
cba

Herausgeber et al. (Hrsg.): Name-der-Konferenz,
0 Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn

Multi-Party Privacy Preserving Record Linkage in Dynamic
Metric Space

Ziad Sehili1, Florens Rohde2, Martin Franke3, Erhard Rahm4

Abstract: We propose and evaluate several approaches for privacy-preserving record linkage for
multiple data sources. To reduce the number of comparisons for scalability we propose a new
pivot-based metric space approach that dynamically adapts the selection of pivots for additional
sources and growing data volume. Furthermore, we investigate so-called early and late clustering
schemes that either cluster matching records per additional source or holistically for all sources. A
comprehensive evaluation for different datasets confirms the high effectiveness and efficiency of the
proposed methods.

Keywords: Privacy Preserving Record Linkage, Bloom filter, metric space, triangle inequality,
Clustering

1 Introduction

Record linkage or entity resolution is the task of finding records in different data sources
that describe the same real-world entity, e.g. product or customer. Privacy-preserving record
linkage (PPRL) is a special form of record linkage for sensitive data and aims at achieving
record linkage while preserving privacy. This kind of record linkage is especially important
for person-related record linkage, e.g., for finding matching patient or customer records.

PPRL has received a substantial amount of research interest in the last decade [SBR09,
VCV13, Va17]. Most of the proposed approaches aim at improving privacy by matching
on encoded record attribute values instead of the original values for identifying attributes,
such as person name, address and birth of date. These attributes are called quasi-identifiers
(QIDs) as the equality or high similarity in these attributes allows one to find matching
persons. Many proposed PPRL schemes also rely on a so-called trusted linkage unit to
perform the matching of encoded person records thereby avoiding the need to exchange
records between different data owners [VCV13]. Like normal record linkage, PPRL has to
achieve a high match quality and scalability to large datasets.

Most proposed PPRL methods focus on the special case of linking two sources only
[VCV13]. However, various use cases and data analysis tasks require a PPRL for multiple
1 Leipzig University, Database Group, Germany sehili@informatik.uni-leipzig.de
2 Leipzig University, Database Group, Germany rohde@informatik.uni-leipzig.de
3 Leipzig University, Database Group, Germany franke@informatik.uni-leipzig.de
4 Leipzig University, Database Group, Germany rahm@informatik.uni-leipzig.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:sehili@informatik.uni-leipzig.de
mailto:rohde@informatik.uni-leipzig.de
mailto:franke@informatik.uni-leipzig.de
mailto:rahm@informatik.uni-leipzig.de

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 1

(≥ 2) sources, e.g., databases from hospitals, clinical studies and census data. Multi-Party
PPRL (MP-PPRL) introduces further challenges to be addressed. In particular, the number
of record comparisons grows quadratically with the size and the number of sources making
scalability a problem. Furthermore, a record may have matches in an arbitrary subset of the
data sources not only in one data source. This asks for clustering matching records over
multiple sources so that a cluster contains all matches for a specific person. This clustering
should utilize that individual sources are often curated and duplicate-free so that every
cluster should have at most one record for any data source.

To address these challenges we investigate several novel approaches for MP-PPRL and
clustering of encoded records. Specifically, we make the following contributions:

• To reduce the number of comparisons between records we utilize a pivot-based
metric space approach [SR16]. We propose an extension of the static approach with a
dynamic adaptation of the pivot selection in order to deal with additional data sources
and growing data volume.

• We investigate different clustering schemes for multiple parties that either cluster
new data sources one after the other (early clustering) or that first determine similar
record pairs over all sources before a final clustering is performed (late clustering).

• The presented approaches, PPRL in dynamic metric space and the clustering tech-
niques, are exhaustively evaluated using synthetic and real datasets. We also compare
them with baseline approaches.

After a brief discussion or related work we describe basics of PPRL (including the use
of Bloom filters to encode quasi-identifiers) and metric space. Section 4 describes the
dynamic pivoting approach for multi-party PPRL. The early and late clustering approaches
are outlined in Section 5. In Section 6 we evaluate the proposed approaches before we
conclude.

2 Related Work

PPRL has been applied in several real health-related use cases, e.g., to compare surgical
treatment received by Aboriginal and non-Aboriginal people with non-small cell lung
cancer in Australia [Gi16], or to analyze long-term consequences of childhood cancer
in Switzerland by linking national data from several cantonal registries [Ku11]. Several
surveys [VCV13, Va17, BRF15] categorize the variety of proposed PPRL methods with
respect to their challenges of privacy, quality and scalability. The privacy of the represented
entities can be provided by using either secure multiparty computation (SMC) to run PPRL
between the data owners without involving a linkage unit or by encoding records, e.g. within
Bloom filters [SBR09], and then sending the encoded records to a dedicated linkage unit
(see Section 3). Although SMC methods for PPRL aim at higher privacy guarantees they are

2 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

not applicable in many practical use cases due to their high computational complexity. The
linkage quality depends on many factors like the input data, the linkage and classification
methods [Ch12], and the encoding technique. While the first factors are not specific to PPRL
but also apply to record linkage in general, the effect of encoding records to Bloom filters
before comparing them have been studied in [SBR11, Du12]. The authors have shown that
the linkage quality of Bloom filters does not drop significantly compared to the original
(string) records. We will thus use Bloom filters for encoding records in this paper.

In previous PPRL papers, the scalability problem has been addressed by applying blocking
or filtering techniques for Bloom filters to reduce the number of comparisons [Se15, SR16].
Furthermore, the PPRL computations at a linkage unit can be run in parallel [Gl18, FSR18].
All previous blocking and filtering schemes for PPRL are static so that their effectiveness
tends to decrease with increasing data volume (e.g. the number of comparisons per block
mostly grows quadratically with the block size). In our previous work [SR16] we introduced
the use of a pivot-based metric space approach [Ze06] for PPRLwith two sources. In contrast
to blocking, this approach can reduce the number of comparisons without introducing from
recall reductions. The main drawback of this method is its upfront selection of a static set
of reference records (pivots) making it inapplicable for dynamically growing number and
size of sources. To overcome this problem we advise a new dynamic pivoting scheme. In a
non-PPRL setting a related dynamic approach, Sparse Spacial Selection (SSS), has been
proposed in [PB07], that dynamically selects reference records from one source depending
on the spacial distribution of records in the metric space. We use this method as baseline in
our evaluation.

Multi-party record linkage with a clustering of matching records without the privacy
prerequisite was studied in [Sa18]. The approach uses a static blocking scheme, determines
similar pairs of records from all sources (and keeps them in a similarity graph) before a
final clustering is performed (late clustering). [Fr18] shows that PPRL match results for
two duplicate-free sources can be improved by a post-processing to determine a 1:1 match
mapping. This can be achieved by a Hungarian or Max-Both approach and we will use
these methods in our early clustering schemes for multiple parties. [VCR20] investigates
clustering techniques for MP-PPRL, but for static blocking instead of our dynamic metric
space filtering.

