
Improving Host-based Intrusion Detection Using
Thread Information

Martin Grimmer?, Tim Kaelble??, and Erhard Rahm? ? ?

Leipzig University, ScaDS.AI, Humboldtstraße 25, 04105 Leipzig, Germany
https://scads.ai/

Abstract. Host-based anomaly detection for identifying attacks typi-
cally analyzes sequences or frequencies of system calls. However, most
of the known approaches ignore the fact that software in modern IT
systems is multithreaded so that different system calls may belong to
different threads and users. In this work, we show that anomaly detec-
tion algorithms can be improved by considering thread information. For
this purpose, we extend seven algorithms and comparatively evaluate
their effectiveness with and without the use of thread information. The
evaluation is based on the LID-DS dataset providing suitable thread in-
formation.

1 Introduction

The frequency of cyber attacks and the associated damage are steadily increas-
ing. This results in the interruption of various lines of business and services
causing enormous financial losses (about 5.2 trillion USD) as shown in an Ac-
centure study in 2019 [2]. In the event of loss of personal data, further financial
penalties may be imposed on companies within the European Union due to the
General Data Protection Regulation (GDPR) if adequate protection measures
have not been taken, as required in Section 2 (Security of personal data), Article
32 (Security of processing) of the GDPR [8]. Another important point is the
potential loss of customers’ trust by losing their personal data. Restoring lost
trust is a very long and difficult process. This all gets worse if you consider that
in the past, on average, companies did not notice security incidents until weeks
later as stated in the 2018 U.S. State of Cybercrime report [14]. For small and

? grimmer@informatik.uni-leipzig.de
?? tim k@posteo.de

? ? ? rahm@informatik.uni-leipzig.de
Acknowledgment: This work was supported by the German Federal Ministry of Ed-
ucation and Research within the project Competence Center for Scalable Data Ser-
vices and Solutions (ScaDS) Dresden/Leipzig (BMBF 01IS18026B) and by the Ger-
man Federal Ministry for Economic Affairs and Energy (BMWi - ZIM, 16KN061130)
based on a resolution of the German Parliament within the project ”Anomaly-based
attack detection on data- and control flow-based sensors”. Computations for this
work were done with resources of Leipzig University Computing Centre.



2 M. Grimmer et al.

medium-sized companies, on average 56 days elapse between the time they notice
a safety incident and the time when the incident is suspected to have occurred.
For large enterprises, this time span is even 151 days on average.

A first step towards better IT security is to detect security incidents promptly.
Only then can appropriate countermeasures be taken and potential security gaps
be closed quickly. A possible technical solution for the fast identification of at-
tacks is the use of intrusion detection systems. They can also help to address the
requirements stated in article 32 (b) GDPR: ”Taking into account the state of
the art [...], the controller and the processor shall implement appropriate tech-
nical [...] measures to ensure a level of security appropriate to the risk, [...] the
ability to ensure the ongoing confidentiality, integrity, availability and resilience
of processing systems and services [...].” [8]

Even if intrusion detection systems could only detect and avert 5% of all IT
security incidents in time, this would correspond to an avoided loss of about 260
billion USD worldwide. It is therefore also worthwhile to examine approaches to
enhance Intrusion Detection Systems (IDS).

1.1 Our Contribution

The aim of this work is to improve existing approaches for host-based intrusion
detection systems (HIDS), in particular, anomaly-based approaches that evalu-
ate system calls. These approaches mostly analyze sequences or frequencies of
system calls. However, they do not consider the thread in which a system call
has been executed, thereby ignoring the fact that software in modern IT systems
is mostly multithreaded. Multiple runs of the same software, with identical input
data, may thus result in different sequences of system calls due to the execution
scheduling of the operating system. Since much current work on HIDS is focused
on learning and analyzing subsequences of system calls, this can lead to incor-
rect results. This paper aims at answering the question whether considering the
thread allocation of a system call can achieve better results in anomaly detection.
For this purpose, we modify and evaluate seven known anomaly detection algo-
rithms accordingly. We will show that the use of thread information increases the
detection rate and reduces the number of false alarms in most cases. Our anal-
ysis also focuses on streams of system calls for a fast identification of anomalies
while previous work mostly analyzes entire files in a batch-like manner.

1.2 Paper Outline

The remainder of this paper is structured as follows: First, we introduce a cat-
egorization of IDS to put the approaches of this paper into context. Then we
present previous work for host-based anomaly detection. Following this, we dis-
cuss the available datasets and how they can be used to provide valid inputs
for the algorithms. Afterwards we briefly introduce the considered algorithms
and discuss how to determine a threshold for deciding whether an observation
is normal or abnormal. We then describe the experimental setup, discuss the
results of the experiments, and draw conclusions.



Improving Host-based Intrusion Detection Using Thread Information 3

2 Host-based Intrusion Detection

2.1 Categories of Intrusion Detection Systems

According to Milenkoski et. al. [25] and Debar et al. [6] Intrusion Detection
Systems can be categorized along the dimensions: the monitored platform, the
method to detect attacks and the deployment architecture.

The Monitored Platform – If network data is evaluated, one speaks of
network-based intrusion detection systems (NIDS). These systems analyse the
incoming, outgoing and internal traffic of a network and can thus evaluate the
externally ”visible” behaviour of the systems within the monitored network. If,
instead of network data, activities of the systems to be monitored are collected,
this is referred to as host-based intrusion detection systems (HIDS). These sys-
tems have a vast amount of different data sources at their disposal to detect
intrusions. Thus, characteristics such as CPU load, memory consumption or ap-
plication logs can be examined. Another comprehensive and detailed source of
the behavior are system calls executed on the host.

