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Abstract—Analyzing location data from many individuals can
provide valuable insights, especially when linked with private
attributes like personal health information. A recent application
includes identifying COVID-19 outbreaks by aggregating indi-
viduals’ health data across a geographical hierarchy. However,
analyzing such sensitive information can threaten the individuals’
privacy, especially when honest-but-curious third parties are
involved. To encourage people to share their data for such
analyses, strong privacy protection and building trust in the
privacy approach are crucial, requiring clear privacy parameters
that can be tailored to individual needs. To address these
requirements, we introduce DIPALDA, a new anonymization
technique for DIstributed, Privacy-Aware Location Data Ag-
gregation on hierarchically structured personal location data.
DIPALDA leverages three privacy parameters: k-anonymity,
minimum cloaking area size, and maximum re-identification
probability, effectively countering re-identification and location
privacy attacks. Our extensive experiments with COVID-19
propagation data demonstrate that DIPALDA achieves a suitable
trade-off between utility, privacy, and explainability.

Index Terms—Location privacy, Spatial k-anonymity, Privacy-
aware aggregation

I. INTRODUCTION

From a privacy perspective, it is challenging to analyze
personal location data that is associated with sensitive infor-
mation. This is particularly true when the evaluation is carried
out by an honest-but-curious party. Such data can be used, for
example, to analyze the geographical distribution of patients
suffering from a certain disease, which can be helpful for
healthcare planning or disease control.

Our running example is the analysis of case numbers during
a pandemic: A data analytics company aims to localize regions
with high activity of an infectious disease, such as COVID-19,
spreading over a country. The country is hierarchically divided
into smaller areas, from ”federal state” over ”county”, ”city”,
”district” to ”neighborhood”. Persons that are showing symp-
toms at the time of data collection might be willing to
contribute information about their infection and their area of
living to help control the spread. However, no person wants
to be singled out as a spreader in their neighborhood.

A privacy-aware analysis of such data has to consider multi-
ple issues: The location data is linked with private information
that might reveal sensitive information about the persons
concerned. The data is distributed among many persons who

have different attitudes towards the level of protection required
for their data. The data must be spatially aggregated. Neither
the data collection process nor the aggregated result may reveal
(a) the location, (b) the identity or (c) the sensitive attribute
of a person who has contributed their data [1]. In particular,
the analysis result must be robust against re-identification and
location privacy attacks that can occur in this setting.

To the best of our knowledge, existing anonymization
approaches are either insufficient to prevent re-identification
or location privacy attacks for such use cases [2], [3], depend
on a trusted third party [4]–[8], or do not allow a person to
individually control their privacy parameters [2], [9], [10].

In this paper, we address these issues and introduce
DIPALDA, our anonymization approach for DIstributed,
Privacy-Aware Location Data Aggregation. DIPALDA’s sys-
tem model is visualized in Fig. 1.
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Fig. 1. DIPALDA’s system model.

The aim of DIPALDA is to allow an honest-but-curious
coordinator to collect private location information of dis-
tributed users and construct a hierarchical spatial index struc-
ture. An app orchestrates the communication between all
involved parties using secure communication and encryption
protocols [11], [12].

DIPALDA allows users to set individual privacy parameters
k-anonymity, minimum cloaking area size, and maximum re-
identification probability. While privacy approaches typically
rely on Differential Privacy [13], which is considered the cur-
rent standard technique, our parameters are well-explainable
and their protective effectiveness against re-identification and
location privacy attacks is immediately apparent.



We make the following contributions:
• We introduce DIPALDA, our new anonymization ap-

proach to construct a privacy-aware hierarchical spa-
tial index structure from location data of many users.
DIPALDA respects the users’ individual privacy needs by
introducing well-explainable privacy parameters, that are
designed to fend off location and re-identification attacks.

• We introduce DIPALDA in the trusted setting and de-
scribe how to extend it to the honest-but-curious setting.

• We investigate with extensive experiments based on real
COVID-19 propagation data how DIPALDA solves the
trade-off between utility and privacy for different data
distributions. Our evaluation shows that DIPALDA can
balance utility and privacy for a real use case.

The rest of the paper is organized as follows: Section II
reviews related work. Section III introduces the problem.
Section IV describes DIPALDA and its privacy properties, fol-
lowed by an evaluation in Section V. Section VI explains how
other spatial hierarchies can be used. Section VII concludes.

