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Abstract. To advance research on system call based HIDS, we present
LID-DS 2021, a recording framework, a dataset for comparative analysis,
and a library for evaluating HIDS algorithms.

1 Introduction

Unfortunately, attacks on IT systems are commonplace these days. To avoid
major damage, it is important to become aware of an ongoing attack as soon as
possible. Intrusion Detection Systems (IDSs) provide timely detection of attacks
on IT systems.

According to Debar et al. [4], IDSs are distinguished by the monitored plat-
form and the attack detection method, among others. Network Intrusion Detec-
tion Systems (NIDS) use network interactions to monitor the behavior of possibly
multiple systems, while Host Based Intrusion Detection Systems (HIDSs) focus
on collecting data directly on the host. Though signature-based IDS can make
the detection for either NIDS or HIDS of known attacks transparent and com-
prehensible, they are incapable of detecting novel, previously unknown attacks.
Anomaly-based IDS open up the possibility of detecting these. Therefore new
methods for anomaly-based attack detection are being researched to keep up
with ever-changing developments by attackers. As more and more network com-
munications take place in encrypted form, it is worth taking a closer look at
system call-based HIDS, as they can, among other things, directly monitor the
impact of those communications on the affected systems.

Modern datasets and comparable results are key factors for the progress of
HIDS research. Prior work has largely been based on inadequate datasets, which
have also been used in different (incomparable) ways. Some studies did not stick
to the partition of training, validation and test data given by the datasets. To
make it worse, some of them were not evaluated comparably to each other. For
example, by using different definitions of detection and false alarm rates. All
this leads to non-comparable results and hinders trustworthy scientific progress
in the field of anomaly-based HIDS.

1.1 Our Contribution

For these reasons, we present a new version of the Leipzig Intrusion Detection
- DataSet, the LID-DS 2021 consisting of: an open source framework for
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generating HIDS datasets, a modern and comprehensive system call dataset,
including the implementation of all 15 of its scenarios and an open source library
for evaluating and comparing HIDS algorithms on the given and other datasets.
In doing so, we aim to contribute to the anomaly-based HIDS research not only a
dataset but also guide other researchers to benefit from existing work and create
comparable results in the future.

1.2 Paper Outline

The remainder of this paper is structured as follows: In Sect. 2, we address two
questions: What makes a good HIDS dataset and what HIDS datasets are cur-
rently available? Then, we introduce the new LID-DS-2021 in Sect. 3. We will
discuss bugs that we have fixed, how we generate better data in the new version
and provide assistance in processing the data and in evaluating HIDS algorithms
with the LID-DS-2021. In Sect. 4, we will compare the LID-DS-2021 with the
other datasets presented in Sect. 2 and perform a simple baseline evaluation.
In the final section, we summarize this paper and provide directions on which
further research with the LID-DS can go.

2 Host Based Intrusion Detection Datasets

To answer the question “What makes a good HIDS dataset?” in this section,
we will discuss what we believe to be important technical and then functional
features. We will then present the HIDS datasets available so far and briefly refer
to their content.

2.1 Preferred System Call HIDS Dataset Features

Technical Features
In our opinion, a HIDS dataset should meet the following technical characteristics
to support the widest possible range of HIDS algorithms.

System Call Names: The basic information for system call based HIDS.

Arguments and Return Values: Different system calls have different param-
eters like quantity specifications such as the number of bytes to be written, iden-
tifiers such as file descriptors, strings for path specifications, flags, pointers to
memory areas, read bytes, written bytes or error codes. As shown by Wagner
and Paolo [15], so-called mimicry attacks can simulate the benignity of system
call sequences but not of their arguments and return values. This is why these
are not recognized by HIDSs which only analyze the sequences. Therefore this
information should be taken into account by HIDS.

Thread Information and Process Ids: This information is important to
avoid mixing data from different processes and threads running in parallel, as
shown in the work of Pendleton et al. [13] and Grimmer et al. [6].



Dataset Report: LID-DS 2021 65

Timestamps: One should be able to reconstruct the exact sequence of system
calls since most algorithms are based on this. In addition, timestamps of the sys-
tem calls and their distances from each other can be useful features for anomaly
detection. Timestamps can also be useful to model periodically occurring behav-
ior. They should be as precise as possible.