3 Preliminaries

This section starts by introducing the multi-party PPRL process, then presents the Bloom
filter encoding scheme that preserves privacy and similarity of records. Furthermore, we
explain the use of metric space to improve scalability of the linkage process.

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 3

Database Group

MULTI PARTY PRIVACY PRESERVING

RECORD LINKAGE (MP-PPRL)

owner 1

dataset: DS1

trusted
linkage unit

linkage in
metric space

encode(DS1)

owner 3

dataset: DS3

encode(DS3)

owner 4

dataset: DS4

encode(DS4)

owner i

dataset: DSi

encode(DSi)

owner 2

dataset: DS2

encode(DS2)

post-process

Fig. 1: Multi-Party PPRL: The data owners encode their records and send them to a trusted linkage
unit (LU). The LU links the records and determines clusters of matching records

3.1 Multi-Party PPRL

A Multi-Party PPRL process that involves 8 data holders and a trusted linkage unit (LU) to
run the linkage process is depicted in Fig. 1. We assume duplicate-free datasets �(1, �(2,
. . . , �(8 . Quasi-identifying attributes of the records are first encoded to Bloom filters (see
below) by their respective data holders to preserve the privacy of the represented persons.
The encoded records are sent to the LU where a linkage process using the metric space
approach is applied for improved scalability (explained in Sec. 4) and where clusters of
similar records are generated. Furthermore, and due to the assumption that the sources are
duplicate-free, a post-processing or cleaning step is run to ensure that each cluster contains
at most one record from any source. Hence, the size of any clean cluster 2 is 1 ≤ |2 | ≤ 8.
Clustering strategies are discussed in Sec. 5.

3.2 Bloom Filter

The use of Bloom filter [Bl70] to encode records involved in PPRL was introduced in
[SBR09]. The encoding scheme of one record takes as input a set of q-grams (bi- or
tri-grams) of the relevant attributes (e.g. first and last name, date of birth and address),
a bit array of length ; with all positions initially set to zero and a set of : independent
cryptographic hash functions that return values in [0, ; − 1]. Then each q-gram is mapped
to the bit array :-times using the : hash functions by setting the corresponding positions
to 1. Figure 2 shows a simple example of two similar names and their encoding to Bloom
filters of length ; = 20 using : = 2 hash functions.

4 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

1 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0

_t to om ma

0 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

as s_

_t to om mm ma as

1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0 0 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

s_

Fig. 2: Bloom filter (bit vector) encoding of two names tomas and tommas, each tokenized to bi-grams,
using : = 2 hash functions and bit vectors of length ; = 20

3.3 PPRL in Metric Space

A metric spaceM(U, 3) consists of a set of data objects U and a metric 3 to compute
the distance between these objects. The main property satisfied by the distance metric 3
is the triangle inequality of the distances: ∀G, H, I ∈ U : 3 (G, I) ≤ 3 (G, H) + 3 (H, I). This
inequality can be used to considerably reduce the search space without discarding any pair
of similar records, i.e., without reducing recall [Ze06].

For a data object @ ∈ * the match candidates cannot be outside a radius A03 (@) in order to
satisfy a maximal distance threshold. The triangle inequality allows one to avoid computing
the distance between points G and @ based on precomputed distances to a reference point ?,
also known as pivot. Hence, only objects that satisfy:

|3 (?, @) − 3 (?, G) | ≤ A03 (@) (1)

need to be considered as potential matches so that the distance 3 (@, G) has to be computed
to determine whether @ and G match.

PPRL processes generally use a similarity function like Jaccard to compare records and a
threshold t to classify pairs as similar or non-similar. Since metric spaces rely on metrics
(distance function), we can use the Hamming distance, that was shown to be equivalent to
the Jaccard similarity [Xi08], to search matching records. The radius A03 (@) that includes
similar records to @ can be inferred from C as [SR16]:

A03 (@) = |@ | × 1 − C
C
.

where |@ | is the number of positions set to 1 in the Bloom filter. Records having a Hamming
distance ≤ A03 (@) are those that have a Jaccard similarity ≥ C.

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 5

For two sources �(1 and �(2, the pivot-based metric space approach for PPRL operates in
two steps: index building and similarity search. Indexing source �(1 first requires selecting
a set % of < data objects that serve as pivots. One proven approach is to select these pivots
from �(1 in an iterative manner by choosing the objects having the maximum distance
to each other [SR16]. Next, each object G ∈ �(1 is assigned to its closest pivot ?8 ∈ %,
4;4<(?8) = {G ∈ �(1 : 38BC (G, ?8) < 38BC (G, ? 9),∀ 9 ≠ 8}. For every object G ∈ �(1 the
precomputed distance 3 (G, ?8) to its pivot ?8 is stored as well as the radius of a pivot
A03 (?8), i.e., the maximal distance for any object assigned to pivot ?8 .

For each (query) object @ ∈ �(2, the matching with �(1 objects involves a similarity
search with radius A03 (@). This search for match candidates can utilize two filter steps.
First, only those pivots ?8 need to be considered for which the pivot radius A03 (?8) overlaps
with A03 (@) since otherwise all of the pivot’s objects are outside radius A03 (@) and cannot
match. Secondly, for the remaining pivots ?8 the number of its objects G can be reduced
according to the above triangle inequality.

4 MP-PPRL in Dynamic Metric Space

We first explain our approach to dynamically increase the number of pivots for growing
data volume and then explain the use of this approach for multi-party PPRL.

4.1 Dynamic Pivoting

The static pivot method with its upfront determination of pivots has two problems: 1) the
number of pivots is difficult to determine and dependents on the number and distribution
of records. 2) The number of pivots should be adequately increased with growing number
and size of sources to be indexed since more records per pivot leads to more comparisons
and thus poor scalability. Furthermore, more records per pivot lead to increased pivot radii
and higher overlap between the pivots (see below) which in turn can cause that more pivots
need to be considered to find the matches of a query record. Hence, the potential to reduce
the number of comparisons can be severely reduced when we keep a static set of pivots in
the presence of strongly growing data volume, e.g. due to additional data sources.

To overcome these problems for multi-source PPRL, we devise an algorithm to adapt the
pivot selection dynamically during the indexation of an additional data source. For this
purpose we control the so-called pivot overlap using a parameter U. Note that an indexed
record G may be in the radius of several pivots ?8 (38BC (G, ?8) < A03 (?8)) although it is
assigned to only one (the closest) pivot. Similar to the idea introduced in [Tr00], the overlap
between pivots can thus be determined by the average number of intersections per record.

