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Abstract. Blocking aims to avoid unnecessary comparisons in a data
matching pipeline. The heterogeneous nature of Knowledge Graphs (KG)
is challenging for blocking approaches that traditionally were imple-
mented for tabular data. While there is vast research on blocking ap-
proaches in general, the domain of KGs lacks systematic investigation,
especially when comparing embedding-based and symbolic approaches.
In this study, we generalize relational blocking, which incorporates neigh-
borhood information of entities, to enable a variety of approaches across
the neuro-symbolic spectrum. The results of our study are three-fold: (1)
The relational enhancements to state-of-the-art approaches significantly
improve their results. (2) (Neuro-)Symbolic approaches can outperform
sophisticated deep-learning-based methods in terms of speed and quality.
(3) Hybrid methods that combine symbolic and embedding-based tech-
niques are promising avenues that have not been explored thoroughly yet.
Our experiments were run on 16 real-world datasets of varying sizes with
mono- and multi-lingual settings. We ensure statistical significance with
a Bayesian analysis. We release our framework as open-source library.

Keywords: Entity Resolution · Knowledge Graphs · Blocking · Data Integra-
tion · Knowledge Graph Embedding · Entity Alignment

1 Introduction

Knowledge Graphs (KGs) have become a vital backbone for the information
needs of the modern world. Complex tasks such as question answering [36]
and recommendations [33] rely on high-quality data integration from multiple
sources. The matching of KGs has seen wide research attention with approaches
that use a variety of different methods [19,38,34]. A major performance bottle-
neck in the Entity Resolution (ER) step of the data integration process is compar-
ing entity pairs from all sources, which in cases of binary matching has an a-priori
quadratic complexity. Blocking aims to decrease this complexity and reduce the
number of unnecessary comparisons by assigning likely matches into separate
blocks. When dealing with databases, blocking approaches can often rely on the
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(relative) homogeneity of the underlying schemata, especially since entity res-
olution on tables most often only considers a single entity type (e.g. persons).
KGs, on the other hand, contain a plethora of different entity types with vast
heterogeneity across the schemata. Therefore, schema-agnostic approaches such
as Token Blocking [25] were needed to match heterogeneous data sources [28].
While approaches initially relied on symbolic overlap across data sources to cre-
ate blocks (e.g. by using common tokens), newer approaches utilize pre-trained
word embeddings and even deep learning-based methods [35]. Originally from
the database area, most blocking approaches are not built to utilize the rich
relational information present in KGs. While Knowledge Graph Embeddings
(KGEs) have been used as a method to encode this data in a lower-dimensional
embedding space [34] and find matches via nearest neighbors, they have not
been used for blocking. To tackle the blocking task in the KG domain, an ap-
proach needs to be schema-agnostic and able to utilize the relational information
present in the KG. While there is already work [24] comparing embedding-based
with symbolic methods on tabular data and approaches like MinoanER [7] that
utilize relational information, but consist solely of symbolic techniques, there is
no systematic study comparing such relational blocking techniques across the
spectrum of neuro-symbolic approaches.

The main contributions of our study are, therefore, the following:
– We generalize the composite blocking scheme of MinoanER [7] to utilize not

only symbolic but all techniques across the neuro-symbolic spectrum ranging
from the sophisticated DeepBlocker [35] variants to approaches that rely on
symbolic overlap like Token Blocking.

– Furthermore, we present a novel hybrid blocking approach that combines
Token Blocking with token/attribute embedding clustering, which shows a
promising future research direction.

– Our results show that the relational enhancements of our generalized frame-
work significantly outperform their non-relational counterparts. Furthermore,
the hybrid and purely symbolic methods outperform the sophisticated Deep-
Blocker variants as well as a state-of-the-art KGE method.

– Our experiments were performed on 16 real-world datasets. We ensured the
significance of our results with a Bayesian signed rank test, and we released
our framework as an open-source Python library to enable reproducibility
and simplify future research 3.

