
Distributed Privacy-Preserving Record Linkage
using Pivot-based Filter Techniques

Marcel Gladbach 1, Ziad Sehili 1, Thomas Kudraß 2, Peter Christen 3, Erhard Rahm 1

1 Department of Computer Science, University of Leipzig and ScaDS Dresden/Leipzig, Germany
{gladbach,sehili,rahm}@informatik.uni-leipzig.de

2 Department of Computer Science and Mathematics, Leipzig University of Applied Science, Germany
thomas.kudrass@htwk-leipzig.de

3 Research School of Computer Science, The Australian National University, Canberra, Australia
peter.christen@anu.edu.au

Abstract—Privacy-preserving record linkage (PPRL) aims at
linking person-related records from different data sources while
protecting privacy. It is applied in medical research to link health
data without revealing sensible person-related data. We propose
and evaluate a new parallel PPRL approach based on Apache
Flink that aims at high performance and scalability to large
datasets. The approach supports a pivot-based filtering method
for metric distance functions that saves many similarity computa-
tions. We describe our distributed approaches to determine pivots
and pivot-based linkage. We also demonstrate the high efficiency
of the approach for different datasets and configurations.

I. INTRODUCTION

Record linkage or entity resolution aims at linking records
that refer to the same real-world entity, such as persons
or products. Typically there is a lack of global identifiers,
therefore the linkage can only be achieved by comparing
available quasi-identifiers (QIs), such as name, address or date
of birth. However, in many cases, data owners are only willing
or allowed to provide their data for such data integration if
there is sufficient protection of sensitive information to ensure
the privacy of persons, such as patients or customers.

Figure 1. Medical application scenario for PPRL

Privacy-preserving record linkage (PPRL) is a promising
approach to allow the integration and use of person-related
data from different sites without revealing the identity of
persons [1], [2]. For this purpose, the linkage of person-related
records is based on encoded values of the QIs and the data
needed for analysis (e.g., health data) is separated from these
QIs. Figure 1 illustrates PPRL for two data sources (e.g.,
hospitals) and the use of a trusted unit to perform the linkage.

This linkage unit only receives the encoded QIs, but not the
health data relevant for analysis and medical research [3]. The
latter is provided to the researchers without the person-specific
QIs together with a linking ID (pseudonym) allowing the
combination of medical data from different sites for improved
data analysis and research. Those PPRL approaches can be ap-
plied in many areas, such as public health surveillance, crime
detection, demographical studies, and marketing analysis [4].
In recent years, it has primarily been used for medical research
in different countries, as described in Section II.

PPRL is confronted with several challenges needing to be
solved to ensure its practical applicability. In particular, a high
degree of privacy has to be ensured by suitable encoding of
sensitive data and organizational structures, such as the use
of a trusted linkage unit. Despite the use of encoded QIs,
PPRL must achieve a high linkage quality by avoiding false
or missing matches. Furthermore, a high efficiency with fast
linkage time and scalability to large data volumes is needed.
A main problem for performance is the inherent quadratic
complexity of the linkage problem when every record of the
first source is compared with every record of the second
source. For better efficiency, the number of comparisons can
be reduced by adopting blocking or filtering approaches [4].
Furthermore, the linkage unit can perform PPRL in parallel
on multiple processing nodes.

In this paper, we focus on improving the performance of
PPRL by applying both filtering and parallel processing. We
follow a pivot-based filtering approach for metric distance
functions that has been shown to allow the elimination of
many comparisons for centralized PPRL [5]. However, the
centralized version of this approach is not sufficient for large
datasets with millions of records as is increasingly to be
expected for applications such as in precision medicine. In
order to deal with such large datasets, we additionally support
parallel PPRL for the pivot-based metric space approach based
on the distributed processing framework Apache Flink [6].

Specifically, we make the following contributions:
• We propose parallel algorithms for both determining the

pivots and the pivot-based matching process for different
strategies to select pivots (Section III).

• We outline the implementation based on Apache Flink,
a modern framework supporting efficient distributed in-
memory processing (Section III).

• We comprehensively evaluate the performance and scala-
bility of the proposed methods for different datasets and
many configurations (Section IV).