The Attack Detection Method – An intrusion detection system that
checks monitored activity against a database of known attacks or predefined
rules is called misuse- or signature-based. Such systems are not able to identify
so-called zero-day attacks, i.e. attacks that were previously unknown. Unlike
misuse-based systems, anomaly-based systems, also called behavior-based sys-
tems, detect deviations from a known normal behavior. They do not require
attack signatures in advance allowing them to detect previously unknown at-
tacks. The literature emphasizes that anomaly-based IDS often misinterprets
normal behavior as anomalous, which is the greatest of their drawbacks [25].

The Deployment Architecture – Systems consisting of several subsystems
that are used at different locations and communicate with each other to detect
intrusions are called compound IDS. They can also detect coordinated attacks
that have multiple targets. Otherwise they are called non-compound, i.e., IDS
at a single location

Categories Considered in this Paper – In this paper, we focus on HIDS
that can make use of rich information about the internal system behavior. We
further focus on anomaly-based IDS as they can also detect previously unknown
attacks. As mentioned before, they often have to contend with high error rates.
Therefore we want to achieve low error rates and investigate whether this can
be achieved by considering metadata such as the thread information of system
calls as already suggested by Pendleton and Shouhuai in [29]. As a first step we
want to investigate this for the simpler case of non-compound IDS and leave
the more complex case of compound IDS for future work. Therefore we will deal
with algorithms of non-compound anomaly-based host IDS.

2.2 Related Work

In 1996, an initial approach to intrusion detection called TIDE (time-delay em-
bedding) was proposed based on a database of simple valid patterns (lookahead



4 M. Grimmer et al.

pairs) of system calls [9]. Using these patterns, the proportion of known pat-
terns is determined to decide about whether a given trace is anomalous or not.
STIDE (sequence time-delay embedding) expands this approach by consider-
ing contiguous sequences of system calls of fixed length instead of lookahead
pairs [13]. Further work dealt with different evaluation possibilities of the un-
derlying concept [33] [11]. In 2001, Eskin proposed a method with dynamic
window sizes using entropy modeling and context dependency to determine the
optimal window size. [7] Another approach to eliminate the need of a fixed win-
dow size was introduced by Marceau using a finite state machine whose states
represent predictive sequences of different lengths. [22] Jewell and Beaver inves-
tigated whether making the normal profile dependent on the user (uid) makes a
difference [15]. They also considered dynamic sizes of system call sequences by
dividing the input into sequences in which each system call occurs exactly once.
In doing so, they defined the system calls for these types of sequences as (syscall,
errno, args). [15] Since sequence-based approaches usually incur high computa-
tional and memory overheads, researchers also looked at the use of frequencies
of individual system calls [16] [1]. While these features are more lightweight in
their computation, they are also less detailed so making it difficult to achieve
similarly good detection and false alarm rates as sequential approaches. Other
possibilities for feature extraction to improve anomaly detection include the use
of parameter values of individual system calls. Kruegel et al. [19] created a sep-
arate model for each system call (e.g., write or open), which contains specific
analyses for the parameters used. The model considers strings, characters, struc-
ture or tokens used. This approach was later extended with sequence analysis in
2006 and 2008 [28] [21]. Many of the mentioned papers try to determine whether
an attack occurs within a given trace which corresponds to a file of the used
dataset. These papers determine their detection and false alarm rates accord-
ingly at file level [9] [13] [11] [7] [16] [19] [28]. Some other works show that it
can be done more detailed and determine the exact number of alarms and false
alarms [33] [22] [15] [1] [21].

3 Datasets

Over the last two decades several datasets for evaluating HIDS using system
calls have been published. The best known of these datasets include: The KDD
dataset, to be more precise the BSM (Basic Security Module) of the DARPA
Intrusion Detection Evaluation Data Set, from 1998 to 2000 [20], the Intrusion
Detection Data Set from the University of New Mexico known as UNM dataset
from 1999 [4] [34], the data sets of the Australian Defence Force Academy, the
ADFA-LD from 2013 [5] [3] and the NGIDS-DS from 2017 [12].

All of the above mentioned datasets have critical drawbacks as discussed
in [29] and [10]. The KDD and UNM datasets are outdated based on software
older than 20 years that is hardly in use anymore. Furthermore, the hardware and
the corresponding operating systems with their system calls have changed during
this time. ADFA-LD is also several years old and lacks thread information. Since



Improving Host-based Intrusion Detection Using Thread Information 5

this paper deals with the question whether thread allocation of a system call
can improve anomaly detection, this kind of information is needed in a suitable
evaluation dataset. Only the NGIDS-DS and the newer LID-DS datasets [10] [30]
meet this requirement and are up to date. Therefore, these two datasets are
considered further in this paper.

3.1 NGID-DS

The Next Generation Intrusion Detection System - Data Set (NGIDS-DS) con-
sists of labeled network and host (system call) logs aiming to realistically reflect
critical cyber infrastructures of enterprises in both normal and abnormal scenar-
ios [12].

The Sequence Problem – In the host files of the NGIDS-DS each entry has
a timestamp accurate to the second and an event id which indicates the order
of the executed system call on the host system. Unfortunately we found that
it is not possible to reliably determine a deterministic order of the system calls
using this information. This is because there are in general several calls with the
same timestamp and furthermore the order of event-ids sometimes contradicts
the order of timestamps. We found that there are contracting entries in the files
of NGIDS-DS, an example is shown in Table 1. Here the first entry has a smaller
timestamp than the second one, while the event-ids are ordered the other way
around. Therefore, unfortunately, it is not possible for us to reconstruct the
correct sequence of system calls. Since all algorithms considered in this paper
analyze the sequence of system calls, we cannot use the NGIDS-DS data.