We begin by defining some preliminaries, followed by a discussion of related
work in Section 3. In Section 4, we present our framework and the integrated
methods. After we present our experimental results in Section 5, we end with a
conclusion and future work.

2 Preliminaries

Knowledge Graphs (KG) consist of triples in the form of (entity, property,
value), where property can be either an attribute property or a relationship
3 https://github.com/dobraczka/klinker
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Fig. 1: Subgraphs of DBpedia and Wikidata. Blue dashed lines show entities that
should be matched. Some URIs are shortened for brevity.

and value a literal or another entity, respectively. Therefore, a KG is a tu-
ple KG = (E ,R,A,L, T ), where E is the set of entities, A the set of attribute
properties, R the set of relationship properties, L the set of literals, and T is
the set of triples. We distinguish attribute triples TA and relationship triples
TR, where TA : E × A × L are triples connecting entities and literals, e.g.
(dbr:Emma_Caulfield, dbo:birthDate, "1973-04-08") and TR : E × R × E
connect entities, e.g. (dbr:Buffy_the_Vampire_Slayer, dbo:starring, dbr:
Sarah_Michelle_Geller) as seen in Figure 1. For a relation triple (e1, r, e2), we
will refer to e1 as the head and e2 as the tail entity. The task of Entity Reso-
lution (ER) aims to find M = {(e1, e2) ∈ E1 × E2|e1 ≡ e2}, where ≡ refers to
the equivalence relation. ER has an a-priori quadratic complexity because every
entity pair (e1, e2) ∈ E1×E2 would have to be compared. Blocking aims to reduce
this complexity by eliminating unnecessary comparisons by only clustering likely
matches in a set of blocks B. The number of comparisons in a set of blocks B
is given by ||B|| =

∑
bi∈B ||bi||, with ||bi|| denoting the number of comparisons

in a single block bi [28]. A blocking approach aims to optimize two measures:
Recall(B,M) = truePositive(B)/|M| shows the ratio of true positives com-
pared to all matches. The Reduction Ratio RR(B, E1, E2) = ||B||/(|E1||E2|) signi-
fies the relation between comparisons with blocking versus without. Since either
one of these measures can be optimized by making sacrifices in the other, the
harmonic mean h3r(rec, rr) = 2(rr ∗rec)/(rr+rec) can be used as an aggregate
measure.

3 Related Work

Entity Resolution is a crucial step in the construction of KGs [13] and has
seen significant research attention. Approaches range from probabilistic [32],
clustering-based [31,30] over methods relying on traditional machine learning [21]
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all the way to transformer-based [12] and neuro-symbolic methods [23]. In the
last years, a large family of techniques has relied on Knowledge Graph Em-
beddings (KGEs). These approaches encode entities from the given KGs into
dense vectors and minimize the distance in the embedding space between sim-
ilar entities. While many approaches are supervised, there are also models like
LightEA [16], which can be used in the unsupervised setting. This specific ap-
proach relies on a three-view label propagation scheme, making it time-efficient
while still achieving state-of-the-art quality. An overview of such approaches is
given in these surveys [34,38]. The usefulness of such KGEs for blocking is largely
unexplored.

Numerous approaches have been developed to perform blocking in a schema-
agnostic manner on tabular data. Token Blocking [25] places entities into the
same block that share a common token. Attribute Clustering Blocking [27] first
clusters attributes across data sources by their values and then only places enti-
ties into the same block if the common tokens they share also belong to the same
attribute cluster. Another notable work is the neural approach DeepBlocker [35],
which we will describe in detail in Section 4.