In Section II, we start with discussing related work and
outlining the pivot-based metric space approach for PPRL.
After describing our distributed algorithms along with their
implementation in Section III, we evaluate the approaches in
Section IV, leading to a conclusion in Section V.

II. RELATED WORK AND BACKGROUND

The use of PPRL for integrating several health-related
databases is of increasing relevance for data analysis and
research in medical applications, e.g., for epidemiological
studies or adverse drug reaction studies [7]. Several medical
use cases of PPRL are already reported. For example, Aus-
tralian researchers linked data from Hospitals and Clinical
Cancer Registries with data from Central Cancer Registers
and the Australian Bureau of Statistics in a privacy-preserving
context to compare surgical treatment received by Aboriginal
and non-Aboriginal people with lung cancer [8]. Further,
long-term consequences of childhood cancer were analysed
in Switzerland linking data from several cantonal and national
registries using Bloom filters [9]. In Germany, pseudonymi-
sation and PPRL services are used in several cooperative
research projects involving multiple hospitals [10].

As surveyed in [2], [4], a large number of PPRL approaches
has already been proposed to address research challenges
such as improving security and privacy, linkage quality, and
scalability. For high efficiency and scalability it is important
to avoid the quadratic complexity of the problem (comparing
each record from one source with all records from the other
source) by adopting blocking and filtering techniques [4]. In
particular, pivot-based filtering strategies have shown to be
very effective for centralized PPRL [5] and more efficient than
a privacy-preserving version of PPJoin (called P4Join) filtering
[11]. We will describe the pivot approach in Section II-B.

Parallel and distributed methods for PPRL have received
very little attention so far. One previous PPRL study con-
sidered the use of MapReduce but in combination with LSH
(locality sensitive hashing) as blocking method [12]. Parallel
record linkage for unencoded data has also been studied
primarily for MapReduce with one recent study for metric
space distance functions [13]. However, the use of modern
frameworks such as Apache Spark or Flink has not yet
been considered for PPRL although it promises much better
performance than applying MapReduce [4].

A. PPRL Setup

As in most previous PPRL studies, we follow a three-party
protocol with two data owners and a trusted linkage unit [4]
as illustrated in Figure 2. The data owners first exchange
the exact parameters for encoding their data, in particular,
which attributes and encoding functions to use. The encoded

datasets are then sent to the linkage unit to perform the linkage
algorithm and to identify similar records. The pairs of IDs
of matching records are then sent back to the data owners,
that can now link their sensitive data without revealing any
personal information [4] [5].

Figure 2. Three-party protocol for PPRL

For the encoding of the data we use Bloom filters [14] that
are increasingly adopted for PPRL in real applications [3].
The attribute values of the records are tokenized into a set of
character n-grams, where multiple hash functions are applied
to the n-grams by setting specific bits of a bit array with a
fixed length to 1.

Acting as the linkage unit we receive the datasets as encoded
bit arrays to find similar ones. In the following we refer to the
first data source (usually the larger one) as index data source I
with elements (Bloom filters) i ∈ I . The second data source is
denoted as query data source Q with elements (Bloom filter)
q ∈ Q.

B. Metric Space for PPRL

A metric space M is defined as the pair M(X, d) of a set
of data objects X and a distance function d, which has to
satisfy several properties, in particular the triangle inequality:
∀a, b, c ∈ X : d(a, c) ≤ d(a, b) + d(b, c) [15], which can be
utilized for filtering.

As distance function on Bloom filters we use the Hamming
distance [15]:

dh(a, b) = |a ∨ b| − |a ∧ b| = a XOR b (1)

It is especially applicable for bit arrays by applying bit-wise
XOR to determine the number of differently set bit positions.

Typically in PPRL, a threshold t ∈ [0, 1] is applied to define
the minimal similarity two matching records have to meet. The
similarity of two records can be calculated with the Jaccard
similarity [15]

simj(a, b) =
|a ∧ b|
|a ∨ b|

(2)

Since we want to use the Hamming distance dh to calculate
distances in the PPRL process however, we have to define a
similarity radius rad(q) for elements q ∈ Q converting the
threshold t into a maximal Hamming distance. This can be
achieved with the following relation between Jaccard simi-
larity and Hamming distance simj(x, q) ≥ t ⇔ dh(x, q) ≤

(|x| + |q|)(1−t1+t) and the length filter |x| ≤ |q|t . The resulting
equation for the similarity radius is [5]

rad(q) = |q|1− t

t
(3)

while |q| is the cardinality of q (the number of 1-bits). All
records matching with q must have a distance lower or equal
to rad(q), i.e., they must lie in the circle around q with this
radius.