II. RELATED WORK

A. Privacy-preserving location data aggregation

First approaches to protecting sensitive tabular user data
are based on k-anonymity [14], [15]. This concept was intro-
duced in the context of private data release from relational
databases where a combination of quasi-identifying attributes
can threaten to re-identify a user and leak their sensitive
attribute. In order to achieve k-anonymity, anonymity groups
of at least k users are formed, so that group members are
indistinguishable from each other with respect to their quasi-
identifiers. To specifically address the protection of loca-
tion data, k-anonymity was extended to spatial k-anonymity
(SKA) [6]. Following the concept of anonymity groups, SKA
requires a user’s location to be spatially and temporally
indistinguishable from the locations of k − 1 other users.

K-anonymity is typically achieved by generalization and
suppression techniques. Because the generalization of data
leads to data loss, privacy-preserving methods aim to maintain
high data quality while protecting privacy. Several works
suggest that hierarchical index structures are well suited to
perform efficient privacy-preserving generalization over mul-
tiple quasi-identifying attributes [16]–[18]. Because spatial
index structures are an obvious choice to partition geographical
space, they have been widely used by spatial anonymization
approaches to implement SKA, particularly in the context of
Location-based Services (LBS) [4]–[7], [19]–[22]. In the LBS
scenario, a user sends a spatial query to an untrusted server,
e.g., finding nearby points of interest. Privacy-preserving tech-
niques aim to find a suitable cloaking region for the user
that contains at least k − 1 other users to be sent to the
server instead of the user’s exact location. This limits the re-
identification likelihood of the user to at most 1/k. Due to
its good explainability, k-anonymity is still widely adopted
in practice. The sole use of spatial k-anonymity is, however,
not sufficient to prevent location homogeneity and background

knowledge attacks. Approaches relying on k-anonymity thus
require further protective measures to fend off such attacks.

To overcome the limitations of previous approaches, Dif-
ferential Privacy (DP) [13] was introduced. DP is a formally
verifiable privacy guarantee that limits the influence of a data
point on an aggregation result. This is typically achieved by
adding noise to the individual or aggregated user data before
it is further processed by an untrusted third party [8], [23]–
[25]. The level of privacy is controlled by a privacy budget
ε which influences the amount of noise to be applied. To
achieve a suitable balance between utility and privacy of the
analysis result, the calibration of the required noise is a topic
of research [24]–[29].

While DP provides a mathematical formulation to limit
privacy leaks, its main drawback is that the privacy budget
ε is an abstract value which can be hard to understand with-
out expert knowledge [30]. Its protective capabilities against
certain attacks, such as re-identification and location privacy
attacks, are not directly visible [31]. Furthermore, calibrating
the privacy budget to provide sufficient protection against such
attacks while maintaining utility often depends on the use case
and data distribution [32]. Because in our use case the data
owners should be able to choose their own level of privacy,
techniques are needed that are both easy to explain and provide
effective protection against the aforementioned attacks.

B. Secure communication and encryption

To achieve SKA or DP, some privacy concepts require a
trusted central server to provide the necessary sanitization of
the data before it can be shared with an untrusted party [4]–[7],
[22]. However, the use of a trusted server itself poses risks to
privacy. To eliminate this dependency, some approaches rely
instead on a decentralized anonymization process within peer
groups [19]–[21].

To further limit assumptions on the required trust model,
secure communication protocols and encryption techniques
are employed, such as Secure Multiparty Computation
(SMPC) [12] and Homomorphic Encryption (HE) [11]. SMPC
allows multiple parties to jointly calculate a result based on
their private inputs without any party learning anything other
than their own input and the result. SMPC is often combined
with HE, which enables secure communication by encrypting
the data while still allowing calculations on the encrypted data.

Related work exists in spatial crowdsourcing which requires
the assignment of task locations to worker locations in a
private manner. Some solutions make use of spatial struc-
tures, such as grids or trees, in combination with encryp-
tion techniques, to encode locations and privately retrieve
distances between workers and tasks [2], [3]. The authors of
[2] propose a grid-based location privacy framework but their
approach does not account for individual privacy requirements
of users. A decentralized solution is presented in [3] based
on blockchain technology and HE. The approach allows for
individual privacy settings of users but does not provide prov-
able privacy guarantees for the released information against
re-identification.



