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Abstract—In an industrial plant it is necessary to monitor the
operation of the equipment. Deviations from normal operation
should be detected as early as possible to avoid production
failures or to keep their impact as small as possible. Valves are
core components of plants and critical damage can occur if they
are set to switch but in reality do not switch. Therefore, plant
operators would like to detect such failures as early as possible.
Valves with electrodynamic actuators offer a unique diagnostics
option that allows for the early detection of valve malfunctions
by their intrinsic properties alone. In particular, we measure
the inrush current of the valve as a function of time. From
the resulting signal, we derive the information, if the valve has
switched or not. Machine learning (ML) methods can be used to
accurately predict these valve errors. In this paper, a long-short
term memory (LSTM)-convolutional neural network (CNN) and
two differential equation-inspired neural networks are presented
for encoding valves function anomalies to ensure the production
capability of an industrial plant. For this purpose, derivatives of
the inrush currents are considered and integrated into the deep
neural networks (DNNs). The implementation of this diagnostics
option is cheap and robust as no extra sensor on the valve is
required.

Index Terms—machine learning, diagnostics, solenoid valve,
electrodynamic valve

I. INTRODUCTION

Imagine you are operating an analytical device for high-
throughput DNA sequencing in a clinical environment. Key
process steps of the sequencing involve adding specified
amounts of reagents to the sample in a reaction chamber. In
this scenario pressure time dosing could be your method of
choice to fill the correct amount of reagent into the wells
of microplates. In pressure time dosing you keep the liquid
under a constant pressure. The opening time of a dosing valve
controls that the correct amount of reagent is delivered with
high accuracy. If the dosing valve is broken and only partially
opens, a wrong amount of reagent is added. This will falsify
your result as you cannot know if you had no reaction because
of the properties of your sample or because of an incorrectly
dosed reagent. Since the dosing mechanism is enclosed inside
the device and the reaction volumes are too small to allow for
a quick optical inspection a malfunction can go unnoticed. If
the valve malfunction persists for some time or is detected at
a later process step chances are high that a lot of your analysis
batch must be discarded. The repetition of your analysis will
cost you extra time and precious resources.

To limit such errors you can install independent diagnostics
equipment. Such diagnostic equipment could be a flow meter

next to the dosing valve to independently monitor that the
valve operation was successful or a photoelectric sensor. The
disadvantage of independent diagnostics equipment is, that it
means additional cost, requires extra construction space and
requires maintenance because it might also fail. An easier
way to detect this type of failure is by using the dosing
valve as a sensor. This is possible with electrodynamic valves.
These special kind of valves use a moving coil actuator
(also called voice coil actuator), which creates a motional
electromotive force that is visible on the current signal. Hence,
by monitoring the valve inrush current during its operation we
get information about the movement of the actuator and thus
about the valve stroke. It is an inexpensive and robust way
to detect partial valve openings. It can either be used as only
means of diagnosis for low cost applications or as an additional
independent diagnostics tool to supplement external sensors.

Solenoid valves usually are driven by reluctance force
actuators which have a fixed coil and a moving magnetic
core. Diagnostics using the electric signals of such systems
have been studied for some time [1], [2]. However, the
diagnostics are difficult, because there is no motional
electromotive force due to the moving magnetic core and
hence no direct link to the actuator stroke. In this article,
we look at a different valve design, that uses a moving coil
actuator. In the context of valves, such actuators have only
been studied as replacement for the camshaft of internal
combustion engines, where they are used without a return
spring, which makes diagnostics of the electrical signals
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Fig. 1. Schematic showing the components and operation principle of an
electrodynamic valve
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straight forward [3]. We consider a constructional safe,
normally closed valve and try to diagnose insufficient valve
movement. Data-driven ML techniques can be used to detect
such anomalies in the functionality of a valve, especially time
attentive models for analyzing time signals. Recent progress
in combining the numerics of ordinary and partial differential
equations (ODE/PDE) with the design of DNN architectures
have also demonstrated significant advantages in terms
of interpretability, robustness, and stability. Therefore, we
propose to use such DNN structures for the prediction of valve
faults. To the best of our knowledge, this has not been done
before. In particular this is the first application of differential
equation-inspired neural networks and LSTM-CNNs to
predict valve failures based solely on electrical signals and
their derivatives. The contributions of our work are as follows:

• We propose three approaches for the prediction of valve
fault conditions based on the measured time series
of inrush currents: A combination of an LSTM-CNN
model, a novel interpretable ODE-inspired network and
a robust CNN framework.

