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Abstract. Smartwatches enable the efficient collection of health data

that can be used for research and comprehensive analysis to improve the

health of individuals. In addition to the analysis capabilities, ensuring

privacy when handling health data is a critical concern as the collection

and analysis of such data become pervasive. Since health data contains

sensitive information, it should be handled with responsibility and is

therefore often treated anonymously. However, also the data itself can

be exploited to reveal information and break anonymity. We propose a

novel similarity-based re-identification attack on time-series health data

and thereby unveil a significant vulnerability. Despite privacy measures

that remove identifying information, our attack demonstrates that a brief

amount of various sensor data from a target individual is adequate to

possibly identify them within a database of other samples, solely based

on sensor-level similarities. In our example scenario, where data owners

leverage health data from smartwatches, findings show that we are able

to correctly link the target data in two out of three cases. User privacy

is thus already inherently threatened by the data itself and even when

removing personal information.

Keywords: Data privacy · Re-identification attack · Similarity attack

· Time-series health data · Smartwatch health data · Stress detection

1 Introduction

A general development in the Internet of Things (IoT) is the use of smart
devices for tracking and recording personal health data. While suitable devices
are becoming more and more widespread and collected data is growing rapidly,
the issue of data privacy is only becoming more important and awareness in
users is increasing. In their study, Ernst and Ernst [6] found that the perceived
privacy risk has a direct influence on device adoption and could ultimately prove
a deciding factor for interested users. Aside from general privacy concerns for
personal data, the perceived risk directly correlates with the trust in a data
owner’s privacy promise. This is because once a user’s data is collected, the
responsibility for its privacy protection is completely transferred into the hands of
the data owner. Therefore, they should have knowledge of threats and defences.
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In such scenarios, de-identification presently constitutes a common privacy
mechanism, i.e., the prevention that the personal identity of users can be revealed.
For example, a large distributor of smartwatches states in their privacy policy and
pledge, that they “... may share non-personal information that is aggregated or
de-identified so that it cannot reasonably be used to identify an individual” [7, 8].
De-identification may hide user identities at first glance, but do not remove the
inherent characteristics encoded in an individual’s health data and may thus not
enough to provide real privacy against identity inference [5].
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Fig. 1. Matrix of DTW alignments

between 15 subjects, where higher

scores indicate stronger similarity.

We demonstrate this risk with our
similarity-based re-identification attack, that
solely uses brief time-series health data of a
target user for re-linking their de-identified
data samples inside a data set back to them.
Our attack utilizes Dynamic Time Warping
(DTW) [11] for comparing time-series and
exploits common features of the provided
multi-modal sensor data. DTW delivers the
distance between two samples, which how-
ever can be inverted to get our similarity
measure. Figure 1 shows a matrix of such
DTW similarities between 15 subjects, with
the diagonal line comparing each subject to
itself. The matrix shows how similarity varies
constantly, but the maximal difference in values is only 0.07 in distance. How-
ever, even these small differences offer the potential to distinguish the original
individuals. We find our approach to be effective in breaking de-identification,
especially in our example scenario, where data owners collect and leverage health
data from smartwatches, which is why we emphasize stricter privacy measures.

Our contributions are:

– We propose a novel re-identification attack approach based on similarities from
DTW alignments for multi-modal time-series data collected by smartwatches.

– We are also the first to evaluate data-specific optimization strategies that
exploit the multi-modal and biological features of the underlying health data.

– Our results unravel and underscore the inherent re-identification threats that
might be present in personal health data collected from smart devices.

– Our findings have practical relevance in smartwatch data collection scenarios
which are currently being widely implemented using de-identification.
In Sect. 2 we briefly review the background relevant to our attack before

focusing on existing related work in the domain in Sect. 3. Section 4 describes our
attack and also introduces the example smartwatch scenario for our experiments.
These experiments and their general outcomes are then outlined in Sect. 5. The
following Sect. 6 is more centered around discussing the implications of our
results and is divided into answering research questions and limitations regarding
our approach. Finally, we provide both a concise summary of our findings and
an outlook into future work in the conclusive Sect. 7.
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2 Background

In this section, we explain important concepts for better understanding this work.

2.1 Re-identification and Identity Inference

When de-identification is used as an anonymization technique, individual entries
in a data set are stripped from their identifying personal information. This might
include (user-)names, locations, affiliations, or other relevant metadata. In this
way they are protected from harm, when their possibly sensitive data is released
to the public, or at least this is what should be achieved.

However, there are many cases in which such privacy measures are broken
and individuals are re-identified, especially in the context of health data [5]. In
these cases, we see adversaries aiming to infer the identity behind a record from
a data set or finding records related to a target individual, which opposes the
concept of de-identification. The general goal of these attacks can be summarized
under the term identity inference.

Another type of attacks are membership inference attacks introduced by
Shokri et al. [17]. But these only aim to resolve whether a target is present in
the data set at all, while identity inference goes one step further and tries to
recognize the actual samples in the data set that belong to a target.

