Mining and Ranking of Generalized
Multi-Dimensional Frequent Subgraphs

Abstract—Frequent pattern mining is an important research
field and can be applied to different labeled data structures
ranging from itemsets to graphs. There are scenarios where a
label can be assigned to a taxonomy and generalized patterns
can be mined by replacing labels by their ancestors. In this
work, we propose a novel approach to generalized frequent
subgraph mining. In contrast to existing work, our approach
considers new requirements from use cases beyond molecular
databases. In particular, we support directed multigraphs as
well as multiple taxonomies to deal with the different seman-
tic meaning of vertices. Since results of generalized frequent
subgraph mining can be very large, we use a fast analytical
method of p-value estimation to rank results by significance. We
propose two extensions of the popular gSpan algorithm thjat mine
frequent subgraphs across all taxonomy levels. We compare both
algorithms in an experimental evaluation based on a database of
business process executions represented by graphs.

I. INTRODUCTION

Frequent pattern mining is an important research problem
and found much interest since the early nineties [1]. Generally
speaking, a pattern is a collection of labels attached to a
respective data structure such as itemsets, sequences, trees
and graphs. In many applications labels can be assigned to
taxonomies and mining patterns at different taxonomy levels
[9] may reveal interesting patterns. For example, the pattern
{bread, butter} could be infrequent while the more general
one {bakery product,milk product} is frequent. In some
cases, analysts also want to analyze patterns across levels [6].
For example, the pattern {wholegrain bread, butter} can be
more interesting than just {bread, butter}. Finally, users also
want to analyze patterns in the context of multiple dimensions
[28], for example, to find out that {bread, butter} is mostly
bough in the morning in suburban stores.

These simple examples show that an elaborate approach
to frequent pattern mining must be capable to mine pat-
terns across multiple levels of multiple dimensional tax-
onomies. However, an respective approach to generalized
multi-dimensional pattern mining have only been studied for
sequences [29]. With regard to graphs, generalization has
already been investigated [13] but under the assumption that
all vertices belong to the same semantic class (e.g., atoms). In
this work, we propose the first approach to generalized multi-
dimensional frequent subgraph mining (GM-FSM).

But let us first have a look on an example application of
the resulting graph patterns: Data generated during business
process executions can be represented by graphs [26]. Figure
la shows an example subgraph of sales process data. Both
vertices and edges show labels. Edges and most vertices
show simple labels (e.g., Quotation, createdBy). Some vertices

Fig. 1: Example multi-dimensional subgraph and patterns.
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are labeled by taxonomy paths because they are attached to
dimensional taxonomies. Taxonomy paths are represented by
[top-level].- - - .[bottom-level]. For example, vertex 3 not only
represents Alice but also more generally a SalesPerson and
an Employee. This information is taken from a respective
taxonomy to which Alice is assigned. Further on, vertex
4 represents Fukuoka a city on the island Kyushu and so
on. Since the subgraph’s vertices are associated to different
taxonomies its contained patterns are considered to be multi-
dimensional.

The problem of frequent subgraph mining is the extraction
of graph patterns that occur in at least a minimum number of
graphs in a collection (minimum support). In scenarios where
bottom-level labels (e.g., Alice) may have low frequencies,
mining frequent graph patterns on the bottom-level will barely
lead to frequent results. On the other hand, considering only
the top-levels (e.g., Employee.*.*) leads only to very general
patterns such as the one of Figure 1b. The pattern is expressing
that a quotation was sent by an employee to a customer, where
the latter has the sending employee as its main contact. How-
ever, this pattern might occur in all sales process executions



Fig. 2: Path-substitution method: Taxonomy paths are repre-
sented by dedicated vertices and edges (blue lines).
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and, thus, is considered to be trivial. To find more interesting
patterns, respective labels must be considered at arbitrary level
combinations. By doing so, we can extract patterns as the one
of Figure 1c. This one is expressing, that the specific employee
Alice sent a quotation to a customer from Japan. Here, labels at
different levels are combined, in particular, the top-level label
Japan.*.* and the bottom-level label Employee.Sales.Alice.

The naive approach to extract such patterns would be to
mine bottom-levels first with a very low minimum support
threshold and generalize patterns in a post processing step. In
order to guarantee completeness, the minimum support thresh-
old must be zero. However, since the frequent subgraph min-
ing (FSM) contains the NP-complete subgraph isomorphism
problem, a threshold close to zero would lead to an exploding
result size as well as a dramatical increase of response time.
For this reason, we developed two novel methods to GM-FSM
which take the special characteristics of taxonomy paths into
account. Both methods are used on the gSpan [36], an efficient
FSM algorithm. As a problem relaxation we require vertices
always to have a semantic meaning, i.e., we are not interested
in structure-only patterns.