• The results are evaluated by comparing them to state of
the art ML models.

• We show how the learning process can be accelerated and
improved by incorporating derivatives of the measured
data and extending the dimension of the input data.

In the following, we first give an overview of the related work
to the ML techniques we employ (section II). Afterwards,
we explain the physical details of an electrodynamic valve
in section III-A. We then describe how we acquired our data
set in section III-B. Finally, we describe our proposed models
(section IV-A) and evaluate, which ML technique is most
suited to predict if a valve has switched in section IV-B.

II. RELATED WORK

In recent years, ML has become an increasingly important
area of research in engineering, with applications in many
different fields. Some of these key areas are product optimiza-
tion, predictive maintenance, process optimization and quality
control. In the following subsections, we will introduce several
ML methods that are relevant to the present work.

A. Convolutional Neural Networks

CNNs are a type of DNNs originally designed for super-
vised learning tasks on images, including image classification,
object recognition and segmentation. The core functionality is
based on convolutional operations to extract useful features
from the input data, reduce dimensionality and ultimately
solve a classification task. CNNs are not restricted to two-
dimensional data and have been successfully applied to one-
dimensional time series data [4]. An overview of efficient
convolutional neural networks combined with hardware ac-
celeration is given by Ghimire et al. [5]. Li et al. gave

a good overview of applications and perspectives of CNNs
[6]. A novel attention controlled joint learning convolutional
network for condition monitoring of mechanical equipment
was proposed by Wang et al.. They integrated fault diagnosis
and signal denoising tasks into a continuous CNN architecture
[7].

B. Long Short-Term Memory

LSTM models are a powerful system for analyzing and
predicting time series based on recurrent neural networks
(RNN). The network is capable of storing and retrieving
information over an extended period of time, especially for
time series with long-term dependencies. These models are
able to handle exploding or vanishing gradients. An overview
of LSTM models is given by van Houdt et al. [8]. Zha et
al. shows a monthly forecast of gas field production using a
combination of LSTM and CNN models [9]. Another appli-
cation of LSTMs was presented by Zhang et al., which deals
with the accurate prediction of water quality [10]. An LSTM
model that combines knowledge of the physical behavior of
gears with the goal of fault detection is shown by Chen et al.
[11].

C. ODE/PDE-Inspired Neural Networks

Despite the obvious success and resulting popularity of ML
in academia and industry, in many cases, there is no good
interpretation of the internal processes within the network, that
eventually lead to the final prediction. In this sense, DNNs
are often considered a black box. In general, it is possible
to understand the abstract task of a DNN, but the internal
processes cannot be interpreted. Therefore, it is often difficult,
to predict the appropriateness and behaviour of a neural
network in the context of a particular task. Thus, selecting
a network design can be difficult and often requires a lot of
trial and error. Moreover, there are generally no guarantees
about the stability of the trained model. It has been shown
that even networks that appear to work well for a particular
task can be unstable. To this end, Weinan was the first author to
introduce the bridge between deep residual networks (Resnets)
[12] and ODEs [13]. He et al. showed the use of ODE-
inspired network design for single image super-resolution. The
authors proposed several network designs based on Runge-
Kutta methods [14]. More specific DNN architectures are
presented by Ruthotto et al. motivated by PDEs. The classes
of PDEs (parabolic, hyperbolic and elliptic) form the basis for
the network design presented [15]. Alt et al. also transfered
the rich set of numerical foundations from the world of PDEs
to DNNs [16].