Table 1. Extract from NGIDS-DS host file 1.csv with conflicting timestamp and event-
id orders.

date time pid process name syscall event id

11/03/2016 2:45:01 2114 /usr/bin/compiz 168 45357
11/03/2016 2:45:06 1804 /bin/dbus-daemon 256 45352

3.2 LID-DS

To address the observed shortcomings of the older datasets, Grimmer et al. cre-
ated the LID-DS. It contains system calls, timestamps, thread ids, process names,
arguments, return values and excerpts of data buffers from traces of normal and
attack behaviour of several recent, multi-process, multi-threaded scenarios. Many
of the included features are not available from previous datasets [10]. For this
paper, the system calls, their unambiguous sequence and their thread assignment
are of particular importance.

Structure of the LID-DS – The LID-DS consists of 10 different scenarios
each representing a real vulnerability. They are named after the official Common
Vulnerabilities and Exposures (CVE) [27] number, the corresponding Common



6 M. Grimmer et al.

Table 2. LID-DS scenarios, their abbreviation and their number of system calls.

scenario abbr. #syscalls scenario abbr. #syscalls

Bruteforce-CWE-307 BF 5 696 050 CVE-2012-2122 2012 5 721 512
CVE-2014-0160 2014 4 009 668 CVE-2017-7529 2017 1 796 862
CVE-2018-3760 2018 19 160 009 CVE-2019-5418 2019 17 955 534
EPS-CWE-434 EPS 126 458 405 PHP-CWE-434 PHP 22 268 842
SQL-Injection-CWE-89 SQL 23 616 570 ZipSlip ZIP 252 934 566

Weakness Enumeration (CWE) number [26] or a specific name (e.g. ZipSlip).
Each of these scenarios contains about 1137 files consisting of about 1021 normal
and 116 attack sequences. The attack sequences consists of both normal behavior
and attack behavior. What this means for the evaluation of the experiments will
be explained in Section 6. The recordings are between 30s and 60s long (45s
on average). The first 200 normal sequences are used as training data, the next
50 are used as validation data and the remaining normal and attack sequences
are used as test data. This leaves about 771 normal sequences (771 · 45s) and
about half the runtime of the attack sequences (116/2 ·45s) that contain normal
behavior. This corresponds to roughly 10 hours of runtime of normal behavior
per scenario.

In the remainder of this paper, we abbreviate the individual scenarios of the
LID-DS. The original names, our abbreviation and the number of system calls
in the scenarios can be found in Table 2.

4 Feature Engineering

In the following, we present different concepts and preprocessing methods needed
for the anomaly detection approaches.

n-gram – A n-gram is a contiguous sequence of n items, e.g., system calls,
from a given input. If for example the sequence (a, b, c, d) is given, then following
n-grams can be derived for n=2: (a,b), (b,c) and (c,d).

n-grams using thread information – As mentioned before many IT sys-
tems nowadays are multi-threaded. As a result, multiple runs of the same soft-
ware with identical input data can lead to different sequences of system calls
across all threads due to the execution scheduling of the underlying operating
system. Ignoring this fact as done in previous approaches can thus lead to incor-
rect results for anomaly detection. This is illustrated by the example in Table

Table 3. Two traces resulting from different runs of the same software and input in a
multi-threaded environment.

thread t1: b d b thread t′1: b d b
thread t2: c b thread t′2: c b
thread t3: a a c thread t′3: a a c

flat sequence s: a b c a d b c b flat sequence s′: a c b a d b c b



Improving Host-based Intrusion Detection Using Thread Information 7

3 where threads 1 and 1’, 2 and 2’, and 3 and 3’, respectively each perform the
same sequences of system calls. However, due to different scheduling, the result-
ing so-called flat sequences s and s′ (the system call sequences without thread
information) differ from each other.

Ignoring this information can lead to learning incorrect data. As shown in
Table 4 the resulting n-grams (here with n = 2) differ depending on the source
sequence. The left side shows the n-gram frequencies for the flat sequence s,
the middle shows the n-gram frequencies for flat sequence s′ and the right side
shows the frequencies in case they were determined from the underlying threads
t1, t2 and t3 (which is the same for t′1, t′2 and t′3). For example, n-gram or
subsequence (b c) occurs twice in flat sequence s but only once in s′ and never
in the thread-specific sequences.

Table 4. Frequencies of n-grams (n=2) from sequences s, s′ and t1, t2, t3.

from s from s′ from t1, t2, t3
a b c d a b c d a b c d

a 0 1 0 1 0 0 1 1 1 0 1 0
b 0 0 2 0 1 0 1 0 0 0 0 1
c 1 1 0 0 0 2 0 0 0 1 0 0
d 0 1 0 0 0 1 0 0 0 1 0 0

One Hot Encoding of Categorical Data – Machine learning (ML) al-
gorithms usually require numerical (quantitative) inputs. However, system calls
and n-grams of system calls are nominal qualitative (categorical) data but not
quantitative information. One way to represent this type of data for an ML al-
gorithm is one hot encoding (OHE). To represent a system call ci from the set
of m possible system calls C = {c1, c2, ..., cm}, a one-hot vector vi of length m is
used. For system call ci such a vector vi is a bit vector with value 1 at position
i and value 0 in all other positions. n-grams of system calls can be encoded by
concatenating the one hot encoded system calls.