In the first method, we use a preprocessing step to integrate
taxonomy paths into the graph structure as shown by Figure
la. Additionally, we apply two modifications to find all but
result and remove false-positives. In the second method, we
decompose the problem into FSM and generalized frequent
vector mining (GFVM). Here, we decompose subgraphs and
patterns into a top-level (most general) graph structure and a
vector of lower-level tails. In particular, top-level labels are
attached to the graph structure, lower level tails of taxonomy
paths are stored in the vector and vertices are mapped to vector
fields respectively. For example, we can derive a vector
Kyushu.Fukuoka, ACME, SalesPerson.Alice ) from the sub-
graph shown by Figure 1a where the 2nd vector field contains
the tail of taxonomy path CustomerACME of vertex 2. The
extraction happens in two steps: First, we use a modified
version of gSpan to identify frequent structural patterns based
on only top-level labels including an additional set of lower-
level vectors. Second, we apply GFVM to refine the result.

Depending on pattern size and the number of dimensional
attribute combinations, GM-FSM may return a huge number

of graph patterns. Thus, we use p-values to rank patterns by
significance. More significant patterns are considered to be
more interesting and presented first. P-values are a statistical
measure reflecting the probability of a graph pattern to occur
randomly under given graph statistics, such as label and de-
gree distributions. In consequence, patterns with less frequent
labels (e.g., bottom-levels) and extraordinary structure are
more significant among the frequent ones. P-values for graph
patterns are usually determined by generating a large number
of random graphs and count how often a given pattern was
created. However, since such methods show poor scalability,
we use a fast analytical approximation instead.

Our contributions can be summarized as follows:

o We firstly study the problem of multi-dimensional gener-
alized frequent subgraph mining and propose two efficient
methods (Section II).

o We discuss the use of p-value approximation to rank
result graph patterns (Section III) to present most sig-
nificant results first. We use an efficient analytical model
to achieve fast response times.

« We present results of performance evaluations in a busi-
ness intelligence scenario where graphs represent busi-
ness process executions (Section IV).

Additionally, we discuss related work in Section V and

conclude with a preview on future work in Section VI.

II. GENERALIZED MULTI-DIMENSIONAL
FREQUENT SUBGRAPH MINING

A. Problem statement

The basic problem definition is the same as the one of fre-
quent subgraph mining (FSM) in the graph-transaction setting
[16]: input is a collection of graphs G = {Gy,...,G,} and
output is a set of frequent graph patterns F = {Py,..., Py,}.
For each P € F there is a graph collection Gp < G where each
graph supports the pattern. Based on the size of both collec-
tions we can derive a pattern’s support sup(P) = 19#l/|g|. The
algorithm’s only configuration is a minimum support threshold
0 < supmin < 1. A pattern will be considered frequent if its
support is above this threshold. The result will be complete if
sup(P) = suppmin < P € F holds.

The difference between FSM and GM-FSM is the definition
of pattern support. In FSM, a graph will support a pattern
if there is an isomorphic subgraph with equals labels for
all mapped pairs of vertices and edges. In GM-FSM, we
additionally consider patterns which are generalizations of a
subgraph to be supported. In the next subsection, we will
define graph generalization more precisely.

B. Data Model and Graph Generalization

In our data model every dimension of a graph or pattern is
represented by a vertex that can be linked to a taxonomy.
A taxonomy is defined as a balanced rooted tree:

T= <ST7RT7€T> (1)

St is a set of vertex labels, R < (S7)? is a set of isA
relationships and /1 € S is the root label.



Under a given taxonomy 7" a taxonomy path! pr(¢;) is
defined as an arbitrary path from root {1 to ¢;:

pr(l;) = Lbply. - U; 2

An important part of graph generalization is label general-
ization within a taxonomy. Therefore, we introduce an operator
{1 Ep 05 that will return true, iff ¢; is a generalization of /s,
so that (Sp,E7) is a poset. Let ¢1,f5 € St be two labels
of the same taxonomy and m another operator returning the
common path between paths pr(¢1) and pr(¢3), then label
generalization is defined as follows:

0y S7 by = pr(l) M pr(be) = pr(f) 3)

At this point, we will be able to associate vertices of a
graph to taxonomy labels. Given two global alphabets of vertex
labels (X)) and edge labels (Xg) as well as a global set
of taxonomies 7 = {T1,...,T,}, we define a graph as the
following tuple:

G:<‘/;E,S,t,(;,)\,7'> (4)

In this graph model V' = {1,...,v} is the set of vertex
identifiers and E = {1,...,e} is a set of edge identifiers.
To support loops and parallel edges (multigraph property) the
functions s : E — V /t: E — V map a source and a
target vertex to a every edge. An edge e € I is directed from
s(e) to t(e). The functions § : V — Xy / A 1 E — Xp
associate a label to every vertex and edge. For sake of
simplicity, a function 7: V' — T maps every vertex v into
its correspondent taxonomy 7(v). Vertices with simple labels
are formally mapped to a dedicated taxonomy of depth 1, for
example, to taxonomy with root misc in Figure 3. We demand
consistency s.t. Yo € V' : 6(v) € Sy, holds.

