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Abstract. The fourth industrial revolution promises a new quality of
automation with smart manufacturing devices sharing enormous amounts
of data. A crucial step in fulfilling this promise is developing advanced
data integration methods that are able to consolidate and combine het-
erogeneous data from multiple sources. We outline the use of knowledge
graphs for data integration and provide an overview of proposed ap-
proaches to create and update such knowledge graphs, in particular for
schema and ontology matching, data lifting and especially for entity res-
olution. Furthermore, we present data integration use cases for Industry
4.0 and discuss open problems.
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1 Introduction and related work

The success of Industry 4.0 is based on the transforming technologies of the
last decade: the Internet of Things and Big Data [37]. The Internet of Things
enables communication and exchange of data between physical objects (e.g.,
sensors) to implement certain services and reach autonomous decisions. In the
medical domain, for example, the Internet of Things can improve services such
as monitoring, diagnostics, and treatment by utilizing interconnected devices
that observe the vitality of persons [72]. The idea of Industry 4.0 is similarly
based on the close interaction of decentralized systems such as production sys-
tems and products, to achieve self-controlled and self-optimizing processes. Big
Data comes into play due to the enormous amount of different kinds of data that
are continuously generated, exchanged, and to be processed. This data has to be
standardized to enable their interpretation and autonomous decisions. Moreover,
the different kinds of data can be collected, transformed, and integrated to sup-
port a holistic analysis and optimization of the different production processes,
production lines, etc [22].

The challenges of Big Data are usually characterized by the ”V” properties
of Volume, Velocity, Variety and Veracity. These challenges are all relevant for
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Industry 4.0. In particular, disconnected sources in manufacturing processes gen-
erate a massive amount of data (Volume) at a high rate (Velocity) for further
processing [22]. Variety refers to the need to process different kinds of heteroge-
neous data, in particular structured data (such as events or database records),
semi-structured data (documents, log files, error reports), and unstructured data
(e.g., images, audio files, and videos). Veracity finally asks for providing a high
data quality to enable valid analysis results.

Data integration is the task to combine and enrich data from multiple sources
for data analysis. Big Data Integration is data integration for Big Data that has
to address the V challenges, in particular, Variety to deal with heterogeneous
data of different kinds and Veracity to achieve high data quality. Additionally,
the requirements Volume and Velocity lead to high-performance demand to deal
with the massive amount of continuously produced data. The high data quality
and performance requirements are best met with so-called physical data inte-
gration approaches that bring the data from different sources into a dedicated
repository such as a data warehouse or knowledge graph. Such repositories can
be maintained and used on a distributed cluster platform with many processors
to achieve fast data processing and analysis. Furthermore, such approaches can
apply comprehensive data preprocessing to improve data quality, in particular
by extracting information from semi- and unstructured sources and for per-
forming transformation and cleaning approaches for data consolidation [75,32].
Physical data integration such as the creation and continuous update of a data
warehouse or a knowledge graph also entails several steps, including the task
of entity resolution to identify (match) and fuse different representations of the
same real-world entity such as for a product part or customer.

While there is a huge amount of previous research and commercial activities
in the area of data integration [13,74], there is only little work focusing specifi-
cally on data integration for Industry 4.0. Some work has been done on the use
of dedicated process knowledge repositories for workflow analysis [61], and for
the enrichment and maintenance of unstructured documents such as failure and
performance reports [52]. Most repositories focus on certain data types, applica-
tions or certain phases in the value chain of products. Process knowledge data
consists of structured rules, information about data mining models and results
as structured data. On the other hand, documents such as failure reports and
unstructured data are essential as well. Groeger et al. [23] propose a repository
for maintaining these types of data for each manufacturing step.

In the remainder of this chapter, we focus on (Big) data integration with
knowledge graphs that can semantically integrate and interrelate many entities
of different types for data analysis. Knowledge graphs are more flexible than data
warehouses that are built on relational databases with a rather static, predefined
schema that prevents the easy addition of new kinds of heterogeneous entities
and their relationships. We begin by motivating the topic by outlining selected
industrial use cases for data integration in Section 2. In Section 3, we introduce
knowledge graphs and give an overview of the methods for constructing them.
The important task of entity resolution is the topic of Section 4 that explains
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the main steps and how its performance can be improved to deal with Big Data.
We close with a summary and outlook to open problems.

