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Abstract—Anomaly-based Intrusion Detection Systems (IDS)
can be instrumental in detecting attacks on IT systems. For
evaluation and training of IDS, data sets containing samples of
common security-scenarios are essential. Existing data sets are
not sufficient for training modern IDS. This work introduces a
new methodology for recording data that is useful in the context
of intrusion detection. The approach presented is comprised of a
system architecture as well as a novel framework for simulating
security-related scenarios.

I. INTRODUCTION

The current threat situation of the IT landscape makes it nec-

essary to monitor systems and detect attacks at an early stage.

Host-based Intrusion Detection Systems (HIDS) are important

tools to inspect system calls and to analyze processes which

are accessing systems. Especially anomaly-based HIDS are

able to detect previously unknown attacks. These are trained

in advance with normal behavior and detect deviant behavior in

the event of an attack. The quality of an anomaly-based HIDS

in relation to the detection and error rate is significantly linked

to the quality of the training of these systems. In recent years,

various data sets have been published to evaluate a HIDS. As

it turns out all them have at least one serious problem [1]. In

addition for comparability and evaluation, their metrics must

be applied to a set of coherent standardized data sets. Thus,

all existing data sets are not sufficiently applicable to design

anomaly-based HIDS for the modern IT landscape. Especially

when modern operating systems, multithreaded applications

and concurrent communications are considered.

The methodology presented in this paper enables the sim-

ulation and comprehensive recording of normal and attack

behavior with an high degree of detail. Further, we sug-

gest plausible practices for implementing this approach. This

includes a procedure to generate new data sets on current

operating systems. The latter are suitable to develop and

evaluate algorithms for today’s state of the art anomaly-based

HIDS.

This work was partly funded by the German Federal Ministry of Education
and Research within the project “Explicit Privacy-Preserving Host Intrusion
Detection System” (EXPLOIDS) (BMBF federation code 16KIS0522K) and
“Competence Center for Scalable Data Services and Solutions” (ScaDS)
Dresden/Leipzig (BMBF federation code 01IS14014B).

A. Relevance in practice and research

Our methodology can be used to record normal behavior

from productive systems. This generates models based only

on the data actually captured from live containers. This is

the opposite to today’s HIDS that often rely entirely on data

captured from a staged lab environment. This way, a user can

simulate a security violation by implementing a custom policy.

This results in a transparent process, in which an IDS can be

build and evaluated with an productive system in mind.

The procedure model serves research primarily with exper-

imenting and evaluation of new IDS algorithms. In today’s

research, new algorithms are evaluated with outdated and

incomplete data sets. Current data sets with extensive context

enable new research and better evaluation of the algorithms.

II. BACKGROUND AND RELATED WORK

Since 1998 data sets for training and comparison of HIDS

have been published. The best known are: the DARPA In-

trusion Detection Evaluation Data Set (KDD), from 1998 to

2000 [2] the data set of the University of New Mexico (UNM)

from 1999, [3], [4], the data sets of the Australian Defence

Force Academy, the ADFA-LD from 2013 [5], [6] and the

NGIDS-DS from 2017 [7]. They share at least one of the

problems described by Grimmer et al. [8] as shown in table

I. These data sets consist of sequences of system calls. The

ADFA-LD for example is relatively up-to-date, but it does not

provide thread information, parameters and return values. In

addition it contains system calls of a complete system with

all its processes. In particular, it is therefore not possible to

learn the normal behavior of a single program from it. Short

examples for all four data sets can be seen in listing 1.

Unfortunately, the authors of the data sets omit many details

about their implementation. There is little information about

the general conditions under which the recordings have been

made. This refers to information on the recording process,

the tools and software versions used or the attack vectors

engineered into the system. Moreover, the normal behavior and

its origin are either not described at all or only insufficiently

described. Pendleton and Xu describe in [1] an architecture
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based on a syscall collector for data generation. For instru-

mentation the Intel tool "Pin" is used1. It allows applications

to be extended with their own source code at runtime and

to profile the application. This allows thread-based system

call sequences and context information to be captured. The

authors show this with the software example Firefox. Abed et

al. describe in [9] a real-time IDS for passive monitoring of

Linux containers using the tool strace. The evaluation takes

place with the example of the database application MySQL in

the normal and malicious behavior under consideration of the

frequencies of system calls. The data set was not published.