At this point, we need to define an enforced notion of
isomorphism taking into account that besides structure, vertex
taxonomies (dimensions) and edge labels must match:

Ja: Vg, « Vg,.38: Eq, < Eg,.
Yoe Vg, .7(v) = T(a(v))) A
Ve e Eg,.A(e) = A(B(e)) A
a(s(e)) = s(B(e)) A alt(e)) = H(A(e)))
)

Finally, we can define graph generalization as follows:

Gl%GQ@

GiCGye GGy AVve VG1.§(7)) Erw) (5(0[(’[))) (6)

In the remainder of this paper we will use the notations
of /1 =1 ¢35 and respectively G; = G5 to explicitly exclude
equality from generalization, i.e., sharing equal vertex labels.

I'Since the length n of taxonomy paths is bounded by the depth m. of the
associated taxonomy s.t. 0 < n < m we use sequences of % symbols with
length m —mn in illustrations to express that a taxonomy path of length n < m
is head of all longer paths containing it, i.e., £7.f2. * . means a label {7 .02
with m = 4

Fig. 3: Example taxonomies of Figures 1 and 2.
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C. Terminology

Before we can explain GM-FSM in more detail, we need
to further define important terms used throughout this paper.
First, the input graph’s vertices must have taxonomy leafs as
labels. Thus, their subgraphs can be described by patterns of
only taxonomy leafs, too. Thus, input graphs G as well as
the bottom-level patterns P*°! contained in G must satisfy
the following property:

Vv € Ve\Vpor. B € Sy (). 6(v) Sy £ (7

Second, the graph generalization definition in Equation 6
could lead to meaningless patterns due to a schema over-
generalization [13] (e.g., a customer that has a location which
occurs as frequent as only a customer). For this reason, we
generalize graphs by generalizing vertex labels only up to the
second level of taxonomies. Thus, it is an application-specific
data modeling decision whether the second level (fop-level)
will be an identifier for the taxonomy (e.g., taxonomy with
root customers in Figure 3) or just provide specializations (e.g.,
taxonomy with root location in Figure 3). Formally, a top-level
pattern PP must satisfy the following property:

Yve Vpd <E, ET(U)> € Rr(v)g = 5(1}) ®)

Please note that the term “top-level pattern” must be dis-
tinguished from the “most generalized graph” according to
Equation 6, since the notion of “most generalized graph” is
only referred to isomorphic graphs as in Equation 5.

D. Frequent Subgraph Mining

Both of our methods are based on the gSpan algorithm [36],
in particular an extension supporting directed multigraphs [24].
The most fundamental component of gSpan is the use of DFS
codes to represent graph patterns in a canonical form. The
algorithm is efficient since DFS codes are directly generated
during a constrained depth first search in the graph with only
few duplicate detections of the same pattern. In a normalized?
way a DFS code of a pattern P can be represented by the
following pair:

Cp = {{6(v1), ey 6(n) ), (X1, ooy Th Yy )

In this representation {§(v;))1<i<n is a tuple of labels of n
visited vertices and {x;)1<j<k a tuple of k edge extensions.

2Typically (e.g., in [36]) vertex labels are shown redundantly within
extensions. Thus, we use the attribute normalized.



Since the latter are not relevant for the remainder of this
paper, we refer to [37] and omit further details about their
representation. The indices ¢,j correspond to the discovery
order, for example, v, was is the first extension’s start vertex.

To explain our methods, we briefly explain gSpan and its
pseudocode shown by Algorithm 1. The algorithm’s input are
besides a graph collection and a minimum support also a
maximum edge count k... The latter is important to limit
response times for scenarios where graphs can be very large
and contain many frequent schema-induced automorphisms,
e.g., business process executions [25].

In a preprocessing step (line 1) frequently supported vertex
and edge labels are determined to create label dictionaries. The
dictionaries are used to replace strings by integer translations
(line 2) and to remove vertices and edges showing infrequent
labels. gSpan is using a lexicographical order among DFS
codes and discovers them in a pattern-growth manner, i.e.,
children are generated from parents by 1-edge extensions and
there is a DFS code tree of parent-child relationships. Q
represents a queue of unextended parents and initially contains
only an empty root-pattern P,,.: (line 3). The parents in
queue are processed subsequently (line 6). For each parent
children are generated (line 7) and evaluated (line 8). In
the method countAndPrune we not only filter by minimum
support but also verify the few duplicates generated by gSpan
(non canonical DFS codes [37]). Finally, all frequent patterns
are added to the output F (lines 4,9,12) and those whose
childrens’ size will be less than or equal to k,,,, are added
to the queue (line 10).