To reduce the number of comparisons we select several
elements from I as pivot elements p ∈ P , where P ⊂ I
is the set of all pivots. All other elements from I are assigned
to their closest pivot. For each pivot p we obtain a set set(p)
of its assigned elements i with their distances dh(i, p) as well
as the radius rad(p) indicating the largest distance from the
pivot to its elements.

We can now utilize the triangle inequality to filter distance
comparisons between I and Q. First, each element q ∈ Q is
compared to all pivots p ∈ I by calculating dh(p, q). q does
not need to be compared to any i ∈ set(p), if the first filter

dh(p, q) > rad(q) + rad(p) (4)

(pivot filter) applies, because the radii of p and q do not
overlap. For the remaining pivots (as the example in Figure
3), we use the pre-calculated distances dh(i, p) for a second
filter step (distance filter). If

dh(p, q)− dh(p, i) > rad(q) (5)

then q and i cannot match and their comparison can be saved.
Only for leftover candidate pairs of q and i, their distance
dh(i, q) has to be calculated.

Figure 3. Utilization of the triangle inequality in Metric Space

C. Determining Pivots
The effectiveness of the pivot usage significantly depends on

the number of pivots and how pivots are selected. In general
there are only heuristics to find ”good” pivots. A minimal
number of overlaps between the pivot radii is considered to
be a necessary requirement as it reduces the cases where
multiple records of Q have to be compared to multiple pivots
p and their assigned elements. This indicates that pivots on the
”edge” of the metric space are preferable [16]. To find pivots
we apply two iterative state-of-the-art algorithms with runtime
complexity O(|I| · |P |):

1) Maximum Separation (ms): ms aims at maximizing the
sum of distances between pivots. After picking the first pivot
randomly the following ones are chosen by selecting the
element having the largest sum of distances to all previously
selected pivots [16].

2) Farthest-First-Traversal (fft): fft tries to select ”corners”
in the metric space as pivots. In each iteration, for every
element the smallest distance to all previously selected pivots
is calculated. The element for which this distance is the largest,
is selected as the next pivot [16].

III. DISTRIBUTED PPRL

Our distributed PPRL method using the pivot-based metric
space approach works in two main phases that are executed
in parallel: preprocessing and matching. The preprocessing
consists of several steps. First, local pivots on each partition
of the index dataset are determined. From the union of the
local pivots a global selection of the final pivots is performed.
We consider the following strategies to determine pivots:
Local strategies:
• Random selection (random)
• Farthest-First-Traversal (fft)
• Maximum Separation (ms)

Global strategies:
• No global processing (none)
• Farthest-First-Traversal (fft)
• Maximum Separation (ms)
The assignment of records i ∈ I to the chosen pivots p is

also conducted in the preprocessing phase. In the matching
phase for each query record q ∈ Q the relevant pivots are
determined with the pivot filter. Then, the actual matching of
candidate pairs is performed after applying the distance filter.

For the implementation we use Apache Flink, a popular
open-source framework for parallel data processing in Shared
Nothing clusters [6]. It promises high performance, availability
and accuracy for distributed data streaming applications as
well as high throughput with low latency. The processing of
data is handled as event-at-a-time by a distributed streaming
data flow engine in the core. We use the Flink DataSet API
for batch processing. It provides many powerful operators to
perform different transformations on datasets that go beyond
the simple MapReduce paradigm [6].

Figure 4 outlines the main steps of our Flink implementation
for preprocessing on the index data source I (steps 1 to 4)
and matching with the query data source Q (steps 5 and 6).
The records (Bloom filters) of both sources are horizontally
distributed among the N workers in equally sized partitions.

