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Abstract
Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention.
Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes
is often limited. We introduce the BIGGR approach providing a novel tool for the user-friendly and efficient analysis and
visualization of Big Graph Data on top of the open-source software KNIME and GRADOOP. Users can visually program
graph analytics workflows, execute them on top of the distributed processing framework Apache Flink and visualize
large graphs within KNIME. For visualization, we apply visualization-driven data reduction techniques by pushing down
sampling and layouting to GRADOOP and Apache Flink. We also discuss an initial application of the tool for the analysis
of patent citation graphs.

Keywords Graph analysis · Graph visualization · Graph sampling · Gradoop · KNIME

1 Introduction

The analysis of large network and graph datasets is becom-
ing of increasing interest, for example, to gain insights from
social networks, protein interaction networks in bioinfor-
matics or in business applications, e.g., in logistics. Graph
analytics aims at analyzing such networks, especially com-
plex relationships between heterogeneous data entities of
interest. There are many approaches to manage and analyze
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graph data including graph databases and distributed graph
processing platforms, but they still have substantial limita-
tions regarding either scalability to large datasets, support
for complex graph mining (e.g., clustering, frequent pat-
tern mining, etc.) or ease of use (flexible graph data model,
graph visualization) [1]. For these reasons, we developed
the open-source graph analysis platform GRADOOP [2, 3]
at ScaDS1, that aims at overcoming the limitations of pre-
vious graph processing platforms.

GRADOOP provides a flexible graph data model based
on extended property graphs [5] together with a variety
of powerful operators including pattern matching, graph
grouping and aggregation [6, 7] as well as a library of graph
mining algorithms, e.g., for frequent subgraph mining [8].
The operators and algorithms are implemented on top of
Apache Flink and can therefore be executed on shared-
nothing clusters to process large amounts of data in parallel.

Programming graph analysis workflows that consist of
multiple data transformation and analysis steps is cumber-
some and requires high technical expertise from the analyst,
which represents a considerable usability hurdle. Moreover,
graph data mining tasks are typically embedded in data min-
ing workflows including operators for data preparation, ma-
chine learning and result visualization. However, existing
tools for constructing such data mining workflows such as

1 Competence Center for Scalable Data Services and Solutions (ScaDS
Dresden/Leipzig) [4].
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KNIME [9], Kepler [10], RapidMiner [11] or Galaxy [12]
do not yet allow for handling and visualizing Big Graph
Data with a huge number of vertices and edges. Therefore,
we propose a tool which supports (1) the visual modeling of
graph analytics workflows, (2) executes these workflows in
a distributed fashion using GRADOOP, and (3) efficiently vi-
sualizes Big Graph Data by pushing complex visualization-
specific computations down to a distributed server system
for parallel execution.

We developed this tool called BIGGR on top of GRADOOP

and the data science platform KNIME2. In this paper, we
describe the approach and its initial application. In partic-
ular, we make the following contributions:

� We give an overview to the BIGGR tool for the user-
friendly and efficient analysis and visualization of large
Big Graph Data. The tool allows users to visually define
graph analysis workflows involving GRADOOP opera-
tors and existing KNIME operators. We sketch some of
the challenges of integrating GRADOOP and Flink into
KNIME to achieve a distributed execution that is trans-
parent to the user.

� We introduce the BIGGR approach for visualizing large
graphs. It pushes down visualization-specific compu-
tations such as layouting and sampling as operators to
GRADOOP to be efficiently executed in a distributed
fashion.

� We present a real-world application of the BIGGR ap-
proach to analyze patent data.

After an initial discussion of related work and an in-
troduction to GRADOOP and KNIME in Sect. 3, we de-
scribe how GRADOOP is integrated into KNIME in Sec. 4.
In Sect. 5, we dive into our developed tooling for visual-
izing large graphs in KNIME. Sect. 6 introduces the real-
world use case for patent data and Sect. 7 finally gives
conclusions and sketches future work.

