
Bitemporal Property Graphs to Organize
Evolving Systems

Towards the development of a graph model, database, and
query language to represent, store, and query bitemporal

graphs

Christopher Rost1,2[0000−0003−4217−9312], Philip Fritzsche1,4, Lucas Schons1,2,
Maximilian Zimmer1, Dieter Gawlick3[0000−0002−7882−0565], and

Erhard Rahm1,2[0000−0002−2665−1114]

1 University of Leipzig, Augustusplatz 10, 04109 Leipzig, Germany
2 ScaDS.AI Dresden/Leipzig, Humboldtstraße 25, 04105 Leipzig, Germany

{rost,rahm}@informatik.uni-leipzig.de
3 Oracle Server Technologies, 500 Oracle Parkway, CA 94065, USA

dieter.gawlick@oracle.com
4 Oracle Labs Zurich, Hardstrasse 201, 8005 Zürich, Switzerland

philip.fritzsche@oracle.com

Abstract. This work is a summarized view on the results of a one-
year cooperation between Oracle Corp. and the University of Leipzig.
The goal was to research the organization of relationships within multi-
dimensional time-series data, such as sensor data from the IoT area. We
showed in this project that temporal property graphs with some exten-
sions are a prime candidate for this organizational task that combines
the strengths of both data models (graph and time-series). The outcome
of the cooperation includes four achievements: (1) a bitemporal property
graph model, (2) a temporal graph query language, (3) a conception of
continuous event detection, and (4) a prototype of a bitemporal graph
database that supports the model, language and event detection.

Keywords: Graph database · Temporal graph query language · Tem-
poral property graph model.

1 Introduction

The main goal of the project was to research the suitability of temporal property
graphs for the organization of multi-dimensional time series data, such as sensor
data from the IoT area. Even though this data has a very high information
content in itself, the used data structure offers no possibility of depicting or
describing the relationships between entities, e. g., those producing time-series.

For example, an aircraft, like the one in Fig. 1, is a complex system made up
of a large number of bigger and smaller components, many of which are equipped
with a wide variety of sensors that continuously capture data to determine its

ar
X

iv
:2

11
1.

13
49

9v
1

 [
cs

.D
B

]
 2

6
N

ov
 2

02
1

2 C. Rost et al.

current status. One component (also denoted as an asset) is often also a complex
system of smaller components, e.g., the airplane turbine, most of them again
equipped with sensors.

Fig. 1. Sensors of an aeroplane [11].

Imagine that each sensor in such a complex system delivers a time series
of values, e.g. temperatures, rotational speeds, centrifugal forces, accelerations,
etc. To model the relationships between sensors and components itself; as well
as sensors and components among each other, a data structure is required that
can model such a complex, heterogeneous network and allow structural and
content changes to the network and store exactly when these changes took place.
Having such a network (or graph), one can query for these relationships and find
correlations that might be hidden by looking at the time series isolated from
each other.

We figured out in this project that temporal property graphs are the prime
candidate for this organizational task that combines strengths of both data mod-
els (graph and time series). Several requirements emerged for this technology
combination, including (1) the need for a rich graph data model with full audit-
ing of the graph’s evolution - in the observed real world as well as in the graph
database, (2) the need for a declarative query language to match patterns in a
changing graph and (3) the need for an event detection mechanism through a
continuous evaluation of registered patterns against graph changes.

Within the project lifetime, we achieved the following four contributions:

1. TPGM+: A bitemporal property graph model supporting property changes
2. T-PGQL: A temporal graph query language

Bitemporal Property Graphs to Organize Evolving Systems 3

3. CGN: Event detection through Continuous Graph Notifications
4. BiTeGra: A bitemporal graph database based on RDBMS

After a brief overview of related work (Section 2), we will begin by introducing
a new bitemporal property graph model which supports changing properties
in Section 3. We further give an introduction to T-PGQL, a temporal graph
query language based on Oracle’s PGQL, in Section 4. The Continuous Graph
Notification (CGN), a technology to continuously evaluate registered T-PGQL
queries for event detection purposes, is introduced in Section 5. In Section 6,
a prototype of a bitemporal graph database based on a relational database is
presented, which supports the developed graph data model, the query language
and event detection engine. We sum up the work and give an outlook to ongoing
work in Section 7.

2 Related work

A prominent graph model is the Property Graph Model (PGM) [26,2], which
defines a directed multigraph, where vertices and edges can have an arbitrary
number of properties that are typically represented as key-value pairs. Since this
model has no native maintenance of a graph’s evolution, several other data mod-
els for temporal graphs exist in the literature [10,17,5,32], including duration-
based graphs [33], interval-based graphs [28,27,4] and snapshot graphs [16]. The
models differ also in other aspects, e.g., supported time-dimensions or possi-
ble updates, so that there is not yet a consensus about the most promising
approach [27].

Well-known declarative query languages for property graphs are: Cypher [20,8],
mainly supported by the graph database engine Neo4j, Gremlin [25], part of the
Apache TinkerPop graph computing framework, and PGQL [24] which is im-
plemented in Oracle Spatial and Graph [23] and PGX [31]. These languages
support date and time formats for vertex and edge properties or offer a type for
expressing a duration, but they are based on the static property graph model
and therefore do not support temporal property graphs, where the time is a
dimension of the data model. Although temporal language extensions were in-
troduced for relational databases a decade ago [14,18,13], for temporal graphs,
there are just a few concepts of query languages that support the additional time
dimension(s) and allow querying past graph states or formulate path patterns
with chronological order. Temporal-GDL [27] and T-GQL [6] are two examples of
temporal graph query languages that were recently introduced in the literature.

According to the continuous querying of graph data, most concepts are based
on the streaming model, i. e., relationships (and in some models entities) are rep-
resented as an event stream that can be analyzed in (near) real-time. Frameworks
supporting streaming graphs maintain a dynamically changing graph dataset
under a series of updates and queries to the graph data [3]. In contrast to na-
tive graph stream frameworks, like STINGER [7], LLAMA [19], GraphIn [30]
or GraphTau [12], the system Graphflow [15] is a in-memory property graph
storage that supports continuous subgraph queries.