A. Preprocessing

In step 1, the local pivots PL on each partition are deter-
mined with MapPartition. This operator allows us to apply an
algorithm to all records of one partition and can return any
number of records. Next, the global pivots PG are determined
(step 2). This is the only step in the process not running
distributed. It uses the GroupReduce operator on the combined

Figure 4. Flink-based PPRL processing (filled boxes are input datasets; edges represent Flink operators)

dataset PL, which is treated as one partition from which the
global pivots are selected. The determined global pivots PG are
held in a distributed cache, accessible on each partition. Within
Flink this set is made available as Broadcast Variable [17] for
the Map operator in step 3. In this step, the index records i
are assigned to their closest pivot p from PG. For each record
i, the pivot assignment (i, p) as well as the calculated distance
dh(i, p) is stored as IP . In step 4, we further determine the
radius for each pivot by applying the GroupReduce operator
to group the records per pivot p and determine the maximal
distance dh(i, p) (using the previously calculated distances)
for all assigned index records. We store the global pivots with
their radii in PGR.

B. Matching

In the matching phase, we determine for each query record
q the global pivots that may contain match candidates. This
is achieved with the FlatMap operator in step 5 applying
the pivot filter (Equation 4) after determining q’s similarity
radius rad(q) according to Equation 3. The result dataset QP

contains the relevant query/pivot combinations (q, p) together
with their distance dh(q, p) and the similarity radius rad(q).
A single record q might appear more than once in that set or
even zero times, which already excludes it as possible match.
Given the assignments IP and QP , the records can now be
distributed by the pivots, where each group consists of the
pivot and its assigned index and query records. The previously
executed grouping of IP from step 4 can be used again. With
the so-formed groups of index and query records we perform
the final matching using the CoGroup operator in step 6 by
first applying the distance filter (Equation 5) for each pair
(i, q). For all candidate pairs remaining after the distance filter
the distance dh(i, q) has to be calculated and compared with
rad(q) to find matching pairs.

Throughout the process we used the Hamming distance dh
for comparisons, because it can be calculated more efficiently
for bit arrays than the Jaccard similarity. However, rad(q)
only gives us a upper bound regarding the given threshold t.
Thus, we have to calculate the Jaccard similarity for all the
possible matches after the final step and compare it to t. As
our experiments have shown this is still the more effective
and faster way for the overall process. All pairs satisfying the
threshold t are returned within the match result.

IV. EVALUATION

Our evaluation considered three different datasets with up
to 8 million records and clusters with up to 16 workers. We
investigated the influence of the different local and global pivot
strategies as well as the scalability and speedup behaviour for
different data and cluster sizes. We also compared the pivot-
based approach with a baseline method using P4Join filtering.

A. Experimental Setup and Metrics

Table I summarizes the main characteristics of the evalu-
ation datasets. Due to the privacy context of this topic, real
data from medical sources like hospitals is hard to obtain.
Therefore we chose accessible real data as the third dataset
C. It was generated from the voter registration data in North
Carolina [18] using snapshots from different points of time.
The other two datasets (G and L) were synthetically generated
and corrupted using the GeCo Tool [19] with different numbers
of records S = nI+nQ. Record creation was based on look-up
files [20] for postcodes, cities and names from entire Germany
(dataset G) or only from the region around Leipzig (dataset
L). The latter dataset represents a more regional application
scenario, e.g., for patients from close-by hospitals.

TABLE I
DATASET CHARACTERISTICS

G L C
Tool GeCo [19] Real-world data
Look-up Files / Origin Germany Leipzig North Carolina
number of records S 500K to 8M 1M to 4M
Ratio (nI : nQ) 80:20 50:50
Errors per record 1 unknown
Duplicates in Q 100% 50%
Bloom Filter Length 1212 1097
chosen threshold t 0.88 0.85
recall (with t) 98.01% 97.90% 75.00%
precision (with t) 100.00% 100.00% 95.12%
F1-score (with t) 99.00% 98.94% 83,87%

The data was encoded based on trigrams that are mapped
with 20 hash functions into Bloom filters of variable length
(we used different Bloom filter sizes depending on the average
number of trigrams as proposed by [21]). Since we focussed on
the evaluation of runtime and filter effectiveness, we applied
a fixed similarity threshold leading to the best match quality
(F1-score) for S = 1M. Table I also shows these thresholds