III. TECHNICAL BACKGROUND

A. Electrodynamically actuated valve

Fig. 1 shows the basic setup of a normally closed (i.e. closed
when de-energized) electrodynamic valve in its closed state.
When no electrical current is supplied, a spring keeps the
diaphragm pressed against the valve seat. The flow of the
medium is blocked. A coil is immersed inside a magnetic
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field generated by a strong permanent magnet and its pole
pieces. The coil is attached to the diaphragm. When the coil
is supplied with an electrical current, it moves in the magnetic
field due to the Lorentz force. This lifts the attached diaphragm
as well and opens the valve to the flow of the medium. To
describe the dynamics of the system we need to consider its
mechanical and electrical parts. [17]–[19]

The mechanical part given by (1) is modeled as a driven
and damped harmonic oscillator with mass MCD (coil and
diaphragm), spring constant KSDA (spring, diaphragm, stiff-
ness due to air compression in the enclosure) and a damping
coefficient RSD (spring, diaphragm). The driving force is
approximated by the Lorentz force on a single current carrying
wire (3) in a magnetic field.

The electrical part is modeled by Kirchhoff’s voltage law
(2) as given by the equivalent circuit indicated schematically
in Fig. 1. The parts of the equation are the supply voltage uS ,
the Ohmic resistance of the coil RC , the self-inductance LC

and the counter-electromotive force or motional electromotive
force uL (4).

The ODEs (1) and (2) describe the dynamics of the system.
Equations (3) and (4) are their electromechanical coupling
terms. In the following we will refer to these four equations
as system equations.

MCD
d2xD (t)

dt2
= fL (t)−RSD

dxD (t)

dt
−KSDAxD (t) (1)

uS (t) = uL (t) + LC
diC (t)

dt
+RCiC (t) (2)

fL (t) = iC (t) · ℓ ·B (3)

uL (t) =
dxD (t)

dt
·B · ℓ (4)

The range of x is limited by the closed position of the
valve seat and the opened position of the valve seat, i.e.
x ∈ [xclose, xopen].

To make the physics stand out we made several simplifica-
tions in the system equations. We ignored the force applied
on the valve by the pressure of the medium. This force would
be an additional term in (1), consisting of pressure and area.
Furthermore, we assumed that the quantities in equations (3)
and (4) are perpendicular to each other. If this would not be the
case, we would need to treat them as vector quantities in the
equation’s and evaluate their the cross products. Additionally
we approximated the coil as a current carrying wire. In the
case of an actual coil, we would need to solve Faraday’s law
of induction to calculate an expression for U ≈ N · dΦW /dt.

Figure 2 shows a numerical solution of the system equation.
Plotted are position, velocity and current as a function of
time. The parameters of the system equation were set to
typical values of electrodynamic valves. We can infer several
properties from this solution: All curves start at zero for a
closed valve and end at a final steady state after the valve has

Fig. 2. Solution to the system equations (1), (2), (3), (4) for typical parameters
of electrodynamical valves.

opened. The final steady state of the current curve is given
by the Ohmic resistance of the coil. This can be seen from
equation (2). The velocity of the actuator is zero in the final
steady state therefore the motional electromotive force uL (t)
is zero. The magnetic field has built up and the coil draws a
constant current therefore the self-inductance is zero as well.
This gives us equation (5) which is just Ohm’s law:

iFSS =
Us

RC
. (5)

At some point of the dynamic behavior shown in 2 the
velocity becomes negative and undergoes a global minimum.
This happens when the actuator hits the valve seat of the open
position and bounces back. At the point where the actuator hits
the valve seat the velocity is zero. The counter-electromotive
force at this point is zero as well so that the overall current
matches the current of the final steady state. This contact
bounce is visible on the position curve and on the current
curve by the damped oscillating behavior towards the final
steady state.

When comparing the velocity and the current curve, it seems
that the first maximum of the velocity is strongly related to
the local minimum of the current. This is further corroborated
when solving equation (2) without the counter-electromotive
force to check the influence of self-induction. This is shown as
dashed line in 2. If we ignore the self-induction in equation (2),
assume a constant supply voltage and movement perpendicular
to the magnetic field we end up with equation (6). For this
equation we approximated the current by an Ohmic part and
a part based on the counter electromotive force. We know
the Ohmic part from the final steady state. Therefore we
can extract the counter electromotive force from the time
dependent current curve alone. An example of this is shown
in the right part of Figure 3. Since the electromotive force is
dependent on the velocity of the coil we can approximately
say that the drop in current during switching of the valve is
proportional to the velocity of its actuator. Hence we can infer
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that the integral of the drop in current is proportional to the
distance the valve actuator has travelled and thus to the stroke
of the valve.

i (t) ≈ iL (t) + iFSS =
uS

RC
− Bℓ

RC

dxD (t)

dt
(6)

In physical terms this time integral over an electrical power
represents the work performed by the actuator.