User Ids: Invoking certain system calls is part of the normal behavior of a
process and a corresponding user. The same system calls executed by the same
process but another user may indicate an anomaly or an attack.

Data Buffers: This data may also contain important information. With them,
it is even conceivable to learn models based on the unencrypted data transmitted
e.g. via HTTPS. To what extent this is recommended and what significance it
has for data security and privacy shall remain unanswered here. We are not
aware of any previous use of the data buffers in a HIDS.

Network Data: Network data is an equally large and comprehensive data
source from which much valuable information can be extracted. A HIDS dataset
that also contains the host’s network packets allows the development of hybrid
IDS by combining system call and network data. In addition, a dataset containing
both system calls and network packets allows the comparison of the performance
of HIDS and NIDS approaches concerning a single host.

Resource Consumption: The resource consumption of a host can also be
used to create a profile of the normal. A too-large or small consumption can
indicate anomalies. Therefore, a dataset should also contain information about
CPU, memory, network and storage usage.

Functional Features
In addition to the purely technical requirements, we believe the following more
functional requirements for a HIDS dataset are just as important.

Real World Data: Ideally, a HIDS dataset contains real-world data. Any kind
of simulated data is just simulated in the end. As the work of Arp et al. [1] states:
This means that no matter how well prepared a laboratory-simulated dataset
may be, it rarely can guarantee that the collected data sufficiently represents
the true data distribution of the underlying security problem. But, real-world
data also brings difficulties: What about the privacy of the data? Does it contain
personal data? These are important points that must not go unnoticed.

Topicality: Software and operating systems change over time. That is why the
dataset must represent up-to-date software and operating systems.

Complexity: The scenarios included in the dataset should vary in complexity
to represent as many application areas as possible.
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Labeled Attacks: The data for a HIDS dataset should be labeled as accurately
as possible. Only then is it possible to automatically evaluate and confirm correct
classifications, clustering, etc. Ideally, the labels are manually investigated to
prevent label inaccuracy as described in [1]. Typically, HIDS datasets contain
many recordings, each over a more or less short period of time. Accurate labels
here also mean that within such a recording, a distinction is made between which
part is normal and which is anomalous, i.e. contains an attack.

Availability: A dataset for development, evaluation, and research for HIDS is
only useful if it is also available to as many researchers as possible. Therefore,
there should be no barriers (e.g. a payment or login) to accessing the dataset.

Comprehensibility: To be able to explain possible observations in need of clar-
ification in detail, it should be comprehensible how the data of a HIDS dataset
was generated. Therefore, a HIDS dataset should publish its source code (as
open source) with which it was created.

Expandability: Suppose a HIDS method requires more training, validation,
or test data than provided in the dataset for a specific investigation. Ideally, it
should be possible to extend a HIDS dataset with more examples of the existing
scenarios or even add entirely new ones. In this way, potential gaps in the data
can be filled in later.

Support in Processing the Data: To avoid errors or inaccuracies that would
lead to incomparable results, a HIDS dataset should provide guidance on how to
parse and load the data. Ideally, there are even ready-implemented data loaders
that allow researchers to process the dataset without writing custom code to
load the data.

2.2 HIDS Datasets

In the previous section, we discussed various technical and functional criteria for
assessing HIDS datasets. Based on these criteria, we now want to assess existing
system call based HIDS-datasets.

DARPA 1998 and DARPA 1999 Datasets: The DARPA Intrusion Detec-
tion Datasets from 1998 [10] and 1999 [11] consist among others of the Basic
Security Module (BSM) part. It contains Solaris audit logs in the form of sys-
tem call sequences, and provides arguments and return values, but no thread
IDs. Also, no additional statistics about the system are included. With publi-
cation dates from 1998 and 1999, the datasets are also significantly too old to
provide sufficient comparability with modern systems.

UNM Dataset: Another IDS dataset was released in 1999 by the University
of New Mexico, called the UNM dataset. Just like the Darpa datasets, it is out-
dated. It has 9 scenarios, differentiated by normal and attack behavior. However,
the records only consist of a sequence of process IDs and integer-coded system
calls. Thus, neither arguments nor metadata are supplied. The UNM does deliver
extensive descriptions of the scenarios but leaves the actual implementation of
the recordings in closure and is therefore not expandable.
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ADFA-LD: Even more, reduced in its data scope is the 2013 released ADFA-
LD from the University of New South Wales (UNSW) in cooperation with the
Australian Defense Force Academy (ADFA), which only consists of sequences of
integer-coded system calls. Thus, system call parameters, processes and threads
are fully ignored. Having only the system call identifiers it also lacks information
about system statistics and the recorded software.