2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

400

Number of local pivots

500 1000 2000 3000 4000

Number of global pivots

R
un

tim
e

 [s
]

(a) Runtime with fft fft (G), N=16, S=1M

fft_
fft_
1000_
6000

random_
fft_
1000_
6000

fft_
none_
500_
8000

random_
ms_
1000_
4000

fft_
ms_
500_
6000

ms_
fft_
1000_
6000

random_
none_
250_
4000

ms_
none_
375_
6000

ms_
ms_
500_
6000

0

50

100

150

200

250

300

350

0%

20%

40%

60%

80%

100%
Runtime [s] (left axis) tP [s] (left axis) FP (right axis) FT (right axis)

(b) Metrics for strategies (G), N=16, S=1M

fft_
fft_
1000_
12000

fft_
none_
625_
10000

random_
fft_
1000_
10000

random_
none_
750_
12000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0%

20%

40%

60%

80%

100%

Runtime [s] (left axis) tP [s] (left axis)
FP (right axis) FT (right axis)

(c) Metrics for strat. (G), N=16, S=8M

0,5 1 2 4 8
0

10000

20000

30000

40000 Dataset L
Dataset G
P4Join (Dataset L)
P4Join (Dataset G)

Number of records [M]

R
un

tim
e

 [s
]

(d) Scalability (G and L), N=16

1 2 4
0

10000

20000

30000

40000 Dataset C

P4Join (Dataset C)

Number of records [M]

R
un

tim
e

 [s
]

(e) Scalability (C), N=16

2 4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

18
linear
fft_fft
random_fft
fft_none
random_none

Number of workers N

S
pe

ed
up

(f) Speed-up for strategies (G), S=1M

Figure 5. Experimental results

and the resulting recall, precision and F1-score values. For
the real dataset C, we achieved the lowest quality due to a
higher degree of data errors. The linkage quality however only
depends on the threshold t. It is not changed by the other
parameters considered in the following.

The experiments were conducted on a cluster with 16
worker nodes, each equipped with 4 CPU-cores, 4 task slots
and 4GB JVM Heap Memory using Hadoop, version 2.7.3 and
Flink, version 1.2.1. To evaluate performance, we analysed the
total runtime of the algorithm for different configurations as
well as the preprocessing time tP until step 4 was completed.
To evaluate the effectiveness of the two filters, we determined
which fraction of the number of comparisons they help to save
compared to the maximal number of comparisons nI · nQ of
the Cartesian product. The percentages FP and FT show how
many comparisons were filtered out by the pivot filter alone
(with Equation 4) and by both the pivot filter and the distance
filter (after applying Equation 5), respectively (FP <= FT).

We considered the following configuration parameters:
number of workers N , local pivot strategy sL (random, ms
or fft), global pivot strategy sG (none, ms or fft), number of
local pivots nL, and number of global (overall) pivots nP . In
the following we use a certain notation for the chosen strat-
egy and the number of pivots: sL sG nL nP (for example
random fft 2000 6000). If not stated otherwise, we applied
N = 16 and S = 1M for the number of workers and records.

B. Results

1) Number of Pivots: For each combination of local and
global strategy, we looked at different numbers for local and
global pivots. As an example, Figure 5(a) shows the runtime
for strategy fft fft on dataset G for different values of the
number of global pivots nP (x axis) and local pivots nL (dif-
ferently colored curves). For this strategy the optimal number

of global pivots was 6000, no matter which nL was picked.
The combination with the best runtime was 1000 6000, i.e.
the 6000 final pivots were selected from 16000 (16·1000) local
pivots. The results illustrate the trade-off to be made between
a faster preprocessing with fewer pivots and a potentially
stronger reduction of comparisons with more pivots.

2) Pivot Strategies: We then turned to the comparison
between the different local and global pivot strategies. For
this purpose we determined the best combinations of nL nP

with the shortest runtime for every possible strategy. These
combinations are shown in Figure 5(b) for dataset G and
S = 1M and in Figure 5(c) for the bigger number of records
S = 8M. The combinations are ordered by their runtime from
best to worst in the figures showing furthermore the time for
preprocessing as well as the filter percentages FP and FT .