2.2 Dynamic Time Warping

DTW is a set of algorithms used to measure the similarity between temporal
sequences based on alignment [11]. It aligns given time-series samples by mini-
mizing the difference between corresponding elements, accommodating temporal
distortions. To achieve this, the technique considers local temporal dependencies
and enables flexible matching by warping or stretching one sequence to fit the
other as closely as possible. The constructed alignment matrix quantifies the
distance between each pair of elements to determine the overall correspondence.

3 Related Work

Several works propose similarity-based attacks based on the encoded data. The
methods utilize the preservation of similarity in the original data space and the
encoded data space.

In the domain of authentication, biometric images such as fingerprints are
used as keys to log in to systems or applications. The original images are encoded
to templates using e.g., Bloom filter, neural networks, etc. [15]. Due to the
preservation of the similarity between original images and templates, similarity-
based attacks aim to construct an image where the encoded template is similar to
the target template. Therefore, similarity-based attack methods [3, 21] compare
a fake template with a target template and iteratively optimize the construction
process to obtain a new image being used to generate a new template.
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Similarity-based attacks also exist in the context of privacy-preserving record
linkage (PPRL). PPRL aims to identify duplicate records between two or more
databases containing sensitive information. Therefore, the data owners encode
the plain text data to encodings compared to determine duplicates [19]. Due to
the preservation of similarities, the proposed attacks [2, 20] construct a graph
consisting of records as nodes and similarities as edges using a publicly available
plaintext database and the encoded one. The attack utilizes the similarity graphs
to determine a mapping between nodes representing encoded and plaintext records
based on similar graph features such as indegree/outdegree, PageRank, etc.

Due to the increasing relevance of sensors in manufacturing processes, mobility
and life sciences, a tremendous amount of sensor data is collected and analysed.
Especially, mobile devices such as mobile phones and smartwatches are equipped
with various types of sensors. However, the collected data also bears the risk of
endangering the privacy of users. For instance, accelerometer data can be used
to predict the location of metro riders [12].

Recent work [14] proposed a re-identification attack using accelerometry data
from 353 participants being recorded for 190,078 hours (70 days with at least 8
hours per day) resulting in 51.3 billion data points. The attack aims to determine
the trace from an anonymized database regarding an available trace where the
user is known. The attack computes similarities between the anonymized and
known time series. Therefore, the traces are split into smaller segments to build
meaningful features using a neural network. The network consists of convolutional
layers and gated recurrent units to address the time aspect. Moreover, the base
model classifies resulting features if the segment from the known user corresponds
to the anonymized one. The authors suggest various aggregation strategies to
determine the similarity between traces based on the segment similarities. In
contrast to our approach, we do not utilize a supervised feature extraction and
classification model where the performance depends on training data being rarely
available. Our proposed method can be used for each available individual because
we do not split the data into training and test data sets. Moreover, we consider
various sensor data types and thus not only focus on accelerometry data. In
contrast to our evaluation, the work only considers the true matching rate which
does not allow a more differentiated view for the attacker.

4 Attack Description

This section covers a description of our approach from a methodological and
experimental viewpoint. We focus on conveying the general idea and how we
designed the actual attack implementations in our experiments in order to enable
a thorough evaluation for the involved factors.

4.1 Threat Model

Our attack aims at showing the possible threat from just a short sample of sensor
data from a target that contains enough information to identify them inside a
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Fig. 2. The attack scenario consists of a device owner (target), a data owner and an

attacker. The device owner sent the collected data via his device to the data owner

who anonymizes and stores the data for analysis capabilities. The attacker aims to

determine the corresponding time series data maintained by the data owner utilizing a

sample from a known device owner.

database of other but similar samples based solely on the similarities in the given
health data. Our threat model is illustrated in Fig. 2 and can be described by
a scenario in which health data collected from e.g. smartwatches is handled by
a data owner. The data owner here is different from the smartwatch or device
owner and could be a company, institution, or person. The data owner wants to
use this user data for improving their product or providing smart health features
like stress detection through training machine learning models. To ensure privacy
for device owners their incoming data is anonymized by removing any identifying
information like name or location.

However, our proposed attack allows an adversary to still deduct the original
identity of such data samples, thereby destroying any privacy guarantees. The
only prerequisite is a short existing sample of data from the target to enable
the similarity comparison. This could be obtained from intercepting data before
anonymization, other more direct hacking methods, or simply from data reposito-
ries which were collected before anonymization promises were given. The assumed
attacker could be an insider on the data owner side or personally targeting a
user to gain information on them. It could as well be the data owner itself, who
wants to get back his lost information from the given privacy promises.

