they be modified to
facilitate data exploration more rigorously?

To answer this question, we focus on top-N item recommen-
dation, where the goal is to recommend the most appealing
set of N items to each user [6]. Informally, the problem set-
ting is as follows: we are given a log of explicit user feedback,
e.g., ratings, for different items. We want to assign a set of
N unseen items to each user.

2.1 Solution
In our solution [20], we focused on promoting less fre-

quent items, or long-tail items, in top-N sets to facilitate
exploration. Recommending these items introduces novelty
and serendipity into top-N sets, and allows users to discover
new items. It also increases the item-space coverage, which
increases profits for providers of the items [3, 6, 26, 22].
Our main challenge was in promoting long-tail items in a
targeted manner, and in designing responsive and scalable
models. We used historical rating data to learn user pref-
erence for discovering new items. The main intuition was
that the long-tail preference of user u, captured by θ∗u, de-
pends on the types of long-tail items she rates. Moreover,
the long-tail type or weight of item i, captured by wi, de-
pends on the long-tail preference of users who rate that item.
Based on this, we formulated a joint optimization objective
for learning both unknown variables, θ∗ and w.

Next, we integrated the learned user preference estimates,
θ∗, into a generic re-ranking framework to provide customized
balance between accuracy and coverage. Specifically, we de-
fined a re-ranking framework that required three compo-
nents: 1. an accuracy recommender that was responsible for
recommending accurate top-N sets. 2. a coverage recom-
mender that was responsible for suggesting top-N sets that
maximized coverage across the item space, and consequently
promoted long-tail items. 3. the user long-tail preference.

In contrast to prior related work [1, 10, 27], our frame-
work learned the personalization rather than optimizing us-
ing cross-validation or parameter tuning; in other words, our

Algorithm P@5 R@5 L@5 C@5

M
T

-2
0
0
K

Random 0.000 0.000 0.871 0.873
Pop [6] 0.051 0.080 0.000 0.002
MF [28] 0.000 0.000 1.000 0.001
5D ACC [10] 0.000 0.000 0.995 0.157

CofiR [24] 0.025 0.046 0.066 0.020
PureSVD [6] 0.018 0.022 0.001 0.067

θ∗Dyn900
Pop [20] 0.027 0.050 0.416 0.171

Table 1: Top-5 recommendation performance.

personalization method was independent of the underlying
recommendation model.

We evaluated our framework on several standard datasets
from the movie domain. Table 1 shows the top-5 recom-
mendation performance for the MovieTweetings 200K (MT-
200K) dataset [9] which contains voluntary movie rating
tweets from users. For accuracy, we computed precision
(P@5) and recall (R@5) [6] wrt the test items of users. Long-
tail accuracy (L@5) [10], is the normalized number of long-
tail items in top-5 sets per user. Long-tail items are those
that generate the lower 20% of the total ratings in the train
set, based on the Pareto principle or the 80/20 rule [26].
Coverage (C@5) [10] is the ratio of the number of distinct
items recommended to all users, to the number of items.

We compared with non-personalized baselines: Random
that has high coverage but low accuracy, and most popu-
lar recommendation (Pop) [6], that provides accurate top-N
sets but has low coverage and long-tail accuracy. We also
compared with personalized algorithms: matrix factoriza-
tion (MF) with 40 factors, L2-regularization, and stochastic
gradient descent optimization [28], a resource allocation ap-
proach that re-ranks MF (5D ACC) [10], CofiRank with re-
gression loss (CofiR) [24], and PureSVD with 300 factors [6].
On MT-200K, we chose the non-personalized Pop algorithm
as our accuracy recommender, and combined it with a dy-
namic coverage recommender (Dyn900) introduced in [20].

Our personalized algorithm is denoted θ∗Dyn900
Pop . Table 1

shows that while most baselines achieve best performance in
either coverage or accuracy metrics, θ∗Dyn900

Pop has high cover-
age, while maintaining reasonable accuracy levels. Further-
more, it outperforms the personalized algorithms, PureSVD
and CofiR, in both accuracy and coverage metrics.

3. FACILITATING DATA EXPLORATION AND
QUERY COMPOSITION

Getting information out of database systems is a major
challenge [12]. Users must be familiar with the schema to be
able to compose queries. Some relational database systems,
e.g, SkyServer, provide a sample of example queries to aid
users with this task. However, compared to the size of the
database and complexity of potential queries, this sample
set is small and static. The problem is exacerbated as the
volume of data increases, particularly for IDE. A mechanism
that helps users navigate the schema and data space, and
exposes relevant data regions based on their query context,
is required. We consider using recommendation systems in
this setting and focus on the following research question:

What are the challenges of recommendation in the
database context, and which algorithms are suitable
for facilitating interactive exploration and navigation
of relational databases?

46

To answer this question, we address top-N aspect recom-
mendation, where the goal is to suggest a set of N aspects
to the user that facilitate query composition and database
exploration. Similar to the collaborative filtering setting in
Section 2, we analyse user interaction data, available in a
query log. Informally, the problem setting is as follows: we
are given a query log that is partitioned into sessions, sets
of queries submitted by the same user. Furthermore, we
also have a relational database synopsis with information
about the schema of the database (#relations, #attributes,
and foreign key constraints) and the range of numerical at-
tributes. Given a new partial session, the objective is to
recommend potential query extensions, or aspects.

3.1 Proposed Work
To formulate an adequate solution, the following chal-

lenges must be addressed:

1. Aspect Definition. There is no clear notion of “item”
or aspect in this setting. Instead, we need to find an
adequate set of aspects that can be used to to cap-
ture user intent and characterize queries. Given the
exploratory nature of queries in the scientific domains,
the aspects should enable both schema navigation and
data space exploration.

2. Sequential Aspects and Domain-Specific Constraints.
Individual elements in a SQL query are sequential and
there is dependency between them. For instance, in
SELECT T.A FROM T WHERE X > 10, the domain of vari-
able X is attributes in table T. Thus, given partial
query, only a subset of the aspects are syntactically
valid. Queries in the same session, are also submitted
sequentially.

3. Session and Aspect Sparsity. In SDSS, the typical ses-
sion has six SQL queries and lasts thirty minutes [21]
which indicates aspect sparsity in queries and sessions.

The relational database setting exhibits some similarities
to standard recommendation domains (e.g., movie): Some
aspects, e.g., tables, attributes, data regions, are popular
while the majority of them are unpopular. Some sessions
are frequent, i.e., many queries are submitted, while the
majority are infrequent. Scalability and responsiveness is
important in both domains.

Analogous to our work in Section 2, our main hypothesis
is that merely recommending popular aspects is not suffi-
cient for exploratory tasks. Although popular aspects can
help familiarize novice users with concepts like the impor-
tant tables and attributes, given the exploratory nature of
queries in IDE, recommendations are deemed more useful if
they can help users narrow down their queries and expose
relevant data regions. For example, recommending a spe-
cific interval like b1 < BRIGHTNESS < b2 is more useful than
just suggesting the attribute BRIGHTNESS.

Based on these intuitions, we will focus on recommending
interesting aspects that enable data exploration and schema
navigation for users of a relational database, and in partic-
ular, in IDE settings. Using the query log and the database
synopsis, we will devise a set of aspects that include not just
the relations, attributes, and user-defined functions, but also
intervals of numeric attributes, e.g., b1 < BRIGHTNESS < b2.

Subsequently, we can use a vector-based query representa-
tion model where each element denotes the presence of a cer-
tain aspect. Alternatively, a graph-based representation [23]
might be more suitable. After formulating similarity mea-
sures between queries (or sessions) [2], we can use a nearest
neighbour model to suggest relevant aspects to the user.

In contrast to prior work that focuses on supervised learn-
ing and query rewriting [7], we focus on aspect definition
and extraction. In contrast to [4, 7, 8], we rely on the
database synopsis only. Accessing a large scientific database
like SDSS to retrieve the entire set of tuples is expensive. In
contrast to [14] our recommendations include intervals not
just tables and attributes. The intermediate query format
in [18] is complementary to our work.

4. FACILITATING QUERY ANSWER ANAL-
YSIS

After users have successfully submitted a query, their next
challenge is to analyse and understand the query answers.
When the answer set is small, this task is attainable. The
challenge is in examining and interpreting large, or even
conflicting, answer sets.

To illustrate the problem, consider again climate data
that is reported by various sources and integrated in re-
lational databases. Because the sources were independently
created and maintained, a given data point can have mul-
tiple, inconsistent values across the sources. For example,
one source may have the high temperature for Vancouver
on 06/11/2006 as 17C, while another may list it as 19C.
As a result of this value-level heterogeneity, an aggregate
query such as SELECT AVG(TEMPERATURE) does not have a
single true answer. Instead, depending on the choice of data
source combinations that are used to answer the query, dif-
ferent answers can be generated. Reporting the entire set
of answers can overwhelm the user. Here, mechanisms that
summarize the results and help the user understand query
answers are required. Therefore, we study the following re-
search question:

After a query has been submitted to the system, how
can we help the user understand and interpret the
query answers?

Specifically, we address the problem of helping users un-
derstand aggregate query answers in integration contexts
where data is segmented across several sources. We assume
meta-information that describes the mappings and bindings
between data sources is available [25].Our main concern is
how to handle the value-level heterogeneity that exists in
the data, to enable the user to better understand the range
of possible query answers.

4.1 Solution
In our solution [30], we represented the answer to the ag-

gregate query as an answer distribution instead of a single
scalar value. We then proposed a suite of methods for ex-
tracting statistics that convey meaningful information about
the query answers. We focused on the following challenges
1. determining which statistics best represent and answer’s
distribution 2. efficiently computing the desired statistics.
In deriving our algorithms, we assumed prior knowledge re-
garding the sources is unavailable and all sources are equal.