III. PROBLEM DESCRIPTION

Our goal is to construct a hierarchical spatial index structure
H from the private locations of a set of users u ∈ U that have
a certain sensitive attribute. The aggregation result must not
reveal more private information about a user than the user is
willing to share, including their identity, location and sensitive
attribute. In particular, the result must be robust against a set of
re-identification and location privacy attacks. In this section,
we describe the single building blocks of this problem and
illustrate them using our running example.

A. User data

We assume a set of users U where each user u ∈ U has
a certain binary sensitive information su ∈ {true|false}. At
time of data collection, users with a positive sensitive attribute
contribute their location lu, which is a spatial point, e.g.,
described as a pair of latitude and longitude. Our focus is
thus the aggregation of location snapshots, which means that
we do not consider repeated location updates of a mobile user.
A user can set three privacy parameters which are explained
in more detail in Section III-D. In our running example the
users U refer to the population in a geographical region. The
location refers to a user’s home address and their sensitive
attribute indicates whether they show COVID-19 symptoms.

B. Spatial index structure

While DIPALDA is applicable to any data-independent hier-
archical data structure, we introduce our approach based on a
Region Quadtree [33]. This data structure H = (V,M, hmax)
recursively divides space into M = 4 equal subareas until a
maximum depth hmax is reached. H contains a set of vertices
V . Each vertex v = (rv, Uv, nv) describes a geographical
bounding box rv and contains a subset of users Uv with
su = true and lu ∈ rv . The aggregation result of a vertex
is its number of users |Uv|. A vertex furthermore contains the
number of inhabitants nv , where |Uv| ≤ nv . We regionally
aggregate users showing COVID-19 symptoms with a Region
Quadtree in order to identify disease spreading hotspots. Fig. 2
illustrates this. With increasing hierarchy levels in the tree,
from the root to the leaf nodes, the respective subareas become
smaller and thus enable more detailed analyses. At the same
time, data is becoming increasingly scarce, increasing the risk
of the privacy of the analyzed users being violated.
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Fig. 2. Aggregation of locations into a Region Quadtree.

C. Privacy threats

The aggregation of such user data bears the risk that a user’s
identity, location or sensitive attribute is exposed by an attack.

Restricted space identification attack [6]: This attack ex-
ploits the fact that a user provided their location information at
too high a spatial resolution which can cause re-identification.
If a user is contained in a vertex on a deep hierarchy level,
the corresponding region can be so small that it only includes
premises that can be associated with the user, e.g., the house
where the user lives. In this case, the user can be re-identified.

Location homogeneity attack [1]: Some privacy ap-
proaches based on spatial k-anonymity [6] attempt to prevent
re-identification by reporting a cloaking area instead of a user’s
exact location so that at least k users’ locations are indistin-
guishable. However, if these locations are geographically close
to each other, any user’s true location is known with only small
error. The home location of a user can be narrowed down to
the region of the vertex in which the user is contained. Thereby,
it is irrelevant how many users are contained in that vertex in
total.

Advanced location homogeneity attack [1]: An attacker
can increase their certainty about a user’s location by using
external information, such as maps, to exclude unlikely regions
(e.g. lakes). If a user is located in a vertex whose region
is 90 % covered by water, the user’s home location can be
narrowed down to 10 % of the area.

Background knowledge attack [34]: An attacker can
use background knowledge to increase their certainty about
whether a certain individual possesses the sensitive attribute. It
can happen that a user is contained in a vertex that covers only
one single building with at least k inhabitants. K-anonymity
makes the user indistinguishable from k − 1 other users. If,
however, the aggregation result, i.e., the number of sensitive
users in that vertex, approaches the number of inhabitants
living in this region, an attacker can simply look up the
residents of that building and infer for each of them a high
likelihood to be COVID-19 positive.

D. Privacy protection

In order to fend off re-identification and location privacy
attacks mentioned in Section III-C, DIPALDA allows each
user u to set three privacy parameters: a minimum cloaking
area size that is translated into a hierarchy level hu, a spatial
k-anonymity parameter ku, and a maximum re-identification
probability pu.