By successfully performing our similarity attack on the time-series signals
recorded from the target’s device, the attacker can correlate the data samples back
to them. One objective could be to collect more data stemming from the target.
In any case, user privacy would be broken irreparably, making the anonymization
defacto useless in terms of real provided security. In our described scenario it
does not matter if user data is stored or only processed before deletion, since the
attack can also be executed directly on any arriving data sample.
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4.2 Data Model

Our attack can be performed on time-series health data in general but we also
want to show how an informed attacker might use background knowledge to
their advantage. For our data basis we thus decided on the WESAD data set
introduced by Schmidt et al. [16]. It consists of 15 healthy subjects (12 male,
3 female), each of whom features a health data recording of about 36 minutes
in length, which was acquired during a lab study. During this period data was
continuously and simultaneously gathered from a wrist- and a chest-worn device,
which both offer multiple modalities as time-series data. At each point in time
the subjects’ current status is assigned as one of three affective states: neutral,
stress, or amusement.

Therefore, the usual focus of this data set is on stress detection from wearable
devices based on their collected time-series sensor data. Since stress detection is
a common feature that data owners provide as analysis for their users, we find it
a fitting basis for our attack. We furthermore restrict the sensor modalities to the
ones available from smartwatch devices, since these would be the most realistic
and common devices when it comes to personal health data in everyday life.
There is also already existing work focused on maintaining privacy when building
machine learning models based on such sensitive personal health data [13]. With
our attack, we can now deliver further reasoning in favor of using such privacy-
preserving techniques. Our pre-processing steps for the data set is adapted from
the methods described by Gil-Martin et al. [10].

4.3 Attacker Model

The attacker model definition refers mainly to the practical design and capabilities
of the attacker in our described threat model from Sect. 4.1. We want the attacker
to be closely related to the envisioned threat model given in Fig. 2, while also
taking into account the existing possibilities and limitations imposed by the
format of relevant time-series data as seen in Sect. 4.2. The attack preparation
procedure described in the following can be directly adapted to other data sets but
here sometimes refers to the WESAD data set for better explanation of specific
details in the approach. A fundamental assumption is that all used time-series
data undergoes the same pre-processing to at least ensure common frequency
rates and windowing of features. Dividing between device owner (target) and data
owner is simply achieved by selected one of the 15 subjects from the WESAD data
set as a target, while the rest is taken as other samples present in the attacked
collection of the data owner.

Now, the main difficulty is the separation of target data into a sample already
owned by the attacker, called attacker set, and other data stored by the data
owner, which should then be matched by the similarity attack. To achieve this,
we cut out a snippet of predefined length from the target data to constitute the
attacker set. The cut out part is removed from the time-series and the resulting
shortened version is then added to the other samples in the data owner set. The
attacker has information on his attacker set in the form of knowing that the



Privacy at Risk: Exploiting Similarities in Health Data for Identity Inference 7

possessed sample belongs to the target. The collection of samples on the data
owner side is anonymized and stripped from other metadata, making only the
time-series data itself available to the attacker. It is important to be clear, that
the attacker might as well be the data owner himself given this scenario.

Repeating this process for each of the 15 subjects in the data set leads to 15
single targets. We therefore target each subject once and create an attacker set
snipped from the middle of their time-series, as well as, a data owner collection
accordingly. The attacker set is the brief known sample of the attacker, while
the data owner collection might contain other samples but also the rest of the
target data not used as the attacker set. All data samples consist of time-series
for each of the six provided sensor modalities by the smartwatch device of the
WESAD data set, which are: blood volume pulse (BVP), electrodermal activity
(EDA), body temperature (TEMP), and three-axis acceleration (ACC). We only
name four instead of six sensors, but the ACC is actually recording each axis
individually leading to an x, y, and z value at each time point and resulting in
three separate sensor time-series. Since these three series are inherently correlated,
we combine their individual similarity values into one sensor similarity result.

The attacker performs the similarity attack by calculating the DTW alignment
scores between two given samples for each of their six sensors. The attack process
always takes the attacker set as first reference and then picks one of the samples
from the data owner collection. The attacker thereby assigns similarity scores to
every candidate from the collection to then decide which sample was the original
target. Now having a dictionary of scores for each sample and each sensor, there
are multiple methods for proceeding with the attack. For example, the sensors
can be combined and weighted according to their importance in the similarity
scoring. Our evaluation of such options is described in the following Sect. 5.

5 Experiments

In this part, we detail the different settings for our experiments and evaluate
them. We decide on a top-down stacking approach for our experimental setup, in
which we examine individual parts of the parameters separately. For this purpose,
the other influencing factors are averaged and only the aspect of interest is put
into focus. In this way we can break down the complexity in such a way that
we first choose the best general decisions and can then use these for the more
detailed parameter investigations. Each experiment and this process are further
described in their respective subsections.