A high coverage interval is one of the statistics we ex-
tract to convey the shape of the answer distribution and

47

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

x 10
4

0

0.5

1

1.5

2
x 10

−3

2 intv. cover 85.72% area,
length= 1791.83 (22.723944%)

(a) S1

0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
4

0

0.5

1

1.5

2
x 10

−3

10 intv. cover 92.12% area,
length= 5288.17 (55.528435%)

(b) S4

Figure 1: High coverage intervals tell where the majority of
answers can be found.

the intervals where the majority of viable answers can be
found. Figure 1 shows the multi-modal answer distributions
of the aggregate query AVG(TEMP), on Canadian climate data
(S1) [5] and synthetic data (S4) [30], and their corresponding
high coverage intervals.

5. SUMMARY AND OUTLOOK
The goal of my thesis is to devise techniques that facilitate

user interaction with data. I address three aspects:

• (Accomplished) Facilitating data exploration with rec-
ommender systems in standard domains (Section 2).

• (In progress) Facilitating data exploration and query
composition in the relational database context (Sec-
tion 3). I am currently working on extracting a dataset,
and narrowing down the problem statement.

• (Accomplished) Facilitating query answer analysis by
extracting statistics and semantics about the range of
query answers (Section 4).

6. REFERENCES
[1] Gediminas Adomavicius and YoungOk Kwon. Improving

aggregate recommendation diversity using ranking-based
techniques. TKDE, 24(5):896–911, 2012.

[2] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano
Rizzi, and Elisa Turricchia. Similarity measures for olap
sessions. Knowledge and information systems,
39(2):463–489, 2014.

[3] Pablo Castells, Neil J. Hurley, and Saul Vargas.
Recommender Systems Handbook, chapter Novelty and
Diversity in Recommender Systems. Springer US, 2015.

[4] Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis
Polyzotis. Query recommendations for interactive database
exploration. In International Conference on Scientific and
Statistical Database Management, pages 3–18. Springer,
2009.

[5] Climate Canada. Canada climate data. http://climate.
weatheroffice.gc.ca/climateData/canada_e.html, 2010.

[6] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin.
Performance of recommender algorithms on top-n
recommendation tasks. In RecSys, 2010.

[7] Julien Cumin, Jean-Marc Petit, Vasile-Marian Scuturici,
and Sabina Surdu. Data exploration with sql using machine
learning techniques. In EDBT, 2017.

[8] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei
Diao. Explore-by-example: An automatic query steering
framework for interactive data exploration. In Proceedings
of the 2014 ACM SIGMOD international conference on
Management of data, pages 517–528. ACM, 2014.

[9] Simon Dooms, Toon De Pessemier, and Luc Martens.
Movietweetings: a movie rating dataset collected from
twitter. In CrowdRec at RecSys, 2013.

[10] Yu-Chieh Ho, Yi-Ting Chiang, and Jane Yung-Jen Hsu.
Who likes it more?: mining worth-recommending items
from long tails by modeling relative preference. In WSDM,
pages 253–262, 2014.

[11] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative
filtering for implicit feedback datasets. In 2008 Eighth
IEEE International Conference on Data Mining, pages
263–272. IEEE, 2008.

[12] HV Jagadish, Adriane Chapman, Aaron Elkiss, Magesh
Jayapandian, Yunyao Li, Arnab Nandi, and Cong Yu.
Making database systems usable. In Proceedings of the
2007 ACM SIGMOD international conference on
Management of data, pages 13–24. ACM, 2007.

[13] Martin L Kersten, Stratos Idreos, Stefan Manegold, Erietta
Liarou, et al. The researchers guide to the data deluge:
Querying a scientific database in just a few seconds.
PVLDB Challenges and Visions, 3, 2011.

[14] Nodira Khoussainova, YongChul Kwon, Magdalena
Balazinska, and Dan Suciu. Snipsuggest: context-aware
autocompletion for sql. Proceedings of the VLDB
Endowment, 4(1):22–33, 2010.

[15] Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy
Lebanon, and Yoram Singer. Local collaborative ranking.
In WWW, pages 85–96, 2014.

[16] Joonseok Lee, Mingxuan Sun, and Guy Lebanon. A
comparative study of collaborative filtering algorithms.
arXiv preprint arXiv:1205.3193, 2012.

[17] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic
matrix factorization. In Advances in neural information
processing systems, pages 1257–1264, 2007.

[18] Hoang Vu Nguyen, Klemens Böhm, Florian Becker,
Bertrand Goldman, Georg Hinkel, and Emmanuel Müller.
Identifying user interests within the data space-a case
study with skyserver. In EDBT, pages 641–652, 2015.

[19] M Jordan Raddick, Ani R Thakar, Alexander S Szalay, and
Rafael DC Santos. Ten years of skyserver i: Tracking web
and sql e-science usage. Computing in Science &
Engineering, 16(4):22–31, 2014.

[20] Information removed for double-blind review. Submitted
paper, 2017.

[21] Vik Singh, Jim Gray, Ani Thakar, Alexander S Szalay,
Jordan Raddick, Bill Boroski, Svetlana Lebedeva, and
Brian Yanny. Skyserver traffic report-the first five years.
arXiv preprint cs/0701173, 2007.

[22] Saúl Vargas and Pablo Castells. Improving sales diversity
by recommending users to items. In RecSys, 2014.

[23] Roy Villafane, Kien A Hua, Duc Tran, and Basab Maulik.
Mining interval time series. In International Conference on
Data Warehousing and Knowledge Discovery, pages
318–330. Springer, 1999.

[24] Markus Weimer, Alexandros Karatzoglou, Quoc Viet Le,
and Alex Smola. Maximum margin matrix factorization for
collaborative ranking. Advances in neural information
processing systems, pages 1–8, 2007.

[25] Jian Xu and Rachel Pottinger. Integrating domain
heterogeneous data sources using decomposition
aggregation queries. Information Systems, 39(0), 2014.

[26] Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen.
Challenging the long tail recommendation. PVLDB,
5(9):896–907, 2012.

[27] Weinan Zhang, Jun Wang, Bowei Chen, and Xiaoxue Zhao.
To personalize or not: a risk management perspective. In
RecSys, pages 229–236, 2013.

[28] Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, and
Chih-Jen Lin. A fast parallel sgd for matrix factorization in
shared memory systems. In RecSys, pages 249–256, 2013.

[29] Sedigheh Zolaktaf and Gail C Murphy. What to learn next:
recommending commands in a feature-rich environment. In
ICMLA, pages 1038–1044. IEEE, 2015.

[30] Zainab Zolaktaf, Jian Xu, and Rachel Pottinger. Extracting
aggregate answer statistics for integration. EDBT, 2015.

48

http://climate.weatheroffice.gc.ca/climateData/canada_e.html
http://climate.weatheroffice.gc.ca/climateData/canada_e.html

Processing Moving Object Data Streams with
Data Stream Management Systems

Tobias Brandt
Supervised by Marco Grawunder
University of Oldenburg, Germany

tobias.leo.brandt@uol.de

ABSTRACT
With the wide spread of cheap and mobile GPS sensors
as well as mobile data connections, live streams from mov-
ing objects are becoming a huge data source. The services
based on these data streams, for example, for connected
cars, vessels or smartphone users, need real-time results for
queries based on the current or even near-future positions
of the moving objects. Spatio-temporal data from moving
objects cannot just be treated as a crowd of points with
timestamps, but must be seen as points in a trajectory with
non-measured points in between. In this paper I present
my work on the management of such real-time trajectories
within a Data Stream Management System (DSMS) to en-
able simple, flexible and efficient in-memory moving object
query processing.

1. INTRODUCTION
Moving objects in the real world are everywhere and have

been there for a while: pedestrians and cars on the streets,
vessels on the oceans and airplanes in the sky. Comparably
new is the huge amount of data these objects are produc-
ing. Many of these send their location regularly to a central
server or other facility, may it be the smartphone user with a
Location-based Service (LBS) or a vessel with an Automatic
Identification System (AIS) sender.

This data can be used to answer questions and solve real-
world problems. For example, vessels can be warned about
congested or currently dangerous areas based on their own
position as well as the positions of other vessels. As more
data can be shared via live-streams and as the results of such
queries are required with minimal delay, traditional systems
that first store and then query the data streams are not
ideal. They typically run short-term queries on static data
sets that are stored on the hard drive.

Data Stream Management Systems (DSMSs) especially
target data streams. They offer solutions for many data
stream related challenges, provide query languages to define
queries without the need to write code in a general purpose

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (c) 2017 for this paper by its authors. Copying permitted for
private and academic purposes.

programming language and simplify the connection to typ-
ical data sources. Maintenance of queries on data streams
is made simple due to the ease to change and update the
query text. Hence, queries can be adapted to new require-
ments quickly. These features make them a useful tool to
easily create and change queries for many different use cases
and are therefore a good choice for rapid prototyping sys-
tems in the field of data stream processing and analysis.

To cope with the requirements of data streams, DSMSs
support continuous queries and use a data-driven approach.
New results are incrementally calculated when new data ar-
rives at the system. This increases the demand for quick
calculations, wherefore data is typically kept in-memory.
Unfortunately, a potentially infinite data stream cannot be
hold in-memory. A typical solution DSMSs provide are win-
dows. These reduce the amount of data hold in-memory to
a smaller part of the data streams, e. g., all elements from
the last hour or the last 100 elements.

Even though DSMSs already tackle lots of the challenges
that occur with data stream processing, they lack features
necessary to work with moving objects data. Two of these
features are (1) continuous location interpolation and near-
future prediction and (2) fast moving objects index struc-
tures for windows with high fluctuation. In this work, I
concentrate on point data, hence, moving regions are not in
the scope. That is because most moving object data of inter-
est today, such as vessels and pedestrians, can be simplified
to point objects without loosing too much precision in the
queries. Moving or evolving regions in contrast introduce a
whole new palette of challenges.

One important feature of moving objects data streams is
that the objects move continuously but are only measured
once in a while. Therefore, the objects have unknown lo-
cations in between the measurements, which can and some-
times need to be used for querying. Imagine a query where
a vessel needs to know all vessels around it. Another vessel,
which last known location is (temporal and spatial) far away
but will probably be within that range on querytime, should
be included in the answer, hence, its location needs to be
automatically predicted to the future by the query. This sce-
nario is particularly important for satellite AIS where it is
normal to have hours between location updates [3]. Stream-
ing data differs from static time-series data: in static data,
all measured locations of a moving object are known. In con-
trast, in a streaming environment, it is not possible to know
if and when the next location update of a moving object will
arrive.