4 C. Rost et al.

3 TPGM+: A bitemporal property graph model

A property graph is characterized by vertices (or nodes) and directed edges, e.g.,
users in a social network and their friendship relationships. The graph is labeled,
which means, according to the definition, nodes and edges can be assigned one
or more type labels, e.g. User or Friendship. Nodes and edges can have zero or
more so-called properties, which are represented as key-value pairs and describe
the entity or relationship in more detail, e.g., name:Christopher or city:Leipzig.
By default, a property graph is also a multigraph, i.e., it is permitted to have
multiple edges (also called parallel edges) between two nodes.

Based on the PGM, we previously introduced the Temporal Property Graph
Model (TPGM) [28] and formally defined it in [27]. It extends the PGM mainly
by adding two additional attributes to each vertex and edge that describe its
validity (also denoted as lifetime) in a bitemporal way. One attribute defines
the valid-time (also called application time) which describes the validity of the
entity or relationship in the real world, e.g., when a call between two users starts
and ends. The other attribute defines the transaction-time (also called system-
time) which describes when the information about the existence of the entity or
relationship was inserted into the database. This bitemporal modeling is already
used in relational databases [18].

One downside of the TPGM is the weak support for property changes. If a
property of a vertex or edge changes, i. e., it is created updated or removed,
a logical copy of this element is created that stores the updated state and the
information about the time of the update. All properties that are not affected
by the changes stay unchanged and exist as overhead. High frequent changes of
properties and their values thus result in a huge amount of duplicated elements.

To overcome this, we created in this collaboration the TPGM+, an extended
version of the TPGM that adds bitemporal modeling to the layer of properties.
For each TPGM+ graph, two linerary ordered discrete time domains Ω exist:
Ωtx for the transaction time and Ωval for the valid-time. Each instant in time
is a time point ti. The linear ordering is described as ti < ti+1, i.e., ti happened
before ti+1. Per time domain, each vertex, edge, and property value has an
associated time-period τ . Given ts, te ∈ Ω, a time-period τ = [ts, te) is defined
as a close-open time interval starting at and including ts and ending at but
excluding te. The time points of τ are thus a set {t | t ∈ Ω ∧ ts ≤ t < te}. The
length or size of a period τ is defined by l(τ). Default values for lower and upper
bounds are tmin = −∞ and tmax =∞.

Further, we defined several integrity constraints of a TPGM+ graph, to
ensure the consistency of the graph at each point in time. Each constraint is
valid per time domain.

1. Unique vertices, edges and properties. At every point in time, vertices, edges
and properties are unique, i.e., exist at most once. The uniqueness constraint
of vertices and edges is a combined key of the element’s identifier and the
end-timestamp. The uniqueness constraint of a property is its name.

Bitemporal Property Graphs to Organize Evolving Systems 5

2. Referential integrity of edges. For each edge, the time intervals associated
with its source and target vertices must contain the edge’s time interval. In
other words, an edge can only exist when its incident vertices exist.

3. Referential integrity of properties. For a property value, the interval of the
vertex/edge must contain the interval of the property value. In other words,
a property value can only exist when the corresponding vertex/edge exists.

4. Constant edges. Source and target vertices of an edge never change at exis-
tence.

5. Constant types. Vertex and edge labels, as well as property key names, never
change.

4 T-PGQL: A temporal graph query language

We will now have a look at some preliminaries needed to understand the exten-
sions we made to the graph query language PGQL, that are explained afterwards.

4.1 Preliminary: PGQL - A (Non-temporal) Graph Query Language

PGQL [24,22] combines graph pattern matching with SQL-like syntax and func-
tionality and has full-blown support for regular path queries and graph construc-
tion. Because its syntax is SQL-like, the language is intuitive to use for existing
SQL users. Furthermore, PGQL queries return a “resultset” with variables and
bindings, just like in SQL. In this work, we refer to PGQL version 1.3.

Matching graph patterns is one main functionality of PGQL realized by a
SELECT query. Similar to SQL, a SELECT query is composed of several clauses,
starting with the mandatory SELECT clause and FROM clause. In PGQL, the
SELECT clause defines the returned result entities of the query. Since the result
of a SELECT query is always a table, the SELECT clause defines the attributes
of the result table. The following syntactic structure of a PGQL SELECT query
and clause is taken from [22]:

SelectQuery ::= SelectClause

FromClause

WhereClause?

...

SelectClause ::= ’SELECT’ ’DISTINCT’? ExpAsVar (’,’ ExpAsVar)*

| ’SELECT’ ’*’

ExpAsVar ::= ValueExpression (’AS’ VariableName)?

The graph pattern to be matched is defined by the FROM clause that includes
one or multiple MATCH clauses. A MATCH clause defines a path- or graph
pattern, where a graph pattern is a composition of path patterns.

The following syntactical definitions of the FROM- and MATCH clauses are
taken from [22].

6 C. Rost et al.

FromClause ::= ’FROM’ MatchClause (’,’ MatchClause)*

MatchClause ::= ’MATCH’ (PathPattern | GraphPattern) OnClause?

GraphPattern ::= ’(’ PathPattern (’,’ PathPattern)* ’)’

PathPattern ::= SimplePathPattern | ShortestPathPattern | ...

Path patterns describe topology constraints, where a topology constraint is a
composition of one or multiple vertices and edges. A vertex or edge is optionally
identified by a variable, i.e., a symbolic name to reference it in other clauses. It
is also possible to define one or more label predicates directly in the pattern. A
PGQL SELECT query returning all person and movie names that match this
pattern can be formulated as follows:

1 SELECT p.name, m.movie

2 FROM MATCH (p:Person)-[l:like|dislike]->(m:Movie)

For further information, we refer to the official documentation of PGQL,
available at [22].

4.2 Extensions of PGQL to Query TPGM+ Graphs

In current graph query languages patterns (or paths) are searched in the whole
available graph database without observance of any evolution. Having a temporal
graph modeled by the TPGM+ (see Sect. 3), several new requirements arise for
a query language to support temporal features of the model. In this work, we
limit to the retrieval of data. The manipulation of data as well as functions for
the definition and manipulation of database structures are not considered yet
and part of future work.

Access of Temporal Attributes Our data model tracks changes in a bitempo-
ral model on a level of vertices, edges and properties. We introduce the possibility
to add these attributes via projection to the resulting relation and to use these
attributes in expressions for selection.

We distinguish four different temporal characteristics of a vertex, edge and
property: the period itself, its lower bound timestamp (inclusive), its upper
bound timestamp (exclusive) and length/duration of a period.