The minimum cloaking area size [6] describes the maxi-
mum spatial resolution with which a user is willing to share
their location. With DIPALDA, this information is represented
as the deepest hierarchy level hu in H that user u can be
present in. The hierarchy level can be intuitively interpreted
as ”city”, ”district”, ”neighborhood”, etc. hu is calculated so
that the size of a subarea on this level matches or exceeds
the cloaking area size. Furthermore, census statistics are taken
into account to ensure that the population distribution does
not allow (advanced) location homogeneity attacks. From the
user’s location, first the vertex v on level hu is derived for
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Fig. 3. The processing steps of DIPALDA.

which lu ∈ rv . The hierarchy level hu is iteratively decreased
as long as the population count nv in vertex v is concentrated
in one of the M child vertices of v on hierarchy level hu+1.

With the spatial k-anonymity parameter [6] ku, the user
requires a lower bound for the number of users that are
included in the same area and at the same hierarchy level of H .
ku makes sure that the user is spatially indistinguishable from
at least ku − 1 other users and thus counters re-identification
due to a restricted space identification attack.

With the re-identification probability pu a user defines by
how much at most they accept to be re-identifiable as someone
with a positive sensitive attribute among all inhabitants of an
area. The user will thus be only present in vertices with a
smaller or equal re-identification likelihood pv = |Uv|/nv
where |Uv| is the number of users that are contributing their
data to a vertex v and nv is the population size from census
associated with the vertex. This parameter prevents that an
adversary with background knowledge about population sizes
can learn with high certainty that a user is a spreader, because
the user resides in a neighborhood where almost every inhab-
itant is infected. If a user u with a positive sensitive attribute
su = true requires a small pu this means that there needs to
be a comparatively large number of users with su = false,
allowing the user plausible deniability and countering attacks
with background knowledge on population sizes. Because this
parameter is a probability, its interpretation is intuitive and
does not require users to do any calculations.

IV. OUR DIPALDA ANONYMIZATION APPROACH

In this section, we describe DIPALDA, our approach for
a DIstributed, Privacy-Aware Location Data Aggregation. The
goal of DIPALDA is to allow a central party, the coordinator,
to construct a spatial index structure from the locations of
many users while preventing re-identification and location
privacy attacks on the aggregation result. On the user side
an individually configured app takes care of implementing
the required communication and protocols. We introduce our
approach on the example of a Region Quadtree.

To simplify our presentation, we first explain our
anonymization approach using a trusted coordinator and

trusted users. Second, we describe in Section IV-C how
DIPALDA can be implemented in the honest-but-curious set-
ting.

A. Processing steps in the trusted setting

The outline of DIPALDA is shown in Fig. 3. We assume
a coordinator C to manage the index structure H . C initiates
the data collection process by publishing required information
on the data structure via the users’ apps. The users jointly
calculate shared privacy parameters for the index structure
and anonymize their location accordingly to align with their
individual privacy needs. C ensures that the shared privacy
parameters are met in the final aggregation result. In the
following, we explain these steps in detail.

(1) Publication of data structure and its parameters:
Initially, C decides which data structure H is to be used and
informs all users via the app of the parameters required to
create it. For a Region Quadtree, these parameters include the
degree M , the maximum tree depth hmax, and the bounding
box rroot of the geographical region to analyze. C furthermore
publishes the population size nv for each vertex v ∈ V based
on census information.

(2) Setting of individual privacy parameters: The users
then configure their app with their individual privacy parame-
ters: the minimum number ku of users that must be present in
a vertex, the maximum re-identification probability pu, and the
minimum cloaking area size. The app translates the cloaking
area size into a hierarchy level hu as described in Section III.

(3) Calculation of shared privacy parameters: The next
step is to define the privacy guarantees that should apply to the
final aggregation result. To this end, shared privacy parameters
kh and ph are agreed for each hierarchy level h ≤ hmax.
The challenge here is to find suitable parameters that make
it possible to include a maximum number of users in the
aggregation result while respecting their individual privacy pa-
rameters. While multiple approaches exist to identify suitable
parameters1, we propose the following approach:

1For example, if C has background knowledge that allows it to properly
estimate the distribution of kh and ph, C can define default parameters for
all levels and the decentralized calculation in step (3) can be skipped.