Challenges with this approach are that interpolation and

49

prediction depends on the use case and always comes with an
uncertainty. When new data about an interpolated object is
available, old query results may need to be updated. When
and how to update results by more precise ones is a non-
trivial question within a DSMS. To my best knowledge,
there is no work that tackles these challenges in the field of
data streams for moving objects.

The second feature mentioned above are moving objects
windows and suitable index structures. As not all data can
be stored, it needs to be decided which data is still needed
for processing and which is not and how and when old data
can be wiped. Typical window concepts such as time-based
windows can be extended by windows especially for moving
objects. A possible window type could be a distance-based
window. It would store all data within a certain distance of
a single moving object, e. g., the last kilometer of every ob-
ject. The requirements for the underlying index structures
differ both from pure temporal as well as pure spatial index
structures.

2. OBJECTIVES AND CHALLENGES
The overall goal of this work is to create and implement

concepts to allow DSMSs to process spatio-temporal data
from moving objects. To reach this goal, I am tackling the
challenges of including location interpolation and prediction
as well as window concepts for moving object data streams.

2.1 Objectives

• Location Interpolation Moving objects naturally
move continuously but are only measured once in a
while. Within a data stream, they seem to be hopping
from point to point, resulting in delayed and possi-
bly wrong results. I aim to introduce location inter-
polation into the data stream processing to that the
objects move continuously in time and space. The in-
terpolation should also be used for short-term location
prediction.

• Result Uncertainty As prediction always comes with
a degree of uncertainty, the results are uncertain as
well and can change when new data from a moving
objects arrives. The accuracy or uncertainty of a re-
sult should be transparent to the user and updates of
results should be possible.

• Moving Object Windows Window definitions that
are especially useful for moving objects data should be
introduced.

• Spatio-temporal Indexes The data within the win-
dows need to be hold in spatio-temporal index struc-
tures optimized for high data fluctuation.

The concepts created to solve the goals should be eval-
uated by implementing them into an open source DSMS.
Scenarios with AIS data from vessels should show that the
concepts work with real-world data and queries.

2.2 Challenges for Location Interpolation
Typical spatio-temporal queries include neighborhood and

range queries. An example query could be “Continuously re-
port all vessels within a range of 10 km around vessel X”.
Such a query is depicted in Figure 1. The orange vessel in

12:00

11:55

12:00

12:05

11:58

CC BY-SA 2.0, Editors of http://map.openseamap.org/

11:581
2

3

12:00

X

Figure 1: Range query for the orange vessel.

the middle sent its last location at 12 o’clock and wants to
know which vessels are in its range at that point in time.
The trajectory of the other vessels one to three are visual-
ized with the arrows and circles. The circles are the measure-
ments where the correct location of the vessel is known. The
arrows in between visualize a simple interpolation. It is as-
sumed that the path between the measurements is straight.
That is not necessarily the case but it is a reasonable and
simple approximation. The dashed lines with the striped
circles are predictions of the future trajectory.

The need to interpolate and predict locations arises from
the fact that the moving objects do not measure and send
their location synchronized with each other, but at different
time intervals. In the figure, the last known location of
the orange vessel in the middle was captured at 12 o’clock.
For this point in time, the locations of all other vessels are
needed to answer the query correctly. Unfortunately, the
known, i. e., measured, locations of the other vessels are not
at 12 o’clock, but slightly before or after this point in time.
If only the last known location would be used to answer the
query, the result would be wrong: Vessel 1 would not be
within the result but should be, Vessel 2 would be within
the result but should not and the location of Vessel 3 would
be wrong.

Hence, interpolation and prediction is necessary to an-
swer the query approximately correct. When doing so, a
few challenges arise. The interpolation has to work in an in-
cremental manner with limited knowledge about the data,
as not all past data can be stored in a streaming environ-
ment. The accuracy of a query result needs to be known to
the user or further processing steps. When the prediction
was wrong, old results for a query may need to be updated
(e. g., if Vessel 1 takes a different path than predicted). In a
streaming scenario, the approximate result may already be
used for further processing or a following result, for exam-
ple, for 12:03, has already been processed. The questions
on how to integrate uncertain results and updates to them
within a DSMS need to be tackled.

2.3 Challenges for Moving Object Windows
Windows are necessary to reduce the infinite data stream

to a finite set of data. The data within a window can be
kept in-memory and never needs to be permanently written
to a hard drive. Next to the performance improvements,

50

the concept of windows has more benefits. They are based
on the assumption that in many cases, queries are only or
mostly interested in the current data and not in the data
from the distant past. To define a window according to the
use case, the domain needs to be known. A typical window
could, for example, hold all data from the last hour.

In the domain of moving objects, the requirements for
windows can differ depending on the scenario. The defi-
nition of a window only by the time and not by the space
dimension is often not enough. Imagine, for example, a win-
dow where the speed of all objects within a data stream is
diverse and variable (e. g., slow vessels and fast planes within
one stream). It could be necessary to have from each ob-
ject at least the last kilometer within the window. With a
time-based window this would be difficult to achieve. Addi-
tionally, compression could be introduced to moving objects
windows. Patroumpas et al. [7] show that trajectory data
can be compressed without loosing much accuracy. Hence,
new window concepts for moving objects are useful.

Windows reduce the amount of the required (in-memory)
storage space. Nevertheless, it opens up new questions about
how to clean up the memory, for example, when to delete
old data. This question gets more complicated as window
indexes have to be shared between multiple queries. Imag-
ine a data stream of all vessels on the North Sea. As spatial
queries can be heavily accelerated when using an index, the
data in the windows are indexed. Thereby, due to memory
limitations, creating multiple nearly identical indexes must
be avoided. Subsequently, one index is shared between mul-
tiple queries. Nevertheless, such a sharing makes the de-
cision when to delete old data more complicated, as the
window requirements from the queries can be different.

Additionally, not every index structure is suitable for a
spatio-temporal data stream index. In contrast to more tra-
ditional Geographic Information System (GIS) applications,
the fluctuation in the data is very high. New data needs to
be inserted and at the same time old data needs to be re-
moved on a high frequency. It is possible that the whole
set of data within a window can be swapped within minutes
or even seconds, which, for example, distinguishes the re-
quirements from static time-series data. Traditional index-
structures that require heavy reorganization when data gets
changed are probably not suitable for this environment. In
this work it needs to be evaluated if index structures for
this purpose are useful as it is only an improvement if the
indexing needs less time than it saves while querying the
data.

In this PhD project I aim to create suitable window con-
cepts, implement them and choosing an efficient index struc-
ture for this very dynamic environment.

3. RESEARCH PLAN
In this section, the main approaches to overcome the chal-

lenges from above are described.

3.1 Approach
Query processing on data streams is typically done with

operator graphs. The elements of the data stream are send
from one operator to the next, each operator doing a specific
task. Joins, projections and selections are typical examples
for such operators.

When adding support for moving objects data, this mod-
ular architecture should be exploited. New operators can

implement the spatio-temporal operations. While doing so,
they have to behave like normal operators to the outside so
that other operators can seamlessly use the output. Two
example operators that are needed are a range and a k -
nearest neighbors (kNN) operator. Both search for other
moving objects close to a certain object. The external be-
havior of these operators is similar to other operators. They
receive stream elements, process them and send their results
as stream elements to the next operator.

Internally, these operators need to use location interpola-
tion and prediction to compute correct results and annotate
these results with the level of (un)certainty in the meta data
of a streaming object. The interpolation should be done by
a framework within the DSMS that allows to interchange
algorithms, as the interpolation algorithm can change from
case to case.

3.2 Current and Future Work
Currently, prototype versions for moving object range and

kNN queries are available. A prototype implementation
within a DSMS was developed. For spatial querying with
moving object windows, an index structure based on Geo-
Hashes [6] was developed. It showed better performance
than an implementation based on QuadTrees. This could
be due to better insertion and deletion performance with
the GeoHash implementation. However, these results are
very preliminary, as the test setup needs to be better de-
scribed and results need to be analyzed further to find out
the reasons for the differences.

The correct integration of those queries as well as moving
object windows is ongoing work. The results are currently
only partly usable for other query operators. Interpolating
and predicting locations are in the concept phase. Develop-
ment and implementation of these will be a major part of
the future work.

3.3 Planned Evaluation
The concepts that are created in this PhD project will

be implemented into the open source DSMS Odysseus1 [1].
Odysseus offers a rich set of operators and a query language.
For the purpose of this work it already supports protocols
used in the maritime domain such as AIS and can talk to
common data sources such as RabbitMQ out of the box. In
contrast to streaming frameworks such as Apache Flink2 or
Heron3, it is not necessary to program in a general program-
ming language such as Java to create new queries.

With that implementation, the feasibility of the concepts
will be evaluated. Using an iterative approach, the concepts
can be adjusted if uncovered challenges occur while evaluat-
ing. The implementation will be used with scenarios in the
maritime context, especially with AIS data. An example
query could be to continuously query if a vessel is heading
to an area that will be congested during its transit.

For the given scenarios with moving objects, timely query
results are necessary, wherefore the performance of the solu-
tions will be measured. The latency and throughput of the
queries will be used to compare different implementations,
e. g., different approaches for spatio-temporal indexes.

1http://odysseus.offis.uni-oldenburg.de/, last ac-
cessed on 03/21/2017
2https://flink.apache.org/, last accessed on 05/24/2017
3https://twitter.github.io/heron/, last accessed on
05/24/2017

51

http://odysseus.offis.uni-oldenburg.de/
https://flink.apache.org/
https://twitter.github.io/heron/

4. RELATED WORK
General purpose and open source streaming systems such

as Apache Flink and Apache Storm4 as well as commer-
cial systems such as IBM InfoSphere Streams5 (short: IBM
Streams) offer high performance and distributed stream pro-
cessing, but have only limited support for moving objects.
While spatio-temporal data is supported in some systems
(e. g., with IBM Streams [2]), location interpolation and
moving object windows are, as of my knowledge, not.