2 Data Integration Use Cases

Knowledge Graphs (KG) and other semantic technologies have become a viable
option for companies to organize complex information in a meaningful manner.
The semantic representation of data can improve understandability of complex
data making development of new technologies more efficient [18], and improve
quality control in manufacturing processes [97]. Not only software giants like
Facebook, Google and Microsoft, but also production companies like Siemens [78]
or news conglomerates like Thomas-Reuters [91] turn towards semantic repre-
sentations of their data. Aibel, a service company in the energy sector, has
reportedly saved more than 100 million Euros through better representation of
their products using ontologies [90].

In the following we will look at some examples, where companies integrated
heterogeneous data sources into semantic repositories.

In a Bosch factory[38] Surface Mount Technology is used to mount electri-
cal components directly on circuit boards. Different machines are needed in this
process, e.g., to place the electronic parts or inspect the solder joints. To detect
failures in the manufacturing process, the integration of several data sources com-
ing from machines of different vendors is necessary. This data integration relies
on a domain ontology. An ontology is a semantic data structure, which contains
known concepts and relationships and can be used to ensure the consistency
in the data integration process. The machine components in the manufacturing
pipeline produce log data in the form of JSON files. These are extracted and
stored in a PostgreSQL database which is then manually mapped to the ontol-
ogy. Through the use of the Ontop1 framework a Virtual Knowledge Graph is
created from the ontology and the mappings to the original data sources. The
manufacturing process data can then be analyzed by sending SPARQL (a se-
mantic querying language) queries which are translated to SQL queries to the
original data sources. In an evaluation this approach returned results in tens of
seconds, which the researchers deemed a reasonable amount of time for their
use case. What is still missing is a more comprehensive data analysis that goes
beyond the use of queries, e.g., the use of machine learning to identify erroneous
processing steps.

Siemens relies on a similar approach to unify multiple data sources in their
smart manufacturing process [78]. A common ontology is used and the hetero-
geneous sources are mapped to this ontology. The resulting KG is used as a
basis to integrate dynamically occurring events in their factory into the KG.
The researchers present an approach for event-enhanced KG completion using
a machine learning approach to jointly learn KG embeddings as well as event
sequence data embeddings. In their evaluation they show, that their approach

1 https://ontop-vkg.org
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leads to good quality KG completion and can aid in the synchronisation of the
physical and digital representations of a smart factory.

Jirkovský et al. [35] investigate the use of semi-automatic ontology matching
to integrate an Excel File containing Ford spare part records and the Ford supply
chain ontology. They utilize extensive preprocessing to enrich the Excel records
with implicit information contained in part numbers and abbreviations. Multiple
similarity measures are used for element pairs which are fed into a self-organizing
map, which is a type of artificial neural network that can be trained in an
unsupervised fashion. The trained model can classify entity pairs and present
the user with examples, where it is least confident about its classification.

3 Knowledge Graphs

In this section we first present the foundations of semantic technologies for knowl-
edge graphs. We then present the necessary steps to semantically integrate het-
erogeneous data sources for creating and evolving such knowledge graphs.

3.1 Knowledge Graph Foundations

Part123 ProcessingStep123

Screw

ManufacturingResult

Entity

ManufacturingStep

"Hex Headed
Machine Screw"

rdf:type

hasName

Entity Level

Ontology Level

manufacturedIn

rdf:type

rdf:type
rdf:type

rdf:type

Fig. 1. Example snippet of a KG

In Fig. 1 we can see an example snippet of a KG. We will use this illustration
to subsequently introduce RDF, ontologies and finally what a KG is.
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RDF The standard that is used to create KGs with their entities and relation-
ships is called RDF (Resource Description Framework), which is a recommen-
dation2 of the W3C (World Wide Web Consortium). An RDF graph is a set
of triples. Using such triples we can make statements about entities and their
relations. An example of a triple we can see in Fig. 1 is

Part123 manufacturedIn ProcessingStep123 .

An RDF Graph can have three different kinds of nodes: IRIs (Internationalized
Resource identifiers), literals or blank nodes. IRIs are generalizations of URIs and
give each resource a unique identifier. To express values such as strings, dates
or numbers literals are used. RDF enables the user to also state the datatype
and if the literal is a string a language tag can be provided. Blank nodes are
anonymous resources, that enable more complex structures.

Ontologies An ontology is a formal description of knowledge using machine-
processable specifications. These specifications have well defined meanings and
contain known concepts and relationships [30]. For example, in Fig. 1 we express
that the entity Part123 belongs to the class Screw with the triple

Part123 rdf:type Screw .