For both data sizes the best runtime and also the best filter
percentages were achieved for the pivot strategy fft fft and
nL = 1000. The pivot filter eliminated already 86-87% of the
comparisons in these cases and the total filter percentage FT

reached 98-99%. The preprocessing time was generally below
30% of the total runtime for the smaller dataset and below
20% for the bigger one indicating that for larger datasets a
more sophisticated preprocessing for achieving bigger savings
in match comparisons is a good strategy. The next best
strategies for dataset G were random fft or fft none applying
a cheap selection (random or none) for local pivots or global
pivots, respectively. They had a lower preprocessing time but
a slightly reduced (but still high) filter percentage FP .

Interestingly, for both other datasets L and C (S = 1M)
the random fft combination had even the fastest runtime. This
shows that the selection of the global pivots seems more
important than local pivot selection and that a simple and
fast random strategy can be enough for determining local

pivots. Although the best combinations differed somewhat
between the different datasets, some results were consistent
throughout all experiments. For example, all combinations
with fft outperformed the combinations with ms, especially
on the local level, where ms was even worse than random
selection.

3) Scalability: To evaluate scalability, we analysed the
performance of our parallel pivot-based PPRL approach for
different data sizes (number of records) for both synthetic
datasets G and L and the real dataset C. Furthermore, we
compared the approach with a parallel implementation of the
P4Join (a P4Join adoption for Bloom filters) [11] using length
and prefix filtering. As Figure 5(d) shows for the synthetic
datasets, the pivot space approach outperformed P4Join for all
data sizes. P4Join also was not nearly as effective in filtering.
For datasets G and L the length filter only reduced the total
number of comparisons by 15% while the prefix filter had
almost no effect. The reason are the relatively long bit vectors
leading to long prefixes (about 100 bits), and thus a low
probability, that prefixes do not overlap.

In G the records (bit vectors) are on average relatively far
away from each other (large dh). This led to large pivot radii
rad(p) and thus to lower values for FP = 83% and FT = 98%
for S = 8M. The records of L are more similar and therefore
closer in average leading to FP = 94% and FT = 99% for
8M records. Accordingly, the runtime for those two datasets
differed for all data sizes by roughly a factor of 2.

Figure 5(e) shows the scale-up for dataset C. With this
dataset we observed a lower filter effectiveness as for the
synthetic datasets. For S = 1M the numbers were FP = 40%,
FT = 90% for the fastest combination (random fft) and
FP = 54%, FT = 89% for fft fft. The resulting longer
runtime was also influenced by the different ratio nI : nQ

(50:50), because the query dataset Q is much larger so that its
assignment to the pivot and the matching took much longer.
However, our method still outperformed P4Join by far, which
only filters about 13% of comparisons.

4) Speedup: We finally evaluated speedup for cluster sizes
between 2 and 16 workers. As can be seen in Figure 5(f), for
dataset G speedup was nearly linear for several pivot strategies
(the graphs for the other datasets look very similar). For some
strategies we even achieved a speedup better than linear (e.g.,
fft fft). The reason is a long runtime for the cases with lower
N , especially for N = 2, where a higher number of local
pivots nL was needed resulting in increased preprocessing
times.

V. CONCLUSION

We proposed and evaluated a new distributed pivot-based
PPRL method for metric distances. For implementation we
utilized Apache Flink as a state-of-the-art distributed pro-
cessing framework. The experimental evaluation for different
datasets showed that the farthest-first-traversal (fft) algorithm
to find global pivots in combination with a fft or random
strategy to find local pivots outperforms other strategies due
to good filtering effects. The parallel approach also showed

good scalability to larger data sizes and excellent speedup. For
future work, we plan to investigate further distributed PPRL
approaches and make them available in a toolbox for use in
applications and for a comparative evaluation. Furthermore we
currently cooperate with a consortium of university hospitals
to build a PPRL service.

ACKNOWLEDGEMENT

This work was partially funded by the German Academic
Exchange Service (DAAD) and Universities Australia, as
well as the German Federal Ministry of Education and Re-
search within the project Competence Center for Scalable
Data Services and Solutions (ScaDS) Dresden/Leipzig (BMBF
01IS14014B), where this work was conducted.