A variety of approaches deal specifically with blocking on KGs. Prefix-Infix-
Suffix Blocking [26] exploits naming patterns in the entities URI’s. MultiBlock [14]
first builds indices over multiple similarity measures, preserving the distances
between entities. In the next phase, these indices are aggregated into a single
multi-dimensional index. MinoanER [7] uses a composite blocking scheme, where
entities are assigned to the same blocks if they (1) have the same name that is
not used by any other entity, (2) common tokens or (3) their top neighbors share
a common token. The name properties are defined by top-k attributes whose lit-
eral values have high importance. Similarly, the top neighbors are connected to
entities via relations that appear often but have many distinct values.

For a general overview of blocking methods, we recommend this survey [28].
Several benchmark studies also exist in the area of blocking. Efthymiou et.al.[8]
show that Token and Attribute Clustering Blocking work well if datasets are
derived from common sources, while Prefix-Infix-Suffix was more promising for
more diverse data sources. In their study, they mention that utilizing neighbor-
hood information could be an important signal for blocking algorithms. Zeakis
et al. [37] investigate the usefulness of pre-trained embeddings for Entity Reso-
lution in the domain of tabular data. While their study is not focused on block-
ing, it is one aspect of their analysis. They use averaged token embeddings
and language models like BERT [6] or Sentence-BERT [29]. Their results sug-
gest that the Sentence-BERT models are best suited for blocking. Papadakis
et al. [24] investigate a variety of blocking techniques on tabular data in the
schema-based and schema-agnostic settings. Similar to Zeakis et al. [37], they
investigate embedding-based methods.

While there is work [24] on comparing deep learning-based approaches and
symbolic blocking on tabular data, there is, to our knowledge, no systematic
investigation of blocking approaches that utilize neighborhood information com-
paring embedding-based and symbolic approaches in the domain of KGs.
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4 Method

4.1 General Framework

To compare embedding-based and non-embedding-based approaches in a com-
mon framework, our investigation relies on a relaxed generalization of the block-
ing scheme described in [7]. Our open-source Python implementation is named
klinker. We use a composite blocking scheme

Θ(KG1,KG2) = ΘA(Ca1 , Ca2) ∨ΘR(Cr1 , Cr2) (1)

consisting of the attribute blocking function ΘA and the relational blocking
function ΘR. This blocking scheme is a relaxed variant of the one used in Mi-
noanER [7] because it drops the unique name blocking scheme, and it is gener-
alized because it allows any blocking function as ΘA and ΘR. The concatenated
attribute values of the most important attributes are signified as Ca, and the
concatenated attribute values of the most important neighbors are denoted as
Cr. In order to determine the importance of a relation or an attribute, we use
the respective support and discriminability described by Efthymiou et al. [7].
The support of a relation r ∈ R is defined as support(r) = |instances(r)|

|E|2 , with
instances(r) = {(h, t)|(h, r, t) ∈ TR} being the set of head and tail entity tuples
of all relation triples that contain r.
The support of an attribute a ∈ A is defined as support(a) = |heads(a)|

|E| ,
with heads(a) = {h|(h, a, t) ∈ TA} being the set of head entities of the attribute
triples that contain a.
The discrimininablity of a relation r ∈ R is defined as discriminability(r) =

|tails(r)|
|instances(r)| , with tails(r) = {t|(h, r, t) ∈ TR}. The formula is analogous for an
attribute a ∈ A.
The importance of a relation r ∈ R is then defined as the harmonic mean
of support and discriminability: importance(r) = 2 · support(r)·discriminability(r)

support(r)+discriminability(r) .
The formula for the importance of an attribute a ∈ A is again analogous. We
can now formally define the aforementioned concatenated attribute values of the
entity and its most important neighbors.

Ca = {(e, lc)|lc =
⊕

(e,a,li)∈TA∧a∈topna (e)

li} (2)

Here, ⊕ represents the concatenation operation, and topna
(e) is the na attributes

connected to entity e with the highest importance score.