Ontologies build on description logic, which enables reasoning engines to
check logical consistency and correctness. Such reasoning possibilities are ad-
vantageous in the Industry 4.0 setting to make implicit information explicit. For
example, [49] use reasoning as data enrichment step to infer compatibility of
parts.

Furthermore, ontologies provide a so-called vocabulary, which is a set if IRIs,
that can be used in RDF graphs3. In Fig. 1 for example we use the RDF vocab-
ulary, by utilizing rdf:type to express that an entity is an instance of a class.
Incorporating vocabularies is a common technique to rely on already existing
ontologies and makes integration of different semantic systems easier. For the
Industry 4.0 context there already exist ontologies like e.g. CORA (Core On-
tology for Robotics and Automation) [71] that can be a useful starting point
for companies. An overview over other ontologies for Industry 4.0 can be found
here [86].

Knowledge Graph The terms ontology and KG are sometimes erroneously
used as synonyms. KGs often integrate multiple sources into a single ontology
and are able to derive new knowledge through reasoning [16]. While ontologies
often focus on the conceptual modeling, knowledge graphs include a large num-
ber of entities and relations as instances of concepts and relationships, which
introduces the need of instance-level data integration such as entity resolution.
In the industry 4.0 context often the more specific term industrial knowledge

2 https://www.w3.org/TR/rdf-primer/
3 https://www.w3.org/TR/rdf11-concepts/#vocabularies

https://www.w3.org/TR/rdf-primer/
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graph (e.g. at Siemens [31]) is used. A notable example of an open-source KG
is the Industry 4.0 Knowledge Graph [3]. This KG contains information about
standards used in smart manufacturing and relations between standards.

3.2 Knowledge Graph Construction

The construction of a KG entails the integration of (heterogeneous) data sources
and enriching the data with semantic information. The integration process gen-
erally necessitates the following steps:

1. Creation of the KG ontology
2. Mapping of data sources to the KG ontology which requires schema or on-

tology matching
3. Preprocessing of data sources to extract, and clean entities and transform

them into the RDF format which is also known as data lifting
4. Categorization of entities to assign them to the ontology concepts, e.g. for

entities extracted from documents. This task can be addressed with machine
learning by utilizing already assigned entities as training data [79]

5. Entity Resolution to identify duplicate entities and fuse them together in the
knowledge graph.

Bear in mind, that some of these tasks can happen in different order (e.g.,
integrate the data sources first and then perform data lifting or vice versa) or
even overlap (e.g., classification of entities can happen in the data lifting step).
Moreover, the knowledge graph has to be continuously updated to incorporate
new data and even new data sources. This asks for incremental methods to evolve
the KG ontology and to add entities incrementally.

In the following we will start by presenting schema and ontology matching,
followed by the data lifting task. Entity Resolution will be discussed separately
in Section 4.

Schema and Ontology Matching Smart factories produce a plethora of dif-
ferent data formats from a vast number of sensors, databases, spreadsheets etc.
To tackle this variety aspect of Big Data, companies have to unify these data col-
lections under a common schema, a task that is referred to as schema matching.
Schema matching aims to determine semantic correspondences between meta-
data, database schemata or in the special case of ontology matching between
ontology elements. The high degree of semantic heterogeneity between sources
makes this a difficult task, especially since not only one-to-one matches have to
be found, but also more complex relationships like e.g., generalizations or part-of
relations.

A central element of schema matching systems are matchers, which deter-
mine the similarity between concepts/attributes of the given schemata. Differ-
ent types of matchers exist, namely instance- and metadata-based matchers.
Instance-based matchers rely on already known instance matches between data
sources and mostly rely on the instance overlap among concepts to determine
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how similar concepts are. Matchers that rely on metadata can further be divided
into element-level and structure-level matchers, where the former use similarity
between concept names sometimes utilizing dictionaries and the latter exploit
structural information in ontologies e.g., the children or parents of concepts.
Matching frameworks typically rely on a combination of different types of match-
ers to achieve a high quality result [24]. Matchers can be executed sequentially,
in parallel or a mixture of both.