In a practical customer application, solving these system
equations requires an extensive knowledge of the fluidic sys-
tem to fill all the parameters in the equation with meaningful
values. These parameters are typically not know. They could
be determined experimentally. This however requires time,
effort and knowledge. Three quantities a customer usually is
not willing to spent or does not have. Even if one invests
in a functional model this only helps to detect deviations
if all external parameters are captured by sensors which is
expensive. Therefore, in the following we describe different
supervised ML approaches to derive information from the
inrush current and provide the customer with diagnostics
information.

B. Data acquisition

The curve shape of the induction current depends on internal
parameters such as the valve diaphragm material and external
parameters such as the environmental temperature and a po-
tential fault state. In order to understand all these factors of
influence, a multivariate data set has to be acquired where
all relevant parameters are varied in a controlled manner. We
measured a data set of time resolved inrush current curves
where we changed the environmental temperature, the coil
temperature, the diaphragm type, the pressure and the voltage
over the range allowed by the valve data sheet. Additionally
we introduced fault states by blocking the actuator at certain
positions. We used this multivariate data set to train our
classifiers. Fig. 3 shows an overview of the data set.

Fig. 3. Comparison of a successful valve switching (100% stroke, blue color)
and a faulty switching (50% stroke, red color). The inset shows an overview of
the complete dataset highlighting that when taking all parameters into account,
the two classes overlap and are not seperable by using thresholds.

IV. MACHINE LEARNING

A. Methods

1) LSTM-CNN: LSTM networks represent an improved
time sequential model class of RNNs that use memory blocks
to solve the vanishing and exploding gradient problem. Gen-
erally, an LSTM network consists of a combination of three
phases, such as an input gate, a forget gate, and an output
gate. The functionality of LSTM states can be formalised as
follows:

ft = σ(Wfht−1 +Wfut + bf ) (7)

it = σ(Wiht−1 +Wiut + bi) (8)

ct = ftct−1 + itc̃ (9)

c̃ = tanh(Wiht−1 +Wiut + bi) (10)

ot = σ(Woht−1 +Wout + bo) (11)

ht = ot tanh(ct) (12)

where ut represent the current input vector, ct−1, ct are the
previous and current cell state, respectively, c̃ is the current
moment activation vector, ht, ht−1 are the current and previ-
ous outputs, ft, it, ot are the forget gate-,input gate-,output
gate activation vectors. W and b are the trainable weight
matrices and bias vectors of the three different gates. σ is
the sigmoid function. The weights and biases are updated
through backpropagation. For the second part of the LSTM-
CNN model, the 1D convolutional operation for input with
two channels can be described:

yj = (s ∗ p) =
M−1∑
c=0

N−1∑
m=0

sc,m+jpc,m (13)

where s is the input vector, p denotes a 1D kernel of size
N , M describes the size of the input channels and yj gives the
1D feature vector. The convolutional operation is described by
s*p. The 1D feature vector is the foundation for the ultimatly
final classification decision.

2) PDE-Inspired Neural Network: The following classes
of neural networks are inspired by the numerics of PDEs, as
mentioned in Section II.C. To study PDEs systematically, it is
helpful to classify them according to their structure. There are
three classes of PDEs, namely elliptic, parabolic and hyper-
bolic. In this paper we will focus on hyperbolic and parabolic
PDEs. A parabolic time dependent PDE requires second order
differentials. The time differential can be discretized in the
form of a difference quotient:

∂tu(x, t) =
u(x, t+ δt)− u(x, t)

δt
(14)