6 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

Algorithm 1: Dynamic Pivot-based indexing
Input : dataset �(;

maximal intersection U;
Output: set % of pivots with their assigned elements

1 if �(is the first source then
2 �2 = 0; // intersections records pivots
3 # = 0; // number of read records
4 % = (; // small set (of initial pivots with A03 (?8) = 0, for ?8 ∈ %
5 foreach G ∈ �(do
6 # = # + 1;
7 <8=�8BC = ∞;
8 14BC%8E>C = =D;;;
9 foreach ?8 ∈ % do

10 if 38BC (G, ?8) ≤ A03 (?8) then
11 �2 = �2 + 1;
12 if 38BC (G, ?8) < <8=�8BC then
13 <8=�8BC = 38BC (G, ?8);
14 14BC%8E>C = ?8 ;

15 4;4<(14BC%8E>C) = 4;4<(14BC%8E>C) + {G};
16 if A03 (14BC%8E>C) < <8=�8BC then
17 A03 (14BC%8E>C) = <8=�8BC;

18 >E4A;0?(%) = �2
#×|% | ;

19 if >E4A;0?(?) > U then
20 run Algorithm 2 // Generate new pivot

Let �2 be the sum of the number of pivot intersections for any record G, # the number of
indexed objects, and |% | the number of pivots.We define the overlap factor of the pivots as:

>E4A;0?(%) = �2

× |% | (2)

The overlap factor thus determines the average number of pivot intersections per record
normalized by the total number of pivots. A low overlap value means that the data objects
are largely partitioned according to their pivots, e.g., when the radii are relatively narrow.
Additional data objects are assigned to the closest pivots so that the radii and thus the overlap
between pivots tends to increase. This will also reduce the filter effects and thus increase
the number of necessary match comparisons.

We use an adaptation parameter U to control the maximal overlap ratio between pivots, i.e.,
we increase the number of pivots as soon as this value is exceeded in order to increase the
number of pivots for a growing number of data objects. Algorithm 1 specifies the dynamic
indexing using parameter U. The algorithm starts with a small set of pivots % (line 4), that

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 7

Algorithm 2: Generate new pivot
Input :set of pivots % with their elements;

1 choose ? ∈ %; // pivot with max cardinality
2 choose ?=4F = G ∈ 4;4<(?): furthest element from ?;
3 foreach ?8 ∈ % do
4 foreach 4 ∈ 4;4<(?8) do
5 if 38BC (4, ?=4F) ≤ 38BC (4, ?8) then
6 4;4<(?=4F) = 4;4<(?=4F) + {4};
7 store 38BC (4, ?=4F);
8 update A03 (?=4F); // if necessary
9 4;4<(?8) = 4;4<(?8) − {4};

10 update A03 (?8); // if necessary

11 % = % + {?=4F };

can be chosen for example randomly. In the next step, new records of the dataset are read
sequentially and compared with the existing pivots. �2 is incremented each time the distance
between G and any pivot ?8 is smaller than the radius A03 (?8) (line 10 and 11). Finally, G is
added to the elements of the closest pivot and the radius of this pivot is possibly updated
(lines 15-17). Furthermore, the overlap factor is calculated and compared with U (lines
18-20). If the overlap exceeds the value of U a new pivot ?=4F is generated (Algorithm 2)
and all the objects already indexed are re-partitioned over the pivots.

Note that there are different strategies to select a new pivot (line 1 and 2 of Algorithm
2):, e.g., choose the new pivot as the furthest record from the elements of the pivot with
the highest cardinality (approach MaxCard) or from the pivot having the largest radius
(MaxRadius). Another approach is to select the next pivot as the most furthest object to
the already chosen pivots (FurthestNode). Preparatory experiments showed the highest
effectiveness for MaxCard so that we will use this approach in our evaluation.

4.2 MP-PPRL using Dynamic Pivots

Running MP-PPRL using dynamic pivot based metric space is now straightforward and
its steps are shown in Algorithm 3. For a set of data sources �(8 we start by indexing the
first source �(1 using algorithms 1 and 2. For each additional dataset �(9 9 ≥ 2 we run
two methods successively: link(�(9) which finds matches " 9 between records of �(9 and
records already assigned to ?8 ∈ % from former sources. The second method index(�(9)
partitions records of �(9 on the existing pivots ?8 ∈ % following the algorithms 1 and 2
which might lead to the generation of additional pivots.

This algorithm outputs pairs of similar records that form a similarity graph. By computing
the connected components from this graph we generate initial clusters of matches. These

8 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

Algorithm 3:MP-PPRL in dynamic metric space
Input : � = {�(9 , 9 ∈ 1..8} datasets;

% set of pivots;
1 Output : � set of clusters;

2 % = ∅;
3 8=34G(�(1) // using algorithms 1 and 2
4 for 9 ≥ 2 do
5 ;8=: (�(9);
6 8=34G(�(9);

clusters may still have several records per source and we will apply a post-processing steps
to solve this problem.

In what follows we use the term linkage-iteration to denote the execution of index(�(8) on
data source �(8 and link(�(8+1) on the forthcoming data source �(8+1.

5 Clustering

The goal of clustering is to group all matching records (Bloom filters) based on the previously
determined pairs of matching records. Due to the assumption of duplicate-free sources, we
have to ensure that every cluster should be clean, i.e., include at most one record per source.
In this section we outline several approaches for early and late clustering that generate clean
clusters during and after the linkage process, respectively.

5.1 Early Clustering

Early clustering algorithms build clean clusters progressively after each linkage-iteration by
considering the linkage output of each iteration as a weighted bipartite graph. Based on
some predefined criteria, edges are deleted from the graph so that each resulting cluster
contains at most one record from any involved source. We describe two representative
algorithms, Hungarian and Max-Both, of such a strategy.

Hungarian Algorithm: The Hungarian algorithm [Ku55] is a combinatorial optimization
method to solve the assignment problem in polynomial time. The input of the algorithm
is a weighted bipartite graph � ((,), �F) with (and) consisting of two disjoint sets of
vertices representing records from two different sources �(8 and �(9 and a set of weighted
edges �F = {(B, C) : B ∈ (∧ C ∈)} where the weights represent the similarity values for
pairs of elements of (and) . The goal of the Hungarian algorithm is to find an assignment
with the highest global similarity between the elements of (and) so that each element
from each set is linked with at most one element from the other set (1:1 mapping).