2 RelatedWork

There are several workflow-based data science tools that can
be used to integrate and orchestrate multiple independently
built data mining components or operators for data analysis
or data manipulation. These tools are often domain-specific
for certain kinds of data (e.g., genomic sequence data in
bioinformatics or spectrometry data in chemistry) and typi-
cally support a user to visually build workflows in the form
of operator trees that can be automatically executed and

2 The technology transfer into KNIME is funded within a joint BMBF
project between ScaDS / University of Leipzig and Knime. It is
planned to make the described extensions freely available within an
upcoming release of KNIME.

reused (see [13] for a recent survey and comparison). Un-
fortunately, only some of them have some initial support
for Big Data, namely KNIME, [9], Kepler [10], Apache
Taverna [14], RapidMiner [11] and Galaxy [12], by sup-
porting distributed execution, e.g., by providing some inte-
gration with Big Data frameworks. For instance, KNIME
and RapidMiner offer workflow operators (called nodes)
for loading data from and storing to Big Data stores such
as HDFS 3, HIVE 4, or IMPALA 5 and also provide an inte-
gration with APACHE SPARK 6 that maps workflow nodes
to Spark operators. Scientific workflow management tools
like Kepler [10], Apache Taverna [14] or Galaxy [12] have
a special focus on executing workflows on HPC comput-
ing infastructures. Within another ScaDS project, such HPC
support was recently also added for KNIME [15].

However, all these tools lack support for analyzing Big
Graph Data. Initial attempts to support graph analysis have
been made with Galaxy, which is widely used in bioinfor-
matics [12]. It supports a so-called cluster-adapter with the
Apache Spark Driver to run Spark jobs and can also utilize
Spark’s distributed graph processing API GraphX via the
so-called GraphFlow [16] or SparkGalaxy [17] front-ends.
Since Galaxy does not support graph data, results are not
visualized as graphs and the integration is done by storing
and retrieving inputs and outputs from and to HDFS. The
KNIME tool provides an initial abstraction for graph data,
but it has to be processed sequentially so that big graph min-
ing tasks are not yet supported. The BIGGR project aims
at improving on this by using the distributed graph analy-
sis system GRADOOP. Furthermore, we aim at providing
advanced visualization support for Big Graph Data.

Visualizing Big Graph Data is a well researched topic
and many techniques have been proposed to speed up lay-
outing for large graphs [18]. Unfortunately, the problem
is still not sufficiently solved as shown in a more recent
overview for visualizing linked data graphs [19]. Exist-
ing graph databases such as Neo4J7 or an extension by
Oracle8 offer support for visualizing graph data. However,
such tools mostly do not scale well for large graphs and
the results are often cluttered as was shown for Neo4J in
a DBpedia case study [20]. The authors point out that the
dense structure of vertices and edges requires simplifica-
tion approaches to make the visualizations comprehensible.
In our work, we investigate such simplification approaches
and in particular follow a so-called visualisation-driven data

3 http://hadoop.apache.org.
4 https://hive.apache.org.
5 https://impala.apache.org.
6 https://spark.apache.org.
7 https://neo4j.com.
8 https://www.oracle.com/technetwork/oracle-labs/parallel-graph-
analytix.
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reduction (VDDR) that was recently proposed by Jugel et.
al. [21] for relational data. In VDDR, the visualization sys-
tem pushes down data reduction logic to the data source
to reduce workload on a visualization client with the goal
of not significantly changing the actual visualization result.
To our knowledge, we are the first to apply this concept for
graph visualization and we are pushing sampling, prepro-
cessing, and layouting down to Gradoop and Apache Flink
to speedup graph visualization for the client.

3 Background

3.1 GRADOOP

GRADOOP is an open source framework for scalable analyt-
ics of large-semantically expressive graphs [3]. To achieve
horizontal scalability of storage and processing capacity,
GRADOOP runs on shared-nothing clusters and utilizes
existing open-source frameworks. The difficulties of dis-
tributing data and computation are transparent for users who
can focus on the problem domain. GRADOOP implements
the Extended Property Graph Model (EPGM) [5] which de-
scribes how graphs and their elements (vertices and edges)
are structured. It is an extension of the popular prop-
erty graph model [22, 23] used in various graph database
systems. EPGM supports heterogeneous and schema-free
graphs with vertices and edges of different types (labels)
and with possibly different properties. The graph data is
not limited to a single graph, but there can be collections
of possibly overlapping graphs. These graphs can also have
a label and properties.