To model this in a DNN, a classical convolutional Resnet
architecture can be used. In this case, the resulting discretized
sequential model can be linked to the explicit forward Euler
method to solve PDEs numerically. For given input data u0,
the one-dimensional CNN model is a sequence of layers of
the form:

ut+1 = ut + δt(−k(θt) ∗ σ(k(θt) ∗ ut)) (15)
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where ut is the current network layer, θ are trainable
parameters, σ is the activation function and δt = 1. We set
f(θt, ut) = −k(θt)Tσ(k(θt)ut). Due to the definition of
f(θt, ut), the resulting dynamics can be considered parabolic,
the convolution kernel being interpreted as a differential
operator. For each function value of the input time series,
the convolution operation essentially computes the linear
combination of its neighbourhood with coefficients from
the kernel. There is an analogy between discrete spatial
differentials and convolution kernels. To model hyperbolic
PDEs as DNNs, it is necessary to introduce a second-order
time derivative equivalent. For this purpose, the following
DNN relies on the leapfrog method for solving PDEs. Recall
that a discrete approximation for the second order time
derivative is as follows:

δ2t u(x, t) =
u(x, t− δt)− 2u(x, t) + u(x, t+ δt)

δ2t
(16)

Thus we can approximate a dynamic by calculating:

u(x, t+ δt) = 2u(x, t)− u(x, t− δt) + δ2t u(x, t) (17)

A neural network architecture that corresponds to hyperbolic
PDEs can therefore be build by the rule:

ut+1 = 2ut − ut−1 + δ2t f(θ
t, ut) (18)

The method is called Leapfrog because it refers not only to
the values of the current time step, but also on the values of
a previous time step, as can be seen in Figure 4.

Fig. 4. Hyperbolic PDE-inspired CNN architecture

3) ODE-inspired Neural Network: There is another possi-
bility to design a DNN inspired by the ODE-system of the
valve dynamics itself. By approximation for some small time
step δt, we obtain the discrete system of equation (1), (2), (3),
(4) in the explicit scheme :

K = MCD +
δt
2
RSD (19)

P =
δt
2
RSD −MSD (20)

Q = 2MCD − δ2tKSDA (21)

S = Lc − δRc (22)

KxD(t+ δt) = δ2t (B · l)ic(t)+PxD(t− δt)+QxD(t) (23)

Lcic(t+δt) = v(xD(t+δt)−xD(t))+Sic(t)−δtus(t) (24)

Based on a time series ic the valve type can be identified. It
is assumed that a valve type can be associated with the set of
(hidden) associated physical parameters (MCD, RSD, Lc, ...).

The network is informed by the equations (19), (20), (21),
(22), (23), (24) to determine appropriate parameters for the
current flows of a given valve type. In general, the method
works similar to a standard recurrent layer, but there are some
special features. The output and signal values used as input
to a cell depend on the formula for the explicit scheme (the
recurrent layer uses one value per cell). Only one-dimensional
cell outputs are used, since the current is real-valued and the
valve moves only along a spatial direction. Certain parameters
are constrained according to the coefficients in the differential
equations, and physical assumptions can be derived from the
coefficients to initialize the trainable parameters. Last, the
activation function is omitted, in order to preserve the linearity
of the equations. In this approach, a model is trained for
iteratively predicting the current flow over time from previous
observations. The model numerically computes values for iC
according to (24), where the hidden valve parameters are
trainable weights. Estimates for the hidden values of xD are
provided by (23). Using Θ to denote model weights, the
calculations performed by the model are given by:

x̂t+1 = itΘ
(x)
i + x̂t−1Θ

(x)
xt−1

+ xtΘ
(x)
xt

(25)

îx+1 = itΘ
(i)
i + (x̂t+1 − x̂t)Θ

(i)
x +Θ

(i)
const. (26)

Here, x̂ and ĥ denote predicted values, whereas h denotes input
data. x[0] and x[1] are initialized as 0, reflecting that before
the valve stroke, the diaphragm is resting at its initial position.
Since (23) contains valve-specific parameters, we train a
number of different versions of (25), according to the number
of different valve types. For the subsequent classification, the
model returns the predicted values ĥ according to the trained
valve parameters, as well as the inputs h. The underlying
assumption of this architecture is that given the right valve
specific parameters and starting values, the equations (23) and
(24) can predict the current flow in the future. Comparing
the predictions to the actual measurements, the model should
be able to discriminate whether the valve has the implied
parameters. The optimisation of the weights is accelerated by
two loss functions, where the first measures the prediction
quality (categorical cross-entropy loss) on the training data,
while the second forces the fitting of a smooth function to
protect against over-fitting (gradient regulariser):