5.1 Environment

On the software side we employ Python 3.9 as our programming language.
For our DTW needs we utilize the open-source implementation from the dtw-
python library [11]. For the experiments, the hardware configuration comprises
machines with 64GB of RAM and eight cores of an AMD EPYC 7551P CPU
each, facilitating efficient computations.
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5.2 Evaluation Metrics

To allow a meaningful evaluation, we first have to decide on representative metrics
relevant to our goals. In our attack scenario, the goal is to rank a set of data
samples relative to their similarity to our existing target data. In this ranking
scheme, the included de-identified samples of the target should be ranked as high
as possible for our attack to be successful. We thus find the Precision@k (P@k)
as the most relevant measure of success.

In general, the P@k metric gives the proportion of relevant items among the
top-k retrieved items and a higher P@k, therefore, indicates more relevant results
in the top-k list. In our case, we want the correct target sample to be as highly
ranked as possible and we thus only measure its inclusion or absence in the top-k
list. The most relevant k-value to us is k=1 since it represents the likelihood of
having our target data in the top-ranked spot, allowing direct re-identification.
To get a better picture, we also include k=3, k=5, and the k-value at which P@k
reaches its 1.0 maximum (max@k). The max@k metric can be important, because
e.g. a maximum precision at k=10 tells us that our target is always included
among the first 10 results, making the last 5 ranks obsolete and removable from
our search. When deciding on the best-performing version of our attack, we
mainly look at the most threatening case of k=1. If the results are equal, we then
increase the k-value step by step until an unambiguous decision is possible.

The WESAD data set includes 15 subjects for evaluation. To perform a full
sweep, we take each subject as a target once and perform a full attack evaluation.
A full attack includes taking a target sample from the data and calculating the
similarity scores of all subjects before ranking them. Subsequently, we derive the
P@k results regarding the 15 provided ranks. Finally, all 15 of these single-target
attack results are then averaged based on their P@k results to generate the
overall precision values.

5.3 Ranking Methods

We first have to decide on a ranking method for our DTW alignment or similarity
scores. Since we get individual scores at the sensor level, we need to combine
them to decide on a final score for ranking the data samples in terms of their
overall similarity. Our first option takes on the keyword score and is the simplest
aggregation form, in which we calculate the mean overall sensor similarity scores
and then rank the data samples based on this averaged result. Our second
proposal is denoted as rank and takes into account, that some sensors might
match really well, while others might not align at all. We thus rank each sensor
individually, assigning one rank to the similarity score of each sensor based on
the other tested samples. The individual ranks are then averaged into an overall
ranking, that is used for the final re-ranking of the data samples. So, if a sensor
score is low for all subjects but other results are better, the lower overall score
could substantially draw down the averaged result for the score method, while
rank might be more forgiving and instead focused on the outperforming similarity
scores provided by the other sensors. In any cases, where multiple subjects share
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the same rank, we refer to methods by Berrendorf et al. [1] to first apply a realistic
ranking and if necessary follow with a pessimistic approach.

Table 1. Ranking methods com-

pared on Precision@k (P@k) with

max@k giving the k-value, where

P@k reached its 1.0 maximum.

Methods
P@k rank score mean
k=1 0.178 0.188 0.183
k=3 0.439 0.428 0.433
k=5 0.601 0.588 0.594

max@k k=15 k=15 k=15

The results for our ranking methods are
shown in Table 1, where we assume averaged re-
sults regarding the other experiment parameters
to allow this completely separate comparison.
Even though the rank method is slightly better
at higher k-values, our preferred ranking method
for further experiments is score based on its best-
performing result at k = 1. We also included the
mean result of both methods, which promotes
the individual advantageous characteristics, de-
livering a good compromise over all k-values.
None of the two methods is able to lower the
max@k value from the worst-case k=15, which
is the minimum since we rank 15 subjects.

5.4 Classes

When we talk about classes, we are referring to the different labelled classes present
in the WESAD data set. Each data point in the provided time-series samples is
assigned a label out of neutral, stress, and amusement. This classification might
be relevant to how good a person can be recognized since a subject’s recorded
modalities can differ depending on his affective state [9]. The neutral is probably
the most common state in daily life, while stress and amusement can certainly
also appear regularly. Because the target data available to the attacker could
be from any of the three types, we evaluate all of them individually to find the
most dangerous in terms of privacy. In the end it would however be unrealistic
to assume a single specific type of data in the attacker’s possession, which is
why we instead focus on a mean value. Taking the standard mean would in turn
miss the natural prevalence of neutral data, which is why we consider a weighted
mean over the classes to be the most representative and effective for our data
model. We thus introduce a weighted mean with weights of 0.53 for neutral, 0.3

Table 2. The three labelled classes from the WESAD data set compared on Precision@k

(P@k) with max@k giving the k-value, where P@k reached its 1.0 maximum.

Classes
weighted

P@k neutral stress amusement mean mean

k=1 0.226 0.165 0.172 0.188 0.199

k=3 0.503 0.373 0.406 0.427 0.448

k=5 0.674 0.504 0.586 0.588 0.608

max@k k=15 k=15 k=15 k=15 k=15
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for stress and 0.17 for amusement. These weights are calculated based on the
average appearance of the classes in the data set.