EPGM also defines a set of declarative graph opera-
tors on single graphs and graph collections. These oper-
ators can be called with a the domain-specific language

Table 1 Analytical graph op-
erators and algorithms available
in GRADOOP organized by their
input type

Unary operators Binary operators Graph algorithms

Logical graph Aggregation Combination Page rank

Pattern Matching [6] Overlap Community detection

Transformation Exclusion Connected components

Grouping [7] Equality Single Source Shortest Path

Subgraph Summarization

Call Hyperlink-Induced Topic Search

Sampling Frequent subgraph mining

Vertex fusion Graph statistics
Graph collection Selection Union Frequent Subgraph Mining [8]

Distinct Intersection

Limit Difference

Apply Equality

Reduce

Matching

Call

GRALA (Graph Analytical Language) to implement a pro-
gram (workflow) for graph analysis. Table 1 shows available
graph operators and graph algorithms categorized by their
input. Besides general operators for graph transformation or
aggregation, GRADOOP also provides pattern matching [6]
capabilities known from graph database systems and ana-
lytical operators, e.g., for graph grouping [7] and further
structural graph transformations [24]. Moreover, the aux-
iliary operators apply and call can be used to seamlessly
integrate user-specific operators in the analysis programs.

GRADOOP supports several ways to store graph data. The
GRALA interface DataSource is used to read and DataSink
to write graph data. Hence, for each DataSink an appro-
priate DataSource exists. GRADOOP supports HDFS file-
based graph storage in CSV format or distributed database
storage in Apache HBase or Apache Accumulo. GRALA

also hides the implementation of the data model and its op-
erators within the underlying distributed execution engine
Apache Flink. Apache Flink provides high-level APIs that
enable fast application development by abstracting from the
complexities of distributed computing. Moreover, Apache
Flink provides several libraries that can be combined and
integrated within a GRADOOP program, e.g., for graph pro-
cessing, machine learning, and SQL.

GRADOOP offers a Java API containing the EPGM ab-
straction including all operators defined within GRALA.
This way, users can specify analytical programs and ex-
ecute them either locally for testing or on a cluster. Graphs
can optionally be initialized from existing datasets which
allows for pre-processing data within the dataflow system.
Graphs also expose the underlying datasets, which enables
post-processing using any available library provided by the
dataflow system.

We already evaluated GRADOOP and its operators in pre-
vious publications using artificial and real-world hetero-
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geneous graphs with up to 10 billion edges. In particu-
lar, we demonstrated good runtimes and scalability for the
Cypher-based pattern matching operator [6] and the graph
grouping operator [7]. A benchmark for a comprehensive
GRALA program including several GRADOOP operators and
a community detection algorithm was conducted in [5] and
achieved near-linear scalability. For our implementation of
Frequent Subgraph Mining [8], we were also able to show
high scalability for growing data volumes and increasing
computing resources.

3.2 KNIME

KNIME Analytics Platform [9] is an open-source software
for creating data science applications and services. Anal-
ysis workflows can be visually created with a drag-and-
drop style graphical interface, without the need for coding.
A workflow in KNIME corresponds to a directed graph
of so-called nodes where each node encapsulates a certain
processing functionality for data transformation or analysis.
For data input and export, KNIME supports different text
formats such as CSV, XML, and JSON as well as unstruc-
tured data types like images. There are several connectors
from KNIME to databases and cloud platforms as well as
access to Twitter, Google Sheets and Azure datasets. There
are more than 2000 nodes and hundreds of publicly avail-
able workflow examples.

Different visualizations are available in KNIME, from
classic ones (bar chart, scatter plot) to advanced charts (par-
allel coordinates, sunburst, network graph). For example,
a summary statistics about columns in a KNIME table can
be reported in different formats including PDF.

Fig. 1 (a) Gradoop operators are represented as nodes in KNIME. (b) A workflow of these nodes which gives an analysis on patent data

4 Integration of GRADOOP into KNIME

To integrate GRADOOP into KNIME, we created KNIME
nodes for most existing GRADOOP operators, data sources,
and data sinks together with an extensive documentation.
A complete list of operators is given in Table 1 and their vi-
sual representation in the KNIME node repository is shown
in the left part of Fig. 1. Within the project, we added some
visualization-specific operators to GRADOOP such as for
graph sampling that will be discussed in Sect. 5.

The user can drag and drop operators into the work-
flow editor of KNIME and connect them to build complex
graph analytics workflows. When executing the workflow,
a GRADOOP operator DAG is built behind the scenes and is
executed on a Flink cluster. The analysis results are shown
in graph or tabular format. An example of such a workflow
is shown in Fig. 1b in which we analyze patent data. We
provide more details about this analysis use case in Sect. 6.