L1(f) =
1

|D|
∑

(x,y)∈D

∑
j=1

−ln(f(x)j)yj (27)

L2(f) =
1

|D|
∑

(x,y)∈D

∑
j=1

|∇f(x)j |2 (28)

B. Results

We try to explain the data set in Fig. 3 using the techniques
presented in section IV-A. In order to see how good they
perform, we evaluate them against typical ML classifiers and
a simple baseline model. An overview of the performance is
given in TABLE I.

For the baseline model, we counted the time the current
is below a certain threshold it = 32mA. This threshold is
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TABLE I
OVERVIEW OF THE QUALITY OF THE CLASSIFIERS.

NoMCa Accb Precisionb Recallb Prec Method
0 100 100 100 snv Hyperbolic-CNN
0 100 100 100 snv ODE-CNN
0 100 100 100 snv LSTM-CNN
4 99 99 100 max kNN

10± 2 99 99± 0.4 99± 0.0 snv gradient boosting
15± 6 99 98± 2 99± 1 snv 1D transformer
16± 3 99 98± 0.5 98± 0.5 snv 1D CNN

17 99 97 99 snv random forest
20 99 98 98 snv svm
22 98 96 99 raw PCA+kmean
26 98 99 95 snv PLS

27± 13 98± 1 97± 4 97± 2 raw FFN
51 96 96 91 raw baseline

aTotal number of misclassifications from our data set of 1364.
bGiven as a percentage.
cScaling method applied during data preprocessing.

shown in 3 as dashed line. If this time was large enough, we
counted this as a successful switching. The reason for this
is that a valve that does not switch at all reaches the final
steady state current almost immediately as shown in 2. A
valve that switches produces a motional electromotive force
which reduces the current over the duration of the movement.
Therefore for a successful switching the current is expected to
be below our current threshold for some time.

From the staple of shallow learning techniques, we used
a k-nearest neighbors classifier (kNN) with a k of 13 [20],
[21], partial least squares regression (PLS) with 7 components
[22], a random forest classifier with 100 estimators [23], [24]
and a gradient boosting classifier with 100 estimators [25].
We transformed the PLS regressor to a classifier by using
a threshold on the regression value. Additonally, we tried a
combination of principal components analysis and k-means
clustering using 4 components and 5 clusters.

As standard deep learning techniques we used a feed

Fig. 5. All misclassifications of the best transformer network (shown in red)
were false positives (FP) - i.e. unsuccessful switching classified as successful
switching. Additionally, a true positive (TP) data set and a true negative (TN)
data set are shown. The inset shows the transition region in logarithmic scale.

forward network [26], a 1D CNN [4] and a 1D transformer net-
work [27]. The feed-forward networks had [128 32] neurons in
fully connected layers. The design of the 1D CNN is done as
in [4] with two sets of Convolution, MaxPooling and Dropout
layers. The filters were [128 64] the kernel size was 5. The
transformer network uses the example code from Keras [28]
without hyperparameter tuning. To estimate the model error
of the neural networks we trained each network 10 times and
derived statistics from the deviations. The best transformer
network had 9 misclassifications. Those are shown in Fig.
5 in addition to closely matching successful classifications.
From this figure it is obvious that the networks have a problem
to detect the inflection point in the data correctly. Therefore,
we designed a LSTM-CNN that work with the raw data and
the first derivative. In order to improve the information each
cell obtains, we numerically calculate the differential in each
time step and pass it as an additional input. Since we know
that the valves follow specific differential equations, we would
assume that this can improve the classification. The LSTM-
CNN architecture is shown in Algorithm 1, based on section
IV-A1.