ADFA-WD: In 2014 Creech published the ADFA-WD [3], a Windows system
call based HIDS dataset. It contains sequences of system calls and additional
information such as Process names, PIDs and return values.

NGIDS-DS: Another UNSW cooperation with the ADFA had taken place in
the year 2017. The NGIDS-DS contains thread information but lacks parameters
and fine granular timestamps. Also, no information about the system resources is
existent. Even though Haider et al. provided comprehensive specifications about
the recording process of the dataset, the de facto implementation of the recording
software is closed source.

AWSCTD: The Attack-Caused Windows OS System Calls Traces Dataset, is
a Windows-based HIDS system call dataset published in 2018. Among other
things, the paper of Čeponis and Goranin [2] mentioned the following goals of
the dataset: Attacks should be publicly available to assure renewal and indepen-
dent verification, should contain system call names, passed arguments, return
values, changed files by attacks and the network traffic generated by attacks.
However, the publicly available version1 of the AWSCTD does not contain any
of these data, but only simple system call integer sequences without any further
parameters, return values or threads and so on.

LID-DS-2019: In 2019, the first version of the LID-DS [7,14] was released.
Since we present a new dataset version in this paper, we name the old dataset
LID-DS-2019 to distinguish it from LID-DS-2021, the new one. The publication
of the LID-DS-2019 represented an attempt to overcome the problems of the pre-
viously described datasets. System calls were recorded with all their parameters,
thread IDs, user IDs, payloads and fine granular timestamps. The dataset con-
sists of several up-to-date attack scenarios that were comprehensively recorded
and contrasted with benign data to deliver a reliable base for the evaluation of
modern anomaly detection systems. Unfortunately, the implementation of the
included scenarios had not been published.

3 The New LID-DS

Since we released the original LID-DS, we have been able to do a lot of interesting
research with the data it contains. We have received feedback from other users
of the dataset and have been able to learn from papers that use it as their data.
However, in the process, we noticed a few inaccuracies, errors, and hurdles in the
LID-DS-2019. In this section, we will list these and address how we fixed them
in the new version of the framework, dataset and library.
1 https://github.com/DjPasco/AWSCTD - date accessed: October 17, 2022.

https://github.com/DjPasco/AWSCTD
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3.1 Bugs

Attack Timing: Due to the method used to determine the attack timing, some
of them were incorrect. In detail, this was because in LID-DS-2019 the time at
which an attack was started on the attacker’s system was used as the attack time
of the label. Since some attacks in the dataset require a specific startup time,
the corresponding effects on the victim can only be found later. In addition, in
some rare cases, there are traces where an attack is expected according to the
data record, but none occurs. The reason for this is that the attack, due to the
large startup time, apparently did not start until after the end of the recording.
To fix this problem, in an automatic post-processing step, we searched for the
attacker’s network packets in the pcap data, matched them with the victim’s
receiving system calls, and thus found the true start time of the attack on the
victim’s system.

Databuffer Encoding: The data buffers in LID-DS-2019 contained the first
80 bytes of all data buffers passed to system calls. This made it possible to
analyze e.g. parts of SQL statements or other data. However, these data buffers
could also contain non-printable byte values. All these values were encoded as
“.” (dot) in the records in LID-DS-2019. That’s why in the new version the
data buffers are encoded as base64 strings. In this way, we prevent potentially
important information from being lost. Nevertheless, we maintain a human-
readable encoding for the rest of the data.

3.2 Better Data

Distribution of User Actions: In the LID-DS-2019, almost all user behav-
iors had the same temporal distribution. This was modeled after the paper by
Deng. [5] We changed this in the new version. Now user behavior is sampled
from real-world web-server log files. Thus the scenarios are still not real-world
data, but at least their access timestamps are generated from real-world data.

System Resources: Since the LID-DS-2019 did not contain information about
consumed system resources, we have fixed this in the new version. We use
Docker’s built-in method to query (victim) container resource usage statistics to
get them once per second. So for all its records, the LID-DS-2021 contains the
following values once per second: CPU usage, memory usage, network received,
network send, storage read and storage written.