Table 2 gives the results for our class experiments, where we take the score
ranking method based on Sect. 5.3 and assume averaged results regarding the
other experimental parameters. Conforming to expectations, the most prevalent
neutral class is also the most effective for finding similarities, simply based on
the available data for comparison. This trend is however not continued when
comparing the stress and amusement classes, which on average constitute 30%
and 17%, respectively. Here, the less appearing amusement class shows to be
better for identifying the target, even though it provides just about half of the
data compared to stress. In turn, the best similarity scores are not only dependent
on available amounts of data but rather also heavily factor in the class-specific
peculiarities in sensor readings, which show to be better for distinguishing between
subjects in some cases.

Finally, however, it is unclear what kind of class the data samples of the
attacker and also data owner collection might have. Therefore, for our proposed
attack, it is most realistic to assume the weighted mean, which is based on the
existing distribution of the classes in the data set. This result is also preferable
to the simple mean, since individual classes can be over- or underrepresented,
which could distort the actual threat depending on the underlying data.

5.5 Sensor Combinations

Our multi-modal sensor data consisting of ACC, BVP, EDA, and TEMP data,
allows for generating an individual similarity scoring for the time series of each
modality. Our attack might perform better or worse given different types of
sensor data, since some could exhibit more recognizable differences between
subjects, which would make them more relevant to our similarity comparison.
Consequently we can choose from different possible combinations and for finding
the best sensor types regarding our attack we evaluate each possibility. For
now, when we combine sensors, we just calculate the equally weighted average
regarding their individual scores.

As before, we take the earlier experimental results as our basis for this evalu-
ation and now present the possible combinations along their outcomes in Table 3.
On their own, BVP and ACC already seem to exhibit strong characteristics
for our similarity comparison. The best results over all k-values are however
obtained, when combining them with each other (BVP+ACC). Combinations
with the other sensors can be beneficial but not to the same extent. At our desired
level of k=1, the second best combination uses all four sensors, which then falls
behind other variations at k=3 and k=5. The additionally gained dimensions
from involving more than two sensor-level dependencies when comparing two
data samples of the target, are however never enough to match BVP+ACC. This
also means, that the other sensors can be omitted and are not needed for ranking
in our attack scenario. We can also see first-time reductions in the max@k metric,
where we now reach the maximum precision at already k=14 instead of the
worst-case of k=15. We will therefore use BVP+ACC for further experiments.
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Table 3. All possible combinations of the six sensor modalities from the WESAD

data set compared on Precision@k (P@k) with max@k giving the k-value, where P@k

reached its 1.0 maximum.

P@k

Sensor combinations k=1 k=3 k=5 max@k

BVP 0.190 0.499 0.677 k=15

EDA 0.104 0.252 0.457 k=15

ACC 0.223 0.510 0.668 k=15

TEMP 0.127 0.357 0.456 k=15

BVP+EDA 0.179 0.448 0.626 k=15

BVP+ACC 0.375 0.643 0.754 k=14

BVP+TEMP 0.228 0.439 0.559 k=15

EDA+ACC 0.135 0.382 0.575 k=15

EDA+TEMP 0.107 0.337 0.520 k=15

ACC+TEMP 0.224 0.382 0.600 k=15

BVP+EDA+ACC 0.232 0.547 0.705 k=15

BVP+EDA+TEMP 0.162 0.446 0.603 k=15

BVP+ACC+TEMP 0.237 0.541 0.675 k=15

EDA+ACC+TEMP 0.187 0.409 0.586 k=15

BVP+EDA+ACC+TEMP 0.270 0.523 0.659 k=15

5.6 Attacker Set Sizes

An adversary might have different amounts of target data available for comparison
in his similarity attack. We therefore test multiple sizes of attacker sets to evaluate
varying data needs and corresponding threat levels. The sizes are chosen relative
to the total target data, with our largest portion being 10%, i.e. an average of 3.6
minutes, and the smallest being 0.01%, i.e. 210ms which corresponds to exactly
one single window from our time-series pre-processing.

The results for our tested attacker set sizes are accumulated in Fig. 3, which
also assume the choices from previous experiments. The largest set of 10% first
seems on par when reducing to 5% or 1%, but we can then quickly derive an
ongoing trend towards shorter lengths increasing our attack performance. This
might seem counterintuitive, but shorter samples allow for capturing even the
tiniest overlaps of alignments found in the compared times-series data, whereas
longer samples consequently need to match longer sequences correctly to achieve
the same level of alignment. It thus seems to be most effective to promote shorter
samples for similarity comparison, with our shortest attacker set of 0.01% size
performing the best at k=1, which is about 210ms in length and corresponds
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Attacker set sizes

0.01% 0.1% 1% 5% 10%

P@k 210ms 2.1s 21s 1.8m 3.6m

k=1 0.510 0.448 0.291 0.291 0.337

k=3 0.776 0.810 0.590 0.497 0.542

k=5 0.867 0.862 0.700 0.662 0.677

max@k k=11 k=11 k=13 k=14 k=14

(a) Tabular result overview.