Algorithm 1 General Model (x - input signal, n - input
dimension, c - #channels, k - #categories, θ - convolution
kernel, W - classifier weights)

1: function MODEL(x[1×n]):
2: ∆x[1×n] ← x[1×n] −

(
0, x1, x2, . . . , xn−1)

3: ▷ numerical differentiation
4: x′

[2×n] ← CONCATENATE(x[1×n],∆x[1×n])
5: x′

[2×(n/20)] ← AVGPOOL(x[2×n], 20)
6: u[c×(n/20)] ← TIMEATTENTIVELAYER(x′

[2×n/20])
7: ▷ either ODELAYER or LSTMLAYER
8: u′

[c×(n/80)] ← AVGPOOL(u[c×(n/20)], 4)
9: v[c×(n/80)] ← u′

[c×n/80] ∗ θ[(c×c)×4]

10: ▷ convolutional embedding
11: v′[c×(n/400)] ← MAXPOOL(v[c×(n/80)], 5)
12: f[1×(c·n/400)] ← CONCATENATE((v′1,·, v

′
2,·, . . . , v

′
c,·))

13: ▷ flattening
14: f ′

[1×(c·n/400)] ← TANH(f[1×(c·n/400)])
15: p[1×k] ← f ′

[1×(c·n/400)]W[(c·n/400)×k]

16: ▷ linear classification
17: return SOFTMAX(p[1×k])
18: end function

In this way, it was possible to correctly classify all current
curves and thus predict the fault conditions of the valves
with 100 percent accuracy. Although the LSTM-CNN model
produces excellent results, it is not interpretable and stability
estimates are also not possible. To address these two issues,
two further architectures have been developed, inspired by
the foundations of numerical analysis of differential equations
described in IV-A2 and IV-A3, as shown in algorithms 2
and 3. The training of the developed methods is controlled
by minimizing the loss functions (27), (28). We evaluate the
performance of the different networks by model inference on a
randomly sampled test dataset, that was not used for training.
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Algorithm 2 ODE-inspired Layer (h - input signal, n - input
dimension, c - #channels, Θ(·)

· - weights)
1: function ODELAYER(h[1×n])
2:
3: ▷ approximate valve position from current flow time

series, trainable weights are physical parameters of ODE
system, multiple channels for variety of diaphragm

4: for i = 1, . . . , c− 1 do
5: x̂

(i)
0 , x̂

(i)
1 ← 0, 0

6: for t = 1, . . . , n− 1 do
7: x̂

(i)
t+1 ← ht ·Θ(i,x)

h + x̂
(i)
t−1 ·Θ

(i,x)
xt−1 + x̂

(i)
t ·Θ

(i,x)
xt

8: end for
9: end for

10:
11: ▷ predict current flow one step into the future using

approximated valve positions, one prediction for each
trajectory

12: for i = 1, . . . , c− 1 do
13: for t = 1, . . . , n− 1 do
14: ĥ

(i)
t+1 ← ht ·Θ(h)

h +
(
x̂
(i)
t+1−x̂

(i)
t

)
·Θ(h)

x +Θ
(h)
const.

15: end for
16: end for
17:
18: u[c×n] ← CONCATENATE(ĥ[(c−1)×n], h[1×n])
19: return u[c×n]

20: end function

We measure accuracy, precision and recall for each model.
The results are presented in TABLE I.

V. DISCUSSION

In the context of diagnostics for electrodynamical valves
we typically deal with systems that are operated using mi-
crocontrollers. Therefore the computational resources for ML
are limited. We did not restrict ourselves in this regard in
our initial overview of ML techniques as shown in TABLE I.
However, for a practical application the resource consumption
of a prediction model is a critical parameter. In particular,
this means that kNN, gradient boosting and random forest
approaches end up with models that are way too large for
microcontrollers.

Additionally we note that although the overall number of
misclassifications is small, regardless of the technique used,
for the best customer acceptance the number of misclassifica-
tions should actually be zero in our laboratory setup.