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 9

1_A

2_D

2_B

1_A
2_B

0.90

2_B

4_E3_B

1_A

1_A 2_B

4_E3_B

link sources 1 and 2 link sources 1, 2 and 3 link sources 1, 2, 3 and 4 link sources 1, 2, 3, 4 and 5

2_D

2_C

3_B

2_D

2_D

2_C

5_B

5_E

1_A

2_D

2_B

1_A
2_B

0.90

2_B

4_E3_B

1_A

1_A 2_B

4_E3_B

2_D

2_C

3_B

2_D

2_D

2_C

5_B

5_E

clustering clustering clustering clustering
a)

1_A

2_D

2_B

1_A
2_B

0.90

2_B

4_E3_B

1_A

1_A 2_B

4_E3_B

2_D

2_C

3_B

2_D

2_D

2_C

5_B

5_E

1_A

2_D

2_B

1_A
2_B

0.90

2_B

4_E3_B

1_A

1_A 2_B

4_E3_B

2_D

2_C

3_B

2_D

2_D

2_C

5_B

5_E

clustering clustering clustering clustering
b)

Fig. 3: Clustering the linkage result of 5 sources using the a) Hungarian Algorithm and b) Max-Both

For MP-PPRL the Hungarian algorithm is run after each linkage-iteration of a new dataset.
Hence, after the linkage of the first two sources, �(1 and �(2 the algorithm is run in
a straightforward manner on graph � (�(1, �(2, �4) and a set of clusters 28 ∈ � with
1 ≤ |28 | ≤ 2 is generated. For each further source �(8 , 8 ≥ 3, the linkage step computes
the similarities between the elements C ∈ �(8 and the clusters 28 ∈ � and generates a new
weighted bipartite graph� (�, �(8 , �F), that serves as an input for the Hungarian algorithm.
The top of Fig. 3 shows the linkage of 5 sources and the application of the Hungarian
algorithm to cluster the results. A perfect clustering would output the following clusters:
21 = {2_�, 3_�, 5_�}, 22 = {4_�, 5_�}, and the singletons 23 = {1_�}, 24 = {2_�},
25 = {2_�} (colored with blue, red and black respectively).

Max-Both: Max-Both was introduced in [MGR02, DR02] to solve the multimapping
problem of two sources. Max-Both works in a similar manner as the Hungarian algorithm; in
each linkage-iteration it finds the ’best’ assignment in a weighted bipartite graph. The only
difference is that Max-Both keeps a link (B, C) only if this link is the best for both elements
B and C. Therefore, for a bipartite graph � ((,), �4) Max-Both starts by selecting for each
element B ∈ (the element 14BC"0Cℎ(B) = C ∈) so that B8<(B, C) > B8<(B, C ′) : ∀C ′ ∈)
and C ′ ≠ C. On the other side, for each C ∈) the element 14BC"0Cℎ(C) = B ∈ (is selected
so that B8<(B, C) > B8<(B′, C) : ∀B′ ∈ (and B′ ≠ B. Then a mapping (B, C) is returned only if
14BC"0C2ℎ(B) = C ∧ 14BC"0C2ℎ(C) = B.

10 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

Database Group

STEPS OF LATE CLEANING

pairs of similar

records (all sources)

build CCs from

similar pairs
split each CC find clean clusters

Fig. 4: Steps involved in late clustering

Database Group

INPUT OF LATE CLEANING METHODS

(EXAMPLE)

2_B

2_C

1_A 3_B

4_E

5_E

2_D

5_B

id1 id2 sim

1_A 2_D 0.77

1_A 2_B 0.81

1_A 3_E 0.81

1_A 4_E 0.94

1_A 5_E 0.94

1_A 5_B 0.81

2_C 3_B 0.71

2_C 5_B 0.71

2_B 3_B 1.00

2_B 4_E 0.76

2_B 5_E 0.76

2_B 5_B 1.00

2_D 3_B 0.78

2_D 4_E 0.74

2_D 5_E 0.74

2_D 5_B 0.78

3_B 4_E 0.76

3_B 5_E 0.76

3_B 5_B 1.00

4_E 5_E 1.00

4_E 5_B 0.76

4_F 5_E 0.71

0.81 1.00

0.81

0.94

0.71

0.78

0.74

0.78

0.76

1.00

1.00

similar pairs A snippet of the similarity graph (WCC)

Fig. 5: Transformation of similar pairs to a similarity graph (weighted connected component). For
clarity only the edges for the bold entries on the left side are shown.

The Bottom of Fig. 3 displays the output of Max-Both. Due to the simplicity of the input data
Max-Both and the Hungarian algorithm return the same results in the first three iterations.
In the last iteration, however, Max-Both keeps the best edge (higher similarity) between
the large cluster and the singleton 5_� and prune all other edges. This leads to a more
homogeneous cluster compared to the Hungarian algorithm, which try to maximize the
weights by preserving a larger number of edges.

5.2 Late Clustering

In this approach the linkage process is run between records of all sources to generate a
similarity graph. Clustering is performed late and uses a weighted connected component
(WCC) as input instead of a weighted bipartite graph. The rationale behind this approach is
to preserve a global view of the linkage result and avoid pruning edges in early iterations
that might be good in later ones. Fig. 4 shows the steps of late clustering. First, the pairs of
similar records from all sources are used to build WCCs, an example of such transformation
is shown in Fig. 5. Then an optional step to split WCCs is run to reduce the size of large
CCs, and thus reduce the complexity for clustering. To split connected components we can
use either the method introduced in [Sa18] by deleting so-called weak links (the records
connected with such links have at least one higher-similarity link to another record of the
respective other source) inside each CC, or use the k-medoid algorithm to group a set of

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 11

Database Group

LATE CLEANING: SORT KEEP BEST (EXAMPLE)

order cluster avg. sim

1 [2_B, 3_B, 5_B] 1.0

2 [2_B, 5_B] 1.0

3 [2_B, 3_B] 1.0

4 [3_B, 5_B] 1.0

5 [4_E, 5_E] 1.0

6 [1_A, 4_E, 5_E] 0.96

67 [2_C, 3_B, 4_E] 0.74

68 [2_D, 5_E] 0.74

69 [2_D, 4_E] 0.74

70 [2_C, 5_B] 0.71

71 [2_C, 3_B] 0.71

72 [4_F, 5_E] 0.71

order cluster # edges

1 [1_A, 2_B, 3_B, 4_E, 5_B] 10

2 [1_A, 2_B, 3_B, 4_E, 5_E] 10

3 [1_A, 2_D, 3_B, 4_E, 5_E] 10

4 [1_A, 2_D, 3_B, 4_E, 5_B] 10

5 [1_A, 2_B, 3_B, 5_B] 6

6 [2_B, 3_B, 4_E, 5_B] 6

67 [4_E, 5_B] 1

68 [2_D, 5_E] 1

69 [2_D, 4_E] 1

70 [2_C, 5_B] 1

71 [2_C, 3_B] 1

72 [4_F, 5_E] 1

a) sorting according to the avg. similarity b) sorting according to the number of edges

Fig. 6: The outputs of the algorithm Sort and Keep Best on the similarity graph of Fig. 5 using (a) avg.
similarity and (b) number of edges. Returned clusters for each sorting criteria are green framed.

records into clusters of similar objects. In the following, we present two late clustering
methods, graph multicut and SKB (sort and keep best).