DIPALDA first calculates an estimate of the sensitive user
count |Uv| in a vertex by dividing the sensitive user count
|Uroot| in the root vertex by the number Mh of vertices in the
respective level h. Furthermore, a re-identification probability
pv is estimated for each vertex v by dividing |Uv| by the
population size nv . Privacy parameters are then set as

kh =

{
(1− δ) ∗ |Uv|, if |Uv| < maxu ku

maxu ku, otherwise
(1)

and

ph =

{
(1 + δ) ∗ pv, if pv > minu pu

minu pu, otherwise
(2)

with δ << 1 being a small number. These calculations aim to
find a balance between including as many users as possible by
allowing strict privacy requirements and excluding users with
too strict privacy requirements that are unlikely to be met. The
parameter δ controls this trade-off.

The shared parameters are broadcasted among the users and
the coordinator. Note that this approach requires the sensitive
user count |Uroot| in the root to be known, which limits the
privacy guarantees for this level.

(4) Location encoding: Each user’s app finds the level h for
which the user’s individual privacy parameters are not in line
with the shared parameters, i.e. ku > kh or pu < ph. Then,
the app updates the user’s individual maximum hierarchy level
to hupdatedu = min(hu,max(0, h − 1)) accordingly. For each
vertex v ∈ V the user’s app creates an encoding xv of the
user’s location lu. This value is xv = 1 if the user’s location
lu is within the region rv associated with the vertex, otherwise
xv = 0. For h > hu the encoded value is xv = 0 even if the
user’s location is inside the spatial boundaries of rv .

(5) Aggregation: The encoded values are sent to the coor-
dinator who calculates the aggregated sum for each vertex. C
makes sure that the aggregation result in each vertex complies
with the shared privacy parameters that have been decided
in step (3). To this end, C calculates a conditional function
fv = cv ∗ |Uv| over the sum |Uv| of the user inputs where

cv =

{
1, if kh ≤ |Uv| ≤ ph ∗ nv
0, otherwise

(3)

Finally, C constructs the tree H from the acquired information.

B. Privacy in the trusted setting

In constructing the spatial index structure H , DIPALDA
safeguards that no private information about any user can be
leaked from the aggregation result due to re-identification and
location privacy attacks, mentioned in Section III-C. This in-
cludes the protection of each user’s location information, their
identity, and sensitive attribute. DIPALDA enforces this by
a) allowing each user to set individual privacy parameters that
are specifically designed to prevent such attacks, b) making
sure in step (4) that a user’s location is only encoded for those
hierarchy levels where their individual privacy parameters are
in line with the shared privacy parameters of the data structure,
and by c) making sure in step (5) that the aggregation result in

each vertex of the data structure is only released, if the shared
privacy parameters for this vertex are fulfilled.

C. From trusted to honest-but-curious

After presenting our anonymization approach in the pres-
ence of trusted parties, we explain how DIPALDA can be
extended to provide privacy in the honest-but-curious setting.
In this case, all parties involved, including the coordinator,
users and external adversaries, follow the protocol, but try to
obtain as much information as possible about the users. We
further assume, that parties do not collude.

In the presence of honest-but-curious external adversaries
there is a risk of Sybil attacks [35]. In this attack, an adversary
registers for the app with one or more fake identities which
endangers SKA in the aggregation result due to an increased
user count. To prevent this, the users can verify their identity
with a certificate before the data collection takes place, e.g.,
using self-certified pseudonyms [36].

Further additional protective measures are required to en-
sure that no sensitive user data is revealed during the data
aggregation process. In particular, we require (i) that the
information that is distributed to the users’ apps in step (1) is
correct, and (ii) no sensitive user information is leaked during
communication in steps (1), (3) or (5).

To fulfill requirement (i), app signatures can be used, mak-
ing sure that the app can not be manipulated, and transmitted
messages are not tampered with. In order to conceal the users’
identities during all communication steps for requirement
(ii), the app can create random user pseudonyms and use
anonymous routing protocols. To conceal the users’ individual
privacy parameters, the calculation of shared privacy param-
eters in step (3) can be carried out with secure comparison
protocols, e.g., [37].