The identifier for the period is defined as VAL TIME for the valid time do-
main and TX TIME for the transaction time domain. A period is, like in SQL,
not a data type but a type definition [18]. The textual representation a pe-
riod projection is a concatenated result of both period bounds in the form of:
[{from},{to}). A period type can be used for several predicates, as later de-
scribed. The identifiers for the period bounds are VAL FROM and VAL TO for the
valid time domain and TX FROM and TX TO for the transaction time domain.
The result of a period-bound access is a timestamp.

To access these attributes of a vertex or edge, they can be used like a prop-
erty access by dot notation, e.g., var1.TX FROM, var2.VAL TIME. According to
the temporal attributes of a property, the same suffix can be used on a property

Bitemporal Property Graphs to Organize Evolving Systems 7

access expression, like var1.prop1.TX FROM or var2.prop2.VAL TIME. The fol-
lowing syntax describes the notation.

TimeIdentifier ::= ’TX_TIME’ | ’VAL_TIME’ | ’TX_FROM’ | ’TX_TO’

| ’VAL_FROM’ | ’VAL_TO’

Property ::= Identifier

VarRef ::= Identifier

PropRef ::= VarRef ’.’ Property

ElementTimeRef ::= VarRef ’.’ TimeIdentifier

PropertyTimeRef ::= PropRef ’.’ TimeIdentifier

TimeRef ::= ElementTimeRef | PropertyTimeRef

For example, the following query returns all available temporal characteristics
of person vertices and their name property.

1 SELECT n.TX_FROM, n.TX_TO, n.TX_TIME,

2 n.VAL_FROM, n.VAL_TO, n.VAL_TIME,

3 n.name.TX_FROM, n.name.TX_TO, n.name.TX_TIME,

4 n.name.VAL_FROM, n.name.VAL_TO, n.name.VAL_TIME

5 FROM MATCH (n:Person) ON student_network

Besides the period of a graph element or its property, the length/duration of
this period can be queried. We introduce a LENGTH([unit,]period) expression
which consumes a period access identifier (period) as argument and an op-
tional unit (i.e., YEAR, QUARTER, MONTH, WEEK, DAY, HOUR, MINUTE, SECOND,
MILLISECOND). If no unit is given, the default unit MILLISECOND is used. This
expression returns a numerical value that can be used within several expressions,
e.g., binary constraints. The following query returns the duration in days of the
valid time period of a person’s name property for all persons whose valid time
exceeds one day.

1 SELECT LENGTH(DAY, n.name.VAL_TIME)

2 FROM MATCH (n:Person) ON student_network

3 WHERE LENGTH(DAY, n.name.VAL_TIME) > 1

Temporal Filtering and Chronological Pattern Matching Graphs with
a managed valid-time are intended for meeting the requirements of applications
that are interested in capturing time periods during which the data is (believed
to be) valid in the real world. For each vertex or edge, as well as their properties,
a valid-time period is available. As described above, the identifier of this period
is VALID TIME and the beginning and ending bounds are VAL FROM and VAL -

TO. They can be used as a suffix to variable and property access. Analogous
to the transaction time attributes, the valid time period returns a new period
type definition and the bounds return a timestamp type. Latter can be used
like regular timestamp attributes, e.g., within binary relations in the WHERE
clause. The extended PGQL WHERE clause [22] is defined as follows5:
5 The TemporalExpression is a temporal extension of our work.

8 C. Rost et al.

WhereClause ::= ’WHERE’ ValueExpression

ValueExpression ::= VariableReference

| PropertyAccess

| ...

| TemporalExpression

TemporalExpression ::= ElementTimeRef

| PropertyTimeRef

| Overlaps | Equals

| Precedes | Succeeds

| Contains

Overlaps ::= TimeRef ’OVERLAPS’ TimeRef

Equals ::= TimeRef ’EQUALS’ TimeRef

Precedes ::= TimeRef (’IMMEDIATELY’)? ’PRECEDES’ TimeRef

Succeeds ::= TimeRef (’IMMEDIATELY’)? ’SUCCEEDS’ TimeRef

Contains ::= TimeRef ’CONTAINS’ TimeRef

For example, to retrieve all students who studied at a University in Leipzig as
of February 15, 2019, one can express the query by accessing the period bounds
in predicates of the WHERE clause:

1 SELECT n.name

2 FROM MATCH (n:Person)-[s:studiedAt]->(u:University)

3 WHERE u.city = ’Leipzig’

4 AND s.VAL_FROM <= DATE ’2019-02-15’

5 AND s.VAL_TO > DATE ’2019-02-15’

To simplify the expression of such predicates, several language extensions are
further defined. For example, we can use one of the period predicates provided
in SQL:2011 for expressing conditions involving periods: CONTAINS, OVERLAPS,
EQUALS, (IMMEDIATELY) PRECEDES, and (IMMEDIATELY) SUCCEEDS. All period
predicates need two expressions that return a period as arguments, except for
CONTAINS, which also allows a timestamp as a second argument. The query above
can be simplified by using the CONTAINS predicate:

1 SELECT n.name

2 FROM MATCH (n:Person)-[s:studiedAt]->(u:University)

3 WHERE u.city = ’Leipzig’

4 AND s.VALID_TIME CONTAINS DATE ’2019-02-15’

To retrieve all students of Universities in Leipzig who are matriculated from
January 1, 2018, to January 1, 2019, one could formulate the query by using a
temporal condition, in our case, the OVERLAPS predicate:

1 SELECT n.name

2 FROM MATCH (n:Person)-[s:studiedAt]->(u:University)

3 WHERE u.city = ’Leipzig’

4 AND s.VALID_TIME OVERLAPS PERIOD(DATE ’2018-01-01’,

5 DATE ’2019-01-01’)

Bitemporal Property Graphs to Organize Evolving Systems 9

In the example, we also show a new period constructor expression that allows
the creation of a period instance from two timestamps t1 and t2 with t1 <= t2.
The timestamps can be defined by any expression that returns a date or times-
tamp instance. For example, they can be created through a date or timestamp
constructor as in the example or extracted from a graph element or property
through a period bound identifier, e.g., PERIOD(DATE ’2018-01-01’, x.VAL -

TO).
Also, the transaction time period of elements and properties can be used in

predicates of this kind. The following query returns the name and system-time
period for students matriculated in a University located in Leipzig where the
information about the matriculation was added to the database after March 1,
2018. The syntax part FOR TX TIME ALL is explained in the next section.