Graph Multicut:Multicut is a graph partitioning problem that takes as input a connected
graph � (+, �), a weight function F : � → ' that assigns weights to the edges � , and a set
of : pairs (B1, C1), (B2, C2), . . . (B: , C:). The algorithm tries to find the set of edges � ⊂ �
whose removal disconnect each pair (B8 , C8) for 8 = 1 . . . : . A minimum graph multicut
returns the set � with the lowest cost. This problem can be defined as a linear program:

minimize
∑
4∈�

F4 × 34

subject to
∑
4∈?

34 ≥ 1 ∀? ∈ %B8 ,C8 ,8 = 1 . . . :

34 ≥ 0 ∀4 ∈ �

(3)

This linear program assigns the smallest positive value 34 to each edge 4 ∈ � which is
on any path ?8 that joins the pairs B8 , C8 (pairs to be disconnected) so that the sum of the
assigned values 38 for each path is greater than 1. The edges to be removed (cut edges) are
contained in the set � = {4 ∈ � : 34 ≥ 0.5}[GVY93].

This algorithm can be easily adapted to cluster the result ofMP-PPRL. EachWCC constitutes
a graph �8 (+8 , �8) of records +8 and weighted edges �8 (similarity values). We consider
each pair of records G, H ∈ +8 from the same source as terminals to be disconnected, and
generate clusters by solving linear program 3. For the example graph in Fig. 5 the pair
(5_�, 5_�) from the fifth source constitutes two terminals to be disconnected. Multicut
algorithm assigns to each edge of the paths connecting 5_� and 5_� the smallest possible
value 38 then prunes all edges having a value ≥ 0.5. Applying Multicut on the graph of
Fig. 5 returns the following clusters: {1_�, 2_�, 3_�, 4_�, 5_�}, {2_�, 4_�, 5_�} and

12 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

Algorithm 4: Sort and Keep Best (SKB)
Input : ,�� weighted connected component;

 sorting criteria;
1 Output : � set of clean clusters;;
2 � = ∅;
3 C<? = ∅;// to store records of clean clusters
4 generate all possible clean clusters 28 ;
5 sort 28 according to ;
6 foreach 2;A ∈ 28 do
7 if 2;A ∩ C<? = ∅ then
8 � = � + {2;A};
9 C<? = C<? ∪ 2;A;// add records of 2;A to C<?

10 else
11 prune 2;A;

the singleton {2_�}. As we can see, Multicut is a kind of generalisation of the Hungarian
algorithm for multiple sources which tries to keep as many edges as possible.

Sort and Keep Best (SKB): Algorithm 4 implements this method. It takes as input a WCC
and starts to generate all possible clean clusters contained in it. Based on some criteria, the
algorithm sorts the generated clusters. Finally, the clusters are read sequentially and it is
checked whether the actual cluster includes records that are contained in better (already
processed) clusters or not (line 7). If this is not the case the cluster is added to the set of
final clusters and its elements are stored to check forthcoming clusters (line 8-9).

We evaluated two criteria to sort the clusters: 1) Average similarity inside the cluster
�E6_B8< =

∑
4∈�2

F4/|�2 |, if �E6_B8< of two clusters are equal then sort according to
|�2 |. 2) The number of edges |�2 | between the elements of a cluster, if |�2 | of two clusters
are equal then sort according to �E6_B8<. Fig. 6 illustrates the output of both sorting criteria
on the similarity graph of Fig. 5. Sorting the clusters by �E6_B8< leads generally to small
but more homogeneous clusters than sorting them by edges. The latter method tends to
create large clusters that might include miss-matches.

6 Evaluation

After the description of the experimental setup, we evaluate the performance of the proposed
dynamic selection of pivots in metric space for MP-PPRL. In particular, we analyse the
influence of the overlap parameter U and present a comparison with Sparse Spacial Selection
(SSS), an alternate dynamic pivoting scheme. Furthermore, we conduct a comparative
analysis of the match quality and runtimes of the presented early and late clustering strategies.

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 13

sources dataset 1 2 3 4 5 6 7 8 9 10

3
S-NCVR 58% 17% 25%

R-NCVR 20% 50% 30%

5
S-NCVR 60% 3% 5% 7% 25%

R-NCVR 19% 24% 24% 19% 14%

7
S-NCVR 60% 1% 2% 3% 4% 5% 25%

R-NCVR 16% 21% 21% 16% 11% 8% 7%

10
S-NCVR 61% 1% 1% 1% 1% 2% 2% 3% 3% 25%

R-NCVR 15% 20% 20% 15% 10% 6% 5% 4% 3% 2%

Tab. 1: Distributions of duplicate records over the sources to be matched for both dataset collections
S-NCVR and R-NCVR.

6.1 Experimental Setup

For our experiments we use two collections of datasets with different sizes and number
of sources (parties) to simulate a MP-PPRL process. The first collection, S-NCVR, was
generated from the publicly available North Carolina Voter Register (NCVR) dataset. Using a
snapshot of about 7 million persons several sources have been generated. Duplicate records
over the different sources have been created by introducing some modifications (typos)
to the original attribute values. The second collection R-NCVR, also obtained from NCVR,
represents real data without any modification. Duplicate records over sources arise from real
changes or modification in the attributes values of some persons. Table 1 shows the number
of sources and the distribution of duplicate records over the sources for both sizes 100, 000
and 500, 000. The two collections have different duplicates distributions, e.g., to link three
parties each containing 100, 000 records, the three sources from S-NCVR contains about
60% of singletons, 17% of records are duplicate in two sources and 25% of records are
present in all three sources. The distribution of sources from R-NCVR decreases the number
of duplicates over sources when the number of sources increase. Note that the duplicates
are a mixture of similar and equal records distributed over the sources.

Records of both collections of data have been encoded to Bloom filters of length 1, 000
using between 10 and 30 hash functions. All experiments are conducted single-threaded on
a machine with a 4-core 4.00��I CPU and 32 GB of main memory.

6.2 Evaluation of Dynamic Pivoting

6.2.1 Influence of max overlap value U

We use the first collection of datasets R-NCVR to determine the influence of parameter U and
to determine effective settings for it. We run MP-PPRL without any clustering method to

14 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

200

400

600

800

1,000

1,200

1,400

1,600
index comaprison runtime

alpha

ti
m

e
in

 s
ec

.