To illustrate this let us look at an example from the smart product lifecy-
cle, where products from different vendors generate data, that we need to inte-
grate [88]. Table 1 lists six sample products from five different provider sources
such as www.ebay.com and www.buzzilions.com. The descriptions represent six
cameras from two manufacturers Canon and Nikon. As shown, entity 1 and en-
tity 2 as well as entity 4, entity 5, and entity 6 represent the same real-world
camera. We can see that schemata between data sources vary immensely. This
is not only apparent by the different number of properties for the same entities,
but also in the very different representation of the same attributes. For example,
entity 1 has an attribute effective megapixel count with a value 10.1, as well
as an attribute pixel count with the value 10 Megapixel, while the matching
entity 2 has an attribute megapixels with the value 10.1 MP. All three attributes
would have to be determined to be the same. Data preprocessing can alleviate
some heterogeneity e.g., replacing common abbreviations like MP for Megapixel.
A schema matching approach will first have to classify entities from the given
sources. In the example, the entities are all of the type camera, but the data
sources might contain e.g., camera cases, which have to be separated from cam-
era entities. Secondly, classification of properties helps to reduce the search space
e.g., the property compatible with macintosh in entity 1 should be treated as a
Boolean variable rather than a string, and therefore not compared with other
string attributes.

Reduction of search space is a general problem in schema matching. Given
two schemata, the comparison of every element of one schema with every ele-
ment of the other schema has quadratic complexity. This large search space has
not only detrimental effects with regards to scalability but can also negatively
impact match quality given the higher number of error possibilities. The main
strategies to narrow the search space are early pruning of dissimilar elements
and partitioning of the ontologies [73]. Early pruning means discarding element
pairs with low similarity early in the matching process. Especially, in sequential
matching workflows this enables early matchers to alleviate the burden of un-
necessary comparisons for subsequent matchers. For example, after determining
the attribute name similarity of usb port in entity 1 and brand in entity 2 is low,
the comparison of these attributes can be omitted in further steps. Peukert et
al. [70] employ filters to discard element pairs beneath a certain similarity thresh-
old. The threshold can be predefined or dynamically set depending on already
calculated comparisons and mapping results. Partitioning-based approaches di-
vide the ontologies in smaller parts so that only partitions have to be compared.
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Table 1. Example Raw Data

property value

entity 1

”source” ”www.buzzillions.com”
”page title” ”Canon EOS 40D Digital SLR Camera”
”compatible with macintosh” ”Yes”
”depth inches” ”2.9”
”digital slr” [ ”Body Only”, ”Body With Lens” ]
”effective megapixel count” ”10.1”
”height inches” ”4.2”
”lcd display size inches” ”3”
”lcd viewer” ”3 Inch”
”manufacturers warranty hardware” ”1 Year”
”megapixels” ”10.0”
”optical zoom” ”4x”
”pixel count” ”10 Megapixel”
”shutter speed” ”1/8000-30 second”
”skuprice” ”1299.9900”
”still image resolution max” ”3888 x 2592”
”usb port” ”(1) Mini-B”
”weight pounds” ”1.63”
”width inches” ”5.7”

entity 2

”source” ”www.ebay.com”
”brand” ”Canon”
”megapixels” ”10.1 MP”
”model” ”40D”
”mpn” ”EOS 40D”

”screen size” ”3”̈
”type” ”Digital SLR”

entity 3

”source” ”www.priceme.co.nz”
”page title” ”Canon EOS 400D New Zealand Prices - PriceMe”
”focus adjustment” ”Automatic focus, Manual focus”
”image stabilizer” ”Without Image Stabilizer”
”light sensitivity” ”ISO 100, ISO 1600, ISO 200, ISO 400, ISO 800, Auto”
”optical sensor” ”CMOS”

entity 4

”source” ”www.gosale.com”
”page title” ”Nikon D3100 14.2MP Digital SLR on sale for $461.20”
”camera type” ”SLR”
”ean13” ”0018208097982”
”manufacturer” ”Nikon”
”megapixels” ”14.2 MP”
”product number mpn” ”D3100 18-55 5”
”retail price” ”$949.00”
”upc” ”018208097982”

entity 5

”source” ”www.ebay.com”
”page title” ”Nikon D3100
”mpn” ”33858”

”screen size” ”3”̈
”upc” ”018208254866”

entity 6

”source” ”www.walmart.com”

”page title” ”Nikon 14.2MP DSLR Camera with VR Lens, 3L̈CD”
”model no” ”Nikon D3100 Kit”
”shipping weight in pounds” ”3.6”
”walmart no” ”000609532”
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This not only reduces the number of necessary comparisons, but makes these
match tasks easily parallelizable.