E. Path-Substitution Method

In the path-substitution method we replace vertices whose
labels are not the top-level of their associated taxonomy by the
respective taxonomy path. For example, Figure 2 shows Figure
la after path-substitution. In a typical semantic annotation one
would just add the taxonomy path to the vertex, e.g.:

Quotation SBY, Alice <*A SalesPerson <22 Employee
However, for the pattern mining process it is important that

the bottom-level (e.g. vertex 3, Alice) is replaced by the top-

level (e.g. vertex 9, Employee). Otherwise a semantic gener-

N . tB
alization like Quotation ~==Y> SalesPerson cannot be found
if Alice is infrequent. In contrast, although Alice is infrequent,
path-substitution allows to extract equivalent patterns like:

Quotation sentBy, Employee 154, SalesPerson

With regard to Algorithm 1 our modification affects multiple
parts. First, there must be a preprocessing step before line 1
to perform the actual path-substitution. Thus, all generalized
labels as well as the isA edge label will pass the dictionary
coding and infrequent labels will already be pruned. Second,
the edge count restriction of line 10 must consider only logical
edges, i.e., those showing not the label isA. In consequence,
structurally extracted patterns may be much larger that k..
Third, gSpan considers taxonomy paths, i.e., paths whose
edges all show label isA, as normal subgraphs. Thus they must
not be added to the result in line 9.

1

Algorithm 1 gSpan algorithm

Require: G, fiin, kmaz
1. Dy, D. < frequentLabel Dictionaries(G)
G < dictionaryCoding(G, D,, D.)
Q = {Proot}
F=0
while Q # & do
P¥ < Q.poll(); // step k
PE+l < growChildren(G, PF)
FF+l <= count And Prune( f“, frmin)
F <= FuFrtt
if £+ 2 < k0, then
Q <= Q U FF*L J/ if children of k + 1 reach Kyq,
end if
: end while
: return F

R A A ol

—_ = = = =
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F. Pattern-Decomposition Method

The theoretical disadvantage of the Path-substitution method
are additional isomorphism resolutions caused by the in-
serted edges. Thus, we investigated a second method based
on pattern-decomposition. Here, we exploit that all common
generalizations of two patterns are isomorphic (see Definitions
5 and 6). Further on, since our taxonomies are trees, any top-
level pattern is at least as frequent as any of its specializations.
In return, a pattern can only be frequent if its top-level
pattern is, too. Thus, we first mine frequent top-level patterns
and frequent specialization vectors (see next section) in a
subsequent step. In this way the number of isomorphism
resolutions is bounded by the number of top-level patterns.

Therefore, Algorithm 1 is changed as follows: When de-
riving patterns from subgraphs (line 7), we decompose every
pattern into a triple <OP£OP,Z;L> containing top-level DFS
code Cptop, a bottom-level label vector  and a mapping ¢.
In order to avoid redundant information, we will store the
bottom level only if it differs from the top-level: therefore, we
additionally need a mapping ¢ : N — N from vector fields to
the vertex order of the DFS code. Based on the decomposition,
we are able to first mine frequent top-level patterns (line 8)
and identify frequent specializations afterwards by mining all
frequent generalized vectors attached to the same top-level
pattern. Finally, we derive a specialized DFS code for each
frequent vector by replacing vertex labels according to the
mapped fields from ¢ and add them to the output (line 9).

G. Generalized Frequent Vector Mining

The problem of Generalized frequent vector mining aims
to identify a set of frequent generalizations from a given set
of vectors which fields occur in one or more taxonomy. Input
for each execution is a triple (Cp, L, ¢y of DFS code Cp, a
list of vectors L = <1717 . ,Zm> and a mapping ¢. Since DFS
codes provide an order vy, ..., v, for the vertices of a pattern
P, where each of them is mapped to just one taxonomy, the
i-th vector dimension shall correspond to the taxonomy of



Fig. 4: Generalization search lattice for a 2-dimensional vector
set L = {(111,2111),(111,2112),(112,2112)}. f indicates
frequency (absolute support). Common prefixes indicate label
generalizations (e.g., 11 =7, 112). Edges represent vector
generalization from bottom to top.
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the vertex v,(;) € Cp. Hereby, the vector space is defined as
follows:
(10)

SP = ST(’Ul) X X ST(’Un)

Thus, we can define vector generalization as follows:
(11)

Based on this definition, the search space of all possible
generalizations of vector set L can described by a lattice.
Figure 4 shows a respective lattice for an example vector
set, where each label ¢; refers to a vertex v;. To indicate
taxonomy paths labels are represented by a canonical labeling
for trees [20], e.g., label Fukuoka in Figure 3 can be expressed
by 1111, while IEEE is now 212. To efficiently extract all
frequent generalizations we must avoid visiting lattice nodes
multiple times. We investigated two algorithms satisfying this
requirement:

1) Bottom-up search: The first approach is to level-wise
generalize the input vector list. The search is shown by
Algorithm 2 and an example search graph by Figure 5. To
avoid multiple node visits, we only generalize to the right, i.e.,
a field will only be generalized if itself, none or a smaller field
was generalized in the previous iteration. Thus, a minimum
generalization index ,,;, is passed among lattice nodes. Lines
1 and 2 of Algorithm 2 show the initialization of the bottom
level nodes, i.e., bottom-level vectors, their frequency and an
initial %,,;,, = 1. In lines 3 to 5 we instantiate the three
important collections of our algorithm: N, /N, are the current
level’s parent/child nodes and N are the result nodes.