System Call Embeddings – The use of long OHE representations can lead
to a large number of weights to be trained in neural networks. Therefore it is
advisable to use shorter vectors. In the field of natural language processing, so
called word embeddings have proven their value, e.g., based on the Word2Vec
method proposed by Mikolov et al. [24]. Word2vec uses a neural network to learn
word associations from a large corpus of text. A word is thereby mapped to a
vector of a certain length, the word embedding. The cosine similarity between
two such vectors indicates the degree of semantic similarity between the asso-
ciated words. We have applied this principle to system calls. For each scenario
of the LID-DS, we generated a system call corpus of the training data. We then
used this to compute the corresponding word embeddings using the original im-
plementation of Mikolov et al. [23]. We have calculated two variants of word
embeddings. The first, ”thread unaware” variant uses the system calls as they
occur in the training data one after the other. The second, ”thread aware” vari-



8 M. Grimmer et al.

ant considers the system calls of the training data per thread, so that the system
calls of different threads do not mix. With the system call embeddings computed
in this way, the composite n-grams can be generated by simple concatenation,
as before. We later call this embedding W x, where x corresponds to the length
of the vector.

Duplicates in the Training Data – In this work, we decided to use the
training data not as presented, but duplicate free. For all algorithms we discuss
in Section 5, except SCG (since it should explicitly learn the distribution of node
transitions) the training data is modified in a way, such that duplicate entries
of the same n-grams are removed from the input to the training algorithm. This
is done to reduce the size of the training matrices (and their used memory)
and to speed up training time. By removing duplicates in the training data, the
algorithms are trained in such a way that frequent and rare ”patterns” in the
training data are learned ”equally” well.

5 Algorithms

In this paper we consider only algorithms or variants of algorithms that can
process streams of system calls to enable a fast identification of anomalies at
runtime. Hence we do not investigate a more batch-like retrospective analysis
of entire collections of system calls. To process a stream of system calls, each
algorithm always receives exactly one system call after another as input. It then
builds n-grams as described above within a given streaming window of a
predefined length. It then calculates a so-called anomaly score indicating how
abnormal the determined n-gram is in relation to previously seen system call
n-grams.

Each of the algorithms presented here basically consists of two phases: the
training phase and the detection phase. In the following descriptions, we will
discuss these two phases separately. In addition, for each of the algorithms, we
specify how the final anomaly value is calculated for a streaming window.

The Bag of System Calls (BOSC) algorithm was introduced in [16] and later
applied in [1]. It does not consider the order of system calls in a n-gram but only
the frequency of occurrence.
Training: N-grams of the training data are built. Then the occurrences of every
system call within each n-gram is counted. A bag of system calls in this sense is
the assignment from all system calls to their frequency within a given n-gram.
All these bags are then saved in a database for later use as normal bags.
Detection: In detection mode every n-gram is converted to a bag as described.
Then for each bag it is checked if it is included in the normal database from the
training phase. If the bag is included, we call it a match otherwise a mismatch.
Anomaly: An anomaly is detected if the anomaly score (ratio of mismatches
to number of n-grams in the streaming-window) is greater than a predefined
threshold.

In 1998 Hofmeyer et al. designed the Sequence Time-Delay Embedding (STI-
DE) [13] algorithm.



Improving Host-based Intrusion Detection Using Thread Information 9

Training: The STIDE algorithm is similar to the BOSC algorithm, but rather
looking only at the frequencies and ignoring the sequence of system calls the
actual n-grams are stored and used as the normal database.
Detection: In the detection phase the STIDE algorithm checks whether the
current n-gram is included in the normal database. Similar to the BOSC algo-
rithm if the n-gram is included, we call it a match otherwise a mismatch.
Anomaly: As before an anomaly is detected if the anomaly score (ratio of mis-
matches to the number of n-grams in the streaming-window) is greater than a
predefined threshold.

The method of System Call Graphs (SCG) is also called n-gram probability
graph [11]. Here system calls are placed in a directed weighted graph, where the
nodes describe n-grams of system calls and the edges represent the probabilities
of transitions from one n-gram to another.
Training: In the training phase the n-gram probability graph is built as de-
scribed above.
Detection: In the detection phase the transition probability from one n-gram
to its successor n-gram is determined using the n-gram probability graph. If this
transition is not present in the graph its probability is set to 0.
Anomaly: The resulting anomaly score is then given by the mean of all transi-
tion probabilities within the streaming window. If this anomaly score is greater
than a predefined threshold an anomaly is detected.

The One Class Support Vector Machine (SVM), introduced in [31] and later
applied in [35] is a variant of the Support Vector Machine. Simply put it tries
to learn a function which classifies if a sample could have been drawn from the
input distribution.
Training: The One Class SVM is trained for all n-grams from the training data.
Detection: The One Class SVM algorithm decides whether a given n-gram is
part of the normal class (match) or not (mismatch).
Anomaly: As before an anomaly is detected if the anomaly score (ratio of
mismatches to the number of n-grams in the streaming-window) is greater than
a predefined threshold.

Different kinds of artificial neural networks are used to predict the next el-
ement of a given sequence. This for example was done in [36] on sequences of
numbers and in [17] on sentences. We want to transfer the principle applied there
to our application. Here it is used to predict the probability of each possible next
system call after a given n-gram of system calls. We utilize two variants of arti-
ficial neural networks: The Multi Layer Perceptron (MLP) and Convolutional
Neural Networks (CNN) which are known for their ability to identify patterns
in data. As the two approaches just differ in the neural network architecture
they are jointly summarized in the following.
Training: N-grams of system calls are being used as the input of the MLP/CNN.
The expected output is the successor system call. The actual successor system
call can be used for supervised learning.
Detection: With the given n-gram, the probability of every possible system call
appearing in the next time step is predicted.



10 M. Grimmer et al.

Anomaly: The anomaly score (one minus the mean probabilities of all n-grams
in the streaming window) is then again compared to a predefined threshold. If
it is greater than this threshold we count it as anomaly.