In step (5), we need to protect the users’ encoded locations
before being sent to the coordinator, as well as their aggregated
value in case it does not fulfill the shared privacy requirements.
Therefore, we propose to encrypt the encoded user locations
using a Fully Homomorphic Encryption (FHE) scheme that
allows comparison of encrypted values, e.g., BGV [38]. A
distributed key generation scheme can be used to avoid that
a single party has access to the users’ encryption keys, e.g.,
Threshold FHE as described in [39]. The proposed process is
depicted in Fig. 4.

E( xv) f E f

f E

Fig. 4. Aggregation of encrypted locations.

First, each user creates an individual secret and public key
and sends the public key to the other users. Each user then
calculates the sum of the received public keys and uses it
to encrypt their location. The encryption key is thus secret



shared [40] among all users. After receiving the encrypted
data from the users, C calculates the conditional sum for each
vertex v and obtains the encrypted result fEv . C broadcasts
the result back to the users who each partially decrypt it with
their individual secret key. The users jointly calculate the sum
over the partial results using a secure aggregation scheme [12]
and obtain fv . Finally, C receives the sum fv for each vertex
v from the users and can construct the tree.

V. EVALUATION

In this section, we evaluate our anonymization approach
DIPALDA in the trusted setting. We are thus specifically inter-
ested in the utility of our approach concerning different privacy
parameters. To this end, we study the use case of discovering
regions of high COVID-19 activity based on realistic data ob-
tained from real census information and COVID-19 statistics.
Note, that an analysis of performance and complexity in the
honest-but-curious setting is out of the scope of our paper.

A. Data set
We simulate a set of users U by sampling random locations

according to real population distributions for Europe [41]. We
then assign the sensitive attribute (being COVID-19 positive)
to a set of randomly selected users to reflect actual COVID-19
infection rates in a given subregion during a period of medium
to high pandemic activity. Subregions refer to districts and
independent cities [42].

We study the impact of different data distributions on
the utility-privacy trade-off of DIPALDA by selecting two
urban, rural and mixed regions each, characterized by varying
population densities. A rural area is defined by a number of
less than 300 inhabitants per km2, and an urban area by more
than 1.500 inhabitants per km2. To investigate the impact of
the COVID-19 infection rate, we select regions with varying
infection rates. Table I summarizes the population numbers
and COVID-19 statistics of the analyzed regions.

B. Experimental setup
We investigate the influence of different attitudes of a user

towards their privacy requirements, ranging from very relaxed
to very restrictive. To this end, we define multiple value ranges
for each privacy parameter that reflect increasingly stringent
privacy requirements: k = [0, 5], [5, 20], [20, 40], [40, 60],
[60, 100], p = [0.5, 1], [0.1, 0.5], [0.05, 0.1], [0.03, 0.05],
[0, 0.01], h = [7, 7], [4, 7]. A user’s individual privacy param-
eters are randomly drawn from a uniform distribution over a
given value range.

We calculate anonymized Quadtrees H using DIPALDA for
each region and privacy parameter combination. The shared
privacy parameters kh and ph, that apply to each vertex in a
hierarchy level h of H , are estimated as described in Section
IV using δ = 5%. As a baseline we use the ground truth,
which are complete Quadtrees constructed without any privacy
constraints. 2 For both approaches we fix the maximum

2We assume for our evaluation that all users of the population, who are
COVID-19 positive, participate in the analysis and thus the aggregation results
in the baseline reflect the true distribution of COVID-19 cases.

TABLE I
REGIONS.

Region Area
type

Size
in km2

Population
per km2

COVID-19
patients

per 100k
Berlin (DE) Urban 880 4,111 3,582
Milan (IT) Urban 1,604 2,006 3,180

Cologne area (DE) Mixed 26,177 547 2,314
Florence area (IT) Mixed 23,177 151 4,496

Lüneburg area (DE) Rural 15,551 114 1,854
Jylland area (DK) Rural 13,234 99 9,274

hierarchy level at hmax = 5, which corresponds to a region
size between 1.3 km2 (Milan) and 7.8 km2 (Florence area).