In [10] older and new algorithmic approaches were compared

that evaluate sequences of system calls. It was observed that

both the detection and the false alarm rates of the different

approaches could not be improved beyond a certain value. The

authors’ thesis is that the quality of HIDS can be improved if

the algorithms also take into account context information such

as parameters and return values for system calls. To pursue this

thesis, a new data set containing such information is needed.

# Structure of KDD BSM data.

open(2): read

system call open(2)

event-ID 72 AUE_OPEN_R

event class fr(0x00000001)

audit record: header token, path token, [attr token], subject token, return token

# Extract from the UNM data set: PID SystemcallID, PID SystemcallID, ...

162 4, 162 2, 162 66, ...

# Extract from the ADFA-LD data set: SystemcallID SystemcallID ...

54 175 120 ...

# Extract from the NGID-DS data set

DATA, TIME, PID, PATH, SystemcallID, Event ID, Categ., Subcat, Label

11/03/2016, 2:45:01, 1830, /sbin/upstart-dbus-bridge, 142, 45354, normal, normal,0

11/03/2016, 2:45:06, 1804, /bin/dbus-daemon, 256, 45352, normal, normal, 0

Listing 1. Fragments of commonly used IDS data sets

III. REQUIREMENTS

Based on the weaknesses of the previous data sets [8],

the following requirements apply to the new data set and

the method of producing it: Over time, the number, syntax

and semantics of system calls of operating systems have

changed. For this reason and to solve the lack of topicality,

the system calls of today’s systems and current software must

be considered. To ensure that the generated data sets can be

kept up-to-date in the future, the simulation process should be

replicable.To fix the lack of thread information, the recorded

system calls must contain process and thread information.

This allows the data set to correctly represent normal and

attack behavior in today’s multithreaded environments. In

addition, the recorded system calls must include metadata

such as their time stamps, parameter and return values to

solve the mentioned lack of meta information. The size of

the data set, i.e. the number of contained sequences and

their system calls can be selected as required in order to

carry out procedures with large training requirements, such

as the training of a neural network. This solves the lack of

data volume. Normal and attack behavior shall be recorded

1https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool

according to the same procedure. The basic conditions such as

operating system/kernel, the software used and versions should

be identical. The only difference between normal and attack

procedures is the attack carried out during the simulation.

The process must be customizable in order to be able to

adapt the collected data to the respective application area by

implementing own scenarios.

IV. METHOD

Our method considers the previously established require-

ments to collect suitable data sets for training and evaluation

of a HIDS. By using this method, scenarios can be defined and

both normal behaviour and attack behavior can be simulated

and recorded. Simulation in this matter means the staged exe-

cution of benign and attacker behavior on an actual machine.

The method basically defines the following procedure pattern:

(1) The acquisition of events at kernel level (system calls).

(2) The use of a container-virtualized environment. (3) A

framework for instrumentation and configuration of scenarios.

The procedure is based on a system model in which three

actors Victim Unit, Normal Behavior Unit and Control Unit

are related. The development of a system model represents

an application scenario. The Leipzig Intrusion Detection Data

Set (LID-DS) framework was developed and provided as a

reference implementation.

With it, scenarios that include or exclude vulnerabilities can

be defined, simulated and recorded. In recent years, Microser-

vice architecture has become more and more established. With

such an architecture, complex software is composed of many

loosely coupled services. Due to this development, the whole

process is adapted for use in container virtualized environ-

ments. Therefore, the resulting dataset no longer describes an

entire complex system but a single component, e. g. a web

server. This is referred as a scenario.

The result is a set of captured instructions executed by the

system in the form of system calls related to single application.

This shifts the scope towards attack vectors based on behaviour

and network communication. However, many choices pointed

out here only require a little adjustment to support other

scenarios.

A. System model of an application scenario

Scenarios implemented in the LID-DS are based on soft-

ware using the client-server model. However, also centralized

alternatives like the mainframe architecture or peer-to-peer

applications are within the scope of the recording framework.