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

500

1,000

1,500

2,000

2,500

3,000

3,500

alpha
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

1,000

2,000

3,000

4,000

5,000

6,000

alpha

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

alpha

alpha
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

10

20

30

40

50

60

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

2

4

6

8

10

12

14

16

18

20
PxQ RxQ all comparisons

o

f
co

m
p

ar
is

o
n

s
*

10
^

9

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

20

40

60

80

100

120

140

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

50

100

150

200

250

300

alpha alpha alpha

3 sources 5 sources 7 sources 10 sources

Fig. 7: Runtimes (index and comparison) and number of comparisons w.r.t. the value of U to link
3,5,7 and 10 sources each containing 100, 000 records.

link sets of sources with different configuration w.r.t the number of sources and the size
of each source. We varied the value of U between 0.001 and 0.01 and set the similarity
threshold to 0.75. For each configuration we evaluate the time needed to index records, i.e.,
to assign them to their pivots, and to find the matches. Furthermore, we analyze the number
of distance computations.

The top of Fig. 7 shows the index, comparison and total runtime to link sets of sources
(3, 5, 7 and 10 sources) each containing 100, 000 records. We observe that small U values
< 0.002 lead to both high index and comparison times. For U = 0.001 the index time,
i.e., the time to dynamically generate new pivots and to distribute records on these pivots,
represents about 43% of the total runtime when MP-PPRL is run for three sources. The
reason of this high index time is that low U values are frequently exceeded leading to the
determination of additional pivots and a corresponding reassignment of record to these
pivots. Furthermore, the generated pivots need to be compared with all the query records
from the second source to check the triangle inequality, which increases comparison time.
For U = 0.001 the number of dynamically generated pivots from the first source is about
10, 000 pivots that must be compared with the 100, 000 records from the second source
before the real linkage begins.

On the other side, higher U values decrease indexing time because fewer pivots are generated.
However, the comparison time increases dramatically when U > 0.005 and the number
of sources to link is greater than five. For such U values a large number of records are
distributed on a small number of pivots in the index phase which causes an enlargement of
the pivots radii and therefore their ability to exclude pairs from farther comparison using the
triangle inequality. This can be shown in the bottom of Fig. 7, where the number of distance
computation to link ten sources grows from 97 × 109 to 254 × 109 when U is changed from
0.001 to 0.01.

Another behaviour we can observe is that the comparison time is not always related to
the number of comparisons computed. By assigning U small values we reduce in fact the

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 15

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0.001 0.002 0.003 0.004 0.005 0.006 0.007

ti
m

e
 in

 s
e

c.

alpha

times link of 3 sources (500k each)

index comparison runtime

0

50

100

150

200

250

300

350

400

0.001 0.002 0.003 0.004 0.005 0.006 0.007

o

f
co

m
p

ar
is

o
n

s
x

1
0

9

alpha

of comparisons to link 3 sources (500k each)

PxQ RxQ all comparisons

Fig. 8: Runtimes (index and comparison) and number of comparisons w.r.t. the value of U to link 3
sources each containing 500, 000 records.

number of comparisons (queries with pivots + queries records), however, the computation
time does not follow this trend. This is due to the overhead of parsing all queries for each
pivot and the distance function (XOR) that is known to be very cheap to execute.

To investigate the best U value for large dataset we run MP-PPRL to link a set of three
sources each containing 500, 000 records and varying U between 0.001 and 0.007. The
right part of Fig. 8 shows the index, comparison and total runtime. For this experiment
we observe the same behaviour as for smaller datasets, i.e., very small U values ≤ 0.002
increase both the index and comparison time, and large U values ≥ 0.003 decrease the index
time but increase the comparison time for the same reason as mentioned above. As we can
see the best runtime (index + comparison) is obtained for U values between 0.002 and 0.004.
We use U = 0.003 in the following experiments.

A very high value of parameter U, e.g., 1, means that the generation of new pivots will never
be triggered which corresponds to a static pivoting approach where the initially selected
pivots are not changed any more. The shown curves in Fig. 7 and 8 show that the runtimes
and number of comparisons for the highest U values are much worse than for the best
settings of U which underlines the high value of the proposed dynamic pivoting approach.

6.2.2 Comparison with Sparse Spatial Selection (SSS) Method

We now compare the performance of our method of dynamically selecting pivots with the
the Sparse Spatial Selection method (SSS) that was proposed outside the context of PPRL.
SSS starts with a random record G as pivot. The next pivots are records having a distance
≥ " × V to any already selected pivot, being " the maximal distance between any two
records in the dataset and V a constant parameter taking values in [0.35, 0.40]. We run
some initial experiments and found V = 0.54 the optimal value for our datasets. To compare
our method with SSS, we run MP-PPRL to link datasets of 3 and 7 sources each containing
500, 000 records from the second collection, S-NCVR. Table 2 shows the achieved results
for our method (named overlap) and SSS for different similarity threshold (0.75 − 0.95).

16 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

0.75 0.8 0.85 0.9 0.95
SSS overlap SSS overlap SSS overlap SSS overlap SSS overlap

3 src.

Pivot_1 17,064 6,247 17,064 6,247 17,064 6,247 17,064 6,247 17,064 6,247
Pivot_2 21,436 7,276 21,436 7,276 21,436 7,276 21,436 7,276 21,436 7,298
P x Q (×109) 19.25 6.76 19.25 6.76 19.25 6.76 19,25 6.76 19.25 6.77
R x Q (×109) 175.90 228.83 37.04 62.71 7.69 14.82 1.91 3.91 0,48 1.06
index time 35 16 32 16 26 15 26 15 29 15
runtime 179 153 102 72 85 57 57 46 51 54

7 src.

Pivot_1 16,825 6,279 16,825 6,279 16,825 6,279 16,825 6,279 16,825 6,279
Pivot_2 30,742 9,724 30,742 9,725 30,742 9,726 30,742 9,741 30,742 9,835
P x Q (×109) 74.33 24.64 74.33 24.64 74.33 24.64 74.33 24.65 74.33 24.82
R x Q (×109) 1,235.27 1,412.03 265.37 366.05 55.57 85.53 13.92 22.77 3.50 6.13
index time 48 37 47 39 33 31 33 47 34 38
runtime 1,237 1,185 545 412 309 176 259 162 292 152

Tab. 2: Comparison of our method (overlap) with SSS to link 3 and 7 sources from the S-NCVR each
containing 500,000 records. We investigate the number of pivots generated in the first (# pivot_1) and
last (# pivot_2) linkage iteration, the number of comparisons between pivots and queries (P x Q) and
between indexed records and queries (R x Q), the index time and the complete runtime in minutes.
(best values in bold)

We report the number of generated pivots, the number of comparisons between pivots
and queries (P x Q) and between indexed records and queries (R x Q), Furthermore, we
consider the index time needed to find adequate pivots and partition records over them and
the complete runtime.

We observe that SSS generates many more (three times more) pivots as our overlap-based
method. To index the first source (for both 3 and 7 sources) SSS needs about 17, 000
pivots while our method generates only about 6, 000 pivots for the same source. During the
MP-PPRL process SSS continues to generate numerous pivots whose number reach 30, 000
to compare 7 sources. While the high number of pivots generally can reduce the number of
comparisons between indexed records and queries (as explained before) it leads, however,
to a large index time and runtime, and a high number of comparisons between queries and
pivots. For both number of sources (3 and 7) SSS requires three times more comparisons
between pivots and queries as our method (6.76× 109 vs. 19.25× 109 for 3 sources). Hence,
our methods outperforms SSS w.r.t. the quality and number of pivots generated and the
runtime of MP-PPRL.