Network Data: A HIDS that not only considers the behavior of the system
to be monitored but also the communication of the system, can achieve better
results. Therefore, in addition to the system calls and system resources, we also
recorded the network communication to and from the victim in pcap format using
tcpdump. This even allows HIDS and NIDS to be compared on the dataset in
terms of their detection and error rates.
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IP Range: In LID-DS-2019, the attacker and all normal users had the same
IP because they were running as scripts on the recording host. As a result, all
network communication took place only between the host that performed the
recording and the victim. While this is not necessarily unrealistic, it is also not
a standard use case. With LID-DS-2021, however, all users and the attacker are
each running from their own Docker containers with their own IP addresses. As
a result, there are no longer only connections to one other host in the data.

Multi Step Attacks: All scenarios of LID-DS-2019 have a perfect attacker,
i.e. one who directly attacks the vulnerability without analyzing the system
beforehand. In reality, this is usually not the case. Therefore, for the new ver-
sion, we have also designed scenarios that include not only the attack itself, but
also the steps of preparation and several exploited vulnerabilities.2 For exam-
ple, we describe scenario CVE-2017-12635 63 which implements vulnerabilities
CVE-2017-12635 and CVE-2017-12636 in CouchDB up to version 1.7.0. In this
scenario, the attacker performs several steps in succession that a real attacker
could also perform. First, he performs a port scan using Nmap. Then, in an
optional second step, he performs a brute-force attack using hydra in combina-
tion with the rockyou password list to log in to the database. In the next step,
using CVE-2017-12635, a privilege escalation technique, the attacker changes
the database user’s privilege to give them administrator rights. Finally, a remote
code execution occurs using CVE-2017-12636 to open a reverse shell. It is worth
mentioning that each of these steps is labeled in the LID-DS-2021.

Source Code: With the original LID-DS, we released the recording framework
as open source. This allowed new scenarios to be added to the dataset. However,
it was not possible to create more recordings of existing scenarios with this, as
the source code of the scenarios was not included. Therefore, in addition to the
source code of the new framework, we also released the source codes of all 15
scenarios of the new dataset as open source. This makes it possible to create
new scenarios, extend existing ones, and also perform in-depth analyses where
the calling code from the attacker, normal user or victim is necessary.

3.3 LID-DS Library

Establishing the comparability of different research results is not an easy task.
On the one hand, there are papers like [12] that do not adhere to the division
of the data into training, validation and testing as specified in the datasets.

2 A list of the LID-DS-2021 scenarios including their description, classification by
simple/multi-step, and their source code can be found at https://github.com/LID-
DS/LID-DS/wiki/Scenarios.

3 Common Vulnerabilities and Exposures (CVE): a reference-method for publicly
known information-security vulnerabilities and exposures. See: https://cve.mitre.
org/.

https://github.com/LID-DS/LID-DS/wiki/Scenarios
https://github.com/LID-DS/LID-DS/wiki/Scenarios
https://cve.mitre.org/
https://cve.mitre.org/
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On the other hand, not all studies use the same methodology to determine the
performance metrics such as detection rate, false positives and so on. It happens
that some works evaluate their algorithms for entire records as the work of
Wunderlich et al. [16], although both normal and abnormal ranges can exist
within a record as shown in the paper from Grimmer et al. [6]. As a consequence,
results are not comparable even if they would use the same dataset. We have
addressed this issue with the LID-DS-2021.

First, along with the dataset, we released a Python library that contains
a data loader that can be used by researchers to load data from different
HIDS datasets and encourages them to stick to the dataset division of train-
ing, validation and testing. At the moment, the following datasets are sup-
ported: ADFA-LD, LID-DS-2019, and LID-DS-2021 and it provides an easy-to-
understand interface with functions like training data(), validation data()
or test data(). Second, in addition to the data loader, using a system of so-
called building blocks, existing features and algorithms can be freely combined
to build complex HIDS algorithms, as indicated in Fig. 1. A building block rep-
resents one step in a machine learning pipeline like extracting a feature from
a system call, calculating an embedding, n-gram or an anomaly score using an
autoencoder. On top, new features and algorithms can be added simply by imple-
menting the existing interfaces. Thirdly, the full process starting with loading,
feature extraction, anomaly detection to evaluation can be performed automat-
ically using our library.4 The method used in the paper by Grimmer et al. [6]
for system call accurate evaluation is applied here.