Zhang et al. [9] use Apache Storm to process fast data
streams from moving objects. They focus on a distributed
spatial index which speeds up range and kNN queries as
well as spatial joins. One main difference to this work is
that they do not interpolate and predict locations to have
temporal correct results.

The open source project GeoMesa6 works with spatio-
temporal data, e. g., from moving objects [6]. The project
develops indexes based on space-filling curves. These allow
quick access to spatial or spatio-temporal data within sorted
key-value stores such as Apache Accumolo7. GeoMesa does
not specifically address streaming data, data stream man-
agement capabilities or location interpolation.

The RxSpatial library [8] is an extension for the Microsoft
SQL Server Spatial Library and adds support for moving
objects. It adds the RUM-tree, which is an extension of the
R-tree for frequent updates. Additionally, RxSpatial allows
continuous spatial queries, e. g., to observe if a moving object
is close to another. As of my best knowledge, the library
does not take into account the time of the updates but uses
the newest updates of every moving object. Interpolation
and prediction are not used.

Interpolation for moving objects is a difficult challenge for
moving regions (e. g., described by Heinz et al. [5]). This is
especially complex as these regions can change their shape
over time. In this work I want to concentrate on moving
points, which is a way simpler version of that problem. Nev-
ertheless, the perfect interpolation method is not the goal of
this work but the integration of interpolation and prediction
into the stream processing of moving objects data.

Secondo [4] is a database system especially for moving
objects. It has a spatial and temporal algebra with which
queries for moving objects can be formulated. As it is a
database, it is not optimized for data streams, e. g., it does
not support windows, does not run mainly in-memory and
hence does not have to solve the problem of cleaning up old
data. Nevertheless, it gives useful insights on the handling
of moving objects data.

Patroumpas et al. [7] use AIS data in a streaming envi-
ronment to detect complex events such as unexpected stops
of vessels. They compress the data to important points in
the trajectory of the vessels without loosing much accuracy.
They also address errors in the AIS data by removing wrong
measurements. In contrast to this work, they do not use lo-
cation prediction for vessels that did not send an update for
a while, which is for example the case for satellite AIS.

4https://storm.apache.org/, last accessed on 03/21/2017
5https://www.ibm.com/analytics/us/en/technology/
stream-computing/, last accessed on 03/21/2017
6http://www.geomesa.org, last accessed on 03/17/2017
7https://accumulo.apache.org/, last accessed on
03/21/2017

5. CONCLUSION
This paper describes the motivation, challenges and ap-

proaches of processing data from moving objects in DSMSs.
A major challenge are asynchronous updates of locations of
multiple moving objects. To serve timely query results, e. g.,
for a range query, locations of objects need to be interpo-
lated and predicted. The integration of interpolated values
into a DSMS provides some challenges that are tackled with
this PhD project. First approaches to solve these are ex-
plained. The planned evaluation uses AIS data from vessels
for continuous queries.

6. ACKNOWLEDGMENTS
We thank the Ministry of Science and Culture of Lower

Saxony, Germany for supporting us with the graduate school
Safe Automation of Maritime Systems (SAMS).

7. REFERENCES
[1] H.-J. Appelrath, D. Geesen, M. Grawunder,

T. Michelsen, and D. Nicklas. Odysseus: A highly
customizable framework for creating efficient event
stream management systems. In Proceedings of the 6th
ACM International Conference on Distributed
Event-Based Systems, DEBS ’12, pages 367–368, New
York, NY, USA, 2012. ACM.

[2] A. Biem, E. Bouillet, H. Feng, A. Ranganathan,
A. Riabov, O. Verscheure, H. Koutsopoulos, and
C. Moran. Ibm infosphere streams for scalable,
real-time, intelligent transportation services. In
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10,
pages 1093–1104, New York, NY, USA, 2010. ACM.

[3] M. A. Cervera, A. Ginesi, and K. Eckstein.
Satellite-based vessel automatic identification system:
A feasibility and performance analysis. International
Journal of Satellite Communications and Networking,
29(2):117–142, 2011.

[4] R. H. Güting, T. Behr, and C. Düntgen. Secondo: A
platform for moving objects database research and for
publishing and integrating research implementations.
Fernuniv., Fak. für Mathematik u. Informatik, 2010.

[5] F. Heinz and R. H. Güting. Robust high-quality
interpolation of regions to moving regions.
Geoinformatica, 20(3):385–413, July 2016.

[6] H. V. Le. Distributed moving objects database based
on key-value stores. In Proceedings of the VLDB 2016
PhD Workshop co-located with the 42nd International
Conference on Very Large Databases (VLDB 2016),
New Delhi, India, September 9, 2016., 2016.

[7] K. Patroumpas, E. Alevizos, A. Artikis, M. Vodas,
N. Pelekis, and Y. Theodoridis. Online event
recognition from moving vessel trajectories.
GeoInformatica, 21(2):389–427, 2017.

[8] Y. Shi, A. M. Hendawi, H. Fattah, and M. Ali.
Rxspatial: Reactive spatial library for real-time
location tracking and processing. In Proceedings of the
2016 International Conference on Management of
Data, pages 2165–2168. ACM, 2016.

[9] F. Zhang, Y. Zheng, D. Xu, Z. Du, Y. Wang, R. Liu,
and X. Ye. Real-time spatial queries for moving objects
using storm topology. ISPRS International Journal of
Geo-Information, 5(10), 2016.

52

https://storm.apache.org/
https://www.ibm.com/analytics/us/en/technology/stream-computing/
https://www.ibm.com/analytics/us/en/technology/stream-computing/
http://www.geomesa.org
https://accumulo.apache.org/

Symmetric and Asymmetric Aggregate Function in
Massively Parallel Computing

ZHANG Chao
Supervised by Prof. Farouk Toumani, Prof. Emmanuel GANGLER

LIMOS, Université Clermont Auvergne, Aubière, France
{zhangch, ftoumani}@isima.fr

ABSTRACT
Applications of aggregation for information summary have
great meanings in various fields. In big data era, processing
aggregate function in parallel is drawing researchers’ atten-
tion. The aim of our work is to propose a generic framework
enabling to map an arbitrary aggregation into a generic al-
gorithm and identify when it can be efficiently executed on
modern large-scale data-processing systems. We describe
our preliminary results regarding classes of symmetric and
asymmetric aggregation that can be mapped, in a system-
atic way, into efficient MapReduce-style algorithms.

1. INTRODUCTION
The ability to summarize information is drawing increas-

ing attention for information analysis [11, 6]. Simultane-
ously, under the progress of data explosive growth process-
ing aggregate function has to experience a transition to
massively distributed and parallel platforms, e.g. Hadoop
MapReduce, Spark, Flink etc. Therefore aggregation func-
tion requires a decomposition approach in order to execute
in parallel due to its inherent property of taking several val-
ues as input and generating a single value based on certain
criteria. Decomposable aggregation function can be pro-
cessed in a way that computing partial aggregation and then
merging them at last to obtain final results.

Decomposition of aggregation function is a long-standing
research problem due to its benefits in various fields. In
distributed computing platforms, decomposability of aggre-
gate function can push aggregation before shuffle phase [17,
3]. This is usually called initial reduce, with which the
size of data transmission on a network can be substantially
reduced. For wireless sensor network, the need to reduce
data transmission is more necessary because of limitation of
power supply [15]. In online analytical processing (OLAP),
decomposability of aggregate function enables aggregation
across multi-dimensions, such that aggregate queries can be
executed on pre-computation results instead of base data to
accelerate query answering [8]. An important point of query
optimization in relational databases is to reduce table size
for join [10], and decomposable aggregation brings interests
[4].

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Munich,
Germany.
Copyright (C) 2017 for this paper by its authors. Copying permitted for
private and academic purposes.

When an arbitrary aggregation function is decomposable,
how to decompose it and when a decomposition is ’efficient’
is a hard nut to crack. Previous works identify interesting
properties for decomposing aggregation. A very relevant
classification of aggregation functions, introduced in [11], is
based on the size of sub-aggregation (i.e., partial aggrega-
tion). This classification distinguishes between distributive
and algebraic aggregation having sub-aggregation with fixed
sizes, and holistic functions where there is no constant bound
on the storage size of sub-aggregation. Some algebraic prop-
erties, such as associativity and commutativity, are identi-
fied as sufficient conditions for decomposing aggregation [17,
3]. Compared to these works, our work provides a generic
framework to identify the decomposability of any symmetric
aggregation and generate generic algorithms to process it in
parallel. Moreover, all but few researches in the literature
consider symmetric functions. Asymmetric aggregation is
inherently non-commutative functions and this makes their
processing in parallel and distributed environment far from
being easy. In [16], a symbolic parallel engine (SYMPLE) is
proposed in order to automatically parallelize User Defined
Aggregations (UDAs) that are not necessarily commutative.
Although interesting, the proposed framework lacks guaran-
tees for efficiency and accuracy in the sense that it is up to
users to encode a function as SYMPLE UDA. Moreover,
symbolic execution may have path explosion problem.

My research focuses on designing generic framework that
enables to map symmetric and asymmetric aggregation func-
tions into efficient massively parallel algorithms. To achieve
this goal, we firstly identify a computation model, and an
associated cost model to design and evaluate parallel algo-
rithms. We consider MapReduce-style (MR) framework and
use the MRC [12] cost model to define ’efficient’ MR algo-
rithms. We rest on the notion of well-formed aggregation [4]
as a canonical form to write symmetric aggregation and pro-
vide a simple and systematic way to map well-formed aggre-
gation function α into an MR algorithm, noted by MR(α).
Moreover, we provide reducible properties to identify when
the generated MR(α) is efficient (when MR(α) is an MRC
algorithm). Then we extend our framework to a class of
asymmetric aggregation function, position-based aggrega-
tion, and propose extractable property to have genericMRC
algorithms. Our main results are Theorem 1 and Theorem
2, of which proofs are provided in an extended report[2].