Several different aspects of the data will have to be considered in order to
create a high quality match result. A schema matching workflow will have to
incorporate the similarity of attribute names and attribute values. The use of
pre-trained word embeddings or synonym dictionaries can be beneficial to match
attributes, that are dissimilar on character level, while being close semantically
like brand and manufacturer. LeapME [2] relies on word embeddings and meta-
information of property names and property values as input for a dense neural
network. The classifier is trained on labeled property pairs and the corresponding
feature vectors. The trained model can then be used to obtain matching decisions
between unlabeled property pairs and their similarity scores. To integrate data
about smart energy grids, Santodomingo and colleagues [87] use background
knowledge from a database of electrical terminology. This background knowledge
is used to find words with similar meanings to extend the strings of entities in
the given ontologies. The authors utilize several matcher components, such as
a linguistic module, which reduces words to their root form and filters out stop
words, that are uninformative in the matching process (e.g., ”the”), as well as
threshold-based similarity components to derive matching decisions.

While binary matching approaches, unifying two sources, are most common,
schema matching in the industry 4.0 context usually requires more holistic ap-
proaches that are able to consolidate multiple sources as shown in the exam-
ple. Although it is possible to perform this task by sequentially matching two
sources until all sources are integrated, specific approaches have been developed
that cluster elements of multiple sources directly. Gruetze et al. [26] align large
ontologies by clustering concepts by topic. Topical grouping is done by using
Wikipedia pages related to concepts which result in category forests, that are a
set of Wikipedia category trees. Utilizing the tree overlap alignments are gener-
ated. Megdiche et al.[54] model the holistic ontology matching task as maximum-
weighted graph matching problem, which they solve within a linear program.
Their approach is extensible with different linear constraints, that are used to
reduce incoherence in resulting alignments. Roussille et al. [81] extend existing
pairwise alignments of multiple sources by creating a graph with entities from
ontologies as nodes, and correspondences as edges. They determine graph-cliques
to detect the holistic alignment.

For a more general overview over ontology matching we refer the interested
reader to this survey [63] and for a more detailed discussion of large-scale ontol-
ogy and schema matching to [73].

Data Lifting The data in organizations usually has to be semantified, since
it resides in formats which contain no machine-readable semantics such as re-
lational databases or spreadsheets or even unstructured formats such as plain
text. The necessary conversion process is called data lifting, since the data is
not only transformed, but also ”lifted” to a higher data level which contains
semantic information [92].
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While schema matching and data lifting both are concerned with mappings
between different aspects of data sources, they have a different focus. Schema
matching aims to consolidate heterogeneity between data sources and any en-
richment of the data consists of implicit information that was scattered among
different data sources. Data lifting seeks to transform data into RDF. While
the mapping of e.g., a relational database to an existing ontology can be seen
as a form of schema/ontology matching, data lifting is mainly concerned with
transformation of the data into a different format.

The transformation process can be done manually by using specific mapping
languages. The simplest is the direct mapping4, which performs a quick con-
version of a relational database to RDF. The relational database should have
well-defined primary and foreign keys and meaningful table and column names.
While being simple, the direct mapping approach has the drawback of not being
able to reuse existing popular vocabularies. For a more sophisticated conver-
sion the mapping language R2RML5 can be used. It enables the user to have
more control over the mapping process. The use of manually created mappings
is frequently mentioned in the industry 4.0 context. The German industrial con-
trol and automation company Festo describes their struggles with their previous
monolithic Java application for data transformation in this paper [49]. They
have since moved to use custom R2RML mappings to transform relational data
into entities of their KG. Similarly, Kotis and Katasonov [46] propose rule-based
mappings in their semantic smart gateway for the Web of Things.

While mapping languages enable powerful transformations, they require do-
main experts to go through a laborious process of writing many mapping rules,
even with tool support. To address this problem learning-based transformation
approaches have been devised in a research field called ontology learning. In the
following we will present some examples from the field. For a more thorough
overview over the field of ontology learning we refer the reader to this recent
survey [50].