For the integration of GRADOOP operators, we had to
tackle several technical challenges such as adding a scal-
able graph visualization to KNIME (Sect. 5) and running
Flink jobs out of KNIME. The main challenge was to deal
with the lazy evaluation [25] of Flink. In this computational
model, a sequence of Flink functions is executed only by
either explicitly triggering execution or by requesting out-
put to a data sink (like writing to a file). When appending
further operators to an already executed Flink workflow, the
complete workflow is executed (and optimized) again from
the beginning. This is in contrast to the design of KNIME
(and other existing workflow systems such as Galaxy) in
which each node can be executed and visualized as soon
as the input values are available. Attaching new nodes to
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a KNIME workflow or changing parameters of individual
nodes typically does not require to re-execute the complete
workflow from the beginning.

To deal with the mismatch between the distributed exe-
cution platform Flink and the workflow metaphor of KN-
IME, we had to introduce a workaround. In particular, we
added so-called executor nodes to KNIME to explicitly trig-
ger the execution of Flink code either on a local machine
(e.g., for small data volumes or simple visualizations) or on
a remote cluster. As a result, each workflow that involves
Gradoop operators needs to have an executor node which
builds the whole Flink workflow for all preceding nodes
and executes them. On the other hand, the execution of
intermediate nodes (except an executor and graph viewer)
does not produce any results in KNIME for the current im-
plementation. For the sample workflow in Fig. 1, the final
node RemoteExecution on the far right of the figure trig-
gers the workflow execution on a cluster at the University
of Leipzig, called Galaxy Cluster.

While the workaround is obviously not the optimal so-
lution, it actually turned out to by quite useful since we
could control the execution without requiring to change the
KNIME tool and existing KNIME workflows. Also, special
data sources and data sinks can be built that connect to ex-
isting KNIME nodes. These nodes would need to copy data
from and to the cluster to be available for Flink.

Newer versions of Flink already allow a user to partially
change Flink operator chains at run-time (e.g., changing
parameters of individual functions and the degree of par-
allelism). By using checkpoints we could also get rid of
repeated executions after changing a workflow. Moreover,
KNIME is also considering alternative execution models
that differ from node-wise execution.

These changes might be opportunities to improve the
current implementation.

5 Visualization of big graphs

The visualization of a graph with millions of vertices and
edges is often very time-consuming and the result can easily
be too cluttered to be useful. We therefore need to reduce
the number of vertices and edges for visualization, e.g.,
by suitable sampling or grouping techniques, while still
conveying the most relevant information. In our project,
we follow two directions. First, we offer special nodes in
KNIME that support the user in analyzing visualization-
specific properties of a graph and those help in reducing the
size of a graph by sampling or grouping. For that purpose,
we also newly developed parallel versions of these operators
in GRADOOP that are executed in parallel on top of Flink.
Second, we developed an interactive Big Graph Viewer that
pushes down complex visualization-specific computations

Fig. 2 Steps for interactive visualization of large graphs

such as layouting and sampling to Flink which significantly
speeds up visualization in the client. This approach adapts
parts of the visualization-driven data reduction (VDDR) ap-
proach from Jugel et. al. [21] to graph visualization.

A typical user needs to employ four steps to visualize Big
Graph Data that are shown in Fig. 2. Initially a user gath-
ers general information about the graph to later select ap-
propriate sampling and layouting techniques. This involves
collecting statistical information about the graph structure,
such as the number of vertices, edges, triangles, the degree
distribution and so on. This information is determined by
a new node called Graph Statistics. Further Gradoop nodes
such as grouping can be applied to determine semantic in-
formation, like value distributions and frequencies of ver-
tex/edge labels and properties. For example, in geograph-
ical data, geographical distributions of entities like cities
or countries could be computed. With the grouping node,
we can also determine a “schema graph”, by performing
a label-wise aggregation of all vertices and edges [7].

After gathering information, the user can add prepro-
cessing operators (such as sampling or grouping) to the
workflow. These operators reduce the number of edges and
vertices to be visualized in the Big Graph View on the client.
The Big Graph View initially computes a simple layout and
draws the computed graph. The user can now interactively
change the sampling and layouting or apply filters to the
graph for exploration. We call this step postprocessing. In-
stead of letting the visualization client compute complex
layouts which are often iterative in nature, we generate
a GRADOOP workflow in the background and execute lay-
out and sampling operators in parallel on a flink cluster.
The resulting graph and computed node positions are re-
turned to the client for drawing. The following subsections
discuss preprocessing, visualization, and postprocessing in
more detail.