Autoencoders (AE) can learn to compress data through finding correlated
features in the data. [18] With these features they are capable of reconstructing
the compressed data with less noise. If the underlying features which it learned
are less represented in the test data the reconstruction loss is greater. So with
reconstructing an anomaly the loss is expected to be higher than with data from
the training data.
Training: The Autoencoder tries to learn the features of all n-grams of the
training data. By reconstructing this data through the Autoencoder, a loss can
be determined which should be minimized.
Detection: The mentioned reconstruction loss between input and output of the
Autoencoder is then used as the anomaly score of the specific n-gram.
Anomaly: If the average anomaly score of all n-grams in a streaming window
is higher than a predefined threshold, an anomaly is detected.

6 Evaluation approach

Before we come to the results of our investigation in the next section, we want
to first outline how we determine the sucess of anomaly detection with streams
of system calls and how we set the anomaly thresholds.

Anomaly Evaluation – As described before each algorithm produces an
anomaly score for every new system call in a stream. How we interpret this score
depends on the threshold value as well as the attack start time. The threshold
value is used to distinguish between normal classifications (the anomaly score is
less or equal the threshold) and abnormal classifications (the anomaly score is
greater than the threshold) as described before. The expected attack start time
tattack is recorded in the LID-DS for each file containing an attack. Unfortunately
tattack is somewhat imprecise so that we soften this value a bit and use t′attack =
tattack − 2s instead. As visualised in Figure 1, using the anomaly threshold and
attack start time we obtain four areas (quadrants) that can be used for evaluation
anomaly detection. In particular, one can classify a given anomaly score as a false
alarm, FA (or FP , false positive), i.e., incorrectly classified as attack, if the score
is in quadrant 2. An anomaly or false alarm may span more than one system call
or n-gram. Therefore, an alarm should not be triggered for every single abnormal
system call or every single abnormal n-gram. In reality, this would result in a
too large number of alarms that have to be manually reviewed. Instead, alarms
that directly follow each other should only counted as a single alarm. A score in
quadrant 3 counts as normal behavior (TN , true negative). Unfortunately, its
hard to make such statements for values with a timestamp greater then t′attack
since we don’t know whether the attack has already started, it is already over
and if in this case normal behavior has appeared again already. The only thing
we know for this case is that after t′attack an attack is expected. Therefore, to
correctly classify an attack (TP , true positive) at least one anomaly score in



Improving Host-based Intrusion Detection Using Thread Information 11

quadrant 1 is needed for an attack file. Due to the given expected start times of
all attacks in the LID-DS, we can determine false alarms in the files containing
attacks up to t′attack. This allows much more accurate statements than simply
classifying an entire file as benign or malicious, as done for other datasets before.
Additionally we calculate the detection rate DR = TP/A with A, the number
of attacks in the test data of a scenario, to improve the comparability of the
individual scenarios, since they do not all contain the same number of attack
files. To compare the results in this work we use DR and FA.

Fig. 1. Exemplary plot of anomaly scores (y axis) against time (x axis). It shows the
threshold (horizontal blue line), attack start time (vertical red line) and the resulting
four quadrants 1-4.

Determining the Threshold Value – The choice of the anomaly thresh-
old obviously is a critical parameter that impacts the overall quality of anomaly
detection. We aimed at automatically finding suitable values. Given that anoma-
lies are unknown beforehand we only use the data about normal behavior for
this purpose. In particular, we use the maximum anomaly score from the corre-
sponding validation part of the normal behavior as the threshold for the normal
class. By using the validation data, we prevent overfitting compared to using the
actual training data to determine the threshold.

Experiments – To investigate how the described thread information affects
the different algorithms presented, we ran a grid search over a large set of possible
configurations and all scenarios of the LID-DS. In total, we have trained and
evaluated more than 30,000 different configurations of the presented algorithms.

7 Findings

In this section, we analyze how well the presented algorithms perform on the
LID-DS without and with using thread information. We also analyse the impact
for different scenarios.



12 M. Grimmer et al.

7.1 Results Per Algorithm Over All Scenarios

We first evaluate the impact of using thread information (TI ) on the average
performance of the individual algorithms over all scenarios. For this purpose,
we report for every algorithm results for three configurations, (1) the configu-
ration achieving the best detection rate (DR) without thread information, (2)
the results for the same configuration of (1) but with the use of thread infor-
mation (i.e., after switching the ”thread information flag”), and (3) the best
configurations with thread information. The obtained results over all scenarios
are summarized in Table 5 together with the used encodings for n-grams and
the considered n-gram lengths n and window sizes l.

We observe that the best configuration using thread information (conf. 3)
achieves a better detection rate for six of the seven algorithms and about the
same detection rate for the autoencoder approach (AE). For BOSC and STIDE,
even just switching the TI flag for the best non-TI configuration achieves a
noticeable DR improvement despite the fact that for the use of threads the
window size should be far smaller (1000 vs. 10000). The FA results for the number
of false alarms are mixed. Here using thread information results in improvements
for four of the seven algorithms (SCG, MLP, CNN and AE). Hence for these
algorithms the use of thread information improves (or maintains) both detection
rate and the number of false alarms. The overall best detection rates are achieved
for the BOSC and the STIDE approaches (98,6%) and the lowest number of false
alarms for AE and MLP.

We now want to illustrate the relative performance of the best algorithms for
the different scenarios in more detail. Since it is difficult to rank configurations for
multiple target criteria (DR,FA) one can use the concept of Pareto optimality, a
condition in which no criterion can get better without making at least one other
criterion worse. According to this concept, the configurations BOSC 1, STIDE 3,
SCG 3, MLP 3 and AE 3 from Table 5 are Pareto optimal. Therefore in Tables
6 and 7 we show the results of these configurations and their corresponding
configuration with altered TI flag for each scenario.