0.01% 0.1% 1% 5% 10%
Attacker set size

0.00

0.25

0.50

0.75

P@
k

k=1 k=3 k=5

(b) Graphical result illustration.

Fig. 3. (a) Different attacker set sizes compared on Precision@k (P@k) with max@k

giving the k-value, where P@k reached its 1.0 maximum. (b) Illustration of the relation

between set size and attack success (P@k) for different k-values.

to one time-series window after pre-processing. It is therefore also the smallest
set possible regarding our pre-processing and our attacker set size of choice. We
additionally note a further change in the max@k metric, which is found to at
k=11 instead of the earlier best of k=14 from Sect. 5.5.

5.7 Optimized Sensor Weighting

Our naive DTW results are based on all findings from our previous experiments
with an attacker set size of just 0.01%, i.e. 210ms, and are already a threat to
privacy in our scenario. Based on the knowledge of the underlying data, we can
however further improve our attack by tailoring the approach to the available
sensor modalities. To simulate a more sophisticated attacker that is closer to a
worst-case scenario, we use a grid search approach to find the optimal sensor
weightings based on our task and data. These weightings allow us to focus on the
alignment scores calculated from the most relevant signals for re-identification
while omitting or undervaluing the less important ones. When combining the
DTW alignment scores into our similarity ranking we then factor in each signal-
specific score depending on its found optimal weighting. This difference to the
method applied in Sect. 5.5 allows us to factor in less relevant sensors with
reduced impact so that they may provide some useful insights without harming
the more important sensor alignments.

The radar charts regarding the results for our optimized weightings are
given in Fig. 4, where we show the found combinations for each class at the
three k-values k={1,3,5}. In some cases there were multiple sensor weightings
that produced the same attack results for a given k-value, which makes them
equally desirable. The frequency of selected weighting values corresponds to the
transparency of the area in the heat maps, where more transparent areas show
values that saw less selection. Due to the large number of possibilities, we limit
the results to illustrations at this point and instead refer to Appendix A for a
complete tabular rundown of the weightings for each class and k-value.
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ACC

BVP

EDA

TEMP
0.2

0.4
0.6

0.8
1.0

(c) Stress class.

Fig. 4. Illustrations of the best found sensor weightings for each class at k={1,3,5}. At

each k-value, we included all combinations that delivered the same optimal results. A

detailed overview on all combinations is given in Appendix A.

Table 4. Our naive DTW and

sensor-weighted approaches com-

pared on Precision@k (P@k) with

max@k giving the k-value, where

P@k reached its 1.0 maximum.

Approaches
P@k naive weighted
k=1 0.510 0.706

k=3 0.776 0.913

k=5 0.867 0.964

max@k k=11 k=6

In general the classes show some preferences
when it comes to the most relevant sensors
for our similarity attack. We first see that our
weightings favor the ACC and BVP signals, as
seen before in Sect. 5.5. The amusement and
stress classes more often focus on BVP over
ACC, while the neutral class rather tends to
have a more equal distribution. We see some
inclusion of EDA in just a few stress cases and
almost no inclusion of TEMP in amusement
or stress. The neutral class on the other hand
includes TEMP in multiple combinations.

Based on these elaborate weighting results,
our more tailored solution is compared to our
naive results in Table 4. With optimized sensor weighting, we are able to improve
the P@k for k=1 by 19.6% from 51.0% to 70.6%, leading to a drastically higher
probability of directly identifying the target. At k=3 and k=5, our new method
still outperforms by 13.7% and 9.7%, respectively. Another substantial improve-
ment is visible for our max@k evaluation, where we now find the perfect score at
k=6 already, which almost halves the previous result from our naive approach.

6 Discussion

In the first part, we structure our discussion by raising and addressing the main
research questions stemming from our experiments and their results. In the second
part, we then focus on the limitations of our approach and experimental design.
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6.1 Derived Research Questions

The following collected research questions might arise from the presented results
or also from the general attack description. We try to briefly answer them, giving
more context to the outcomes detailed in this work.

Random Naive Weighted0.0

0.5

1.0

P@
k

k=1 k=3 k=5

Fig. 5. Our attack results for the

naive and the sensor-weighted meth-

ods compared against the probability

of correctly ranking the target in the

top-k results by random guessing.

RQ1: How severe is the actual threat

level achieved in our example scenario?