2. MRC ALGORITHM
Several research works concentrate on the complexity of

parallel algorithms. MUD[7] algorithm was proposed to

53

Figure 1: MapReduce flowchart with MRC con-
straints

transform symmetric streaming algorithms to parallel algo-
rithms with nice bounds in terms of communication and
space complexity, but without any bound on time complex-
ity. This disqualifies MUD as a possible candidate cost
model to be used in our context. MRC[12] is another popu-
lar model that has been used to evaluate whether a MapeRe-
duce algorithm is efficient. The constraints enforced by
MRC w.r.t. total input data size can be summarized as
following: sublinear number of total computing nodes, sub-
linear space for any mapper or reducer, polynomial time for
any mapper or reducer, and logarithm round number. We
illustrate these constraints besides round number in a sim-
plified MapReduce flowchart in figure 1 where ε > 0.

Hence, the MRC model considers necessary parameters
for parallel computing, communication time, computation
space and computing time, and makes more realistic as-
sumptions. A MapReduce algorithm satisfying these con-
straints is considered as an efficient parallel algorithm and
will be called hereafter an MRC algorithm.

3. SYMMETRIC AGGREGATION WITHMRC

Let I be a doamin, an n-ary aggregation α is a function[9]:
In → I. α is symmetric or commutative[9] if α(X) =
α(σ(X)) for any X ∈ I and any permutation σ, where
σ(X) = (xσ(1), ..., xσ(n)). Symmetric aggregation result does
not depend on the order of input data, therefore input is
considered as a multiset. In this section, we define a generic
framework to map symmetric aggregation into an MRC al-
gorithm.

3.1 A Generic Form for Symmetric Aggrega-
tion

To define our generic aggregation framework, we rest on
the notion of well-formed aggregation [4]. A symmetric ag-
gregation α defined on a multiset X = {d1, . . . , dn} can be
written in well-formed aggregation as following:

α(X) = T (F (d1)⊕ . . .⊕ F (dn)),

where F is translating function(tuple at a time), ⊕ is a com-
mutative and associative binary operation, and T is termi-
nating function. For instance, average can be easily trans-
formed into well-formed aggregation: F (d) = (d, 1), (d, k)⊕
(d′, k′) = (d + d′, k + k′) and T ((d, n)) =

d

n
. In fact, any

symmetric aggregation can be rewritten into well-formed ag-
gregation with a flexible choice of ⊕, e.g ⊕ = ∪.

Well-formed aggregation provides a generic plan for pro-
cessing aggregate function in distributed architecture based

Table 1: MR(α): a generic MR aggregation algo-
rithm

operation
mapper

∑
⊕,dj∈Xi

F (dj)

reducer T (
∑
⊕,i oi)

on the associative and commutative property of ⊕: pro-
cessing F and ⊕ at mapper, ⊕ and T at reducer. Table
1 depicts the corresponding generic MapReduce(MR) algo-
rithm(the case of one key and trivially extending to any
number of keys), noted by MR(α), where mapper input is
a submultiset Xi of X and mapper output is oi, and

∑
⊕ is

the concatenation of ⊕.
However, the obtained MR(α) are not necessarily an effi-

cient MapReduce algorithm. We identify when MR(α) is a
MRC algorithm using reducibility property.

Definition 1. A symmetric aggregation function α defined
on domain I is reducible if the well-formed aggregation (F,⊕
, T) of α satisfies

∀di, dj ∈ I : |F (di)⊕ F (dj)|= O(1).

With this reducible property, we provide a theorem iden-
tifying when MR(α) of a symmetric aggregation is a MRC
algorithm.

Theorem 1. Let α be a symmetric well-formed aggrega-
tion and MR(α) be the generic algorithm for α, then MR(α)
is an MRC algorithm if and only if α is reducible.

3.2 Deriving MRC Algorithm from Algebraic
Properties

In this section, we investigate several symmetric aggre-
gation properties satisfying Theorem 1. If an aggregation
α is in one of the following classes, then α has an MRC(α)
algorithm illustrated in table 1.

An aggregate function α is associative [9] if for multi-
set X = X1 ∪X2, α(X) = α (α(X1), α(X2)) . Associative
and symmetric aggregation function can be transformed
in well-formed aggregation (F,⊕, T) as following,

F = α, ,⊕ = α, T = id (1)

where id denotes identity function. α is reducible because
it is an aggregation. Therefore MR(α) of associative and
symmetric aggregation α is an MRC algorithm.�

An aggregation α is distributive [11] if there exists a com-
bining function C such that α(X,Y) = C(α(X), α(Y)). Dis-
tributive and symmetric aggregation can be rewritten in
well-formed aggregation (F,⊕, T) as following,

F = α, ⊕ = C, T = id. (2)

Similarly, α is reducible and corresponding MR(α) is an
MRC algorithm.�

Another kind of aggregate function having the same be-
havior as symmetric and distributive aggregation is com-
mutative semigroup aggregate function [5]. An aggre-
gation α is in this class if there exists a commutative semi-
group (H,⊗), such that α(X) =

⊗
xi∈X α(xi). The corre-

sponding well-formed aggregation (F,⊕, T) is illustrated as
following,

F = α, ⊕ = ⊗, T = id. (3)

54

It is clearly that α is reducible and MR(α) is an MRC
algorithm.�

A more general property than commutative semi-group
aggregation is symmetric and preassociative aggregate func-
tion. An aggregation α is preassociative [13] if it satis-
fies α(Y) = α(Y ′) =⇒ α(XY Z) = α(XY ′Z). Accord-
ing to [13], some symmetric and preassociative(unarily
quasi-range-idempotent and continuous) aggregation func-
tions can be constructed as α(X) = ψ

(∑n
i=1 ϕ(xi)

)
, n ≥ 1,

where ψ and ϕ are continuous and strictly monotonic func-
tion. For instance, α(X) =

∑n
i=1 2 · xi, where ψ = id and

ϕ(xi) = 2·xi. The well-formed aggregation (F,⊕, T) for this
kind of preassociative aggregation is illustrated as following

F = ϕ, ⊕ = +, T = ψ. (4)

The corresponding MR(α) is also an MRC algorithm.�
An aggregate function α is barycentrically associative [14]

if it satisfies α(XY Z) = α(Xα(Y)|Y |Z), where |Y | denotes

the number of elements contained in multiset Y and α(Y)|Y |

denotes |Y | occurrences of α(Y). A well-known class of sym-
metric and barycentrically associative aggregation is quasi-

arithmetic mean : α(X) = f−1

(
1

n

∑n
i=1 f(xi)

)
, n ≥ 1,

where f is an unary function and f−1 is a quasi-inverse of f .
With different choices of f , α can be different kinds of mean
functions, e.g arithmetic mean, quadratic mean, harmonic
mean etc. It is trivial to rewrite this kind of aggregation into
well-formed aggregation (F,⊕, T) and the MR(α) is also an
MRC algorithm,

F = (f, 1), ⊕ = (+,+), T = f−1(

∑n
i=1 f(xi)

n
). (5)

4. ASYMMETRIC AGGREGATION
Many commonly used aggregation function is symmet-

ric(commutative) such that the order of input data can be
ignored, while asymmetric aggregation considers the order.
Two common asymmetric cases could be weighted aggre-
gation and cumulative aggregation, where aggregated result
will be changed if data order is changed, e.g. WMA(weighted
moving average) and EMA(exponential moving average)[1],
which are used to highlight trends.

4.1 A Generic Form for Asymmetric Aggre-
gation

In contrast to symmetric aggregation, asymmetric func-
tion is impossible to rewrite into well-formed aggregation,
because translating function F is a tuple at a time function
and⊕ is commutative and hence both of them are insensitive
to the order. For this reason, we propose an extended form
based on well-formed aggregation which is more suitable for
asymmetric aggregation.

Definition 2. An asymmetric aggregation α defined on
an ordered sequence X̄ is an asymmetric well-formed aggre-
gation if α can be rewritten as following,

α(X̄) = T (F o(X̄, x1)⊕ ...⊕ F o(X̄, xn)), (6)

where F o is order-influenced translating function, ⊕ is a
commutative and associative binary operation, and T is ter-
minating function.

For instance, α(X̄) =
∑
xi∈X̄(1− z)i−1xi[14] with a con-

stant z can be rewritten as F o(X̄, xi) = (1 − z)i−1xi, ⊕ =
+, T = id, where i is the position of xi in the sequence X̄.

Asymmetric well-formed aggregation can rewrite any asym-
metric aggregation α, and with the associative property of
⊕, α also has a generic MR algorithm MR(α): processing
F o and ⊕ at mapper, ⊕ and T at reducer. Similar to the
behavior of symmetric well-formed aggregation, reducible
property is needed to ensure MRC constraints. The re-
ducible property for asymmetric well-formed aggregation is

∀xi, xi+1 ∈ X̄ : |F o(X̄, xi)⊕ F o(X̄, xi+1)|= O(1).

However, in order to have a correct generic MRC algo-
rithm for asymmetric aggregation, reducible property is not
enough, because asymmetric function considers data order
such that operations for combining mapper outputs are more
than ⊕. We illustrate this problem and identify properties
to have correct MRC algorithm for a class of asymmetric
well-formed aggregation in the following.

4.2 Position-based Aggregation with MRC

We deal with a kind of asymmetric aggregation α called
position-based aggregation, for which F o is F o(X̄, xi) =
h(i) � f(xi), where h() and f() are unary functions, and
� is a binary operation. The corresponding asymmetric
well-formed framework is α(X̄) = T (

∑
⊕,xi∈X̄ h(i)� f(xi)),

where
∑
⊕ is the concatenation of ⊕.