We observe that the different algorithms behave quite differently for the
various scenarios. The STIDE approach excels in achieving high detection rates
for all scenarios with use of TI. In contrast to the other algorithms and with
the use of TI, STIDE and SCG are especially able to solve scenario 2014 with
some and ZIP with only one respectively zero FA. On the downside, for STIDE
and in particular BOSC using TI leads to relatively high FA values. From one
scenario solved to nine, with almost no change in FA, the SCG algorithm also
benefits greatly from TI. The two other algorithms achieve high detection rates
only for six to eight of the ten scenarios. The MLP algorithm benefits strongly
from using TI, now able to solve eight instead of four scenarios and fewer false
alarms compared to not using thread information. Perfect results (DR 1, FA 0)
are achieved for the 2019 and EPS scenarios. Finally, the AE approach achieves
perfect detection rates in three scenarios. The use of TI does not affect DR, but
it does reduce the number of false alarms, especially in the PHP, 2018 and SQL
scenarios.



Improving Host-based Intrusion Detection Using Thread Information 13

Table 5. Algorithm wise best average configuration over all scenarios. The columns
are: algorithm, configuration, encoding, thread information, n-gram length, streaming
window length, mean DR and mean FA.

alg. con. enc. TI n l DR FA

BOSC 1 - - 11 10000 0.885 17.4
BOSC 2 - + 11 10000 0.949 519.5
BOSC 3 - + 7 1000 0.986 110.4

STIDE 1 - - 3 10000 0.879 12.5
STIDE 2 - + 3 10000 0.981 118.6
STIDE 3 - + 5 1000 0.986 61.5

SCG 1 - - 9 10000 0.711 43.9
SCG 2 - + 9 10000 0.686 166.4
SCG 3 - + 5 10 0.895 29.1

SVM 1 OHE - 5 100 0.562 13.3
SVM 2 OHE + 5 100 0.292 13.3
SVM 3 OHE + 9 100 0.595 42.7

MLP 1 OHE - 11 100 0.614 18.1
MLP 2 OHE + 11 100 0.605 34.7
MLP 3 OHE + 7 1 0.789 4.2

CNN 1 OHE - 7 100 0.686 35.4
CNN 2 OHE + 7 100 0.694 28.2
CNN 3 OHE + 22 10 0.702 20.0

AE 1 W 5 - 5 1 0.629 16.4
AE 2 W 5 + 5 1 0.622 2.3
AE 3 W 5 + 7 1 0.622 2.2

Table 6. Results for configuration 1 (without TI) and 2 (with TI) of BOSC and
configuration 3 (with TI) and its variant without TI of STIDE.

BOSC STIDE
no TI (1) with TI (2) no TI with TI (3)

scenario DR FA DR FA DR FA DR FA

BF 0.94 32 0.94 29 0.94 66 0.94 24
2012 0.95 11 0.99 201 0.03 4 0.99 26
2014 0.00 1 0.59 210 0.00 3 0.95 44
2017 0.97 9 0.99 5 0.97 9 0.99 5
2018 0.99 19 0.99 5 0.99 25 0.99 12
2019 1.00 4 0.99 22 1.00 8 1.00 18
EPS 1.00 20 1.00 604 1.00 4 1.00 12
PHP 1.00 2 1.00 119 0.95 1 1.00 93
SQL 1.00 40 1.00 3183 0.15 18 1.00 380
ZIP 1.00 36 1.00 817 0.34 1 1.00 1

mean 0.89 17.4 0.95 519.5 0.64 13.9 0.99 61.5



14 M. Grimmer et al.

Table 7. Results for configuration 3 (with TI) and its variant without TI of SCG,
MLP and AE.

SCG MLP AE
no TI with TI (3) no TI with TI (3) no TI with TI (3)

scenario DR FA DR FA DR FA DR FA DR FA DR FA

BF 0.04 2 0.94 1 0.00 0 0.94 1 0.00 1 0.00 0
2012 0.01 25 0.10 67 0.01 16 0.98 10 0.03 19 0.00 0
2014 0.01 33 0.95 25 0.00 0 0.01 7 0.00 0 0.00 0
2017 0.97 17 0.97 9 0.97 11 0.97 14 0.97 8 0.97 8
2018 0.00 4 0.99 35 0.00 0 0.99 2 0.99 79 0.99 11
2019 0.00 9 1.00 11 1.00 36 1.00 0 1.00 0 1.00 3
EPS 0.27 5 1.00 40 0.00 0 1.00 0 1.00 0 1.00 0
PHP 0.02 0 1.00 19 1.00 31 1.00 6 1.00 169 1.00 0
SQL 0.09 113 1.00 84 1.00 31 1.00 2 1.00 25 1.00 0
ZIP 0.03 12 1.00 0 0.00 0 0.00 0 0.27 0 0.27 0

mean 0.14 22.0 0.90 29.1 0.40 12.5 0.79 4.2 0.63 30.1 0.62 2.2

7.2 Scenario Wise Best Results

We now analyze the influence of using thread information for each of the ten
scenarios separately. Table 8 shows the best result regarding DR per scenario
without and with the use of TI together with the applied configuration. For cases
of several configurations with the same ”best” result for a scenario, only one is
shown. The table shows that in nine of the ten scenarios the use of TI results
in a better or about equally good DR and FA values (only for scenario ”2018”
the FA value is increased). In general, the use of thread information enables
very good solutions for all scenarios with perfect or almost perfect detection
rates (0.94 to 1.0) and 0 false alarms for 6 of the ten scenarios. Compared to
the configurations not using thread information, DR is especially increased for
scenario 2014 (from 0.06 to 0.95) and the FA value is improved or kept at 0 for
nine scenarios. Table 8 also reveals that the AE algorithm is able to provide a
perfect result with 100% DR and no FA for 4 scenarios, for both without and
with using TI. For using TI, the ZipSlip scenario can also be perfectly solved by
the BOSC algorithm (as well as SCG, not shown in the table). Overall the best
results are mostly achieved by the AE, CNN, MLP and STIDE algorithms while
the SVM approach is not among the top-performing approaches.