4 Evaluation

We conduct an initial, simple evaluation of the LID-DS-2021 by comparing the
dataset in tabular form with the other datasets presented in this paper. Then
we will give information about its size and performance regarding a baseline
algorithm.

As can be easily seen from Table 1, the LID-DS-2021 beats all other HIDS
datasets in terms of the requirements we worked out before. The number of
system calls and the average baseline performance over all scenarios using the
STIDE algorithm [9] implemented with our library can be seen in Fig. 2. As the
lower F-score, lower detection rate, and higher number of false alarms show, the
2021 version is slightly more difficult to solve with the base algorithm than the
2019 version. A code snippet for this baseline evaluation can be seen in Listing
1.1. The large amount of system call data including the mentioned system call
attributes, network data and resource consumptions should allow many differ-
ent types of HIDS to be developed and evaluated. From simple sequence-based

4 Example code: https://github.com/LID-DS/LID-DS/wiki/ids example.

https://github.com/LID-DS/LID-DS/wiki/ids_example
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Table 1. Datasets evaluated with respect to the presented criteria. Ratings: 0 = feature
not included, 0.5 = feature partially included, 1 = feature included.

DARPA UNM ADFA-LD ADFA-WD NGIDS-DS AWSCTD LID-DS-2019 LID-DS-2021

technical features

system calls 1 0.5 0.5 1 1 0.5 1 1

arguments 1 0 0 0.5 0 0 1 1

thread info 0.5 0.5 0 0.5 0.5 0 1 1

timestamps 0.5 0 0 1 0.5 0 1 1

user ids 1 0 0 0 0 0 1 1

data buffers 0 0 0 0 0 0 0.5 1

network data 1 0 0 0 1 0 0 1

resource consumption 0 0 0 0 0 0 0 1

functional features

real-world data 0 0 0 0 0 0 0 0

topicality 0 0 0 0 1 1 1 1

complexity 0 0 1 1 1 1 1 1

labeled attacks 0.5 0.5 0.5 0.5 1 0.5 1 1

availability 0 1 1 1 1 1 1 1

comprehensibility 0 0 0 0 0 0 1 1

expandability 0 0 0 0 0 0 0.5 1

support in processing 0 0 0 0 0 0 0 1

sum 5.5 2.5 3 5.5 7 4 11 15

algorithms over sophisticated ML methods to provenance-based graph solutions
like Unicorn [8]. The LID-DS-2021 enables this and perhaps completely novel
methods that take into account all the information contained in the dataset.

Fig. 1. Example usage of Building
Blocks (BBs): Input (from left to right)
is a stream of system calls (read, read,
close) including their return values.
Here, the BBs are combined to create
n-grams with n = 3 of embedded sys-
tem calls and their return values, which
are then input to an autoencoder for
anomaly detection.

Fig. 2. Number of system calls in scenar-
ios of the LID-DS and average results of
the baseline algorithm STIDE over all sce-
narios, with n = 7 and w = 100.



72 M. Grimmer et al.

1 # map each system c a l l to an i n t e g e r
2 int embedding = IntEmbedding ( )
3 # bui ld ngrams from these i n t e g e r s
4 ngram = Ngram ( [ int embedding ] , False , ngram length=7)
5 # ca l c u l a t e the STIDE algor i thm us ing these ngrams
6 s t i d e = St ide (ngram)
7 # bui ld a sum over a stream window of l ength 100
8 stream sum = StreamSum( s t ide , window length=100)
9 # use our IDS c l a s s f o r automatic eva lua t i on

10 i d s = IDS ( . . . , r e s u l t i n g bu i l d i n g b l o c k=stream sum , . . . )
11

Listing 1.1. Baseline HIDS Algorithm (STIDE) using LID-DS library

5 Summary

In this paper, we presented the LID-DS-2021. A recording framework, a dataset
and a library for system-call-based HIDS. We have shown which alternatives are
currently available and that these are not sufficient or have errors. We described
how we fixed the bugs of the LID-DS in the new version and briefly touched
on the new possibilities of the associated library. As a result, the LID-DS-2021
again takes research for system call-based HIDS a step further. The data, source
code, examples and documentation of the LID-DS are available via GitHub5.
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