5.1 Preprocessing

There are many known techniques for sampling and graph
reduction, but not all of them can easily be implemented
in a parallel fashion on top of the Flink framework. In the
following, we discuss approaches that we implemented so
far.

Initially, we added a GRADOOP operator (and KNIME
node) for basic degree-based filtering which eliminates dis-
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connected or weakly connected vertices by finding the so-
called k-core [26, 27] of graphs. For this purpose, we com-
pute connected components and let the user select individ-
ual components for visualization. Often, a primary analysis
can be done on a small component which can be generalized
to other components to a certain extent.

In a second step, we added several graph sampling meth-
ods [28] to GRADOOP that select vertices or edges from the
complete graph based on a given probability distribution.
In particular, we implemented the following methods that
can be used within a new KNIME node called Sampling:

� Random vertex sampling: Vertices are filtered if a gener-
ated random value is below a given threshold.

� Random edge sampling: Edges are filtered if a generated
random value is below a given threshold.

� Vertex edge sampling: Based on a random value, first
some vertices are selected. Then, some of their edges are
filtered based on another random threshold.

� Vertex neighborhood sampling: After the random selec-
tion of some vertices, their neighborhood is randomly fil-
tered based on a given threshold.

� Limited-degree vertex sampling: This sampling is similar
to vertex sampling. The difference is that only vertices
with degrees below some threshold are filtered. This is
helpful especially when vertices with high degrees con-
tain major information.

� Non-uniform vertex sampling: This sampling method is
similar to vertex sampling but the random value is gener-
ated non-uniformly.

� PageRank sampling: The vertices are filtered based on
their PageRank values.

The evaluation of these sampling methods is currently
under way.

5.2 Visualization

After preprocessing, the graph layout is computed and the
graph is drawn such that the required information is visu-
alized correspondingly. For this purpose, we implemented
a web-based visualization which allows to reuse the vi-
sualization for other uses of GRADOOP. We make use of
two existing Javascript libraries for the graph visualization:
Cytoscape.js9 for smaller graphs and VivaGraph10 for bigger
graphs. The two libraries complement each other, because
the first one provides more flexibility for visualization and
the latter one can visualize, in our experience, up to ten
times bigger graphs.

We further developed layouting techniques for specific
types of graphs. In particular, we investigated visualiza-

9 http://js.cytoscape.org.
10 https://github.com/anvaka/VivaGraphJS.

Fig. 3 SIMG-VIZ visualization for clusters of linked entities

tions for clusters and similarity graphs in entity resolution
where vertices in a cluster should be positioned near to each
other. These techniques are also published as a separate tool
called SIMG-VIZ [29]. Fig. 3 shows a sample visualization
where entities of the same cluster have the same color. The
links between entities come from the underlying similarity
graph and are either correct (green) or wrong (red) w.r.t.
the correct match clustering. Multi-color vertices indicate
entities assigned to more than one cluster which should be
corrected, e.g., by applying a different match configuration
or clustering algorithm.

5.3 Post-processing

After generating a visualization, users can interactively ex-
plore the result, e.g., to zoom into a graph, to color or filter
some vertices, or to change the layout. The main challenge
in this part is that interactivity requires fast execution time.
For this purpose, the viewer pushes down the complex op-
erations to the server for a parallel computation in Gradoop
and Flink (Fig. 4). Then, the returned results are visualized
in a browser instance (e.g., in Chrome).

Fig. 5 shows the Big Graph View that visualizes some
patent data. The visualized graph is already simplified by
grouping. It shows patents of the recent years grouped
by their international patent code (IPC) and cite rela-
tions. It can be observed that the patent groups labeled
with codes “H04” (electric communication technique) and
“G06” (computing, calculating and counting) are bigger
as well as the connecting edges are drawn with stronger
lines indicating a high relative share among all patents and
cite relations. This means that the considered companies
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Fig. 4 The graph viewer pushes the operations to the server to be ex-
ecuted in parallel

Fig. 5 Graph visualization in the Big Graph View in KNIME-grouping of patent data

have submitted many patents on electronics and computing
in recent years and that there are many citations between
these patent groups.

6 Use case: Patent data analysis

One of our main use cases was the analysis of the US
patent data which is available publicly11. The data consists
of 6 million patents and about 70 million citations between
these patents. Patents and citations have several properties
such as author, submission year and so on. We have first
transformed this relational data into the graph-based format
which can be read by GRADOOP. Then, we considered sev-
eral ways to analyze the data and extract useful information.