Let X̄ be an ordered sequence X̄ = S̄1◦...◦S̄m, where S̄l is
a subsequence of X̄, l ∈ {1, ...,m} and ◦ is the concatenation
of subsequence, and i be the holistic position of xi in X̄ and
j be the relative position of xj in subsequence S̄l. Then∑
⊕ F

o(X̄, xi) of α on any subsequence Sl is∑
⊕,xi∈S̄l

F o(X̄, xi) =
∑

⊕,xj∈S̄l

h(j + k)� f(xi),

where j + k (j + k = i) is the holistic position of the jth
element xj in S̄l. In order to process α in parallel on these
subsequences, the first requirement is to have l, which means
in distributed and parallel computing data set is split into
ordered chunks and chunk indexes can be stored. It can be
trivially implemented in Hadoop[16]. Secondly, k is needed,
the number of elements before S̄l. Sequential distributing
subsequence count values then starting aggregation is costly
due to too many times of data transferring on network. If k
can be extracted out of

∑
⊕,xj∈S̄l

h(j+k)�f(xi), then α can

be processed without distributing counts because operations
relating to count can be pushed to reducer. We identify
conditions to extract k which we call extractable property.

Lemma 1. Given an ordered sequence X̄, a position-based
asymmetric well-formed aggregation α defined in (F o,⊕, T)
and F o(X̄, xi) = h(i) � f(xi) for any xi ∈ X̄, where h()
and f() are unary functions, is extractable if there exists
a binary operation ⊗ making h() satisfy h(i + k) = h(i) ⊗
h(k + c) with a constant c, and ⊕, ⊗ and � satisfy one of
the following conditions,

• ⊗, � and ⊕ are same,

• ⊗ and � are same and they are distributive over ⊕,

• ⊗ is distributive over � which is same as ⊕.

The behavior of h() is similar to group homomorphism
however they are not exactly same, and our intention is to
extract k instead of preserving exact operations.

55

Theorem 2. Let α be a position-based well-formed ag-
gregation and MR(α) be the generic algorithm for α, then
MR(α) is an MRC algorithm if α is reducible and extractable.

Extractable property of position-based aggregation α al-
lows previous subsequences count value ’k’ to be extracted
out of mapper operation, then α can be correctly processed
by
∑
⊕ F

o or (
∑
⊕ f(xi),

∑
⊕ h(i)) at mapper phase. To

combine mapper outputs, more than ⊕ and T are needed
and specific combining operation depends on the three dif-
ferent extractable conditions (provided in our extended re-
port[2]).

For instance, given an input sequence X̄ = (x1, ..., xn),

then EMA(X̄) =

∑n
i=1(1− a)i−1 · xi∑n
i=1(1− a)i−1

, where a is a constant

between 0 and 1. We give below the asymmetric well-formed
aggregation of EMA, where h(i) = (1− a)i−1,

F o : F o(X̄, xi) =
(
h(i) · xi, h(i)

)
,

⊕ :
(
h(i) · xi, h(i)

)
⊕
(
h(i+ 1) · xi+1, h(i+ 1)

)
=
(
h(i) · xi + h(i+ 1) · xi+1, h(i) + h(i+ 1)

)
,

T : T (

n∑
i=1

h(i) · xi,
n∑
i=1

h(i)) =

∑n
i=1 h(i) · xi∑n
i=1 h(i)

.

It is clearly that EMA is a position-based aggregation, and
EMA is reducible because ⊕ is a pair of addition. Moreover
h() satisfies h(i + k) = h(i) · h(k + 1), and the correspond-
ing three binary operations ⊗ = ·, � = ·, ⊕ = + sat-
isfy the second extractable condition. Therefore EMA has a
MRC algorithm(the generic MRC algorithm for the second
extractable condition) illustrated as following, where we as-
sume input sequence X̄ = S̄1 ◦ ... ◦ S̄m and mapper input is
Sl, l ∈ {1, ...,m}, and count(S0) = 0,

• mapper:
(
OM

′
l =

∑
xj∈Sl

h(j)·xj , OM
′′
l =

∑
xj∈Sl

h(j),

OM
′′′
l = count(Sl)

)
,

• reducer:

∑m
l=1 OMl

′ · (1− a)
∑l−1

j=0 OM
′′′
j∑m

l=1 OM
′′
l · (1− a)

∑l−1
j=0 OMj

′′′
.

5. CONCLUSION AND FUTURE WORK
In this work, we studied how to map aggregation func-

tions, in a systematic way, into generic MRC algorithms
and we identified properties that enable to efficiently execute
symmetric and asymmetric aggregations using MapReduce-
style platforms. For symmetric aggregation, we proposed
the reducible property within well-formed aggregation frame-
work to satisfy space and time complexity of MRC. Several
algebraic properties of symmetric aggregation leading to a
generic MRC algorithm have been identified. Moreover, we
extended the notion of well-formed aggregation to asym-
metric aggregation and showed how it can be exploited to
deal with position-based asymmetric aggregation. Through
identifying the problem for parallelizing it, we proposed ex-
tractable property and merged it with the reducible prop-
erty of asymmetric well-formed aggregation to have MRC
algorithms.

Our future work will be devoted to the implementation
and experimentation. We will study the extension of our

framework to mainstream parallel computing platforms (e.g.
Apache Spark). Moreover, we also plan to extend our frame-
work to cover additional classes of asymmetric aggregations.
Finally, we plan to investigate how to generalize our ap-
proach to nested aggregation functions (i.e., functions de-
fined as a complex composition of aggregation functions).

6. REFERENCES
[1] Moving average.

https://en.wikipedia.org/wiki/Moving_average.

[2] Symmetric and asymmetric aggregate function in
massively parallel computing(extened version).
https://hal-clermont-univ.archives-ouvertes.

fr/hal-01533675.

[3] C.Liu, J.Zhang, H.Zhou, Z. S.McDirmid, and
T.Moscibroda. Automating distributed partial
aggregation. In SOCC’14, pages 1–12, 2014.

[4] S. Cohen. User-defined aggregate functions: bridging
theory and practice. In SIGMOD’06, pages 49–60,
2006.

[5] S. COHEN, W.NUTT, and Y.SAGIV. Rewriting
queries with arbitrary aggregation functions using
views. ACM TODS, 31(2):672–715, June 2006.

[6] A. Cuzzocrea. Aggregation and multidimensional
analysis of big data for large-scale scientific
applications: models, issues, analytics, and beyond. In
SSDBM’15, 2015.

[7] J. Feldman, S.muthukrishnan, A. Sidiropoulos,
C. Stein, and Z. Svitkina. On distributing symmetric
streaming computations. ACM TALG, 6(4), August
2010.

[8] M. Franklin. An overview of data warehousing and
olap technology. ACM SIGMOD Record, 26(1):65–74,
March 1997.

[9] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap.
Aggregation function: Means. Information Sciences,
181(1):1–22, January 2011.

[10] H.Garcia-Molina, J.D.Ullman, and J.Widom. Database
System Implementation. Prentice-Hall, New Jersey,
2000.

[11] J.Gray, A.Bosworth, A.Layman, and H.Pirahesh. Data
cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, 1(1):29–53, Janaury 1997.

[12] H. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for mapreduce. In SODA’10, pages
938–948, 2010.

[13] M.Jean-Luc and T.Bruno. Preassociative aggregation
functions. Fuzzy Sets and Systems, 268:15–26, June
2015.

[14] M.Jean-Luc and T.Bruno. Strongly barycentrically
associative and preassociative functions. Fuzzy Sets
and Systems, 437(1):181–193, May 2016.

[15] S.Madden, M.J.Franklin, J.M.Hellerstein, and
W.Hong. Tag: a tiny aggregation service for ad-hoc
sensor networks. In OSDI’02, pages 131–146, 2002.

[16] V.Raychev, M.Musuvathi, and T.Mytkowicz.
Parallelizing user-defined aggregaions using symbolic
execution. In SOSP’15, pages 153–167, 2015.

[17] Y.Yu, M.Isard, and P. Gunda. Distributed aggregation
for data-parallel computing: Interfaces and
implementations. In SOSP’09, pages 247–260, 2009.

56

Practical Verification of Hierarchical Artifact Systems

Yuliang Li
Co-Advised by Alin Deutsch and Victor Vianu

UC San Diego
La Jolla, California

yul206@eng.ucsd.edu

ABSTRACT
Data-driven workflows, of which IBM’s Business Artifacts
are a prime exponent, have been successfully deployed in
practice, adopted in industrial standards, and have spawned
a rich body of research in academia, focused primarily on
static analysis. The present research bridges the gap be-
tween the theory and practice of artifact verification by
studying the implementation of a full-fledged and efficient
artifact verifier for a variant of the Hierarchical Artifact Sys-
tem (HAS) model presented in [9]. With a family of special-
ized optimizations to the classic Karp-Miller algorithm, our
verifier performs >10x faster than a nontrivial Spin-based
baseline on real-world workflows and is scalable to large syn-
thetic workflows.

1. INTRODUCTION
The past decade has witnessed the evolution of work-

flow specification frameworks from the traditional process-
centric approach towards data-awareness. Process-centric
formalisms focus on control flow while under-specifying the
underlying data and its manipulations by the process tasks,
often abstracting them away completely. In contrast, data-
aware formalisms treat data as first-class citizens. A notable
exponent of this class is IBM’s business artifact model pio-
neered in [14], successfully deployed in practice [3, 5, 18]
and adopted in industrial standards.

In a nutshell, business artifacts (or simply “artifacts”)
model key business-relevant entities, which are updated by a
set of services that implement business process tasks, spec-
ified declaratively by pre-and-post conditions. A collection
of artifacts and services is called an artifact system. IBM
has developed several variants of artifacts, of which the most
recent is Guard-Stage-Milestone (GSM) [7, 11]. The GSM
approach provides rich structuring mechanisms for services,
including parallelism, concurrency and hierarchy, and has
been incorporated in the OMG standard for Case Manage-
ment Model and Notation (CMMN) [15, 12].

Artifact systems deployed in industrial settings typically
specify complex workflows prone to costly bugs, whence the
need for verification of critical properties. Over the past few
years, the verification problem for artifact systems was in-
tensively studied. Rather than relying on general-purpose
software verification tools suffering from well-known limi-
tations, the focus of the research community has been to

Proceedings of the VLDB 2017 PhD Workshop, August 28, 2017. Mu-
nich, Germany. Copyright (c) 2017 for this paper by its authors. Copying
permitted for private and academic purposes.

identify practically relevant classes of artifact systems and
properties for which fully automatic verification is possible.
This is an ambitious goal, since artifacts are infinite-state
systems due to the presence of unbounded data. Along this
line, decidability and complexity results were shown for dif-
ferent versions of the verification problem with various ex-
pressiveness of the artifact models, as reviewed in the next
section.