Maedche and Staab [51] first conceptualize ontology learning to address
the need of simplifying the ontology engineering process by enabling the semi-
automatic integration of a wide range of sources including web documents, XML
files as well as databases and existing ontologies. They rely on dictionaries to
extract concepts and use hierarchical clustering to build a taxonomical structure
in their ontology. Using association rule mining with a class hierarchy as back-
ground they derive possible relationships that are presented to the user. Modoni
et. al [56] present a rule-based approach to automatically transform relational
databases to ontologies. Their ontology integration approach uses the mediator
pattern, which does not physically integrate the ontologies but rather provides
a common interface to distributed data sources. The mediation is done through
custom mapping rules. The authors illustrate their approach with a case study
of a mould production company, which is faced with integrating their various
data sources.

4 http://www.w3.org/TR/rdb-direct-mapping/
5 https://www.w3.org/TR/r2rml/

http://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/r2rml/
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4 Entity Resolution

In the smart product lifecycle and Industry 4.0. in general, a deluge of data from
numerous sources is generated [88] requiring Big Data techniques for the collec-
tion, integration and analysis of heterogeneous data. Entity Resolution (ER) or
data matching is a main step for data integration and the creation/evolution of
knowledge graphs. It is the task of identifying entities within or across sources
that refer to the same real-world entity. ER for Industry 4.0 requires fast and
scalable solutions (Volume) as well as advanced methods to incrementally add
new data or even new data sources either in a real-time or evolutionary way
(Velocity) [21].

ER is typically implemented by a multistep workflow, as shown in Fig. 2. The
input is data from multiple sources that may differ enormously in size and quality,
and the output is a set of clusters, each of which contains all matching entities
referring to the same real-world entity. The shown preprocessing step has already
been discussed and entails data cleaning actions such as handling missing values,
smoothing noisy values, and identifying and correcting inconsistent values [9].
Furthermore, schema matching can be applied to identify matching properties
that can be used for determining the similarity of entities for ER. To match
the cameras shown in Table 1, preprocessing may include transforming values
into the same unit, lower casing strings, applying canonical abbreviations to
harmonize property values, and assigning the same name to matching properties
to facilitate similarity computations.

BlockingPreprocessing Pair-wise
Matching Clustering

source 1

source 2

source k

Data Sources Sets of Clusters

.

.

.
ER Workflow

Fig. 2. Entity Resolution Workflow

The blocking step prevents comparing irrelevant entities with each other.
For instance, in our running camera example (Table 1), cameras with different
manufacturers will be placed in different blocks in order to avoid comparing
Nikon cameras with Canon cameras. Then in the pair-wise matching step, the
similarity of candidate pairs are computed by applying a set of similarity methods
on the property values of the entities. Finally, the clustering step uses computed
similarities to group the same entities in the same cluster. Clustering facilitates
fusion of the same entities into one unique representative entity.
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The main ER steps of blocking, matching and clustering will be discussed in
the following subsections, emphasizing on techniques related to Big Data. We
will also outline incremental ER solutions to deal with the incremental addition
of new entities and even new sources to a knowledge graph. Finally, we briefly
discuss some ER prototypes for Big Data.

4.1 Blocking

Blocking aims at improving performance and scalability by avoiding that every
entity has to be compared with every other entity for determining matching
entity pairs, leading to a quadratic complexity. Therefore, blocking methods
intend to restrict the comparisons only to those pairs that are likely to match.
Standard Blocking (SB) [19] and Sorted Neighborhood (SN) [28] are two popular
blocking methods that both utilize a so-called blocking key to group entities. The
key is mostly specified by an expert and is the result of a function on one or
several property values, e.g. the initial five letters of the manufacturer name or
page title property for the camera example (Table 1). Since real data is noisy,
generating one blocking key per entity may not allow finding all matches. Hence,
it can be necessary to generate multiple blocking keys per entity, leading to
multi-pass blocking [29,44] that can find more matches and thus improve recall
over the use of single blocking key. Since determining suitable blocking keys can
be a tedious and difficult task, approaches based on both supervised [6,20] and
unsupervised [39] Machine Learning (ML) have been proposed to learn blocking
keys. [67] gives a comprehensive overview of blocking techniques.

To further improve runtime and scalability, the blocking methods can be
parallelized to utilize multiple machines in a cluster. This is relatively easy to
achieve on partitioned input data by utilizing the MapReduce [12] framework or
newer frameworks such as Apache Spark [95] that build on MapReduce. More-
over, since the sizes of the output blocks can be skewed, achieving good load
balancing is the major challenge for parallel blocking and ER. Kolb et al. pro-
pose the load-balanced SB [43] and SN [42] based on the MapReduce framework.