An example is the web server scenario, which consists of

one web server as well as n units which request it. Figure

1 list the schematic model in normal and attack behavior. The

Victim Container describes the Server in the network. This

is monitored by a Container Sensor that extracts normal and

attack behavior. The Sensor works introspectively and records

the events on kernel level in the form of system calls with

minimal influencing the behaviour. Normal Behavior Unit(s)

resemble the clients in the network. In a web server scenario,

they would execute requests to call a web page. As with reality,
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Fig. 2. Simulation procedure of LID-DS

several of these actors can exist to create a realistic normal

behavior, including occasional load peaks. The Attack Unit

also is a client in the network, which however executes an

attack on the victim.

Normal behavior and attack behavior are caused by the

influence of other entities like containers or processes. In a

server-client application for example it is possible to map one

or more webclients to a container. A separate control unit

executes the LID-DS framework and implements the appli-

cation scenario. LID-DS allows controlling the lifecycle of

containers, which includes the initialization and configuration

of the actors as well as the control and monitoring of the

entire simulation process. Use cases are defined in the form

of scenarios and executed by the process.

In this way, simple as well as more complex realistic

scenarios, such as multi-step attacks, can be evaluated.

B. Simulation procedure

The simulation process is shown in figure 2 and consists

of the four consecutive phases startup, warmup, simulation

of normal program behavior, shutdown and potentially the

exploit. Basically, each implemented scenario is executed

according to this procedure. At the beginning, the container

is initialized and the Victim Container is configured and

executed. At this point, benign user behavior is started to be

executed with respect to the victim container. The subsequent

warmup phase includes a delay so that the system is in a

steady (non-transient) state when recording starts. After the

warmup delay has passed, the recording of the normal behavior

begins. Granted, a malicious user pattern is supplied, the attack

behavior gets executed at a randomly chosen time within

the recording window. After the specified recording time has

passed, the monitoring tool together with all containers gets

shut down in reverse order that they started.

C. Instructional System Call Tracer

Historically, strace2 was used to monitor interactions be-

tween processes and the Linux kernel. Strace interrupts the

traces process every time a system call is invoked, captures the

system call, decodes it and then resumes the execution of the

monitored process. It is obvious that while this behavior allows

for easy recording and tampering of system instructions, for

the purpose of recording system activity this is not very

efficient. Sysdig 3 on the other hand, loads a small driver in

the kernel that makes it possible to handle different events

related to system calls. This event collection is, in contrast to

strace, non-blocking. Furthermore, Sysdig pre-processes the

data collected, combining information on system call execu-

tions with data from tcpdump or information on referenced

files. Our approach settled on using Sysdig for recording

system calls since it provides a pragmatical way of achieving

the requirements identified here. This is best displayed by

Sysdig providing export functionality, pre-processing of many

file descriptors and rich filtering functionality, allowing for

efficient prototyping. This choice, however, does not limit

the approach’s capabilities since Strace would allow for the

extraction of data in a similar manner.

D. Container Virtualization Engine

Docker4 as a container virtualization engine (LXC) was

chosen because it is a commonly used standard in practice.

LXC is used to run multiple instances of the operating system

isolated on a single host. In contrast to full virtual machine

environments, guests share the kernel with each other. This

level of virtualization allows a sufficient isolated environment

to be created at the application level. To monitor one or more

containers on the host, it is only necessary to inject the Sensor

on the host level. This is resource-friendly and allows us to

record application behavior with little impact to the system

calls. It also gives us a high degree of flexibility in creating

scenarios.

E. LID-DS Framework

The LID-DS framework implements this procedure with

minimal development effort. It covers all steps necessary for

the simulation and recording of HIDS data. In detail, it takes

care of the following steps: handling victim virtualization via

Docker, System Call Tracing via Sysdig and communication

between user behavior and victim via a bridge network. To

2https://linux.die.net/man/1/strace
3https://github.com/draios/sysdig
4https://www.docker.com
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schedule user actions the distribution introduced by Deng [11]

has been chosen.

To record data of a scenario the following information must

be defined: A Docker image, specifying the configuration

of the victim environment, a set of benign user actions, an

script exploiting a vulnerability of the victim and a metric

to check for correct and finished initialization of the victim

environment.