Experiments were carried out on a AMD(R) EPYC(R)
7551P @ 2.0GHz - Turbo 3.0GHz CPU, 512 GByte memory
on Rocky Linux 8 using Python 3.10 and a PostgreSQL 16.0
database with PostGIS 3.4.0 extension. 3

C. Evaluation metrics

Following [27], we evaluate the utility loss caused by
anonymization in DIPALDA with the Relative Error (RE). The
Relative Error is calculated as the normalized error between
the anonymized user counts |Ûv| and the true user counts |Uv|,
calculated over a set of vertices v ∈ V in the tree H:

RE(V ) =
∑
v∈V

||Ûv| − |Uv||
|Uv|

(4)

The Relative Error serves as a lower bound for the utility
loss. However, to understand DIPALDA’s performance on real
world applications, we additionally consider a classification
task on H that answers the question: Can we identify regions
with high COVID-19 activity that indicate disease spreading
activity? We thus evaluate for each vertex v whether its
COVID-19 infection rate Iv surpasses a certain threshold Ithr,
indicating high COVID-19 activity:

high-activity(v) =

{
1, if Iv ≥ Ithr

0, otherwise
(5)

where the infection rate Iv is the number of reported
COVID-19 patients |Uv| normalized by the census popula-
tion count nv in the corresponding region. The anonymized
infection rate is calculated accordingly over the number of
COVID-19 patients |Ûv| in the anonymized tree. Based on
the classification results in the true and anonymized tree we
calculate the F1-Score over all vertices of the complete tree.
The F1-Score is calculated as the harmonic mean of Precision
and Recall.

D. Impact of the privacy parameters

In this subsection, we describe how DIPALDA’s privacy
parameters k, p and h influence the utility of a spatial index
H . The influence of a user’s maximum hierarchy level h is
intuitive, as it limits the hierarchy levels that the user will be

3The code is available at https://github.com/majaschneider/DIPALDA.
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(b) Influence of p on Relative Error
(k = [0, 5]).
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(c) Influence of k on F1-Score
(p = [0.5, 1]).
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(d) Influence of p on F1-Score
(k = [0, 5]).

Fig. 5. Influence of k and p on Relative Error and on F1-Score (h = 7),
calculated over all vertices in the tree.

included in. For the two tested value ranges of h we achieve
similar results and therefore only show results for h = 7.

To understand the importance of k and p for the utility of H ,
we fix k, respectively p, at the most relaxed value and observe
the Relative Error and the F1-Score of the disease spread
classification task while varying the other privacy parameter.
The results are shown in Fig. 5. For all tested k-value ranges
and for almost all regions the Relative Error stays below 4%,
indicating a small influence of k onto the error. An exception
is Lüneburg area with a Relative Error of up to approximately
18%. The influence of k on utility is more evident, reducing
the F1-Score from almost 100% to 72-89% in almost all
regions, and to 37% in Lüneburg area.

With tighter privacy restrictions for the re-identification
probability p, the Relative Error is increasingly noticeable,
becoming maximal for all regions at the most restrictive value
of p. The experiments show for the tested regions that a
higher COVID-19 infection rate leads to a faster increase of
the Relative Error with more restrictive values of p. This
observation can be explained by a correlation between the
Relative Error and the infection rate Ii in a vertex vi. Consider
that all users in the vertex set p < Ii, then each of these users
will be excluded from the vertex’s aggregation result because
their privacy requirement can not be met. The results are in
line with this observation, as p values smaller than a region’s
infection rate lead to a Relative Error of approximately 100%.
The parameter p has similar impact on the utility, with
F1-Score dropping from approximately 80% to 0% when the
Relative Error is surpassing 95%. The results indicate that
the re-identification probability p has higher influence on the
utility of a spatial index than k.

E. Impact of the population density

It is to be expected that a high Relative Error is caused
by either a too high ratio of sensitive users, surpassing p, or
a too low number of sensitive users, falling below k. These
cases correlate with a high infection rate and a low population
size. Our experiments confirm this assumption. The Relative
Error for all tested privacy settings is shown in Fig. 6. In
regions with a high population density (e.g., Berlin and Milan)
or with low infection rates (e.g., Cologne and Lüneburg area)
the Relative Error is comparatively low, given that p is not too
restrictive (above 3%). Lower values of p ≤ 3% lead to a high
error in all regions. The highest errors occur in regions with
comparatively high infection rates and low population density,
such as Jylland area and Florence area.

The distribution of false negatives for the classification
task in Fig. 7 visually confirms our finding. False negatives
represent vertices where a high COVID-19 activity was not
detected. For better visibility privacy settings are chosen that
achieve a low F1-Score. The figures show that false negatives
appear mainly in the less populated outskirts of the cities, or
in rural subregions.