Cr = {(ei, lcr )|lcr =
⊕

r∈topnr (ei)∧(ei,r,ej)∈TR∧(ej ,lcj )∈Ca

lcj} (3)

with topnr
(e) being the nr relations connected to entity e with the highest im-

portance score.
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4.2 Embedding-based Blockers

Blocking schemes that rely on embeddings are made up of two basic building
blocks: Frame Encoders, that encode entities into an embedding matrix, and an
Embedding Block Builder that creates blocks from the given embeddings.

Frame Encoders Each of the implemented Frame Encoders is an encoder
function ψ : C → Rd, which encodes each tuple (e, lc) into an embedding vector
ve of dimensionality d.

Token Embedding Aggregation Since entity attribute values often consist of a
varying number of tokens, we need to aggregate token embeddings from pre-
trained word embeddings into a uniform shape. We investigate two variants for
aggregation. The first is the SIF (smooth inverse frequency) approach [2], which
has been used successfully in previous blocking studies [35]. The second relies
on sentence embeddings using siamese BERT-networks [29].

DeepBlocker [35] uses deep learning methods for blocking. In klinker, we
adapted three methods from this framework: Autoencoder, Cross-Tuple Train-
ing (CTT), and hybrid. All of them rely on token embedding aggregation as
the first step. The Autoencoder variant uses encoder and decoder layers in the
following steps. The aggregated entity embedding ve is used as input for the
encoder, which outputs the hidden vector ue ∈ Rdu . Subsequently, the decoder
uses ue to produce the output oe ∈ Rde . During training the model learns a con-
cise representation for ue by minimizing ||ve − oe||. The Cross-Tuple Training
variant learns to generate representations on entity pairs e1, e2 and associated
match/non-match labels. Since no training data is provided, the pairs are gen-
erated synthetically. Given a tuple (e, lc) ∈ Ca and it’s tokens we = tokens(lc), a
subset w′

e of tokens in we is selected in order the create a positive pair (we, w
′
e).

A negative pair can be created by sampling another entity en ̸= e. Analogous to
the Autoencoder method, the aggregated entity embedding is used. Here, the em-
bedding pairs (ve1 ,ve2) are sent through a Siamese summarizer and classifier to
learn a good representation utilizing the synthetically created match/non-match
pairs and labels. The Siamese summarizer uses the same model parameters to
generate the representations for e1 and e2. The third DeepBlocker variant is
called hybrid because it combines the Autoencoder and CTT approach by first
training the Autoencoder and then using the representations generated by the
Autoencoder as input for the Siamese summarizer and classifier of the CTT
model.

Embedding Block Builders Creating entity embeddings does not give us
blocks yet. We present two variants for creating blocks from embeddings. We
start with k nearest neighbor search and then illustrate another method us-
ing clustering. Given an entity ea ∈ Ea of the Knowledge Graph KGa with the
embedding vea and the entity embeddings Eb =

[
veb1

, ...,vebm

]
of the entities
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{eb1 , ..., ebm} ∈ Eb belonging to KGb, we create the block ba = {ea, kNN(veai
,Eb)}.

Where kNN(veai
,Eb) returns the k nearest neighbors of veai

among Eb w.r.t a
specific distance measure (e.g. euclidean distance). We create a set of n blocks
B = {b1, ..., bn} for all {ea1 , ..., ean} ∈ Ea. The number of comparisons in B
is therefore k|Ea|. To improve the speed, we use Faiss as the nearest neighbor
library [15].

Alternatively, we can use a clustering function that assigns a cluster label
ωi ∈ Ω to each embedding ve ∈ {Ea,Eb}. Then we can create a set of blocks
B = {b1, ..., bn} for all {ω1, ..., ωn} ∈ Ω, with all entities in bi having the same
cluster label ωi for their embedding.