Until the is nothing more to generalize (line 7) we generate
all valid parents of each child (lines 8 to 15). Since a parent
must be only one generalized field ahead of its child exactly
one parent is generated for every valid field ¢ (lines 11 to
15). Before, the current i,,;, is checked for being the top-
level (line 8). If so, our search pruning is applied and %,y
is increased, i.e., only fields ¢ > ¢,,;, may generalized for all
future parents. This happens once in the example of Figure

VZZ;ESP. EEgPﬁ < giET(vi)€2|1<i<n

Fig. 5: Bottom-up search in the example lattice of Figure 4.
Edge labels correspond to 4,,;, of Algorithm 2. Red lines
indicate unnecessarily traversed paths which at f,;, = 3.
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Algorithm 2 Bottom-up search
Require: S = (S7,)", L = (€ | £ = (€i)1<i<n, fmin € N

—

1: Npor = Lomap(l — ;1 1, imin : 1))

2: aggregate Frequencies(Npot)
3: N, <= Npot

4 N, =

5: N < N,

6: while N, # () do

7. for all {0,, fo,imin) € N, do
8 if le.getField(imi) = (5", then
9: Tmint+

10: end if

11: for i = i,pin; i < n;i++ do
12: 0, <0,

13: generalize(f;, i)

14: N,.add({L,, f.,i))

15: end for

16:  end for

17:  aggregateFrequencies(N)
18:  N.addAll(N,)

190 N.<= N,

20: end while

21: filter(N, f = fuin)

22: return N

5 and is indicated by blue text. After all level parents are
generated their frequencies are aggregated (line 17) and they
are added to the result collection (line 18). Current parents are
set to be next level’s children (line 19).

The bottom-up search visits every lattice node only once
and aggregates frequencies level-wise. However, frequency
pruning (line 21) can first happen after all nodes are discoved
and, thus, unnecessary paths in the lattice may be traversed.
In particular these are the ones which may never lead to a
frequent generalization (see red paths in Figure 5).



2) Top-down search: The second approach is to start from
the top-level vector and to specialize level-wise. Here, we can
stop generating children as soon as the parent is not frequent
anymore. To avoid multiple node visits, this time we specialize
to the right, i.e., a field will only be specialized if itself, none
or a smaller field was specialized in the previous iteration. The
according search is shown by Algorithm 3 and an example
search graph by Figure 6. Lines 1 and 2 correspond to those
of the bottom-up search.

Until the is nothing more to specialize (line 6) we generate
all valid children of each parent (lines 6 to 18). To generate
children we need to find all input vectors matching a pattern
(line 11). Base on these, we collect respective specializations
for every valid field ¢ (lines 12-16). In contrast to bottom-up,
the current ,,;, is checked for being the bottom-level (line 8).
If so, our search pruning is applied and i,,;, is increased, i.e.,
only fields ¢ > 4,,;, may specialized for all future children.
This happens twice in the example of Figure 6 and is indicated
by blue text.

As the major advantage over the bottom-up approach only
frequent parents (line 20) are added to the result collection
(line 21) and passed among iterations (line 22). Consequently,
children of infrequent parents will never be processed. For
example, in Figure 6 the red crossed nodes are filtered out
and the gray paths will not be traversed. However, the there is
the additional cost of the pattern matching (line 11). We use
an index between idx : Ny — P(Npot) to avoid enumerating
Ny fully for each call.

III. RESULT RANKING

Since GM-FSM potentially returns a large number of re-
sults, they are ranked according to their statistical significance.
The significance is established through the computation of a p-
value, which measures the degree of over-representation of the
pattern in the union graph of a collection of graph transactions
with respect to a null model. The p-value is calculated by
using a fast analytical model, starting from the mean number
of occurrences of the pattern with respect to the Expected
Degree Distribution (EDD) model [5] (also knonwn as Chung-
Lu model), which is chosen as reference null model.

In what follows we briefly describe the EDD model for
multigraphs and show how to compute the expected number
of occurrences of a pattern according to the EDD model.

Given a graph G = (V, E, s,t,6, \, 7), we call multiplicity
of an edge e € E, and we denote it as O(e), the number of
parallel edges between s(e) and ¢(e). The multiplicity M of
a graph is defined as the maximum multiplicity of its edges.
The projection of G with respect to 6 is the subgraph Gy of
G composed only by all the edges of G with multiplicity 6.