F. Utility-Privacy Trade-Off

We evaluate the usefulness of DIPALDA for a realistic
application, which is to detect regions with high COVID-19
activity. Fig. 8 shows the F1-Score for this task. As expected,
in all regions, a downward trend in utility can be observed
when privacy parameters p and k become more restrictive.
However, as can be seen in Fig. 9, even a high Relative Error
of up to 80% achieves mostly an F1-Score of over 60%. While
the Relative Error can rise quickly if p is not chosen carefully,
it stays below 4% in non-rural areas (and below 18% in rural
areas) for a comparatively strict re-identification likelihood of
p ≥ 10%. For such values of p ≥ 10% the F1-Score ranges
from 72% to 99% with a median of 91% in non-rural areas,
and from 61% to 99% with a median of 89% when p is further
restricted to 5% ≤ p ≤ 10%.

Because Jylland area and Florence area both have a high
number of subregions with low population density and high
infection rates, they incur the biggest utility loss. In regions
with such preconditions, accurate results can only be achieved
with less restrictive privacy parameters. Recommendable val-
ues are k ≤ 40 and p ≥ 10% to achieve an F1-Score of more
than 68%. For urban or mixed regions, where the population
density is overall higher, a p ≥ 5% achieves an F1-Score of
at least 61%, and p ≥ 10% an F1-Score of at least 72%.

To get an intuition at what level of detail an anonymization
with DIPALDA impairs the utility of the analysis too much,
we observe the Relative Error and F1-Score with increasing
hierarchy levels. Fig. 10 shows this data for a tree where p is
fixed to [0.1, 0.5]. In most regions an analysis up to hierarchy
level h ≤ 4 achieves a sufficient F1-Score of at least 80%
(except for Jylland area with an F1-Score of 25%). The biggest
utility drop appears in hierarchy level h = 5, but this depends
strongly on the region.
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Fig. 6. Relative Error (h = 7).
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Fig. 7. Distribution of false negatives on level h = 5 of a tree anonymized with DIPALDA.

VI. DISCUSSION

To simplify the representation, we have defined DIPALDA
on the basis of a Region Quadtree which describes square
areas of equal size per hierarchy level. However, DIPALDA
can be applied to any data-independent hierarchical index
with a predefined structure that forms non-overlapping areas
per hierarchy level. This enables further use cases that rely
on spatial hierarchies with a different semantic meaning. For
example, DIPALDA can be used on a hierarchy of census
or administrative boundaries, e.g., to privately analyze the
employment status in a population. Another example is the
analysis of sales activities in a company based on a custom
internal hierarchy that ranges from larger sales areas down to

single customers. Note, that the use of such different hierar-
chies can lead to a different interpretation of the population
size nv in a vertex, e.g., in the latter case as the number of
potential customers in a region.

In order for such applications to be feasible in the real
world, it is essential to allow the data owners to control their
own privacy settings. This promotes trust and acceptance of
the privacy approach. For this reason, our goal was not only
to consider the trade-off between utility and privacy, but also
explainability. In contrast to Differential Privacy, DIPALDA
privacy parameters lead to more explainable privacy guaran-
tees that prevent re-identification and location privacy attacks.
The link between our privacy parameters and the protection
from such attacks is with DIPALDA directly visible.
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Fig. 8. F1-Score (h = 7).
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Fig. 10. Relative Error and F1-Score per hierarchy level (h = 7, p =
[0.05, 0.1], k = [20, 40]).

VII. CONCLUSION

In this paper, we studied the aggregation of private locations
from many distributed users that possess a certain sensi-
tive attribute, such as a COVID-19 infection. We introduced
DIPALDA, our new anonymization approach, that solves this
task without requiring a trusted central party. DIPALDA allows
each user to specify three well-explainable privacy parameters,
which are used to generate an aggregation result that is
secure against re-identification and location privacy attacks.
We have tested DIPALDA with COVID-19 propagation data.
Our experiments show that DIPALDA can achieve a suitable
trade-off between utility and privacy. In future work, we plan
to practically evaluate different attacks in a comparative study
with Differential Privacy approaches. We also plan to extend
our evaluation to examine the performance of our approach in
the honest-but-curious setting.
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