The project described in this paper bridges the gap be-
tween the theory and practice of artifact verification by pro-
viding the first implementation of a full-fledged and efficient
artifact verifier. The artifact model we use is a variant of
the Hierarchical Artifact System (HAS) model of [9], which
captures core elements of IBM’s GSM model. Rather than
building on top of an existing program verification tool such
as Spin, which we have shown to have strong limitations,
we implemented our verifier from scratch. The implemen-
tation is based on the classic Karp-Miller algorithm [16],
with a family of specialized optimizations to boost perfor-
mance. The experimental results show that our verifier per-
forms an order of magnitude faster compared to a baseline
implementation using Spin [10] on specifications based on
real-world BPMN workflows [2], and scales well on large
synthetic workflows. To the best of our knowledge, our arti-
fact verifier is the first implementation with full support of
unbounded data.

2. BACKGROUND AND RELATED WORK
[8, 6] studied the verification problem for a bare-bones

variant of artifact systems, in which each artifact consists
of a flat tuple of evolving values and the services are spec-
ified by simple pre-and-post conditions on the artifact and
database. The verification problem was to check statically
whether all runs of an artifact system satisfy desirable prop-
erties expressed in LTL-FO, an extension of linear-time tem-
poral logic where propositions are interpreted as existential
first-order logic sentences on the database and current arti-
fact tuple. In order to deal with the resulting infinite-state
system, a symbolic approach was developed in [8] to allow
a reduction to finite-state model checking and yielding a
pspace verification algorithm for the simplest variant of the
model (no database dependencies and uninterpreted data
domain). In [6] the approach was extended to allow for
database dependencies and numeric data testable by arith-
metic constraints.

In our previous work [9], we made significant progress on
several fronts. We introduced the HAS model, a much richer
and more realistic model abstracting the core elements of

57

the GSM model. The model features task hierarchy, con-
currency, and richer artifact data (including updatable arti-
fact relations). In more detail, a HAS consists of a database
and a hierarchy (rooted tree) of tasks. Each task has as-
sociated to it local evolving data consisting of a tuple of
artifact variables and an updatable artifact relation. It also
has an associated set of services. Each application of a ser-
vice is guarded by a pre-condition on the database and lo-
cal data and causes an update of the data, specified by a
post-condition (constraining the next artifact tuple) and an
insertion or retrieval of a tuple from the artifact relation.
In addition, a task may invoke a child task with a tuple of
input parameters, and receive back a result if the child task
completes. To express properties of HAS we introduce hi-
erarchical LTL-FO (HLTL-FO), which is similar to LTL-FO
but adapted to the hierarchy. The main results of [9] es-
tablish the complexity of checking HLTL-FO properties for
various classes of HAS, highlighting the impact of various
features on verification.

3. MODEL AND EXAMPLE
The artifact model used in our implementation is a variant

of the HAS model of [9] denoted HAS*, which differs from
the HAS model used in [9] in two respects. On one hand,
it restricts HAS by disallowing arithmetic in service pre-
and-post conditions, and requires the underlying database
schema to use an acyclic set of foreign keys, as in the widely
used Star (or Snowflake) schemas [17]. On the other hand,
HAS* extends HAS by allowing an arbitrary number of ar-
tifact relations in each task, arbitrary variable propagation,
and more flexible interactions between tasks. As shown by
our real-life examples, HAS* is powerful enough to model a
wide variety of business processes, and so is a good vehicle
for studying the implementation of a verifier. Moreover, de-
spite the extensions, the complexity of verifying HLTL-FO
properties of HAS* can be shown to remain expspace, by
adapting the techniques of [9].

We illustrate the HAS* model with a simplified example
of order fulfillment business process based on a real-world
BPMN workflow. The workflow allows customers to place
orders and suppliers to process the orders. It has the follow-
ing database schema:

• CUSTOMERS(id, name, address, record)
ITEMS(id, item name, price, in stock)
CREDIT RECORD(id, status)

In the schema, the id’s are key attributes, and record is a
foreign key referencing CREDIT RECORD. The CUSTOMERS ta-
ble contains basic customer information and CREDIT RECORD

provides each customer’s credit rating. The ITEMS table con-
tains information on all the items. The artifact system has 4
tasks: T1:ProcessOrders, T2:TakeOrder, T3:CheckCredit
and T4:ShipItem, which form the hierarchy in Figure 1.

Intuitively, the root task ProcessOrders serves as a global
coordinator which manages a pool of orders and the child
tasks TakeOrder, CheckCredit and ShipItem implement
the 3 processing stages of an order. At each point in a run,
ProcessOrders nondeterministically picks an order from
its pool, triggers one processing stage, and places it back
into the pool upon completion.

ProcessOrders: The task has the artifact variables: cust id,
item id, status which store basic information of an order.
It also has an artifact relation ORDERS(cust id, item id, status)
storing the orders to be processed.

T2: TakeOrder T4: ShipItemT3: CheckCredit

T1: ProcessOrders

Figure 1: Tasks Hierarchy
The task has 3 internal services: Initialize, StoreOrder

and RetrieveOrder. Intuitively, Initialize creates a new order
with cust id = item id = null. When RetrieveOrder is
called, an order is non-deterministically chosen and removed
from ORDERS for processing, and (cust id, item id, status)
is set to be the chosen tuple. When StoreOrder is called,
the current order (cust id, item id, status) is inserted into
ORDERS. The latter two services are specified as follows (the
specification consists of a pre-condition, a post-condition,
and an update to the ORDERS artifact relation):

StoreOrder :
Pre: cust id 6= null∧item id 6= null∧status 6= “Failed”
Post: cust id = null ∧ item id = null ∧ status = “Init”
Update: {+ORDERS(cust id, item id, status)}

RetrieveOrder :
Pre: cust id = null ∧ item id = null // Post: True

Update: {−ORDERS(cust id, item id, status)}

TakeOrder: When this task is called, the customer enters
the information of the order (cust id and item id) and the
status of the order is initialized to “OrderPlaced”. The
task contains cust id, record and status as variables and
all are return variables to the parent task. There are two
services called EnterCustomer and EnterItem, that allow
the customer to enter her and the item’s information. The
CUSTOMERS and ITEMS tables are queried to obtain the cus-
tomer ID and item ID. These two services can be called
multiple times to allow the customer to modify previously
entered data. The task’s termination condition is cust id 6=
null ∧ item id 6= null, at which time its variables are re-
turned to its parent task ProcessOrders.

CheckCredit: This task checks the financial record of a
customer and decides whether the supplier will go ahead
with the sale. It is called when status = “OrderPlaced”.
It has artifact variables cust id (input variable), record

and status. When the credit record is good, status is set
to “Passed”, and otherwise to “Failed”. After status is
set, the task terminates and returns status to the parent
task. The task has a single service Check performing the
credit check.

Check :
Pre: true // Post:

∃n∃a CUSTOMERS(cust id, n, a, record)∧
(CREDIT RECORD(record, “Good”)→ status = “Passed”)∧
(¬CREDIT RECORD(record, “Good”)→ status = “Failed”)

Note that in a service we can also specify a set of propa-
gated variables whose values stay unchanged when the ser-
vice is applied. In Check, only cust id is a propagated vari-
able and others will be assigned new values.

ShipItem: This task checks whether the desired item is in
stock by looking up the item id in the ITEMS table to see
whether the in stock attribute equals “Yes”. If so, the item
is shipped to the customer (status is set to “Shipped”) oth-
erwise the order fails (status is set to “Failed”). This task
is specified similarly to CheckCredit (details omitted).

Properties of HAS* can be specified in LTL-FO. In the

58

above workflow, we can specify a temporal property saying
“If an order is taken and the ordered item is out of stock,
then the item must be restocked before it is shipped.” It can
be written in LTL-FO as:

∀i G(EnterItem ∧ item id = i ∧ instock = “No”)→
(¬(ShipItem ∧ item id = i) U (Restock ∧ item id = i))

4. VERIFIER IMPLEMENTATION
Although decidability of verification was shown in [9], a

naive implementation of the expspace algorithm outlined
there would be wholly impractical. Instead, our implemen-
tation brings to bear a battery of optimization techniques
crucial to performance. This approach of [9] is based on de-
veloping a symbolic representation of the runs of a HAS*.
In the representation, each snapshot is summarized by:

(i) the isomorphism type of the artifact variables, describing
symbolically the structure of the portion of the database
reachable from the variables by navigating foreign keys

(ii) for each artifact relation and isomorphism type, the num-
ber of tuples in the relation that share that isomorphism
type

The heart of the proof in [9] is showing that it is sufficient
to verify symbolic runs rather than actual runs. Observe
that because of (ii), the symbolic representation is not finite
state. Indeed, (ii) requires maintaining a set of counters,
which can grow unboundedly. Therefore, the verification
algorithm relies on a reduction to state reachability in Vector
Addition Systems with States (VASS) [4]. A VASS is a
finite-state machine augmented with positive counters that
can be incremented and decremented (but not tested for
zero). This is essentially equivalent to a Petri Net.

A direct implementation of the above algorithm is im-
practical because the resulting VASS can have exponentially
many states and counters in the input size, and state-of-the-
art VASS tools can only handle a small number of coun-
ters (<100) [1]. To mitigate the inefficiency, our implemen-
tation never generates the whole VASS but instead lazily
computes the symbolic representations on-the-fly. Thus, it
only generates reachable symbolic states, whose number is
usually much smaller. In addition, isomorphism types in
the symbolic representation are replaced by partial isomor-
phism types, which store only the subset of constraints on the
variables imposed by the current run, leaving the rest un-
specified. This representation is not only more compact, but
also results in an exponentially smaller search space. Then
our verifier performs the (repeated) state reachability search
using the classic Karp-Miller algorithm [16] with three spe-
cialized optimizations to further accelerate the search. We
discuss these next.