Fig. 1b shows an analysis workflow for the patent data.
In the example, an analyst wants to find so-called patent
families, special structures in the graph that result from the
practice of companies not to claim a single patent for a new
technology, but to create multiple patents with slight vari-
ations. The goal of this behaviour is to keep rivals from
easily patenting an almost identical invention. When ana-
lyzing the graph, these families are cluttering the view and
make it harder to understand relations and patterns. There-
fore, it is desirable to find these families and to replace them
with placeholders before further analyses are conducted.

In step 1 of the workflow in Fig. 1, the user tries to obtain
an overview to the input graph, and attaches a Big Graph

11 http://www.patentsview.org/.
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Fig. 6 Sampled graph visualiz-
ing patent families

Fig. 7 Exemplary patent family

Viewer to the CSV input node. After executing the initial
workflow and opening the graph viewer, the user chooses
to layout the graph with a force-embedded layout [30] and
applies a vertex sampling which is automatically executed
on the server. The result is visualized and by coloring ver-
tices based on specific property values some cliques can be
identified which likely are patent families (see Fig. 6).

In the second workflow part, the user further tests her
assumptions on the nature of patent families and starts
by applying the operator pipeline shown in the lower part

of Fig. 1 (right): after the graph is loaded from the dis-
tributed file system, a match query is used to identify patents
from the same assignee (issuing company) that are applied
for in the same year and have a citation relation (deriva-
tives cite the original invention). The following nodes in
the workflow serve the purpose of aggregating the related
patents (the families) and transform them into several log-
ical graphs (each graph is a family). Because of the large
number of patent families, the analyst applies random sam-
pling to make the graph suitable for visualization and man-

K



Datenbank Spektrum

ual inspection. After the successful execution of this (sub-)
workflow, the results can be checked by looking at them
with the graph viewer. This aides the analyst in the process
of verifying or changing the initial match pattern, because
logical errors can be identified easily. If the workflow is
complete, looking at the result may verify the hypotheses
or lead to further insights in the nature of the patent graph
and a refinement of operations to identify patent families.

After the analyst is satisfied with the results of this task,
the upper path in the workflow (step 3) of Fig. 1 is executed:
the patent families in the original graph are replaced with
a single node representing a whole family and the citations
are updated so that they refer to the new nodes. This is
done with the “fusion” operator and the non-sampled graph
collection of families. Executing this path of the workflow
results in a smaller, less complex graph that can be further
analyzed. Fig. 7 shows an exemplary patent family that was
identified and that occurred in the result of a query on recent
highly-cited patents.

In our case, the graph is written to storage. To perform
these operations with other tools (e.g. Java), the analyst
would have to write the workflows “blindly” (without be-
ing able to check intermediate steps), store the results, and
validate them in a separate graph visualization tool which
would have to be able to interpret the GRADOOP format.

7 Conclusions

We presented the BIGGR approach to achieve a user-
friendly specification and execution of large-scale graph
analysis workflows. For this purpose, the graph operators
of the distributed graph processing system GRADOOP have
been integrated into the KNIME data analysis platform.
Furthermore, a number of graph visualizations have been
added to support a flexible and explorative analysis of
large graphs and analysis results. Both, graph operators
and visualization operations can be executed on a shared-
nothing cluster to support short execution times and scal-
ability to large data volumes. Initial applications showed
the functionality and high usefulness of the approach. It is
planned to make the described extensions freely available
within an upcoming release of KNIME.

In future work, we plan to comprehensively evaluate and
optimize the new graph capabilities in KNIME and use
them in additional applications. We also work on extensions
to GRADOOP for graph transformations and data integration
that will also become candidates for inclusion into KNIME.

Acknowledgements The BIGGR project is joint work with KNIME
and we thank Tobias Kötter und Mark Ortmann for assistance with
technical parts of KNIME.

Funding This work was funded by the German Federal Ministry
of Education and Research within the projects BIGGR (BMBF
01IS16030B) and ScaDS Dresden/Leipzig (BMBF 01IS14014B).