1 SELECT n.name, n.TX_TIME

2 FROM MATCH (n:Person)-[s:studiedAt]->(u:University) FOR TX_TIME ALL

3 WHERE u.city = ’Leipzig’

4 AND s.TX_FROM >= TIMESTAMP ’2018-03-01 00:00:00’

The classical graph pattern matching is used to find a matching subgraph
in the graph database that matches exactly with the defined query pattern.
In the well-known static scenario, a query pattern has no information about the
chronological ordering of the given entities and relationships. For example, a pat-
tern like (p1:Person)-[l1:likes]->(p2:Person)-[l2:likes]->(p3:Person)
includes no information about when the likes happened or if one like happened
before the other of if they happened at the same time. To overcome this lack,
the above introduced temporal predicates can be used to enrich such patterns
with temporal information. The following code exemplifies that:

1 SELECT p1.name, p2.name, p3.name

2 FROM MATCH (p1:Person)-[l1:likes]->(p2:Person)-[l2:likes]->(p3:Person)

3 WHERE l1.VAL_TIME PRECEDES l2.VAL_TIME

Here we add a constraint, that the like between p1 and p2 must happen
before the like between p2 and p3. These kinds of predicates can thus be used
to define a temporal ordering in a path pattern.

Graph Snapshot Retrieval and Historical Pattern Matching T-PGQL
can be used to find matching subgraphs in a specific state of the temporal graph
with respect to the transaction time domain. This state can be a snapshot at
a defined timestamp or all changes of a given period. Former represents a valid
snapshot graph without multiple versions of a single instance. The transaction
time dimension is reduced to a single point in time. Latter is again a tempo-
ral property graph that can have multiple versions of a single instance. The
transaction time dimension is reduced to a range in time.

To search for a defined pattern using this kind of time traveling, we extended
PGQL’s FROM clause with a clause similar to the SQL extension for temporal

10 C. Rost et al.

tables. The name of the transaction time period definition is fixed to TX TIME.
To query the historical data, the clause FOR TX TIME {predicate} has to be
used directly after a MATCH clause (see Section 4.1). To define the timestamp
or period to query for, we provide four predicates as syntactic extensions:

GraphMatch ::= ’MATCH’ PathPattern OnClause? SysTimeCond

SysTimeCond ::= ’FOR’ ’TX_TIME’ (AsOf | FromTo

| BetweenAnd | ’ALL’)

AsOf ::= ’AS’ ’OF’ TimeRef

FromTo ::= ’FROM’ TimeRef ’TO’ TimeRef

BetweenAnd ::= ’BETWEEN’ TimeRef ’AND’ TimeRef

The argument TimeRef could be any expression returning a timestamp at-
tribute, i.e., a date or timestamp constructor (e.g., TIMESTAMP(’2020-01-01’)),
current timestamp expression (CURRENT TIMESTAMP) or access expressions of
temporal attributes for vertices, edges or properties. If the FOR TX TIME clause
is not used, the result will show the current data, as if one had specified FOR

TX TIME AS OF CURRENT TIMESTAMP. Thus, the following queries are equal:

1 SELECT n.name

2 FROM MATCH (n:Person)

1 SELECT n.name

2 FROM MATCH (n:Person) FOR TX_TIME AS OF CURRENT_TIMESTAMP

The first predicate AS OF {timestamp} is used to see the graph as it was
at a specific point in time in the presence or past. The following example query
retrieves the graph as it was on 1st February 2020 at 1 pm.

1 SELECT n.name

2 FROM MATCH (n:Person) FOR TX_TIME AS OF TIMESTAMP ’2020-02-01 13:00’

The next query using the BETWEEN {timestamp} AND{timestamp} predicate
will show all graph elements that were visible at any point between two specified
points in time. It works inclusively, i.e., an element visible exactly at the start
or exactly at the end will be added to the result set too.

1 SELECT n.name

2 FROM MATCH (n:Person) FOR TX_TIME BETWEEN

3 TIMESTAMP ’2020-02-01 12:00’ AND TIMESTAMP ’2020-02-28 12:00:00’

The extension FROM {timestamp} TO {timestamp} will also show all ele-
ments that were visible at any point between two specified points in time, in-
cluding start, but excluding end.

1 SELECT n.name

2 FROM MATCH (n:Person) FOR TX_TIME FROM TIMESTAMP ’2020-02-01 12:00’

3 TO TIMESTAMP ’2020-02-28 12:00:00’

Bitemporal Property Graphs to Organize Evolving Systems 11

To query for the current state and complete history of a given pattern the
predicate ALL can be used.

1 SELECT n.name

2 FROM MATCH (n:Person) FOR TX_TIME ALL

In PGQL, it is possible to define multiple patterns within a single FROM
clause by using multiple match clauses separated by a comma. Our extension can
be used within each of these match expressions. This provides a flexible mech-
anism to define patterns with parts occurring at different times. For example,
to find people who currently liked a post that already existed on January 1st,
2020, the following query can be used:

1 SELECT m.firstName, m.lastName

2 FROM MATCH (p:Post) FOR TX_TIME AS OF DATE ‘2020-01-01’,

3 MATCH (m:Person)-[:likes]->(p) // current

Another query scenario is to find a sensor that is currently (FOR TX TIME

AS OF CURRENT TIMESTAMP) connected to an asset that existed in the past (FOR
TX TIME AS OF DATE ’...’). Besides a path pattern, a graph pattern is a con-
catenated list of path patterns in round brackets, which can be also specified after
the match keyword. If a transaction time predicate should be applied to a set of
path patterns, it can be used after such a graph pattern, as can be seen in the
following example.

1 SELECT m.firstName, m.lastName

2 FROM MATCH (

3 (p:Post)-[:hasTag]->(t:Tag)-[:inClass]->(tc:TagClass),

4 (m:Person)-[:likes]->(p:Post)

5) FOR TX_TIME AS OF DATE ‘2020-01-01’

Bitemporal Queries A TPGM graph has both a managed transaction- and
valid-time domain. Graph elements, as well as their properties, are associated
with both transaction-time and valid-time periods. This concept is very useful
for use cases where it is necessary to capture both the periods during which facts
were believed to be true in real-world as well as periods during which those facts
were recorded in the database.