7.3 Overall Best Practical Configurations

The presented results show that in many cases it is not possible to achieve
both very high detection rates and a very low number of false alarms with the
same configuration over all scenarios. However configurations optimizing only
one of the two goals are not sufficient and can be ineffective in practice. This
is especially the case when IDS alarms need to be handled by a security expert
to prevent possible damage to the monitored system. This asks for reducing
the number of false alarms as much as possible while aiming for a detection
rate as high as possible. For eaxample a configuration with DR = 0.80 and



Improving Host-based Intrusion Detection Using Thread Information 15

Table 8. Scenario-wise best configurations over all algorithms without and with TI.
The columns are: scenario, algorithm, encoding, thread information, n-gram length,
streaming window length, DR and FA.

scenario alg. enc. TI n l DR FA

BF CNN OHE - 9 100 0.95 97
BF MLP OHE + 5 1 0.94 0

2012 AE OHE - 5 100 0.97 33
2012 STIDE - + 5 1000 0.99 26

2014 MLP OHE - 22 10000 0.06 22
2014 STIDE - + 9 10 0.95 18

2017 CNN OHE - 5 100 0.99 13
2017 CNN OHE + 9 100 0.99 4

2018 CNN OHE - 7 100 1.00 5
2018 MLP OHE + 7 100 1.00 28

2019 AE W 2 - 3 1 1.00 0
2019 AE W 2 + 3 1 1.00 0

EPS AE W 2 - 3 1 1.00 0
EPS AE W 2 + 7 1 1.00 0

PHP AE W 2 - 3 1 1.00 0
PHP AE W 2 + 3 1 1.00 0

SQL AE W 2 - 3 1 1.00 0
SQL AE W 2 + 3 1 1.00 0

ZIP STIDE - - 5 10000 1.00 4
ZIP BOSC - + 3 10 1.00 0

FA = 10 might be more effective than one with DR = 0.90 and FA = 100 or
even DR = 0.99 and FA = 1000 since manually dealing with 100 or even 1000
false alarms can make the system impractical to use.

At this point the concept of Pareto optimality shall be applied again. One
possible approach to limit the number of possible Pareto-optimal results is to
define certain levels of the accepted number of false alarms and ranking the
configurations according to their DR results within each level. For example, we
might be interested in the following five FA levels: Level 1: FA < 40, level 2:
FA < 20, level 3: FA < 10, 4: FA < 5 and 5: FA < 2.5.

For each of these levels, Table 9 shows the configuration with the best DR
result (average over all scenarios) with their FA average for the case with TI and
without TI, respectively. We observe again that the TI configurations achieve
better DR values for all five levels. As observed before, algorithm AE supports
the lowest FA values for using thread information followed by MLP while the
STIDE and BOSC algorithms achieve better DR values when FA levels 1 and 2
are still manageable.

8 Conclusion

Summary – We made it our task to check whether thread information is help-
ful to improve anomaly-based HIDS. In the search for a suitable data set, we



16 M. Grimmer et al.

Table 9. Top configurations for level 1 to 5 with and without TI.

with TI without TI

alg. enc. TI n l DR FA alg. enc. TI n l DR FA

1 STIDE - + 5 100 0.983 23.7 BOSC - - 7 100 0.710 14.9
2 BOSC - + 3 10 0.982 18.9 BOSC - - 7 100 0.710 14.9
3 MLP OHE + 7 1 0.788 4.2 AE W 2 - 3 1 0.624 8.2
4 MLP OHE + 7 1 0.788 4.2 MLP W 5 - 3 1 0.528 3.1
5 AE W 5 + 7 1 0.622 2.2 MLP W 2 - 3 1 0.526 2.3

ended up with the LID-DS. We then evaluated 7 algorithms on the LID-DS. For
each of these algorithms, many different configurations (n-gram length, stream-
ing window length, encoding of the input data, and thread information) were
experimentally tested. Particular emphasis has been placed on the difference be-
tween the variants with and without thread information. As a result, it can be
said that for most cases the use of thread information increases the detection
rate and reduces the number of false alarms. In addition, we performed a thought
experiment in which different levels of error rates were defined as acceptable. For
each of these levels, the best solution was an algorithm that uses thread informa-
tion. For comparison, we additionally searched for the best matching algorithm
without thread information for each of these levels. The results were worse in
almost every respect.

Outlook and Open Questions – In future work, we plan to investigate
additional algorithms and how they can make use of thread information, in par-
ticular based on self organizing maps (SOMs), long short-term memory networks
(LSTMs) and the Transformer [32] architecture.

Given that several algorithms have complementary strengths and limitations
regarding different scenarios and regarding DR and FA results we also want to
investigate whether combined approaches can perform better than single algo-
rithms.