State Pruning The classic Karp-Miler algorithm is well-
known to be inefficient and pruning is a standard way to
improve its performance [16]. We introduce a new pruning
technique which can be viewed as a generalization of the
strategies in [16]. The high-level idea is that when a new
state I is found, if there exists a reached state I ′ such that
all states reachable from I are also reachable from I ′, then
we can stop exploring I immediately. In this case, we call I ′

a superstate of I and I a substate. Similarly, if there exists
a reached state I ′ which is a substate of I, then we can
prune I ′ and its successors. Compared to [16], our pruning
is more aggresive, resulting in a much smaller search space.

As shown in Section 5, the performance of the verifier is
significantly improved.

Data Structure Support When the above optimization is
applied, a frequent operation during the search is to find sub-
states and superstates of a given candidate state in the cur-
rent set of reached symbolic states. This operation becomes
the performance bottleneck when there is a large number
of reached states. We accelerate the superstate and sub-
state queries with a Trie index and an Inverted-Lists index,
respectively.

Static Analysis The verifier statically analyzes and sim-
plifies the input workflow with a preprocessing step. We
notice that in real workflows, some contraints in the spec-
ification can never be violated in a symbolic run, and thus
can be removed. For example, for a constraint x = y in
the specification, where x, y are variables, if x 6= y does not
appear anywhere in the specification and is not implied by
other constraints, then x = y can be safely removed from the
specification without affecting the result of the verification
algorithm.

5. EXPERIMENTAL RESULTS
We evaluated the performance of our verifier using both

real-world and synthetic artifact specifications.

The Real Set As the artifact approach is still new to
the industry, real-world processes available for evaluation
are limited. We therefore built an artifact system bench-
mark specific to business processes, by rewriting the more
widely available process-centric BPMN workflows as HAS*
specifications. There are numerous sources of BPMN work-
flows, including the official BPMN website [2], that provides
36 workflows of non-trivial size. To rewrite these workflows
into the HAS*, we manually added the database schema,
artifact variables/relations, and services for updating the
data. Among the 36 real-world BPMN workflows collected
from the official BPMN website bpmn.org, our model is suf-
ficiently expressive to specify 32 of them in HAS* and can
thus be used for performance evaluation. The remaining
ones cannot be expressed in HAS* because they involve com-
puting aggregate functions or updating the artifact relations
in ways that are not supported in the current model. We
will consider these features in our future work.

The Synthetic Set The second benchmark we used for
evaluation is a set of randomly generated HAS specifications.
All components of each specification, including DB schema,
task hierarchy and services, are generated fully at random
of a certain size. The ones with empty search space due to
unsatisfiable conditions are removed from the benchmark.
Table 1 shows some statistics of the benchmarks.

Dataset Size #Relations #Tasks #Variables #Services

Real 32 3.563 3.219 20.63 11.59
Synthetic 120 5 5 75 75

Table 1: Statistics of the Two Sets of Workflows

Baseline and Setup We compare our verifier with a sim-
pler implementation built on top of Spin, a widely used soft-
ware verification tool [10]. Building such a verifier is by itself
a challenging task since Spin is incapable of handling data
of unbounded size, present in the HAS* model. We man-
aged to build a Spin-based verifier supporting a restricted
version of out model, without updatable artifact relations.

59

As the read-only database can still have unbounded size and
domain, the verifier requires a set of nontrivial translations
and optimizations. The details will be discussed in a sepa-
rate paper.

We implemented both verifiers in C++ with Spin version
6.4.6 for the Spin-based verifier. All experiments were per-
formed on a Linux server with a quad-core Intel i7-2600 CPU
and 16G memory. For each workflow in each dataset, we ran
our verifiers to test a randomly generated liveness property.
The time limit of each run was set to 10 minutes. For fair
comparison, since the Spin-based verifier (Spin-Opt) cannot
handle artifact relations, we ran both the full Karp-Miller-
based verifier (KM), and the Karp-Miller-based verifier with
artifact relations ignored (KM-NoSet).

Performance Table 2 shows the results on both sets of
workflows. The Spin-based verifier achieves acceptable per-
formance on the real set with an average elapsed time of few
seconds and only 1 timeout instance. However, it failed on
most runs (109/120) in the synthetic set of workflows. On
the other hand, both KM and KM-NoSet achieve average
running times below 1 second and with no timeout on the
real set, and the average running time is in seconds on the
synthetic set, with only 3 timeouts. The presence of artifact
relations introduced only a negligible amount of overhead
in the running time. Compared with the Spin-based veri-
fier, the KM-based approach is >10x faster in the average
running time and more scalable to large workflows.

Mode
Real Synthetic

Avg(Time) #Timeout Avg(Time) #Timeout

Spin-Opt 3.111s 1 67.01s 109
KM-NoSet .2635s 0 3.214s 3

KM .2926s 0 3.355s 2

Table 2: Performance of the two Verifiers

Cyclomatic Complexity To better understand the scal-
ability of the Karp-Miller-based approach, we measured the
difficulty of verifying each workflow using a metric called the
cyclomatic complexity [13], which is widely used in software
engineering to measure the complexity of program modules.
Figure 2 shows that the elapsed time increases exponentially
with the cyclomatic complexity. According to [13], it is rec-
ommended that any well-designed program should have cy-
clomatic complexity at most 15 in order to be readable and
testable. Our verifier successfully handled all workflows in
both benchmarks with cyclomatic complexity less than or
equal to 17, which is above the recommended level. For
instances with cyclomatic complexity above 15, our verifier
only timed out in 2/24 instances (8.33%).

5 10 15 20 25 30 35 40 45
Cyclomatic Complexity

10 3

10 2

10 1

100

101

102

103

Ru
nn

in
g

Ti
m

e
(s

ec
.)

Synthetic
Real

Figure 2: Running Time vs. Cyclomatic Complexity

Comparing Different Optimizations We show next the
effect of our 3 optimization techniques: state pruning (SP),
static analysis (SA) and data structure support (DSS), by
rerunning the experiment with the optimization turned off,
and comparing the difference. Table 3 shows the average

Dataset
SP SA DSS

Mean Trim. Mean Trim. Mean Trim.

Real 2943.58x 55.31x 1.80x 1.66x 1.90x 1.24x
Synthetic 494.57x 180.82x 17.92x 0.92x 1.45x 1.27x

Table 3: Mean and Trimmed Mean (5%) of Speedups

speedups of each optimization in both datasets. We also
present the trimmed averages of the speedups (i.e. removing
the top/bottom 5% speedups before averaging) which is less
sensitive to extreme values.

Table 3 shows that the effect of state pruning is the most
significant in both sets of workflows, with an average (trimmed)
speedup of 55x and 180x in the real and synthetic set, re-
spectively. The static analysis optimization is more effective
in the real set (1.6x improvement) but its effect in the syn-
thetic set is less obvious. It creates a small amount (8%)
of overhead in most cases, but significantly improves the
running time of a single instance, resulting in the huge gap
between the normal average speedup and the trimmed av-
erage speedup. Finally, the data-structure support provides
a consistent ∼1.2x average speedup in both datasets.

Acknowledgement This work was supported in part by
the National Science Foundation under award IIS-1422375.

6. REFERENCES
[1] MIST - a safety checker for petri nets and extensions.

https://github.com/pierreganty/mist/wiki.

[2] Object management group business process model and
notation. http://www.bpmn.org/. Accessed: 2017-03-01.

[3] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and
F. Y. Wu. Artifact-centered operational modeling: Lessons
from customer engagements. IBM Systems Journal,
46(4):703–721, 2007.

[4] M. Blockelet and S. Schmitz. Model checking coverability
graphs of vector addition systems. In Mathematical
Foundations of Computer Science 2011, pages 108–119.
Springer, 2011.

[5] T. Chao et al. Artifact-based transformation of IBM Global
Financing: A case study. In BPM, 2009.

[6] E. Damaggio, A. Deutsch, and V. Vianu. Artifact systems with
data dependencies and arithmetic. TODS, 37(3):22, 2012.

[7] E. Damaggio, R. Hull, and R. Vacuĺın. On the equivalence of
incremental and fixpoint semantics for business artifacts with
guard-stage-milestone lifecycles. Information Systems,
38:561–584, 2013.

[8] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic
verification of data-centric business processes. In ICDT, pages
252–267, 2009.

[9] A. Deutsch, Y. Li, and V. Vianu. Verification of hierarchical
artifact systems. In PODS, pages 179–194, 2016.

[10] G. Holzmann. Spin Model Checker, the: Primer and Reference
Manual. Addison-Wesley Professional, first edition, 2003.

[11] R. Hull et al. Business artifacts with guard-stage-milestone
lifecycles: Managing artifact interactions with conditions and
events. In ACM DEBS, 2011.

[12] M. Marin, R. Hull, and R. Vacuĺın. Data centric bpm and the
emerging case management standard: A short survey. In BPM
Workshops, 2012.

[13] T. J. McCabe. A complexity measure. IEEE Transactions on
software Engineering, (4):308–320, 1976.

[14] A. Nigam and N. S. Caswell. Business artifacts: An approach
to operational specification. IBM Systems Journal,
42(3):428–445, 2003.

[15] Object Management Group. Case Management Model and
Notation (CMMN), 2014.

[16] P.-A. Reynier and F. Servais. Minimal coverability set for petri
nets: Karp and miller algorithm with pruning. In International
Conference on Application and Theory of Petri Nets and
Concurrency, pages 69–88. Springer, 2011.

[17] P. Vassiliadis and T. Sellis. A survey of logical models for olap
databases. ACM Sigmod Record, 28(4):64–69, 1999.

[18] W.-D. Zhu et al. Advanced Case Management with IBM Case
Manager. IBM Redbooks, 2015.

60

	preface
	invited
	paper01
	paper02
	paper03
	paper04
	paper05
	paper06
	paper07
	paper08
	paper09
	paper10
	paper11
	paper12
	paper13
	paper14