For example, a student changes his address. Typically the address changes
legally at a specific time, but it is not changed in the database concurrently with
the legal change. In that case, the transaction-time period automatically records
when the new address is known to the database, and the valid-time period records
when the address was legally effective. Successive updates to bitemporal graphs
can journal complex twists and turns in the state of knowledge captured by the
database [18].

Queries on bitemporal graphs can specify predicates on both dimensions to
qualify rows that will be returned as the query result. For example, the following
query returns all students of Universities in Leipzig who are matriculated as of
December 1, 2019, recorded in the graph database as of January 1, 2020.

12 C. Rost et al.

1 SELECT n.name

2 FROM MATCH (n:Person)-[s:studiedAt]->(u:University)

3 ON student_network FOR TX_TIME AS OF DATE ’2020-01-01’

4 WHERE u.city = ’Leipzig’

5 AND s.VALID_TIME CONTAINS DATE ’2019-12-01’

Query the Evolution of a Property Every vertex and edge can have zero, one
or more properties in form of key-value pairs, where the key represents the name
of the property. For every property, transaction-time versioning is supported to
track the addition of new properties, changes in values or deletion of exiting
properties. Thus a property behaves like a vertex or an edge. By inserting a
vertex or edge with properties into the database, each gets the same system-
time period as the respective vertex or edge.

The previous introduced FROM clause extensions have also an effect on the
property retrieval since their transaction-time period will be considered, too.

In addition, each property contains a valid-time period. For example, each
University vertex has a property studentCount whose value is periodically
updated. Each value has an application time period that defines, for which time
the value was true. If no further condition is specified for an application time
enabled property, all values are returned.

1 SELECT u.name as name, u.studentCount as cnt

2 FROM MATCH (u:University)

3 WHERE u.city = ’Leipzig’

Result:

+---------------------+-------+

| name | cnt |

+---------------------+-------+

| Leipzig University | 28004 |

| Leipzig University | 28797 |

| Leipzig University | 29061 |

+---------------------+-------+

To retrieve the information of the validity of the values, the period of validity
can be selected.

1 SELECT u.name as name, u.studentCount as cnt,

2 u.studentCount.VALID_TIME as validity

3 FROM MATCH (u:University)

4 WHERE u.city = ’Leipzig’

Bitemporal Property Graphs to Organize Evolving Systems 13

Result:

+---------------------+-------+--------------------------------------+

| name | cnt | validity |

+---------------------+-------+--------------------------------------+

| Leipzig University | 28004 | [2016-04-01 00:00, 2017-04-01 00:00) |

| Leipzig University | 28797 | [2017-04-01 00:00, 2018-04-01 00:00) |

| Leipzig University | 29061 | [2018-04-01 00:00, 2019-04-01 00:00) |

+---------------------+-------+--------------------------------------+

All previously introduced conditions of the WHERE clause that are applica-
ble for vertices and edges can be used by properties too.

1 SELECT u.name, u.studentCount, u.studentCount.VALID_TIME as validity

2 FROM MATCH (u:University)

3 WHERE u.city = ’Leipzig’

4 AND u.studentCount.VALID_TIME CONTAINS TIMESTAMP ’2018-01-01 00:00’

Result:

+---------------------+-------+--------------------------------------+

| name | cnt | validity |

+---------------------+-------+--------------------------------------+

| Leipzig University | 28797 | [2017-04-01 00:00, 2018-04-01 00:00) |

+---------------------+-------+--------------------------------------+

4.3 Aggregations

An aggregate function allows performing a calculation on a set of values to return
a single scalar value. Aggregate functions are used with the GROUP BY and
HAVING clauses of the query.

In this work, the PGQL language was extended by two functions: FIRST(date
or timestamp values) and LAST(date or timestamp values). The former
returns the chronological earliest date or timestamp, while the latter returns the
chronological last.

The following query returns the first beginning of a studentAt relationship
according to the application-time and system-time domain.

1 SELECT FIRST(s.VAL_FROM) as earliestStart,

2 FIRST(s.startTT) as earliestTx

3 FROM MATCH ()-[s:studiedAt]->()

Result:

+---------------------+---------------------+

| earliestStart | earliestTx |

+---------------------+---------------------+

| 1409-04-01 00:00:00 | 2006-05-12 14:45:22 |

+---------------------+---------------------+

14 C. Rost et al.

The following query can be used to answer the question: For universities of a
certain city, when was the first time a student began his studies, and when was
the most recent time?

1 SELECT u.city,

2 FIRST(s.VAL_FROM) as earliestStart,

3 LAST(s.VAL_FROM) as latestStart

4 FROM MATCH (n:Person)-[s:studiedAt]->(u:University)

5 GROUP BY u.city

Result:

+---------+---------------------+---------------------+

| city | earliestStart | latestStart |

+---------+---------------------+---------------------+

| Leipzig | 1409-04-01 00:00:00 | 2020-04-01 00:00:00 |

| Berlin | 1810-04-01 00:00:00 | 2020-04-01 00:00:00 |

| Munich | 1472-04-01 00:00:00 | 2020-04-01 00:00:00 |

+---------+---------------------+---------------------+

5 CGN: Event detection through Continuous Graph
Notifications

We introduced T-PGQL as a query language for executing SELECT queries on
TPGM+ graphs in the previous Section 4. Querying a graph with T-PGQL is
usually done in a single graph query execution, i.e., a user formulates a SELECT
query, executes that query on the current state of a database system that main-
tains a TPGM+ graph and gets a result in form of a table back. In this way,
one can query for current and historical data of the graph where one query leads
to one fixed result. Subsequent changes of the graph are not taken into account
unless the query is executed again which leads to a result that recognizes all
transactions that are made until the time when the query was executed.

Talking about changes in a graph leads to the observation of events. An
event itself can be everything that happened at a defined point in time, e. g., an
asset’s sensor captures a temperature or a user liked a post in a social network.
We semantically distinguish between application-world events and transaction-
world events. Former is an event that happened in the observed real world. It
can be described by a graph pattern and its predicates inside a graph query. In
contrast, the discovery of an instance of a pattern in the data store at a specific
time is a transaction-world event. I. e., the most recent commit (1) created an
instance of a pattern that did not exist before, e. g., a captured temperature
of a sensor exceeds a threshold, or (2) destroys an instance of the pattern that
already existed, e.g. a friendship relation between two users of a social network
is removed.