References

1. Junghanns M, Petermann A, Neumann M, Rahm E (2017) Man-
agement and analysis of big graph data: current systems and open
challenges. In: Handbook of big data technologies. Springer, Berlin,
Heidelberg, pp 457–505 https://doi.org/10.1007/978-3-319-49340-
4-14

2. Junghanns M, Petermann A, Gómez K, Rahm E (2015) Gradoop:
scalable graph data management and analytics with Hadoop. arXiv
preprint 150600548

3. Junghanns M, Kiessling M, Teichmann N, Gómez K, Petermann
A, Rahm E (2018) Declarative and distributed graph analytics
with GRADOOP. PVLDB 11:2006–2009. https://doi.org/10.14778/
3229863.3236246

4. Rahm E, Nagel WE, Peukert E, Jäkel R, Gärtner F, Stadler PF,
Wiegreffe D, Zeckzer D, Lehner W (2019) Big Data competence
center ScaDS Dresden/Leipzig: Overview and selected research
activities. Datenbank Spektrum 19(1). https://doi.org/10.1007/
s13222-018-00303-6

5. Junghanns M, Petermann A, Teichmann N, Gómez K, Rahm E
(2016) Analyzing extended property graphs with Apache Flink.
In: Proc. ACM SIGMOD Workshop on Network Data Analytics
(NDA). https://doi.org/10.1145/2980523.2980527

6. Junghanns M, Kiessling M, Averbuch A, Petermann A, Rahm E
(2017) Cypher-based graph pattern matching in GRADOOP. In:
Proc. 7th Int. Workshop on Graph Data Management Experiences
& Systems (GRADES). https://doi.org/10.1145/3078447.3078450

7. Junghanns M, Petermann A, Rahm E (2017) Distributed grouping
of property graphs with GRADOOP. In: Proc. Database systems for
Business, Technology and Web (BTW), pp 103–122

8. Petermann A, Junghanns M, Rahm E (2017) DIMSpan: Trans-
actional frequent subgraph mining with distributed in-memory
dataflow systems. In: Proc. 4th IEEE/ACM Int. Conf. on Big Data
Computing, Applications and Technologies (BDCAT), pp 237–246
https://doi.org/10.1145/3148055.3148064

9. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T,
Ohl P, Thiel K, Wiswedel B (2009) KNIME-the Konstanz informa-
tion miner: version 2.0 and beyond. ACM SIGKDD Explor Newsl
11(1):26–31. https://doi.org/10.1145/1656274.1656280

10. Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M,
Lee EA, Tao J, Zhao Y (2006) Scientific workflow management and
the Kepler system: Research articles. Concurr Comput Pract Exper
18(10):1039–1065. https://doi.org/10.1002/cpe.994

11. Hofmann M, Klinkenberg R (2013) Rapidminer: data mining use
cases and business analytics applications. Chapman & Hall/CRC,
Boca Raton, FL

12. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D,
Cech M, Chilton J, Clements D, Coraor N, Eberhard C, Grüning
BA, Guerler A, Hillman-Jackson J, Kuster GV, Rasche E, Soranzo
N, Turaga N, Taylor J, Nekrutenko A, Goecks J (2016) The Galaxy
platform for accessible, reproducible and collaborative biomedical
analyses: 2016 update. Nucleic Acids Res. https://doi.org/10.1093/
nar/gkw343

13. da Silva RF, Filgueira R, Pietri I, Jiang M, Sakellariou R, Deelman
E (2017) A characterization of workflow management systems for
extreme-scale applications. Future Gener Comput Syst. https://doi.
org/10.1016/j.future.2017.02.026

14. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D,
Owen S, Soiland-Reyes S, Dunlop I, Nenadic A, Fisher P, Bhagat
J, Belhajjame K, Bacall F, Hardisty A, Nieva de la Hidalga A,

K

https://doi.org/10.1007/978-3-319-49340-4-14
https://doi.org/10.1007/978-3-319-49340-4-14
https://doi.org/10.14778/3229863.3236246
https://doi.org/10.14778/3229863.3236246
https://doi.org/10.1007/s13222-018-00303-6
https://doi.org/10.1007/s13222-018-00303-6
https://doi.org/10.1145/2980523.2980527
https://doi.org/10.1145/3078447.3078450
https://doi.org/10.1145/3148055.3148064
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1002/cpe.994
https://doi.org/10.1093/nar/gkw343
https://doi.org/10.1093/nar/gkw343
https://doi.org/10.1016/j.future.2017.02.026
https://doi.org/10.1016/j.future.2017.02.026


Datenbank Spektrum

Balcazar Vargas M, Sufi S, Goble C (2013) The Taverna workflow
suite: designing and executing workflows of web services on the
desktop, web or in the cloud. Nucleic Acids Res 41:W557–561.
https://doi.org/10.1093/nar/gkt328