4.3 Generalized Relational Blocking

The most straightforward approach for relational blocking uses token block-
ing [25] for ΘA and ΘR. For each tuple (e, lc) ∈ C with C ∈ {Ca, Cr}, the con-
catenated attribute values lc are tokenized and entities that share a token t are
put into the same block:

∀e1, e2 ∈ bi : bi ∈ Btok ∧ tokens(lc1) ∩ tokens(lc2) ̸= ∅ (4)

Here tokens is the tokenization function, and Btok is the set of generated blocks.
Since we do not use the unique name blocking of MinoanER [7], this blocking
scheme has at least the same recall but at most the same reduction ratio as
theirs. We will refer to this blocking scheme as RelTB.

Hybrid Block Building via Embedding Clustering To investigate different gran-
ularities for the embedding block builder’s clustering variant, we use token or
attribute embeddings as inputs for the clustering method. For example, for the
token embeddings clustering approach, we take the concatenated literal values
lci of an entity ei and use token(lci) as input for an embedding function. This
provides us with multiple embeddings {vei1

, ...,vein
} per entity ei if the number

of tokens is n. This can analogously be done by using the embeddings of literal
values. In this case, the number of embeddings for each entity ei is equal to
the number of attribute triples (ei, a, lj) ∈ TA. Clustering methods like HDB-
SCAN [17] can cluster specific data points as noise. In the domain of block-
ing, we see this as a hint that there is insufficient semantic overlap to create
a block. Instead, we perform token blocking for all token/attribute embeddings
assigned to the noise cluster. We use the other cluster labels as described in Sec-
tion 4.2. We will refer to the token/attribute embedding clustering-based variant
as RelTBTC or RelTBAC respectively.

Enhanced DeepBlocker Approaches that rely on DeepBlocker for ΘA and ΘR

will be denoted as RelDeepBlocker. Furthermore, we also incorporate hybrid
approaches, which use token blocking for ΘA but use DeepBlocker as Frame
Encoder and k nearest neighbor search as embedding block builder for ΘR. We
will denote these methods as RelTBDeepBlocker. In a preliminary study, we
investigated whether clustering could also be used with these embeddings, but
HDBSCAN assigned most of the entities to the noise cluster.
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Table 1: Dataset statistics
Task Name Dataset |E| |TR| |TA| |R| |A| |L| |M|

S-DW1 DBpedia 15000 38265 52134 248 341 28236 15000
Wikidata 15000 42746 138246 169 649 118515 15000

S-DW2 DBpedia 15000 73983 51378 167 174 25690 15000
Wikidata 15000 83365 175686 121 457 146977 15000

S-DY1 DBpedia 15000 30291 52093 165 256 25297 15000
YAGO 15000 26638 117114 28 34 105710 15000

S-DY2 DBpedia 15000 68063 49602 72 89 22561 15000
YAGO 15000 60970 116151 21 19 104546 15000

L-DW1 DBpedia 100000 293990 334911 413 492 133931 100000
Wikidata 100000 251708 687860 261 874 542921 100000

L-DW2 DBpedia 100000 616457 360696 318 327 137483 100000
Wikidata 100000 588203 878219 239 760 682367 100000

L-DY1 DBpedia 100000 294188 360415 287 378 101386 100000
YAGO 100000 400518 649787 32 37 497633 100000

L-DY2 DBpedia 100000 576547 374785 230 276 97433 100000
YAGO 100000 865265 755161 31 35 578596 100000

S-ED1 DBpedia-EN 15000 47676 62403 215 285 28973 15000
DBpedia-DE 15000 50419 133776 131 193 35630 15000

S-ED2 DBpedia-EN 15000 84867 59511 169 170 23831 15000
DBpedia-DE 15000 92632 161315 96 115 33185 15000

S-EF1 DBpedia-EN 15000 47334 57164 267 307 30281 15000
DBpedia-FR 15000 40864 54401 210 403 28760 15000

S-EF2 DBpedia-EN 15000 96318 52396 193 188 22761 15000
DBpedia-FR 15000 80112 56114 166 220 21645 15000

L-ED1 DBpedia-EN 100000 335359 423666 381 450 147142 100000
DBpedia-DE 100000 336240 586207 196 251 199527 100000