The question arises, how a user can get a notification about a transaction-
world events, i. e. when graph data changes that affect the elements that are

Bitemporal Property Graphs to Organize Evolving Systems 15

accessed to create the query result. For RDBMS, there is a feature called Con-
tinuous Query Notification (CQN) [21] which is currently implemented by the
Oracle database. It allows to register a SQL query and receive notifications
when an event occurs that changes a table, i. e., that rows have been updated.
This is useful in applications like near real-time monitoring, auditing applica-
tions, or for such purposes as mid-tier cache invalidation [21]. In this work, we
adapt some concepts of the relational CQN to the graph domain. On a graph
database that implements the TPGM+, it is not only possible to simply execute
a T-PGQL query, but also to register one. A registration is configured by the
T-PGQL SELECT query itself, a registration validity period that specifies when
the notification is enabled and when it will be disabled, a notification endpoint
(e.g., a messaging queue) and a notification type. There are two types of graph
query notifications: (1) the Graph Change Notification (GCN) and (2) the Graph
Query Result Change Notification (GRCN) [34]. The GCN notifies the registrar
if a transaction on the queried graph affects the graph elements queried. This
does not automatically mean that the query result has also changed. To get a
notification about an event that changes the graph in a way that affects the
query result, the GRCN type must be used. Note that both types are a smart
evaluation of a registered query, but not a query re-execution. This means the
recipients are notified about the event but do not get the updated query result.

Assume the following T-PGQL query. The query describes the event of a
temperature measurement above a value of 40 from a sensor that is part of an
asset that is connected to an asset with id ’42’. The projection of the query is
the sensor value and its validity timestamp, which describes the time when the
measure happened in the observed real world.

1 SELECT s.value, s.value.VAL_FROM

2 FROM MATCH (a1:Asset)-[p:partOf]->(a2:Asset)-[:hasSensor]->(s:Sensor)

3 WHERE a1.id = 42 AND s.type = ’temperature’ AND s.value > 40

We assume that there are several matches for this pattern without recognizing
the predicate of the value threshold, but none that fulfills this condition (i.e.,
all temperature values are below a value of 40). Further assume, that at a time
t1, the value of a sensor’s property is updated from 39 to 40. If the query is
registered by a GCN, a notification about that event is created, since one of the
involved graph elements changed its state, but the query result is not affected.
If the query is registered by a GRCN, no notification is created, since the query
result does not change (it is still empty). Now, assume that at time t2 the value
of the sensor changes from 40 to 41. At this time, a notification is created for
both types, since (1) a graph element that is part of the pattern changes in some
way and (2) the query result changes in the form that now one row is part of
the result.

6 BiTeGra: A bitemporal graph management system

With the development of a bitemporal graph model, a query language for bitem-
poral graphs and the possibility of registering queries for continuous evaluation,

16 C. Rost et al.

Graph
Modification

API

API

RDBMS

addVertex()
addEdge()
addPropToV()
addPropToE()
delVertex()
delEdge()
delProp()
updateProp()
...

ResultSet queryTPgql(Query)

void registerTPgql(Query, Rec, Type)

T-PGQL
-2-SQL

T-PGQL
Syntax
Parser

Query
Analyzer

Resu
ltSe

t

Registration

SELECT
Query

INSERT, UPDATE, DELETE

Message Queue

Bitemporal Graph Database

Notification

Query

Fig. 2. Architectural draft of the bitemporal graph database

the foundations for a graph database have been laid that unites all of the concepts
considered. We will introduce an architectural draft of BiTeGra, a bitemporal
graph database management system, and details of three main components in-
cluding the graph to relation mapping, the graph modification features and the
querying possibilities. Figure 2 shows an architectural draft of the BiTeGra sys-
tem. The core of the system is a relational database management system with
bitemporal table support. The graph data is stored in this database in a way
that is described in Section 6.2.

6.1 Graph Modifications

A graph modification API provides an interface to manipulate graph data. There
are methods to allow the following modifications to the maintained temporal
graph:

– Add vertices/edges
– Add properties to vertices/edges
– Edit properties
– Edit valid-time attributes of vertices/edges
– Edit valid-time attributes of properties
– Delete properties from vertices/edges
– Delete vertices/edges

Each API call is internally translated to a SQL INSERT, UPDATE or DELETE
query, depending on the used table schema. The API can be used by a wide va-
riety of applications, e.g., the import of graph streams and other streaming and
time-series data.

Bitemporal Property Graphs to Organize Evolving Systems 17

6.2 Schema mapping: Graph to Table and vice versa

One important design choice when storing a graph structure in a relational sys-
tem is the table schema that is used. It impacts the complexity of translated
queries and thus the runtime for fetching a result. Fritzsche has evaluated dif-
ferent approaches in [9], which are partly demonstrated in the following.

Table schema for vertices and edges The first types of entities that need to
be considered are the vertices and edges themselves. In this work, we compared
two commonly used schemata to represent vertex and edge datasets as relations.

The first one is the GVE-Schema (Graph Vertex Edge-Schema) or Ver-
tical Schema [1,29,27]. It mainly uses two tables - one for vertices and one for
edges. Each table has an identifier and a label attribute. The table used for edges
has, in addition, two attributes storing the source and target vertex identifier
of an edge. To represent bitemporal graphs, two additional attributes represent
the lower and upper bound of the valid time period whereas two additional at-
tributes represent the lower and upper bound of the transaction time period.
The representation of properties is discussed later. To ensure the integrity of the
graph, primary and foreign key constraints are used. For vertices and edges, the
primary key is a combination of the identifier and the transaction period ending
timestamp. The edge table has, in addition, two foreign keys pointing to the
vertex table - one for the source vertex identifier and one for the target vertex
identifier. One advantage of this schema is that it is flexible about new labels
since labels are an attribute of the table. Another advantage is that querying for
all vertices or edges can be done in one step. A disadvantage is the size of the
two tables, which can be large. Also joining this kind of large tables might be
an issue in terms of performance.