15. Grunzke R, Jug F, Schuller B, Jäkel R, Myers G, Nagel WE (2016)
Seamless HPC integration of data-intensive KNIME workflows
via UNICORE. In: Euro-Par Workshops. Lecture Notes in Com-
puter Science, vol 10104. Springer, Berlin, Heidelberg, pp 480–491
https://doi.org/10.1007/978-3-319-58943-5-39

16. Riazi S, Norris B (2016) Graphflow: Workflow-based big graph
processing. In: 2016 IEEE Int. Conf. on Big Data, pp 3336–3343
https://doi.org/10.1109/BigData.2016.7840993

17. Riazi S (2016) SparkGalaxy: Workflow-based Big Data process-
ing. http://www.cs.uoregon.edu/Reports/DRP-201603-Riazi.pdf.
Accessed 1 Mar 2019 (directed Research Proposal)

18. Herman I, Melançon G, Marshall MS (2000) Graph visualiza-
tion and navigation in information visualization: a survey. IEEE
Trans Vis Comput Graph 6(1):24–43. https://doi.org/10.1109/2945.
841119

19. Bikakis N, Sellis TK (2016) Exploration and visualization in the
web of big linked data: a survey of the state of the art. CoRR
abs/1601.08059

20. Caldarola EG, Picariello A, Rinaldi A, Sacco M (2016) Explo-
ration and visualization of big graphs – the DBpedia case study.
In: Proc. 8th Int. Conf. on Knowledge Discovery, Knowledge En-
gineering and Knowledge Management (KDIR) https://doi.org/10.
5220/0006046802570264

21. Jugel U, Jerzak Z, Hackenbroich G, Markl V (2016) VDDA: auto-
matic visualization-driven data aggregation in relational databases.
VLDB J 25(1):53–77. https://doi.org/10.1007/s00778-015-0396-z

22. Rodriguez M, Neubauer P (2010) Constructions from dots and
lines. Bull Am Soc Inf Sci Technol 36(6):35–41

23. Rodriguez M, Neubauer P (2012) The graph traversal pattern. In:
Graph DataManagement: Techniques and Applications IGI Global,
pp 29–46

24. Kricke M, Peukert E, Rahm E (2019) Graph data transformations
in gradoop. Proc BTW conf.

25. Hudak P (1989) Conception, evolution, and application of func-
tional programming languages. ACM Comput Surv 21(3):359–411.
https://doi.org/10.1145/72551.72554

26. Seidman SB (1983) Network structure and minimum degree. Soc
Networks 5(3):269–287

27. Giatsidis C, Malliaros FD, Tziortziotis N, Dhanjal C, Kiagias
E, Thilikos DM, Vazirgiannis M (2016) A k-core decomposition
framework for graph clustering. CoRR abs/1607.02096

28. Hu P, Lau WC (2013) A survey and taxonomy of graph sampling.
CoRR abs/1308.5865

29. Rostami MA, Saeedi A, Peukert E, Rahm E (2018) Interactive vi-
sualization of large similarity graphs and entity resolution clusters.
In: Proc. Extending Database Technology (EDBT) https://doi.org/
10.5441/002/edbt.2018.86

30. Kobourov SG (2012) Spring embedders and force directed graph
drawing algorithms. Computing Research Repository (CoRR)
abs/1201.3011

K

https://doi.org/10.1093/nar/gkt328
https://doi.org/10.1007/978-3-319-58943-5-39
https://doi.org/10.1109/BigData.2016.7840993
http://www.cs.uoregon.edu/Reports/DRP-201603-Riazi.pdf
https://doi.org/10.1109/2945.841119
https://doi.org/10.1109/2945.841119
https://doi.org/10.5220/0006046802570264
https://doi.org/10.5220/0006046802570264
https://doi.org/10.1007/s00778-015-0396-z
https://doi.org/10.1145/72551.72554
https://doi.org/10.5441/002/edbt.2018.86
https://doi.org/10.5441/002/edbt.2018.86

	BIGGR: Bringing Gradoop to Applications
	Abstract
	Introduction
	Related Work
	Background
	GRADOOP
	KNIME

	Integration of GRADOOP into KNIME
	Visualization of big graphs
	Preprocessing
	Visualization
	Post-processing

	Use case: Patent data analysis
	Conclusions
	References