The LID-DS framework makes it possible to define several

normal behaviors for a scenario and the associated victim. All

of the passed behaviors are executed in parallel, each in its own

thread. This makes it possible to simulate multiple parallel user

sessions accessing the victim. This implementation opens up

the possibility to mirror real-world network traffic instead of

simulating staged user actions to the victim.

Within the scope of real world applications, many different

scenarios can hopefully be defined by using a single user

simulation definition. Furthermore, many malicious actions,

especially actions of reconnaissance are indifferent to many

victim configurations. For example, consider a TCP-SYN Scan

using the nmap5 tool.

V. EVALUATION AND RESULTS

To evaluate how the proposed framework can be used

to record host data consider CVE-2012-21226, a tragically

comedic security flaw in MariaDB/MySQL. A new data record

is created by monitoring a vulnerable MySQL instance ac-

cording to the procedure shown earlier. The setup consists of

a Ubuntu Xenial in version 16.04 with the Docker version

18.09.6 and Sysdig in version 0.24.1. MySQL is used in

version 5.5.23, which contains the vulnerability. The simu-

lation time is 5 minutes, the time exploit is 120 seconds.

As recording time we have chosen 5 minutes because Sysdig

in its report7 has surveyed an average running time of 5-10

minutes for containers. Two runs are performed. One run only

generates normal behavior, a second run contains the attack

on the vulnerability in addition to the normal behavior. As

a result, the content and technical requirements from III are

compared to this data set. The resulting data set is compared to

the commonly used IDS data sets on basis of the categorized

requirements (Table I).

A. Comparison

The focus of this comparison is on the resulting artifact,

the data set and the features it contains. Concerns related to

efficiency during the recording phase are not considered in this

paper. The central question is whether this procedure, mea-

sured against the result, can solve the criticism and problems

of the previous data sets. The evaluation resulted in two data

sets. Data set 1 contains normal behavior and includes 46839

system calls. Data set 2 contains normal and attack behavior

and includes 128799 system calls. Listing 2 shows an excerpt

5https://nmap.org
6https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2122
7https://sysdig.com/blog/2018-docker-usage-report/

TABLE I
FEATURE COMPARISON LID-DS WITH OTHERS

feature LID-DS NGIDDS ADFA-LD UNM KDD

topicality + + + - -

thread info + + - + +

metadata + - - - +

data volume + + - - +

reproduceability + - - - -

of data set 2. For the interpretation of the results, the classified

requirements are compared below.

1) Lack of topicality: The data was recorded on a modern

Linux system, which has over 370 different system calls. The

containerized environment and the LID-DS framework makes

it easy to repeat such runs for different versions of operating

systems. This makes sense because the number of system calls

varies from operating system to operating system. The data

set can be updated simply by adjusting the configuration and

running it again.

2) lack of thread information: For each system call in

the recording period the thread ID on which the process is

running is recorded, as shown in listing 2. This ensures that the

multithreading information that is important today is not lost.

The most recent data set ADFA-LD lacks this information.

3) lack of metadata: For each system call, the data record

contains extensive meta information such as high-precision

time stamps, process name, transfer parameters and a section

of the data buffer. The time stamps in the NGIDDS are

only accurate to the second, which can lead to errors in the

sequence.

4) lack of volume: Over 100 000 system calls were

recorded during the survey period. For example, ADFA-LD, as

well as the highly obsolete UNM data set, provides a smaller,

fixed data set of system calls. The data collection period can

be configured in LID-DS so that larger or smaller data records

can be generated according to individual requirements.

5) lack of reproduceablity: By using LXC, the entire simu-

lation can be defined with the LID-DS framework and stored.

Including software versions, parameters or configurations. The

performed evaluation is stored in Github as example8 and can

be viewed and performed by anyone. The framework itself

is published under the GNU General Public License. As we

know, this is the first time that a process for generating HIDS

datasets is available to the public in a fully reproducible form.

B. Results

Overall, there is a significant superiority of the approach

to generating modern HIDS data sets, as shown in table I.