The second one is the TFL-Schema (Tables For Labels-Schema) or Hor-
izontal Schema [1,29]. Here, vertices and edges are separated by their label
and stored in one table per label. The specialty of the edge tables is that the
node labels of the source and target nodes are also taken into account when
separating. For example, there is one table of like edges between vertices of type
Person and one other table of like edges that connect vertices of type Person
and Post. This is because the foreign keys point to potentially different tables
storing source and target vertices. The advantage of the TFL-Schema is the re-
duced table size compared to the GVE-Schema. This is particularly conceivable
for answering path queries that needs joining tables. Another advantage is that
queries for a specific node and edge type can simply query for the entire table,
whereas filtering is required in the GVE-Schema. A disadvantage of this schema
is that all tables of nodes or edges have to be queried if no label is specified in
a query. Adding nodes or edges with new labels to the graph also may require
additional tables to store the corresponding element types.

To overcome the limitations of both schema models and combine their ad-
vantages, we introduce the HyVE-Schema (Hybrid Schema for Vertices and
Edges). As the name suggests, this is a hybrid of the two schemes mentioned
and leaves a decision open depending on the application. For each vertex and

18 C. Rost et al.

edge label, it can be decided whether the elements will be stored in a general
vertex or edge table, or in a label-specific table. A metadata table stores these
decisions and can be queried if the information about the location of a specific
vertex and edge type is needed.

Table schema of properties Another important design decision is the mod-
eling of properties. Again, we differentiate two ways of representing properties
of vertices and edges in the relational schema.

The first one is PAC (Properties as Columns), which, like the name suggests,
stores properties as additional columns in the vertex and edge tables (indepen-
dent of the schema for vertices and edges). The column or attribute name is de-
fines the property key whereas the values in the entities correspond to property
values. The bitemporal modeling is implicitly used from the tables containing
the columns. One advantage of this approach is the usage of datatypes for prop-
erty values that are supported by SQL. For example, a property name can be
represented by an attribute with the same name and datatype VARCHAR. This
way, a datatype may be assigned to each property. Another advantage is that no
joins need to be executed when accessing the properties. If an element does not
have a property, the respective column value is set to null. Disadvantages are
thus many null values for elements that do not have a property that is modeled
as a column. Another disadvantage is the need for change of the table schema
if new property types are added, which results in the addition of a new column.
The last weak point of this approach is that the whole table entry for a vertex or
edge has to be copied when system-versioning is enabled. Even if only a single
property value changes, a copy of the whole row is created which gets the new
value and thus leads to many redundant attribute values.

The second approach is PAT (Properties as Table). Here, a property ta-
ble per vertex or edge table stores all properties. A property table has mainly
3 attributes: the identifier of the parent element (vertex or edge), the key and
the value. The bitemporal modeling is given by four additional attributes, as
described in the GVE-Schema. A foreign key points from the element identifier
to the identifier of the respective element table. One advantage is that all prop-
erties are optional, as the property graph model defines. It is easy to add new
properties to a vertex or edge type just by inserting a new row in the property
table. Another advantage is that the change of a property does not affect the
vertex or edge entity itself, but just creates a copy in the property table for this
property through the system-versioning. Disadvantages are the need for one join
per property access and the fixed data type for the value column, implying that
all property values must have the same datatype.

Again, to combine the strengths of both strategies and to overcome some
weaknesses, we introduce the HyPe-Schema for bitemporal modeled vertex
and edge properties. For each vertex and edge type, it can be chosen whether
a property is stored as a column in the vertex or edge table (see PAC), or in
a separate property table for this vertex or edge type. A metadata table stores
these decisions and can be queried, if the information about the location of a
specific property is needed.

Bitemporal Property Graphs to Organize Evolving Systems 19

6.3 Graph Querying

To query a TPGM+ graph that is stored in the bitemporal graph storage with
T-PGQL, there are two types of queries: (1) a single query that is executed once
and returns the result set back to the user (colored orange in Fig. 2) and (2) a
query registration for continuous event notification (colored green in Fig. 2).

For both cases, the query string will be first parsed by a T-PGQL Syntax
Parser, which verifies and analyses the query and creates an object represen-
tation containing lists of projections, predicates, requested vertices and edges.
The parser is based on the Open-Source project PGQL Parser and Static Query
Validator which is available on GitHub6. We extended this implementation by
supporting all additional temporal features of the T-PGQL language. The result-
ing parsed query object is then used as input for the T-PGQL-2-SQL translator.
This component creates a SQL SELECT query from the content of the query
object in a way that the result of the query forms the T-PGQL result.

For the single query execution, the SQL SELECT query is executed on the
relational database and the resultset is transferred back to the user that ini-
tially called the query method. For the continuous event notification, the SQL
SELECT query, which is again a representation of a transaction-world event,
is given to a Query Analyser that extracts necessary information of the query
for the registration routine, e.g., touched tables, needed attributes and pred-
icates [34]. Depending on the type of notification (GCN or GRCN), several
triggers were registered on the concerned tables that create the notifications,
which are sent to a message queue. The user, who has access to this queue, now
receives notifications about events that either affect the related tables (GCN) or
the query result (GRCN).

7 Summary

We presented a summary of our cooperation outcomes. We introduced (1) the
bitemporal property graph model TPGM+ which supports the evolution of prop-
erty values, (2) the declarative graph query language T-PGQL to match patterns
in a TPGM+ graph, (3) an event detection engine that allows the registration of
T-PGQL queries on a bitemporal graph storage for continuous notifications of
graph changes and (4) a prototype called BiTeGra which stores TPGM+ graphs
in temporal relational tables and offers features to modify and query the graph
as well as registering queries for event detection.