All methods from section IV-A fulfil this requirement. They
are therefore well suited for predicting valve failures. In order
to develop a more general approach, the approaches need to be
evaluated on more data and other valve test setups, especially
on valves with different functions. The transferability of the
approaches to other valves in industrial plants has not yet
been proven. The integrability of the models on microcon-
trollers has not been sufficiently addressed in this work and
should be further investigated. All presented models achieve
a accuracy of 100 percent with no misclassifications, which

Algorithm 3 Hyperbolic CNN (x - input signal, n - input
dimension, k - #categories, θ - convolution kernel, W -
classifier weights)

1: function HYPERBOLIC-MODEL(x[1×n]):
2: ∆x[1×n] ← x[1×n] −

(
0, x1, x2, . . . , xn−1)

3: ▷ numerical differentiation
4: x′

[2×n] ← CONCATENATE(x[1×n],∆x[1×n])
5: x0[2×n]

← BATCHNORMALIZATION(x′
[2×n])

6: x0[64×n]
← x0[2×n]

∗ θ[2×5×64]

7: x0[64×n]
← MAX(0, x0[64×n]

)
8: x1[64×n]

← x0[64×n]

9: i = 2
10: while i ≤ n− 1 do
11: xi[64×n]

← ui−1[64×n]
∗ θ[2×5×64]

12: xi[64×n]
← MAX(0, xi[64×n]

)
13: xi[64×n]

← ui−1[64×n]
∗ θ[2×5×64]

14: xi[64×n]
← 2ui−1[64×n]

+ ui[64×n]
− ui−2[64×n]

15: xi[64×n]
← MAX(0, xi[64×n]

)
16: i← i+ 1
17: end while
18: v′[64×(n/8)] ← AVGPOOL(xn−1[64×n]

, 8)
19: f[1×(64·n/8)] ← CONCATENATE((v′1,·, v

′
2,·, . . . , v

′
c,·))

20: ▷ flattening
21: p[1×k] ← f ′

[1×(c·n/8)]W[(c·n/8)×k]

22: ▷ linear classification
23: return SOFTMAX(p[1×k])
24: end function

is only possible by including information about the derivative
of the current. Furthermore, the approaches are competitive
and can outperform state of the art ML models. The LSTM-
CNN model is capable of classifying 100 percent of valve
fault conditions, but interpretability and stability estimation
are not possible. For this purpose, advantageous properties of
the ODE-system describing the valve dynamic are integrated
into the DNN design. This allows not only the prediction of
valve errors, but also the discovery of physically interpretable
parameters of the ODE system. The overfitting issue of DNNs
is protected using a second loss function, which penalize
high gradients to ensure a smooth objective function within
the classes. The number of trainable parameters is relatively
small (LSTM-CNN:247, ODE-CNN:130) compared to the
data samples of 1729 time series, indicating that there is
no overfitting. Moreover, valuable stability properties of the
Leapfrog method can be transferred to the hyperbolic CNN
architecture. These include forward stability and the decrease
in error as time progresses. There is also the expectation that
problems such as chaotic behavior (small disturbances at the
input can have large effects on the output) are avoided.

VI. CONCLUSION

Valves with electrodynamic actuators can use the actuator
as a sensor by measuring the time dependence of the current
during their operation. In particular it can be determined if the
valve opened properly or not. We presented three techniques
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that use the raw data and the first derivative to achieve a perfect
classification. It should be possible to estimate further parame-
ters such as type of valve diaphragm, pressure of the medium,
viscosity of the medium and environmental temperature as
well. We plan to verify the quality of the estimation in further
studies [29]. Our initial application example was a clinical lab-
oratory that is filling reaction chambers with reagents during
high-throughput DNA sequencing using pressure time dosing.
We have shown that such a setup can benefit greatly from
the intrinsic diagnostics offered by electrodynamic valves. It
is possible to ascertain proper valve operation without the
need for external sensors. The hardware for this kind of
diagnostics is inexpensive compared to an additional sensor.
All the intelligence is in the smart algorithm tuned to the
specific type of valve. To use this technology a time resolved
current measurement and a microcontroller for analysis are
required. If the application already has a microcontroller the
analysis can run there. No external sensors on the valve are
needed. This makes this mode of diagnostics robust as there
are a small number of parts that can break. This also makes
it easy to add to systems where construction space is limited
or valves are tightly clustered.
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