References

1. Abed, A.S., Clancy, C., Levy, D.S.: Intrusion detection system for applications
using linux containers. In: International Workshop on Security and Trust Manage-
ment. pp. 123–135. Springer (2015)

2. Accenture: Securing the digital economy (2019), https://www.accenture.com/gb-
en/insights/cybersecurity/ acnmedia/Thought-Leadership-
Assets/PDF/Accenture-Securing-the-Digital-Economy-Reinventing-the-Internet-
for-Trust.pdf

3. Australian Center for Cyber Security (ACCS): The adfa intrusion detec-
tion datasets (2013), https://www.unsw.adfa.edu.au/australian-centre-for-cyber-
security/cybersecurity/ADFA-IDS-Datasets/

4. Computer Science Department Farris Engineering Center; University of
New Mexico: Computer immune systems - data sets and software (1999),
https://www.cs.unm.edu/ immsec/systemcalls.htm



Improving Host-based Intrusion Detection Using Thread Information 17

5. Creech, G., Hu, J.: Generation of a new ids test dataset: Time to retire the kdd
collection. In: 2013 IEEE Wireless Communications and Networking Conference
(WCNC). pp. 4487–4492. IEEE (2013)

6. Debar, H., Dacier, M., Wespi, A.: Towards a taxonomy of intrusion-detection sys-
tems. Computer networks 31(8), 805–822 (1999)

7. Eskin, E., Lee, W., Stolfo, S.J.: Modeling system calls for intrusion detection with
dynamic window sizes. In: Proceedings DARPA Information Survivability Confer-
ence and Exposition II. DISCEX’01. vol. 1, pp. 165–175. IEEE (2001)

8. European Union: Regulation (eu) 2016/679 of the european parliament and of the
council of 27 april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repeal-
ing directive 95/46/ec (general data protection regulation) (2016), https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02016R0679-20160504

9. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix
processes. In: Proceedings 1996 IEEE Symposium on Security and Privacy. pp.
120–128. IEEE (1996)

10. Grimmer, M., Röhling, M.M., Kreusel, D., Ganz, S.: A modern and sophisticated
host based intrusion detection data set. IT-Sicherheit als Voraussetzung für eine
erfolgreiche Digitalisierung pp. 135–145 (2019)

11. Grimmer, M., Röhling, M.M., Kricke, M., Franczyk, B., Rahm, E.: Intrusion de-
tection on system call graphs. Sicherheit in vernetzten Systemen, pages G1–G18
(2018)

12. Haider, W., Hu, J., Slay, J., Turnbull, B.P., Xie, Y.: Generating realistic intrusion
detection system dataset based on fuzzy qualitative modeling. Journal of Network
and Computer Applications 87, 185–192 (2017)

13. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. Journal of computer security 6(3), 151–180 (1998)

14. International Data Group: CSO: 2018 u.s. state of cybercrime (2018),
https://www.idg.com/tools-for-marketers/2018-u-s-state-of-cybercrime/

15. Jewell, B., Beaver, J.: Host-based data exfiltration detection via system call se-
quences. In: ICIW2011-Proceedings of the 6th International Conference on Infor-
mation Warfare and Secuirty: ICIW. p. 134. Academic Conferences Limited (2011)

16. Kang, D.K., Fuller, D., Honavar, V.: Learning classifiers for misuse and anomaly
detection using a bag of system calls representation. In: Proceedings from the Sixth
Annual IEEE SMC Information Assurance Workshop. pp. 118–125. IEEE (2005)

17. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

18. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neu-
ral networks. AIChE journal 37(2), 233–243 (1991)

19. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous system
call arguments. In: European Symposium on Research in Computer Security. pp.
326–343. Springer (2003)

20. Lincoln Laboratory MIT: Darpa intrusion detection evaluation data set (1998-
2000), https://www.ll.mit.edu/r-d/datasets

21. Maggi, F., Matteucci, M., Zanero, S.: Detecting intrusions through system call
sequence and argument analysis. IEEE Transactions on Dependable and Secure
Computing 7(4), 381–395 (2008)

22. Marceau, C.: Characterizing the behavior of a program using multiple-length n-
grams. In: Proceedings of the 2000 workshop on New security paradigms. pp. 101–
110 (2001)



18 M. Grimmer et al.

23. Mikolov, T., Chen, K., Corrado, G., Dean, J.: word2vec - tools for comput-
ing distributed representation of words, https://github.com/tmikolov/word2vec,
https://github.com/tmikolov/word2vec

24. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

25. Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., Payne, B.: Evaluating com-
puter intrusion detection systems: A survey of common practices. ACM Computing
Surveys 48, 12:1– (09 2015). https://doi.org/10.1145/2808691

26. MITRE: Common weakness enumeration - a community-developed list of software
& hardware weakness types, https://cwe.mitre.org/, https://cwe.mitre.org/

27. MITRE: Cve - common vulnerabilities and exposures, https://cve.mitre.org/,
https://cve.mitre.org/

28. Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous system call detection.
ACM Transactions on Information and System Security (TISSEC) 9(1), 61–93
(2006)

29. Pendleton, M., Xu, S.: A dataset generator for next generation system call host
intrusion detection systems. In: MILCOM 2017-2017 IEEE Military Communica-
tions Conference (MILCOM). pp. 231–236. IEEE (2017)

30. Röhling, M.M., Grimmer, M., Kreubel, D., Hoffmann, J., Franczyk, B.: Standard-
ized container virtualization approach for collecting host intrusion detection data.
In: 2019 Federated Conference on Computer Science and Information Systems
(FedCSIS). pp. 459–463. IEEE (2019)

31. Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support
vector method for novelty detection. Advances in neural information processing
systems 12, 582–588 (1999)

32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need (2017)

33. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls:
Alternative data models. In: Proceedings of the 1999 IEEE symposium on security
and privacy (Cat. No. 99CB36344). pp. 133–145. IEEE (1999)

34. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls:
Alternative data models. In: Proceedings of the 1999 IEEE symposium on security
and privacy (Cat. No. 99CB36344). pp. 133–145. IEEE (1999)

35. Xie, M., Hu, J., Yu, X., Chang, E.: Evaluating host-based anomaly detection sys-
tems: Application of the frequency-based algorithms to adfa-ld. In: International
Conference on Network and System Security. pp. 542–549. Springer (2015)

36. Zhao, Y., Chu, S., Zhou, Y., Tu, K.: Sequence prediction using neural network
classiers. In: International conference on grammatical inference. pp. 164–169 (2017)