To put our results into perspective, we first
compare them to the probability of success-
fully random guessing the correct target to
be in to the top-k results. This probability is
given by p = k/N , where k is the top-k-value
for the P@k and N is the number of possible
ranks, which here equals the number of possi-
ble subjects (N=15). Therefore, the chances
of ranking the subjects by random guessing
and putting our target at the top spot (k=1)
would be a probability of p = 1/15 ≈ 0.067.
The full comparison of our results to random
guessing is plotted in Fig. 5, where we see that our sensor-weighted approach
performs more than 10× better than random guessing at k=1, over 4× better
at k=3, and almost 3× better at k=5. We are thus able to directly identify the
correct target data in two out of three cases. These substantial advantages over
the random chances put the privacy loss through our attack in context since
random guessing results would instead translate to perfect privacy.

Another factor we consider devastating to privacy is our ability of simply
reducing the candidate space through our attacks. When our attack achieves the
maximum of P@k=1.0 at a given k-value, this result translates to the guaranteed
inclusion of the target data in these top-k results. Consequently, we can omit all
other candidate samples except for the top-k ranked ones from consideration. By
that, we drastically reduce the search space and thereby also the difficulty of
re-identification from e.g. additionally linked external information. For our best
sensor-weighted attack we would be able to safely reduce the relevant subjects to
a subset of 6 out of 15 candidates. Now, external information on e.g. existing
heart disease or other medical conditions could further help in identifying the
target and would be easier than before, because there are less samples to consider.

These conclusions can of course only be drawn for our example scenario, while
in general we have to point out the limitations which we consider in Sect. 6.2.
RQ2: How much is the attack tailored to this exact task? Can it be

adapted to other data sets? Our attack is generally transferable to other
similar cases based on the description and process provided in Sect. 4. This is
especially true for the naive approach, while the sensor-weighted approach on the
other hand might not always work depending on the new data. Still, many tasks
allow similar exploits with knowledge about the underlying data characteristics.

Our achieved results can also find use as a pre-trained attack model with
already optimized parameters through our experiments. Even the provided sen-
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sor weighting can be directly applied on newly collected data, giving a strong
foundation for attacks. With our investigation, we generally want to convey the
idea that similarity attacks can have a threat to time-series health data use cases
and also show through our weighting approach, that some modalities are more
threatened than others.
RQ3: Are there also beneficial use cases for such similarity searches?

Yes, one such use case would be linking similar patients or subjects for quickly
improving personalized health applications. Such tasks could include of course
stress detection, but also tuning a person’s medication dosage. By finding similar
subjects in an existing data basis, a newly added individual might profit from
the existing data when adjusting these applications to their personal but similar
needs and health situation. We thus also see a favorable outcome from our attack.
RQ4: What are possible defence mechanisms that are more suitable

than simple de-identification? To defend against our attack, it is not enough
to remove the identifying metadata for a data sample, since the similarity is
calculated with respect to the data itself. Instead it would be necessary to hide
these similarities between the data sample and the acquired target sample by
directly breaking or hiding these links.

One option would be to only allow the collection of a data sample when
enough closely similar samples of other subjects are already present in the data,
making it harder to distinguish between them and reducing sensitivity. This
would be comparable to solutions like k-anonymity [18]. However, this would
depend heavily on the available data and could possibly remove large amounts of
threatened but needed samples from such data sets.

Another solution would be to directly alter the data in such a way, that the
differences between them are hidden well enough already, which would give the
option of making any collected data more private. A widespread standard is the
application of differential privacy, a theoretical privacy guarantee introduced by
Dwork [4]. Differential privacy induces selective amounts of random noise into
the data that ultimately makes each sample indistinguishable from each other.

6.2 Limitations

We are mainly limited by the available data for testing our approach. A deciding
factor for this limitation are the data owners of smart device health data, which are
presently for the most part the responsible companies themselves. Consequently,
we are mostly dependent on study data from the public domain, where participant
counts are way lower than users of e.g. smartwatches in daily life.

Like others, the publicly available WESAD data set thus only includes a low
count of 15 subjects. It however offers a wider range of sensor modalities than
other slightly larger data sets, which is closer to what real devices are able to
collect and more realistic than just focusing on a single signal. Regarding this
duality, there are no other bigger or less specialized data sets that provide the
same qualities for our task, making a throughout evaluation of similarity attacks
difficult. We of course expect diminishing success for uncovering the correct
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identity, when possible candidate samples increase inside the data collection. It
is however unclear, to what extent we really would be able to retrieve a target’s
data in such cases and the attack might still pose a critical privacy risk.

Another factor that is out of scope due to low data amounts is rigorous testing
regarding scalability. With more samples to compare, the computing time for our
DTW alignments could increase dramatically. Also, the comparison of longer time-
series might show problematic because of the quadratic increases in computing
needs caused by the underlying n × n Matrix of the DTW implementation.

For now, our results prove the possible severity of the problem and motivate
further studies on hopefully larger data sets in the future.