We next define M x |Xy/| random variables, one for each
edge multiplicity 6 conditioned to each vertex label ¢ € Xy, .
Degyll is the degree distribution of the projected graph Gy
conditioned by /¢, and thus considering only the degrees of
vertices with label ¢. Specifically, P((Degy | £) = d) is the
probability that given a vertex with label ¢, it has degree d
in the projection Gy. The degree of a vertex v given the

Fig. 6: Top-down search in the example lattice of Figure 4.
Edge labels correspond to %,,;, of Algorithm 3. Gray lines
indicate pruned paths at f,;, = 3.
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Algorithm 3 Top-down search

Require: S = (S1,)", L = (lp) | £ = (€:)1<i<n, fmin € N
1: Nyot = Lomap(d — U, f: 1, ipmin : 1))

2: aggregate Frequencies(Npot)

3 Ne=()

4: Ny <= ¢ (égf’lp,ﬁgzp),f S|L] dmin : 1))
5: N < Np

6: while N, # () do

7. for all <€;,, fpstminy € Np do

8 if fy.getField(imy) = (52 then
9: Tmint+

10: end if

11: for Z,Ot, Joot € match(Npot, é_;;) do
12: for i = i,in; i < nji++ do

13: FC = E_;,

14: specialize(ll, 1, E_;,mg)

15: Ne.add({Ly, foor, 1))

16: end for

17: end for

18:  end for

19:  aggregateFrequencies(N,)
20:  filter(Ne, f = finin)

210 N.addAll(N,)

222 N, <= N,

23: end while

24: return N

vertex label £ in G, D, o, is sampled according to the Degg|¢
distribution.

The probability of adding an edge with multiplicity 6
between two vertices v and v according to the EDD model is

defined as:
P(u,v,0|Dy.9,Dy ) = min(1l,79 x Dy g x Dyg)  (12)

where v9 = 1/[(|[V]| — 1) x E[Degg]]. Degg is the degree
distribution of the projected graph Gy, considering all vertices



and is given by >, Degg ¢-P(dp(v) = ¢), where P(dp(v) = £)
is the probability of having a vertex with label /.

Given a pattern P = (V,, E, s, tp, 0p, Ap, Tpy With |V,| =
k, the occurrence probability of P in G, given a label
assignment ¢, to the vertices of P and a label assignment
Ap to the edges of P, is obtained by summing across all the
possible degree assignments to each vertex for that motif.

H Yo(e) X n HE [Deglr =+

eck, u=16=1

11(P[6,, \p)

Sp(u)]

(13)
where pg(u)—y,9 is the number of edges with multiplicity ¢
and u as source vertex, while E [Degps(” “?|6,(u)] is the
moment of degree py(.)—u,9 Of Deggld,(u) distribution. In
general, the moment of degree d of a distribution X which can
as)jume values in a set R(X) is defined as 3}, ) [2 xP(X =
x)].

The probability of the motif is then defined as:

p(P) = p(P[op, Ap) x a(dp) x n(Ap) (14)
where:
k
= [ [P, (w)) (15)
= TT POw@Iap(s(e)), p(t(e))  (16)

eck,

P(0p(u)) is the probability of nodes with label 6,(u) in
G, while P(\,(e)|d,(s(e)),dp(t(e)) is the probability of ob-
serving edges in G with label \,(e) having source and target
vertices labeled 6, (s(e)) and &,(t(e)), respectively.

To compute the mean of the number N (P) of occurrences
of P, we have to consider all possible locations of the pattern
in G. if P has k vertices, a location che be defined as a set of
k vertex identifiers in G, representing the vertices of G that
match the vertices of P. The number of all possible locations
is then obtained as (‘Z‘).

Furtheremore, a pattern P in a specific location can occur in
different configurations, where each configuration correspond
to a permutation of vertex identifiers. We call Non-Redundant
Permutations (NPRs) of P, a set NPRS(P), consisting of
all the distinct subgraphs resulting from all possible config-
urations of the current set of vertices in the location. Two
subgraphs are considered distinct if they differ in at least one
of the following quantities: i) adjacency matrix, ii) ordered
list of vertex labels according to vertex identifiers, iii) ordered
list of edge labels according to edge identifiers. We therefore
define 7(P) = [INRPS(P)].

An important property of the EDD model is exchangeabilty,
which means that the probability of observing P does not
depend on its specific location. Thanks to such a property, we
can compute the expectation of N(P) as:

E[N(P)] = ('Z) < 7(P) x u(P)

The variance of the number of occurrences of P is given by
VIN(P)]=E [NQ(P)] —E [N(P)Q].

a7

To compute E[N2(P)], we have to take into account that
two occurrences of a pattern may overlap. Two occurrences
overlap if they share at least one vertex. This causes the
generation of super-pattern, i.e. a subgraph P composed by
two NRPs of overlapping occurrences which have the same
node and vertex labels in the overlapping region. Given two
NRPs of P, say P’ and P”, we define the overlapping
operation with s common nodes as P'Q,P". Therefore the
computation of expectation of squared count of P involves
the computation of such super-patterns.

The expectation of the squared count of P is given by
the contribution of two terms, one is related to pairs of
disjoint occurrences and one is related to pairs of overlapping
occurrences (with different amounts of overlap). In both cases
we have to consider: (i) all possible locations of the two
occurrences of pattern P in the graph and (ii) all possible
NRPs of P.