6.3 Comparison of Clustering Methods

6.3.1 Number of sources

We first evaluate the quality of the proposed early and late clustering approaches, Hungarian
algorithm (HUNG), Max-Both (MAX-B), graph multicut (M-CUT) and sort and keep best
using average similarity (SKB-S) and number of edges (SKB-E) as sorting criterion, as
well as of the baseline approach connected components (CC) in terms of precision, recall
and f-measure for different number of sources. In the first experiment, we use sources of

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 17

0,7 0,75 0,8 0,85 0,9
0,5

0,6

0,7

0,8

0,9

1
3 sources

0,7 0,75 0,8 0,85 0,9
0,5

0,6

0,7

0,8

0,9

1
5 sources

0,7 0,75 0,8 0,85 0,9
0,5

0,6

0,7

0,8

0,9

1
7 sources

0,7 0,75 0,8 0,85 0,9
0,5

0,6

0,7

0,8

0,9

1
10 sources

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

0,7 0,75 0,8 0,85 0,9
0,6

0,7

0,8

0,9

1

HUNG MAX-B SKB_S SKB_E CC M-CUT

p
re

ci
si

o
n

re
ca

ll
f-

m
ea

su
re

Fig. 9: Quality of the different clustering methods run on 3,5,7 and 10 sources of size 100, 000 from
the S-NCVR collection and varying the similarity threshold between 0.7 and 0.9

size 100, 000 and vary the numbers of sources to be linked between 3 and 10. For each
clustering algorithm the similarity threshold is varied between 0.7 and 0.9. Fig. 9 shows the
results of the experiment using datasets from the S-NCVR collection. As we can see, clusters
generated by building connected components from the similarity pairs are generally not
usable, especially for low threshold. The precision of such clusters by threshold ≤ 0.75 is
about 0, while the recall is not considerably higher than the other clustering methods.

CC is clearly outperformed by the proposed early and late clustering schemes. The best
f-measure values are generally achieved for similarity values between 0.75 and 0.8. The
Hungarian algorithm generally achieves the lowest f-measure due to its low precision
compared to the other approaches. Max-Both by contrast achieves a much better precision
and is among the best performing approaches, especially for lower similarity thresholds. The
f-measure results for the late clustering approaches are relatively close together. However,
graph multicut cannot be applied for low thresholds (≤ 0.7) or high number sources (10
sources) due to its high runtime and memory consumption. The late clustering approach
SKB-S, that elects clusters with the highest similarity, achieves the best precision especially
for lower similarity. Interestingly, the f-measure does not decrease when the number of
sources is increased. This is surprising since it is generally more difficult to correctly find
bigger clusters than smaller clusters. This has been possible despite the existence of many
large clusters for this synthetic dataset where 25% of all duplicate records belong to the
largest clusters with records from all sources (Table 1).

To study the impact of a different duplicate distributions with only few large clusters we run
a similar experiment on the second collection of datasets, R-NCVR, for 3 and 10 sources of
size 100,000. As we can see in Fig 10 the CC method has again the poorest cluster quality
due to a very low precision for lower similarity thresholds ≤ 0.75. Now the late clustering

18 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

HUNG MAX-B SKB_S SKB_E CC M-CUT

precision recall f-measure

0.70 0.75 0.80 0.85 0.90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

3
so

u
rc

es
10

 s
o

u
rc

es

Fig. 10: Quality of the different clustering methods run on 3 sources and 10 sources of size 100, 000
from R-NCVR

method SKB-S performs best since it achieves not only the best precision but can achieve a
similarly good recall than the other late clustering methods. Max-Both finds a good balance
between precision and recall and performs almost as good as SKB-S. Again, the f-measure
for the larger number of sources (10 sources) is similar to the one for only 3 sources.

6.3.2 Size of sources

Figure 11 shows the precision, recall and f-measure results and the total runtime (linkage
and clustering) for 5 sources and 7 sources applying a similarity threshold of 0.75. The
size of each source is set to 100, 000 and 500, 000 for both number of sources. As we can
see, scaling the size of the sources leads to a drop of the quality for all clustering methods.
Precision of the Hungarian algorithm drops the most by about 10% from 0.95 to 0.85
followed by Max-Both by about 5%. Only SKB-S shows a small decrease by 1% in precision
when scaling up the size of sources from 100, 000 to 500, 000 records. Furthermore, SKB-S
is the only method that still manifests a precision above 0.9 for the larger datasets. This
is due to its selecting clusters with the highest intra-cluster similarity as clean clusters.
However, this also reduces recall since such a high similarity is typically reached by smaller
clusters that are thus preferred over larger clusters with lower internal similarity. Hence,
SKB-S achieves the lowest recall (0.79) for 5 sources of size 500, 000 records. Note that
SKB-E, which promotes large clusters over smaller ones, achieves a similar recall as SKB-S.
This is because R-NCVR contains more small clusters of size 2 and 3 than larger ones. Among
all algorithms Max-Both returns the best recall for all sizes and number of source. The
f-measure of SKB-S and Max-Both are similar with a light advantage for SKB-S.

The right of Fig. 11 shows the runtime to run both linkage and post-processing steps. All
four methods achieve similar runtime of about 25 and 50 minutes to process 5 sources and

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 19

Hungarian Max Both SKB Sim SKB Edge
0.75

0.8

0.85

0.9

0.95

1

100k 5 src. 100k 7 src. 500k 5 src. 500k 7 src.

Hungarian Max Both SKB Sim SKB Edge
0.75

0.8

0.85

0.9

0.95

1

Hungarian Max Both SKB Sim SKB Edge
0.75

0.8

0.85

0.9

0.95

1

Hungarian Max Both SKB Sim SKB Edge
0

400

800

1.200

1.600

2.000

precision recall f-measure runtime (min.)

Fig. 11: Quality of the clustering methods and total runtime of linkage process for similarity threshold
0.75 compared with relation to the size and number of sources from R-NCVR

7 sources with 100, 000 records each. However, scaling the size of the sources increases
the total runtime by a factor of 10 for all methods. This is due the use of metric space for
the linkage. As explained in section 3.3 metric space finds all pairs of records that have
a similarity above a predefined threshold. We observe, however, that both SKB methods
achieve generally the lowest runtime.