For semi-structured, textual data or in absence of an aligned schema across
sources, schema-agnostic token-based blocking approaches have been proposed.
The basic Token Blocking (TB) [65] generates a candidate match based on the
common tokens of property values of a pair. Like with traditional blocking meth-
ods, scalability can be improved by a MapReduce-based implementation [67] and
ensuring load balancing [11]. Since the basic TB may create too many candidate
pairs, newer schema-agnostic approaches reduce them by pairing tokens from
synthetically similar properties, considering only selected properties, or compar-
ing only the entities of the same type [67]. Furthermore, block post-processing
approaches such as meta-blocking [89,66] can largely reduce the number of can-
didate matches. A very different approach is [62] that totally ignores property
values but determines candidate matches based on relations between entities.
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4.2 Pair-wise Matching

The decision on whether a pair of entities is a likely match is based on the
similarity of the two entities, which is determined by one or multiple similarity
functions. These functions mostly determine the similarity of property values
depending on the data type (string, numerical, date, geographical coordinates
etc.). Typically, several such similarity values need to be combined to derive a
match or non-match decision. Traditional approaches such as threshold-based
or rule-based methods classify the matching status for each pair independently.
In threshold-based classification, a specified threshold considers all pairs with
similarity above a certain value as matches. On the other hand, in rule-based
classification, a rule specifies a match predicate consisting of property-specific
similarity conditions that are combined with logical operations [9]. For the cam-
era example (Table 1), the match decision may be based on the similarity of
the properties ”page title” and ”megapixels” although the latter property is not
present for all entities shown.

Another line of research called collective ER [5] uses both property value sim-
ilarity and relational information for determining the similarity of two entities.
Here, the ER process is mostly iterative because changes in similarity or match-
ing status of one pair affects the similarity value of the neighbouring pairs. Such
approaches are more difficult to scale than with the standard approaches, where
candidate pairs are compared independently. To better scale collective ER, Ras-
togi et al. [77] propose a generic approach that executes multiple instances of
the matching task and constructs the global solution by message passing.

Manually determining the properties to match, similarity functions and sim-
ilarity thresholds is a complex task, especially for heterogeneous and noisy data.
Hence, a better alternative is often to apply supervised ML approaches to find
optimal match configurations to determine matching entity pairs. These ap-
proaches can utilize traditional ML techniques such as SVM, logistic regression
or random forests [40] but also newer approaches based on deep learning. Bar-
laug et al. [4] provides an overview about ER proposals utilizing deep neural
networks including the approaches DeepER [14], DeepMatcher [57] and Hi-EM
[96]. These approaches typically utilize embeddings for textual property values by
transforming either words or their characters to numerical representations that
preserve the semantic similarity between property values. Word embeddings are
able to convert a long sequence to a short one, but they can not necessarily
cover all possible words for specialized domains. The generation of embeddings
can make use of pretrained models such as word2vec [55], GloVe [69] or fastText
[7] that are derived from large corpora such as Wikipedia [4].

4.3 Clustering

The matches determined by the pair-wise similarity calculations are often contra-
dicting and therefore only match candidates. The final matches are determined
by applying a clustering approach on the set of candidate match pairs that form a
similarity graph where matching entities are linked with each other. The baseline
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approach for entity clustering is to determine the transitive closure or connected
components over the match links. Note, that general clustering algorithms like
K-means that need a predefined number of clusters are not suitable for ER.

Connected components algorithm does not consider the strength or simi-
larity of candidate matches, and can thus cluster even weakly similar entities.
There is a large spectrum of alternatives some of which, e.g. Stable Marriage
[53] and Hungarian algorithm [47] are suited when the input consists of two
duplicate-free sources. For deduplicating a single source, Hassanzadeh et al. [27]
comparatively analyzed several clustering algorithms. For some of them, such as
Correlation Clustering, parallel implementations based on iterative processing
and message passing have been proposed [64,8]. Saeedi et al.[83] comparatively
evaluate the effectiveness and scalability of parallel implementations of several
clustering schemes from [27] for the case of multiple data sources. Recently, Yan
et al. [94] proposed a novel hierarchical clustering approach that avoids so-called
hard conflicts inside clusters where the weakest similarity in a cluster is below a
critical threshold. This is achieved by not merging candidate cluster pairs if this
would lead to such a hard conflict. The approach is used within an industrial
ER framework that is applied on billions of customer records on a daily basis.