The expectation of the squared count is then given by the
following equation:

E(VP)] = (g ) PO

N
<k—s,s,k—s,N—2k+s) Z

s=1 P’,P"eNRPS(P)

WP QP

M=

(18)
where ( N_é\]; K, k) is the number of all possible combinations
of locations of two non-redundant permutations of m with no
overlap and (kfs_s’kf;[,Ni%Jrs) is the number of all possible
combinations of locations of two non-redundant permutations
of m with overlap s.

Finally, to establish whether pattern P is over-represented
in G, one needs to calculate the probability (i.e. p-value)
P(N(P) = F(P)), where F(P) is the frequency of P in
G and N(P) is a random variable representing the number of
occurrences of P in a random graph generated according to
the chosen reference model.

Following [27], we model the random variable N (P) using
the Pdlya-Aeppli (denoted by PA) distribution [17]. Mean
and variance of the number of occurrences of P are used
to compute the two parameters of the PA distributiojn: a =
e and A = (1= Q)E [N (P)].

Dealing with very large patterns may be still problematic
even with the proposed analytical model. The main drawback
is related to the computation of the variance which is quite
time consuming due to the generation of super-patterns and
the computation of their occurrence probabilities.

To overcome such a limitation we can observe that the
variance is needed to estimate the parameter a in the PA
distribution. Indeed, by varying the variance we can estimate
several p-values. In such a distribution of p-values we extract
the maximum and return it as the p-value of the pattern. Such
an approximation allows us to establish the significance of
very large patterns. The accuracy and performance of p-value
approximation method have been tested and full results will
follow in a dedicated publication.



Fig. 7: GM-FSM Evaluation Results.
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IV. EXPERIMENTAL EVALUATION

We implemented a prototype in the Java programming
language. As the core of both methods we reimplemented
gSpan [36] including the extension for directed multigraphs
described in [24]. The current version is sequential but adding
thread parallelization is straight forward. The source code can
be found online® under GPL licence. All experiments were
run on a machine equipped with an Intel i7-4770 CPU, 16GB
RAM, SSD and running Ubuntu 14.04.

A. Dataset

Since we are targeting business intelligence we choose the
XXXXX data generator [25] to create synthetic data with
real-world inspired properties. XXXXX is based on busi-
ness process simulation. Each simulation results into a graph
of transactional (e.g. quotation, sales orders and invoices)
and master data (e.g. employees, products and customers).
Multiple graphs may contain the same master data objects,
e.g., the same employee sending a quotation. Each process
execution can be evaluated by financial result. There are
implanted correlations, e.g., if certain employees are involved
or master data objects interact the probability of financial loss
is increased. Thus, we did not use the full data set but only a
subset of lossy graphs for our evaluation. Thus, we know that
frequent patterns on low taxonomy levels are contained.

We modified the configuration such that all graphs have
19 vertices and 22 edges. Additionally all input graphs are
fully isomorphic to each other according to Definition 5.
Thus, the data set is very challenging for frequent subgraph
mining despite despite the small number of only 1335 graphs.
However, in this way we have achieved our goal to generate a
dataset with many results on low taxonomy levels as required
to effectively benchmark the generalization aspect of our
methods. For example, at suppi, = 0.1 and kpqp = 8 we
can extract nearly 1M frequent patterns.

B. MG-FSM method comparison
TODO

3https://github.com/anonymized- for-submission

C. P-value calculation

To evaluate the scalability of the P-Value calculation we
extracted frequent patterns and choose 1000 random patterns
for the edge counts 4 < k < 10. Figure 8 shows the average
computation time in milliseconds for each k. We see that
the processing time is increasing super-linear over pattern
size. However, we consider patterns of more than 10 edges
either irrelevant for analytical scenarios. Thus, we consider a
computation time of less than 10 milliseconds per p-value in
relation to the gained accuracy of significance as a notable
result.

V. RELATED WORK

GM-FSM uses techniques from different fields of research.
Thus, we discuss related work about frequent subgraph, gen-
eralized and multi-dimensional pattern mining as well as
significance of graph patterns.

A. Frequent Subgraph Mining

The origin of frequent pattern mining [1] is its role as a
primitive operation at the extraction of association rules from
itemsets [2]. Frequent subgraph mining (FSM) is a variant
of frequent pattern mining where patterns are represented by
graphs that are isomorphic to subgraphs of either a single
large graph (single-graph setting) or graphs in a collection
(graph-transaction setting) [16]. Since GM-FSM is based on
the graph-transaction setting, we omit a further discussion
of the single-graph setting [7], [34]. The first transactional
FSM algorithms, e.g., AGM [14] and FSG [18], followed an
a priori approach. These algorithms first generate candidate
patterns and count their frequency by graph pattern matching.
Their disadvantages are the expensive isomorphism resolutions
during candidate generation and support counting as well as
the generation of many candidates which might not even
appear. Thus, the next generation of pattern-growth based
FSM algorithms appeared and outperformed the a priori ones.
Popular representatives of this category are MOFA [4], gSpan
[36], FFSM [12] and Gaston [23]. These algorithms system-
atically derive patterns form actually occurring subgraphs and
represent them by canonical labels. Existing algorithms to
transactional FSM on shared nothing clusters [11], [19], [21],
[3] follow pattern-growth approaches.