7 Conclusion

With the increasing popularity of smartwatches in today’s market, we also see an
ever-increasing amount of collected personal health data flowing to their respective
companies. Although these data collections usually support the improvement
and creation of smart health services for users, they can also threaten their
privacy. Our proposed attack highlights one potential privacy risk involved when
working with personal health data from IoT and smart devices. Cases of identity
inference are of special relevance where we usually find de-identified data, like in
our example scenario on smartwatch data. Further, our optimizations exploiting
the multi-modal and biological nature of such data show how a knowledgeable
adversary is able to steeply increase the chances of finding a target individual.
Data-driven optimization based on the underlying characteristics therefore shows
to be a promising approach in similarity attacks.

For reducing the main limiting factor, future work should be primarily focused
on acquiring more data for evaluating the scalability and relevance of our attack
on larger data sets. Synthesizing artificial data through generative adversarial
networks could prove advantageous in both directions by increasing available
data for evaluation but also for pre-setting our sensor weightings on such data.
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at https://github.com/tobiasschreieder/smartwatch-dtw-attack.
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A Sensor Weightings

Table 5. Optimal sensor weight combinations for the three classes and relevant k-values.

Sensor weights

k-value ACC BVP EDA TEMP

k=1 0.4 0.3 0.2 0.1

k=3

0.4 0.1 0.2 0.3

0.5 0.1 0.2 0.2

0.6 0.1 0.2 0.1

0.5 0.2 0.1 0.2

0.5 0.2 0.2 0.1

0.6 0.3 0.1 0.0

k=5

0.7 0.0 0.0 0.3

0.4 0.0 0.1 0.5

0.5 0.0 0.1 0.4

0.6 0.0 0.1 0.3

0.7 0.0 0.1 0.2

0.4 0.0 0.2 0.4

0.5 0.0 0.2 0.3

0.6 0.0 0.2 0.2

0.5 0.0 0.3 0.2

0.4 0.1 0.0 0.5

0.5 0.1 0.0 0.4

0.6 0.1 0.0 0.3

0.7 0.1 0.0 0.2

0.3 0.1 0.1 0.5

0.4 0.1 0.1 0.4

0.5 0.1 0.1 0.3

0.6 0.1 0.1 0.2

0.3 0.1 0.2 0.4

0.4 0.1 0.2 0.3

0.5 0.1 0.2 0.2

0.6 0.1 0.2 0.1

0.4 0.1 0.3 0.2

0.5 0.1 0.3 0.1

0.5 0.1 0.4 0.0

0.3 0.2 0.0 0.5

0.4 0.2 0.0 0.4

0.5 0.2 0.0 0.3

0.6 0.2 0.0 0.2

0.4 0.2 0.1 0.3

0.5 0.2 0.1 0.2

0.6 0.2 0.1 0.1

0.5 0.2 0.2 0.1

0.6 0.2 0.2 0.0

0.5 0.2 0.3 0.0

0.5 0.3 0.0 0.2

0.7 0.3 0.0 0.0

0.5 0.3 0.1 0.1

0.6 0.3 0.1 0.0

0.5 0.4 0.1 0.0

0.4 0.4 0.2 0.0

0.4 0.5 0.1 0.0

0.3 0.5 0.2 0.0

0.3 0.6 0.1 0.0

0.2 0.6 0.2 0.0

0.2 0.7 0.1 0.0

0.2 0.8 0.0 0.0

0.1 0.8 0.1 0.0

0.1 0.9 0.0 0.0

(a) Neutral class.

Sensor weights

k-value ACC BVP EDA TEMP

k=1

0.6 0.2 0.2 0.0

0.5 0.3 0.2 0.0

0.4 0.4 0.2 0.0

0.4 0.5 0.1 0.0

0.2 0.7 0.1 0.0

k=3 0.1 0.6 0.2 0.1

k=5

0.3 0.4 0.3 0.0

0.3 0.5 0.2 0.0

0.1 0.5 0.3 0.1

0.1 0.6 0.2 0.1

0.2 0.6 0.2 0.0

0.2 0.7 0.1 0.0

0.0 0.8 0.1 0.1

0.1 0.8 0.1 0.0

0.1 0.9 0.0 0.0

0.0 0.9 0.1 0.0

(b) Amusement class.

Sensor weights

k-value ACC BVP EDA TEMP

k=1

0.1 0.4 0.4 0.1

0.4 0.5 0.1 0.0

0.1 0.5 0.3 0.1

0.2 0.5 0.3 0.0

0.3 0.6 0.1 0.0

0.2 0.7 0.1 0.0

0.1 0.8 0.1 0.0

0.0 0.8 0.2 0.0

k=3

0.1 0.5 0.3 0.1

0.0 0.5 0.4 0.1

0.1 0.6 0.2 0.1

0.0 0.7 0.3 0.0

0.0 0.8 0.1 0.1

0.0 0.8 0.2 0.0

0.1 0.9 0.0 0.0

0.0 0.9 0.1 0.0

k=5 0.0 0.9 0.1 0.0

(c) Stress class.
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