7 Conclusions

We studied the use of metric space for multi-party privacy preserving records linkage
(MP-PPRL) to efficiently link and cluster records encoded as Bloom filters. We proposed
a dynamic pivot-based metric space approach to reduce the number of comparisons that
can adapt the number and choice of pivots for a growing number of data sources and thus
increasing data volume. The approach is driven by a parameter to control and limit the
overlap between the pivots in the metric space. The evaluation showed that this method
is very efficient to link multiple sources. Furthermore we presented five early and late
clustering methods that create clusters containing at most one element from each source.
Early clustering approaches build clusters during the linkage process and late clustering
postpone the determination of clusters after all sources have been linked. Our evaluation
shows the high scalability and good quality of Max-Both as an early clustering method and
SKB-S as a late clustering method.

Despite the effectiveness of the dynamic pivot-based metric space the runtime of the new
approaches still increase more than linear with data size. We will thus analyze further
runtime improvements such as the adoption of parallel processing on frameworks such as
Apache Spark and the combined use of metric space and blocking.

Bibliography
[Bl70] Bloom, BurtonH.: Space/Time Trade-offs inHashCodingwithAllowable Errors. Commun.

ACM, 13(7):422–426, July 1970.

[BRF15] Boyd, James H.; Randall, Sean M.; Ferrante, Anna M.: Application of Privacy-Preserving
Techniques in Operational Record Linkage Centres. In: Medical Data Privacy Handbook.
Springer, pp. 267–287, 2015.

20 Ziad Sehili, Florens Rohde, Martin Franke, Erhard Rahm

[Ch12] Christen, P.: Data Matching - Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, 2012.

[DR02] Do, H.; Rahm, E.: COMA: A System for Flexible Combination of Schema Matching
Approaches. In: Proc. VLDB conf. pp. 610–621, 2002.

[Du12] Durham, E.A.: A framework for accurate, efficient private record linkage. PhD thesis,
Faculty of the Graduate School of Vanderbilt University, Nashville, TN, 2012.

[Fr18] Franke, M.; Sehili, Z.; Gladbach, M.; Rahm, E.: Post-processing Methods for High Quality
Privacy-Preserving Record Linkage. In: Data Privacy Management, Cryptocurrencies and
Blockchain Technology. 2018.

[FSR18] Franke., M.; Sehili., Z.; Rahm., E.: Parallel Privacy-preserving Record Linkage using
LSH-based Blocking. In: Proc. 3rd Int. Conf. on Internet of Things, Big Data and Security
(IoTBDS). INSTICC, SciTePress, pp. 195–203, 2018.

[Gi16] Gibberd, A.; Supramaniam, R.; Dillon, A.; Armstrong, B.; O’Connell, D.: Lung cancer
treatment and mortality for Aboriginal people in New South Wales, Australia: Results
from a population-based record linkage study and medical record audit. BMC Cancer, 16,
12 2016.

[Gl18] Gladbach,M.; Sehili, Z.; Kudrass, T.; Christen, P.; Rahm,E.:Distributed Privacy-Preserving
Record Linkage Using Pivot-Based Filter Techniques. In: Proc. ICDEworkshops (ICDEW).
pp. 33–38, April 2018.

[GVY93] Garg, N.; Vazirani, V. V.; Yannakakis, M.: Approximate Max-Flow Min-(multi)cut
Theorems and Their Applications. SIAM Journal on Computing, 25:698–707, 1993.

[Ku55] Kuhn, H.W.: The Hungarian Method for the Assignment Problem. Naval Res. Logist.
Quart., 2:83–98, 01 1955.

[Ku11] Kuehni, Claudia E; Rueegg, Corina S; Michel, Gisela; Rebholz, Cornelia E; Strippoli,
Marie-Pierre F; Niggli, Felix K; Egger, Matthias; von der Weid, Nicolas X; for the Swiss
Paediatric Oncology Group (SPOG): Cohort Profile: The Swiss Childhood Cancer Survivor
Study. Int. Journal of Epidemiology, 41(6):1553–1564, 10 2011.

[MGR02] Melnik, S.; Garcia-Molina, H.; Rahm, E.: Similarity flooding: a versatile graph matching
algorithm and its application to schema matching. In: Proc.18th Int. Conf. on Data
Engineering. pp. 117–128, Feb 2002.

[PB07] Pedreira, Oscar; Brisaboa, Nieves R.: Spatial Selection of Sparse Pivots for Similarity
Search in Metric Spaces. In: SOFSEM 2007: Theory and Practice of Computer Science.
Springer Berlin Heidelberg, pp. 434–445, 2007.

[Sa18] Saeedi, A.; Nentwig, M.; Peukert, E.; Rahm, E.: Scalable Matching and Clustering of
Entities with FAMER. CSIM Quarterly, 16:61–83, 2018.

[SBR09] Schnell, R.; Bachteler, T.; Reiher, J.: Privacy-preserving record linkage using Bloom filters.
BMC Medical Informatics and Decision Making, 9(1):41, Aug 2009.

[SBR11] Schnell, R.; Bachteler, T.; Reiher, J.: A Novel Error-Tolerant Anonymous Linking Code.
Technical Report WP-GRLC-2011-02, German Record Linkage Center, Duisburg, 2011.

Multi-Party Privacy Preserving Record Linkage in Dynamic Metric Space 21

[Se15] Sehili, Z.; Kolb, L.; Borgs, C.; Schnell, R.; Rahm, E.: Privacy Preserving Record Linkage
with PPJoin. In: Proc. BTW. pp. 85–104, 2015.

[SR16] Sehili, Z.; Rahm, E.: Speeding up Privacy Preserving Record Linkage for Metric Space
Similarity Measures. Datenbank-Spektrum, 16(3):227–236, Nov 2016.

[Tr00] Traina, C.; Traina, A.; Seeger, B.; Faloutsos, C.: Slim-Trees: High Performance Metric
Trees Minimizing Overlap between Nodes. In: Advances in Database Technology —
EDBT 2000. Springer, pp. 51–65, 2000.

[Va17] Vatsalan, D.; Sehili, Z.; Christen, P.; Rahm, E.: Privacy-preserving record linkage for big
data: Current approaches and research challenges. In: Handbook of Big Data Technologies,
pp. 851–895. Springer, 2017.

[VCR20] Vatsalan, D.; Christen, P.; Rahm, E.: Incremental clustering techniques for multi-party
Privacy-Preserving Record Linkage. Data & Knowledge Engineering, 2020.

[VCV13] Vatsalan, D.; Christen, P.; Verykios, V. S.: A taxonomy of privacy-preserving record
linkage techniques. Information Systems, 38(6):946–969, 2013.

[Xi08] Xiao, C.; Wang, W.; Lin, X.; Yu, J. X.: Efficient Similarity Joins for Near Duplicate
Detection. In: Proc. 17th Int. Conf. on World Wide Web. pp. 131–140, 2008.

[Ze06] Zezula, P.; Amato, G.; Dohnal, V.; Batko, M.: Similarity search: the metric space approach.
Springer, 2006.