TABLE I: GM-FSM Benchmark Measurements.

Parameter | Result Size [ F] Runtime in seconds
ms km | Top All Top PS BU TD
04 3 213 420 1 3 2 2
4 646 1465 2 11 6 6
5 1827 4692 7 36 29 21
6 4690 13433 18 99 136 61
7 10727 33793 45 244 654 165
8 21669 74112 96 517 3124 358
02 3 233 1045 1 4 2 2
4 737 4067 2 15 6 7
5 2181 14419 7 52 29 25
6 5870 45132 18 158 137 76
7 14101 122539 | 47 416 673 214
8 29966 286702 | 100 926 3209 506
01 3 313 2284 1 5 2 2
4 1099 9662 2 19 7 8
5 3580 37193 7 69 30 30
6 10496 125765 | 20 217 143 94
7 27203 365926 | 50 609 698 283
8 61837 909163 | 111 1422 3437 695
km / ms : maximum edge count / minium support
Top / All :  top-level only / all-levels
PS : path-substitution
TD : pattern-decomposition with top-down GFVM
BU : pattern-decomposition with bottom-up GFVM

B. Generalized and Multi-dimensional Pattern Mining

In [32] first taxonomies were used to find frequent gener-
alizations of potentially infrequent patterns. This concept was
applied to sequential patterns in [33]. The first approach to
mine itemsets at multiple levels was proposed in [9]: However,
this approach is only able to extract patterns where all values
are at the same level of the same hierarchy. The approach of
[38] provides support for generalized and multi-level frequent
pattern mining and uses a graph model at the extraction of
association rules. In more recent work, algorithms to cross-
level frequent itemset mining were proposed in [6] and [15].
All of the work discussed so far assumed that all items are of
the same type, i.e., belong to a single dimension. This is also
the case for the only other approach to generalized frequent
subgraph mining [13] based on an a priori method where a
weighted support is used to prune over-generalizations during
the mining process. Approaches to multi-dimensional pattern
mining were proposed in the context of sequential patterns
[28], [39]. However, dimensions are not part of patterns
but attached to them. In contrast, the approach of [29] is
supporting sequences of multi-dimensional items as well as
mining them at multiple levels.

C. Significance of Graph Patterns

In certain scenarios patterns are not interesting just because
of their bare frequency. Therefore, research attention has been
spent to identify statistically significant graph patterns. In [10]
and [30] authors depict fast methods to convert graphs into a
feature space and evaluate the significance of the graph pat-
terns in such a space. In [35] a general mining framework, is
capable to exploit the correlation between structural similarity
and significance similarity. Through this strategy the mining

Fig. 8: Time for p-value estimation by pattern size k.
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of the most significant graph patterns measured by different
kinds of non-monotonic objective functions is achieved. In
[8] authors introduced an indexing method to extract Top-K
subgraphs with surprising and rare associations.

Focusing on the methods that rank patterns through statis-
tics, the aim is to mine subgraphs having a p-value below a
user specified threshold (usually the default critical value for
the p-value is 0.05). The common approach to deal with this
problem relies on simulation which usually generate databases
of random graphs (namely the null model) sharing some
characteristics of the input one and look for the same patterns.
The p-value is then estimated as the number of times the
pattern appears more frequently than in the input database.

Over the last decades, researchers have worked on replacing
simulation by analytical methods. Picard et al. [27] proposed a
model to exactly compute the mean and variance of the count
of a given graph pattern under any exchangeable random graph
model. The authors make use of the Pdlya-Aeppli distribution
(also known as the Poisson Geometric distribution which is
a special case of the Poisson-Compound distribution) [17].
Schbath et al [31] extends the model to deal with topology-free
graph pattens which are defined as any connected topology
of k vertices having a given multiset of labels. In [22]
authors further extended the analytical model to establish the
significance of labeled (induced or not induced) patterns on
directed and undirected graphs, under the Chung-Lu random
model [5], and in which labels are either independent or
dependent on the degrees of vertices.

VI. CONCLUSIONS & FUTURE WORK

We presented the first study about multi-dimensional fre-
quent subgraph mining. To represent different dimensions, ver-
tex labels can be assigned to multiple taxonomies. Besides our
conceptual contribution, we proposed two efficient methods
to extract frequent generalizations without determining the
frequency of all bottom-level patterns. Among the proposed
algorithms, the decomposition into frequent subgraph and top-
down frequent vector mining has shown the best performance.
Additionally, we presented a fast method to calculate p-values
for the resulting graph patterns which are an accurate and
expressive measure to rank them by significance.



In our future work, we will investigate the integration of
p-values directly in the mining process for significant pattern
mining. Further on we plan to create parallel versions of GM-
FSM to mine larger data sets in reasonable time. Here
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