Another line of research focuses on designing methods and algorithms for
clustering entities from multiple duplicate-free sources [84,59] or clustering enti-
ties from combined duplicate-free and dirty (duplicate-containing) data sources
[48]. The proposed approaches outperform more general approaches such as cor-
relation clustering.

4.4 Incremental ER

Incremental ER approaches are needed to address the ”Velocity” characteristic
of Big Data to deal with dynamic or evolving data such as new incoming entities
or even new data sources. Incremental approaches generally fall into two cate-
gories: 1) real-time approaches that are mostly applied in query processing and
deal with individual new entities and 2) evolutionary approaches that deal with
the addition of several entities of even a complete new data source in order to
update an already existing knowledge graph without repeating the ER process
for all data.

1) Real-time approaches leverage dynamic blocking and indexing techniques
[76] as well as dynamic pair-wise matching methods [93,33,1] that support the
fast matching of entities at query time.

2) Evolutionary approaches focus on updating the knowledge graph. Gruen-
heid et al. propose a generic greedy approach for such an incremental ER and
clustering [25]. This method is extended in [58] to avoid computations on already
integrated portions of the data that are unlikely to be affected by the new data.
Scalable approaches for incremental entity clustering that also support the addi-
tion of new data sources are investigated in [60,85]. In particular, [60] proposes
an incremental entity clustering based on a Max-Both strategy that adds a new
entity to the maximally similar cluster only if there is no other new entity of
the same input source with a higher similarity. [85] proposes a method called
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n-depth reclustering for incremental linking and clustering that is even able
to repair existing clusters for improved quality and a reduced dependency on the
insert order of new entities.

4.5 ER Prototypes

There are several ER prototypes suitable for Big Data that are surveyed in [10]
including Dedoop [41], Magellan [45], FAMER [82], Silk [34], MinoanER [15],
and JedAI [68]. Each of them implements the whole ER pipeline in a parallel
way and includes novel Big-Data-specific approaches for at least one step of the
pipeline. Dedoop is one of the early systems and based on MapReduce [12]; it im-
plements the load balancing techniques discussed in the subsection on blocking.
Silk, MinoanER, JedAI and a non-public version of Magellan are implemented
on top of Apache Spark6 while FAMER uses Apache Flink7. FAMER addition-
ally supports the incremental addition of new entities and new data sources [85]
and can deal with entities from multiple sources (>2), while MinoanER supports
schema-agnostic ER methods to deal with heterogeneous and noisy web entities.

5 Conclusion & Open Problems

We presented an overview over the Big Data challenges for data integration posed
by the fourth industrial revolution. We advocated the use of knowledge graphs
for the integrated and semantically consolidated representation of heterogeneous
data as a basis for data analysis and production optimization. Creating and con-
tinuously updating knowledge graphs is challenging and we presented approaches
for the tasks of schema/ontology matching, data lifting/semantification and es-
pecially for entity resolution. We also discussed some published data integration
use cases for Industry 4.0.

The current state for Big Data integration using knowledge graphs in In-
dustry 4.0 is still in an early stage and requires too much manual effort. The
common use of manual mapping rules for data lifting and/or schema matching
can be justifiable for horizontal integration cases with already well structured
high quality data. However, more efforts are needed to bridge the gap between
the (semi-)automatic data integration tools developed in academia and manual
matching efforts that are prevalent in the industry to establish robust meth-
ods for integrating the complex data of industrial applications. Especially the
increasing interconnection of different domains (e.g. IoT, Smart Factories and
Smart Grids) calls for more automated integration concepts, that could enable
”plug & play” capabilities of smart machinery [17]. Solving these challenges is
not reasonably possible without incremental ER solutions that keep knowledge
graphs in sync with the physical realities present in smart factories, within a rea-
sonable time frame. The possibility of integrating increasingly larger data sources

6 https://spark.apache.org/
7 https://flink.apache.org/

https://spark.apache.org/
https://flink.apache.org/
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asks for scalable solutions. The triple stores used in Semantic Web applications
can become a bottleneck, which necessitates alternative solutions [36]. The use
of frameworks that rely on property graph models (e.g. Neo4j8 or Gradoop [80])
can be a viable alternative to triple stores in some use cases.

The interdiscplinary nature of Industry 4.0 necessitates a close cooperation
between domain experts of the respective manufacturing domain, ontology engi-
neers and data scientists [38]. We believe, that this is not only true for individual
projects in this domain, but for the research in this direction as a whole.
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