REFERENCES

[1] R. Schnell, T. Bachteler, and J. Reiher, “Privacy-preserving record
linkage using Bloom filters,” BMC Med. Inf. & Decision Making, 2009.

[2] R. Hall and S. Fienberg, “Privacy-Preserving Record Linkage,” in
Privacy in statistical databases, 2010.

[3] J. Boyd, S. Randall, and A. Ferrante, “Application of Privacy-Preserving
Techniques in Operational Record Linkage Centres,” in Medical Data
Privacy Handbook, A. Gkoulalas-Divanis and G. Loukides, Eds.
Springer, 2015.

[4] D. Vatsalan, Z. Sehili, P. Christen, and E. Rahm, “Privacy-Preserving
Record Linkage for Big Data: Current Approaches and Research Chal-
lenges,” in Handbook of Big Data Technologies, A. Zomaya and S. Sakr,
Eds. Springer, 2017.

[5] Z. Sehili and E. Rahm, “Speeding up Privacy Preserving Record Linkage
for Metric Space Similarity Measures,” in Datenbank Spektrum, 2016.

[6] The Apache Software Foundation. (2017) Apache Flink. [Online].
Available: https://flink.apache.org/

[7] B. A. Malin, K. E. Emam, and C. M. OKeefe., “Biomedical data privacy:
problems, perspectives, and recent advances,” in JAMIA, 2013.

[8] A. Gibberd, R. Supramaniam, A. Dillon, B. K. Armstrong, and D. L.
OConnel, “Lung cancer treatment and mortality for Aboriginal people
in New South Wales, Australia: results from a population-based record
linkage study and medical record audit,” in BMC Cancer, 2016.

[9] C. E. Kuehni, C. S. Rueegg, G. Michel, C. E. Rebholz, M.-P. F.
Strippoli, F. K. Niggli, M. Egger, and N. X. von der Weid, “Cohort
Profile: The Swiss Childhood Cancer Survivor Study,” in Int. Journal
of Epidemiology, 2012.

[10] M. Lablans, A. Borg, and F. Ückert. (2017)
Mainzelliste. [Online]. Available: http://www.unimedizin-
mainz.de/imbei/informatik/opensource/mainzelliste.html

[11] Z. Sehili, L. Kolb, C. Borgs, R. Schnell, and E. Rahm, “Privacy
Preserving Record Linkage with PPJoin,” in Proc. 16th BTW, 2015.

[12] D. Karapiperis and V. S. Verykios, “A distributed near-optimal LSH-
based framework for privacy-preserving record linkage,” in Comput. Sci.
Inf. Syst., 2014.

[13] G. Chen, K. Yang, L. Chen, Y. Gao, B. Zheng, and C. Chen, “Metric
similarity joins using MapReduce,” in IEEE TKDE, 2017.

[14] R.Schnell, T. Bachteler, and J. Reiher, “A Novel Error-Tolerant Anony-
mous Linking Code,” German Record Linkage Center, Duisburg, Tech.
Rep. WP-GRLC-2011-02, 2011.

[15] P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search: The
Metric Space Approach. Springer, 2006.

[16] R. Mao, P. Zhang, X. Li, X. Liu, and M. Lu, “Pivot selection for metric-
space indexing,” in Int. J. Machine Learning & Cybernetics, 2016.

[17] The Apache Software Foundation. (2017) Flink Doc. 1.2. [Online].
Available: https://ci.apache.org/projects/flink/flink-docs-release-1.2/

[18] North Carolina State Board of Elections & Ethics Enforcement. (2017).
[Online]. Available: http://www.ncsbe.gov/

[19] P. Christen and D. Vatsalan, “Flexible and Extensible Generation and
Corruption of Personal Data,” in Proc. 22nd ACM CIKM, 2013.

[20] Statistisches Bundesamt. (2017) Zensus 2011. [Online]. Available:
https://www.zensus2011.de/

[21] E. A. Durham, M. Kantarcioglu, Y. Xue, C. Toth, M. Kuzu, and
B. Malin, “Composite Bloom Filters for Secure Record Linkage,” in
IEEE TKDE, 2014.