By using the LID-DS Framework, all technical and content

requirements are fulfilled. The framework allows modern and

operating system specific data sets to be generated, which is

important to avoid training neural networks on the basis of

outdated or incorrect system calls or nowadays uncommon

8https://github.com/LID-DS/LID-DS
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TIME CPU PROCESS PROCESS_ID ENTER(>)/EXIT(<) SYSCALL ARGUMENTS

t0 0 apache2 25426 > open

t1 0 apache2 25426 < open fd=13(<f>/etc/apache2/.htpasswd) name=/etc/apache2/.

htpasswd flags=4097(O_RDONLY|O_CLOEXEC) mode=0

t2 0 apache2 25426 > fstat fd=13(<f>/etc/apache2/.htpasswd)

t3 0 apache2 25426 < fstat res=0

t4 0 apache2 25426 > read fd=13(<f>/etc/apache2/.htpasswd) size=4096

t5 0 apache2 25426 < read res=91 data=QUEU75:$apr1$X0JgPVeW$xCKOGdUp2tNNs0t6RqB...

t6 0 apache2 25426 > close fd=13(<f>/etc/apache2/.htpasswd)

t7 0 apache2 25426 < close res=0

Listing 2. Short excerpt of data from a recorded trace collected with the
LID-DS Framework including thread information and metadata

TABLE II
IMPLEMENTED AND PUBLISHED SCENARIOS BY LID-DS

Scenario CVE / CWE

Heartbleed CVE-2014-0160

PHP file upload CWE-434

Bruteforce login CWE-307

Rails Disclosure of content CVE-2019-5418

ZipSlip various

EPS file upload CWE-434

MySQL auth bypass CVE-2012-2122

Nginx int. overflow CVE-2017-7529

Sprockets info. leak CVE-2018-3760

SQL injection with sqlmap CWE-89

operating systems. The amount of data is also important for

neural networks, which can be adapted by LID-DS. Multi-

threaded information is valuable to view the behavior of

a system down to the application and thread level. In this

context, the metadata and parameters are also relevant. These

can also contain application-specific information and support

the correct interpretation of the application behavior. The

overall approach provides the basis to effectively compare and

evaluate HIDS in the future and to develop new classification

features based on thread information, metadata and parameters

in order to significantly increase the recognition rate and

accuracy of HIDS.

VI. CONCLUSION

The need for modern, uniform and metadata enhanced

data sets can be satisfied by implementing this approach.

This way, LID-DS is a significant contribution to future

research, evaluation and comparability of Host-Based Intrusion

Detection Systems. Additionally, this approach only needs

slight adaptations to be functional in production environments.

The major advantage of this approach is that it provides

a high degree of flexibility in the form of scenarios that

can be adapted to individual technical as well as policy

requirements. For example, the evaluation MySQL example9

from chapter V can easily be adapted using real network

data. With this approach we have created a new data set.

It was published as "Leipzig Intrusion Detection - Data Set

(LID-DS)" in [8] which contains different use cases shown

in table II. LID-DS framework and ready to use data sets

are free to use and published on GitHub9. It is the first

HIDS data set which contains normal and abnormal behavior,

system calls and their timestamps, thread ids, process names,

9https://github.com/LID-DS/LID-DS

arguments, return values and excerpts of their data buffers

from traces of normal and attack behavior of several recent,

multi-process, multi-threaded scenarios. Many of the included

features cannot be extracted from previous data sets. With it,

known algorithms can be enhanced or new algorithms, based

on the various included features, can be explored. Additionally,

staged scenarios based on internal expert knowledge can give

a practical prediction on the performance of a algorithm.

The approach outlined in this work focuses on giving every

actor the possibility to build their own model from their own

experienced traffic. Further information on the development

of LID-DS and initial analyses can be found in the works

of [12] and [13]. An extension of the procedure to include

network sensors is planned. Furthermore, an updated version

of the data set is scheduled to be released once a year. Every

version should expand the data set by including recordings

of the latest commonly used software systems as well as

disclosed vulnerabilities. Additionally, recordings based on

new versions of the Linux kernel and configurations according

to new techniques used in development, hosting and pentesting

will be the target of these extensions. We anticipate feedback

to allow for the progressive development of a data set that

finally allows for reproducible IDS research.
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