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Abstract. The temporal analysis of evolving graphs is an important
requirement in many domains. We therefore began with extending the
distributed graph analysis framework Gradoop for temporal graph anal-
ysis. This short paper contains a brief overview of our work in progress
and an example use case from the financial domain demonstrating the
flexibility of the temporal graph model and its operators.
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1 A brief overview of Gradoop’s temporal extension

In this short paper we report on work in progress on our temporal property
graph model (TPGM) [5] which is an extension to GRADOOP [2J3]. GRADOOP is
an open source framework for distributed graph analytics based on Apache Flink.
It combines and extends features of graph analytical systems with the benefits of
distributed graph processing. GRADOOP is an implementation of the Extended
Property Graph Model (EPGM) and supports a number of generic operators on
graphs (for pattern matching, grouping, etc.) that can be used within workflows
for graph analysis. The workflows can be specified in a declarative domain-
specific language called GrALa. Since the EPGM is built on top of Apache
Flink, each GRADOOP operator is based on a subset of Flink’s transformations
(map, flatmap, join, etc.) to achieve a parallel execution and scalability to large
graphs.

Extension of data structure: Many applications require time dependent
graph models. We therefore extend GRADOOP’s EPGM by adding additional
time attributes from and to to the schema of vertices, edges and logical graphs.
This approach offers a flexible representation of temporal graphs with bitemporal
time semantics where the valid time can be empty, a time-stamp or a time
intervalEI An important advantage of our extension is its backward compatibility
to the original EPGM since every existing GRADOOP operator (that builds upon

3 For the sake of simplicity, we limit ourselves in this paper to valid times. However,
our extension also supports transaction times in a similar way.
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the EPGM) can be applied to a temporal graph by disregarding the temporal
information of the graph elements.

Extension of existing Gradoop operators: Operators such as trans-
form, subgraph, grouping and pattern matching may benefit from the temporal
extension of EPGM. For example, the subgraph operator can identify all ver-
tices and edges where the validity range exceeds a limit. Similarly, the pattern
matching operator can extract all subgraphs where the pattern is valid at a given
point in time.

Introduction of new temporal operators: We introduce snapshot and
difference as specific temporal operators. The snapshot operator allows to re-
trieve a valid state of the entire temporal graph either at a specific point in time
or a subgraph that is valid during a given time range by providing a temporal
predicate function. Such predicate functions are adopted from the SQL standard
for temporal databases [4]. The difference operator computes the difference of
two snapshots X and Y by determining the union of X and Y and annotat-
ing each vertex and edge if it appears in Y only (i.e., if it has been added), in
X only (deleted) or in both X and Y (persistent). Following the philosophy of
GRADOOP, both operators were implemented on top of Apache Flink: snapshot
employs Flink’s filter while difference is based on the flatMap transformation.

Support of time-specific grouping and aggregation: The time di-
mension automatically introduces a hierarchy, i.e., graphs can be grouped (sum-
marized) at multiple levels of time-granularity. For example, graph summaries
generated by GRADOOP’s groupBy operator can be additionally ”rolled-up” on
the time hierarchy to have a aggregations on multiple levels of time granularities.

2 Temporal graph analysis using Gradoop: A use case

Supporting graph analysis at large scale is necessary in various domains like IoT,
finance and web to perform risk analysis, customer profiling, etc. In addition,
the time plays an important role in such analysis since analysts want to know,
e.g., how a specific result of their query changes over time. As a result, a graph
processing system has to offer a flexible and rich library of functionalities and
algorithms to support a wide range of analysis.

To show the expressiveness and flexibility of GRADOOP and its temporal
model among with its declarative operator principle, we choose a business case
from the customer relationship management domain. More precisely, the inter-
actions in a call center of the banks association of Turkey [I]. The call center
is responsible for 25 banks of the association. More than 7,500 agents are em-
ployed in about 16 service types (e.g., card, stock, ATM, online banking etc.).
Per month, about 46 million incoming calls were answered by agents, 24 million
calls are outgoing calls to customers. These entities and their relations form a
huge heterogeneous network that continuously changes over time. We can put
all the collected data in our temporal property graph model to enable various
time-related analysis. Figure [1| shows a simplified example of the resulting graph
schema. It includes different types of vertices (entities), like Bank and Customer,
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Fig. 1. Simplified example of a call-center network from the financial domain.

as well as edges (relations), like a call representing the telephone call between
customers and call center agents. Each element includes a variety of properties
describing it with additional information, e.g., an Agent vertex has a defined
staff number, a name and city.

In the following we chose an analytical question that refers to this use case.
We will utilize the modularity of our temporal graph operators as well as op-
erators from the reference EPGM implementation and compose them within a
simple but powerful workflow to show a way to answer them.

What is the average duration of calls per month, week and day between agents
of different cities and customers of Istanbul, where both agents and customers
joined the bank in 20187

This question includes the need of aggregations over time hierarchies besides
filters for a subset of entities. The following exemplary workflow definition shows
the use of four operators that result in a collection of graphs where each describes
one out of the three time granularities month, week and day.

groupedGraphs = graph
. subgraph (
v => { v._label == ’Agent’ OR
(v._label = ’Customer’ AND v.city = ’Istanbul’ }),
e —> {e._label = ’calls’})
.snapshot (CreatedIn(2018))

.verify()

. groupBy (
[Label(), Property(’city’)], // V group keys
[Count ()], // V aggregates
[Month(from)), Week(from), Day(from)] BY ROLLUP, // E group keys
[AvgDuration(), Count()]); // E aggregates

The first operator named subgraph (line 2-5) uses the given vertex and edge
predicates to apply a filtering to get a subgraph that contains only Agent vertices
and Customer vertices with a property city that is equal to the string Istanbul.
This operator is part of the EPGM. To receive customers that joined a bank
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in 2018, we apply the newly developed TPGM snapshot operator (line 6) with
a pre-defined predicate. Since the result of the snapshot operator can contain
dangling edges (i.e., its source or target vertex are not contained in the result
set), we apply a verify operator (line 7) to remove these from the graph. The
final groupBy operator (line 8-12) summarizes the graph. It aggregates properties
according to the aggregate functions for the specified vertex and edge grouping
keys. The vertices will be grouped by their label and the property city (line 9). A
property with the count is added to each grouped vertex as a result of the given
Count() vertex aggregate function. The edges representing the calls are grouped
by month, week and day through the usage of time-specific value transformation
functions of the same name (line 11). The additional BY ROLLUP leads to three
different aggregations similar to SQL. First, the graph will be grouped on day,
then on week and in addition, on the month of the call’s beginning. The resulting
three logical graphs are contained in a graph collection, which is the result of
our workflow. The collection can be stored or visualized by one of GRADOOPs
data sinks.

3 Conclusion

We reported on our work in progress on temporal graph analysis within the dis-
tributed graph analytic system GRADOOP. We introduced our flexible temporal
property graph model TPGM as an extension of GRADOOP’s powerful EPGM
supporting logical abstractions of graphs and collections of them. The extension
of its data structure, existing operators and creation of new temporal operators
enables answering time-respecting analytical questions on evolving graphs by
flexible chaining of the operators. We expect our extensions to be available in
GRADOOP by the end of this year. We demonstrated how analysts can declara-
tively express workflows to analyze large evolving graphs by an use case scenario
of the financial domain. In future work we will further extend GRADOOP by tem-
poral features such as operators and algorithms to make GRADOOP a powerful
and flexible system for temporal graph analysis.
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