References

1. Adameit, T.: Evaluation des EPGM auf Basis von Apache Spark. Master thesis at
Universität Leipzig (2020)

2. Angles, R.: The property graph database model. In: AMW. CEUR Workshop Pro-
ceedings, vol. 2100. CEUR-WS.org (2018)

6 https://github.com/oracle/pgql-lang

https://github.com/oracle/pgql-lang

20 C. Rost et al.

3. Besta, M., Fischer, M., Kalavri, V., Kapralov, M., Hoefler, T.: Practice of stream-
ing and dynamic graphs: Concepts, models, systems, and parallelism. Computing
Research Repository (CoRR) (2020)

4. Campos, A., Mozzino, J., Vaisman, A.: Towards temporal graph databases. arXiv
preprint arXiv:1604.08568 (2016)

5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems 27(5), 387–408 (2012)

6. Debrouvier, A., Parodi, E., Perazzo, M., Soliani, V., Vaisman, A.: A model and
query language for temporal graph databases. The VLDB Journal pp. 1–34 (2021)

7. Ediger, D., McColl, R., Riedy, J., Bader, D.A.: Stinger: High performance data
structure for streaming graphs. In: 2012 IEEE Conference on High Performance
Extreme Computing. pp. 1–5. IEEE (2012)

8. Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V.,
Plantikow, S., Rydberg, M., Selmer, P., Taylor, A.: Cypher: An evolving query
language for property graphs. In: Proc. ACM SIGMOD. pp. 1433–1445 (2018)

9. Fritzsche, P.: Relationale Speicherung und Verarbeitung für temporale Graph-
daten. Master thesis at Universität Leipzig (2021)

10. Holme, P., Saramäki, J.: Temporal networks. Physics Reports 519(3), 97 –
125 (2012). https://doi.org/https://doi.org/10.1016/j.physrep.2012.03.001, http:
//www.sciencedirect.com/science/article/pii/S0370157312000841, temporal
Networks

11. Honeywell: Aerospace & defense - sensors and switches
product range guide, https://sensing.honeywell.com/

honeywell-sensing-aerospace-defense-rangeguide-000703-6-en.pdf
12. Iyer, A.P., Li, L.E., Das, T., Stoica, I.: Time-evolving graph processing at scale.

In: Proceedings of the fourth international workshop on graph data management
experiences and systems. pp. 1–6 (2016)

13. Jensen, C.S., Snodgrass, R.T.: Temporal data management. IEEE Trans. Knowl.
Data Eng. 11(1), 36–44 (1999). https://doi.org/10.1109/69.755613, https://doi.
org/10.1109/69.755613

14. Johnston, T.: Bitemporal data: theory and practice. Newnes (2014)
15. Kankanamge, C., Sahu, S., Mhedbhi, A., Chen, J., Salihoglu, S.: Graphflow: An

active graph database. In: Proceedings of the 2017 ACM International Conference
on Management of Data. p. 1695–1698. SIGMOD ’17, Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3035918.3056445,
https://doi.org/10.1145/3035918.3056445

16. Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data.
In: 2013 IEEE 29th International Conference on Data Engineering (ICDE). pp.
997–1008. IEEE (2013)

17. Kostakos, V.: Temporal graphs. Physica A: Statistical Mechanics and its Applica-
tions 388(6), 1007–1023 (2009)

18. Kulkarni, K., Michels, J.E.: Temporal features in SQL:2011. ACM Sigmod Record
41(3), 34–43 (2012)

19. Macko, P., Marathe, V.J., Margo, D.W., Seltzer, M.I.: Llama: Efficient graph ana-
lytics using large multiversioned arrays. In: 2015 IEEE 31st International Confer-
ence on Data Engineering. pp. 363–374. IEEE (2015)

20. Neo4j Inc.: Cypher Query Language (July 2020), https://neo4j.com/developer/
cypher/

21. Oracle: Continuous Query Notification (CQN), https://cx-oracle.readthedocs.
io/en/latest/user_guide/cqn.html

https://doi.org/https://doi.org/10.1016/j.physrep.2012.03.001
http://www.sciencedirect.com/science/article/pii/S0370157312000841
http://www.sciencedirect.com/science/article/pii/S0370157312000841
https://sensing.honeywell.com/honeywell-sensing-aerospace-defense-rangeguide-000703-6-en.pdf
https://sensing.honeywell.com/honeywell-sensing-aerospace-defense-rangeguide-000703-6-en.pdf
https://doi.org/10.1109/69.755613
https://doi.org/10.1109/69.755613
https://doi.org/10.1109/69.755613
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.1145/3035918.3056445
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://cx-oracle.readthedocs.io/en/latest/user_guide/cqn.html
https://cx-oracle.readthedocs.io/en/latest/user_guide/cqn.html

Bitemporal Property Graphs to Organize Evolving Systems 21

22. Oracle: PGQL - Property Graph Query Language, https://pgql-lang.org/
23. Oracle: Oracle’s Graph Database (2021), https://www.oracle.com/de/database/

graph/

24. van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: a property graph
query language. In: Proceedings of the Fourth International Workshop on Graph
Data Management Experiences and Systems. pp. 1–6 (2016)

25. Rodriguez, M.A.: The gremlin graph traversal machine and language (invited talk).
In: Proceedings of the 15th Symposium on Database Programming Languages. pp.
1–10 (2015)

26. Rodriguez, M.A., Neubauer, P.: Constructions from Dots and Lines.
arXiv:1006.2361v1 (2010)

27. Rost, C., Gomez, K., Täschner, M., Fritzsche, P., Schons, L., Christ, L.,
Adameit, T., Junghanns, M., Rahm, E.: Distributed temporal graph analytics with
GRADOOP. The VLDB Journal pp. 1–27 (2021)

28. Rost, C., Thor, A., Rahm, E.: Analyzing temporal graphs with GRADOOP.
Datenbank-Spektrum 19(3), 199–208 (2019)

29. Saalmann, E.: Relationale Abstraktion des EPGM unter Verwendung der Apache
Flink Table-API. Master thesis at Universität Leipzig (2019)

30. Sengupta, D., Sundaram, N., Zhu, X., Willke, T.L., Young, J., Wolf, M., Schwan,
K.: Graphin: An online high performance incremental graph processing framework.
In: European Conference on Parallel Processing. pp. 319–333. Springer (2016)

31. Sevenich, M., Hong, S., van Rest, O., Wu, Z., Banerjee, J., Chafi, H.: Using domain-
specific languages for analytic graph databases. Proceedings of the VLDB Endow-
ment 9(13), 1257–1268 (2016)

32. Steer, B., Cuadrado, F., Clegg, R.: Raphtory: Streaming analysis of distributed
temporal graphs. Future Generation Computer Systems 102, 453–464 (2020)

33. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems in temporal
graphs. Proceedings of the VLDB Endowment 7(9), 721–732 (2014)

34. Zimmer, M.: Kontinuierliche Graph-Query Notifikationen auf Basis eines RDBMS.
Bachelor thesis at Universität Leipzig (2021)

https://pgql-lang.org/
https://www.oracle.com/de/database/graph/
https://www.oracle.com/de/database/graph/

	Bitemporal Property Graphs to Organize Evolving Systems