L-ED2 DBpedia-EN 100000 622588 430752 323 325 139867 100000
DBpedia-DE 100000 629395 656458 170 188 200356 100000

L-EF1 DBpedia-EN 100000 309607 384248 400 465 145103 100000
DBpedia-FR 100000 258285 340725 300 518 157791 100000

L-EF2 DBpedia-EN 100000 649902 396150 379 363 145382 100000
DBpedia-FR 100000 561391 342768 287 467 157564 100000
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Table 2: Reduction Ratio (RR) and Recall (Rec) results in percent. The RR
values of the respective variants are shown in a single column, since they are
identical by design. Per Task the RR and Rec values for the three highest h3r
values are colored with a darker color implying a better value. All results shown
use SIF embeddings.

DeepBlocker RelDeepBlocker RelTBDeepBlocker

AE CTT hyb AE CTT hyb AE CTT hyb
RR Rec Rec Rec RR Rec Rec Rec RR Rec Rec Rec

S-DW1 99.904 8.6 16.9 9.8 99.902 28.0 34.9 14.3 99.914 45.4 48.5 46.0
S-DW2 99.920 14.8 14.6 9.2 99.840 27.6 33.0 12.6 99.918 47.5 47.8 39.9
S-DY1 99.885 26.3 19.6 12.4 99.769 52.9 33.8 17.8 99.922 70.3 66.8 60.3
S-DY2 99.873 21.8 13.8 6.7 99.872 49.5 37.8 18.8 99.905 46.4 55.7 52.5
S-ED1 99.914 18.4 17.1 13.1 99.914 28.3 25.6 12.3 99.877 77.7 76.6 72.5
S-ED2 99.924 13.1 14.6 13.0 99.923 14.3 22.9 11.4 99.869 73.6 73.4 71.3
S-EF1 99.782 27.3 26.6 21.8 99.777 36.2 34.4 24.8 99.846 65.5 69.7 67.7
S-EF2 99.759 24.8 31.3 29.7 99.753 23.5 43.4 27.1 99.825 83.6 82.2 79.6

5 Experiments

5.1 Datasets

Several benchmark datasets were considered for this study but ultimately were
not deemed the right fit. The movie datasets used by Obraczka et al. [23] have
a shallow graph structure but are relatively small and do not necessarily require
blocking. The datasets used in the KG track of the Ontology Alignment Evalua-
tion Initiative [1] contain millions of entities, making them challenging in terms
of scalability and therefore a perfect candidate for our experiments. However,
we found that Token Blocking (without involving relations) yields 100% recall
on the available partial gold standard, making it unsuitable for this investiga-
tion. The datasets used by Efthymiou et al. [7] are also sufficiently large. Still,
we could not load them properly due to inconsistent encodings across the gold
standard and respective data sources, and we found some entities in the gold
standard that do not show up in either data source. Ultimately, we chose the
16 matching tasks published by Sun et al. [34], which consist of matching sam-
ples of the KGs DBpedia, Wikidata, and YAGO. Half of the matching tasks
consist of a multi-lingual setting, which aim to match entities from different
DBpedia variants (English-German and English-French). The similar but larger
DBP1M dataset [10] is unsuitable for our study because it does not contain at-
tribute triples. Table 1 shows the statistics of the matching tasks. With up to
2.3 million triples, these datasets are challenging w.r.t scalability, but they still
have problems. They rely on an unrealistic 1-to-1 matching scenario, where each
dataset contains a respective counterpart for the other dataset. Furthermore,
all the datasets are derived from Wikipedia in one way or the other, provid-
ing limited heterogeneity. More research is needed to create realistic benchmark
datasets, but this is outside the scope of this study.
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Table 3: Reduction Ratio (RR) and Recall (Rec) results in percent. The RR
values of the RelTBDeepBlocker variants are shown in a single column, since they
are identical by design. Per Task the RR and Rec values for the three highest
h3r values are colored with a darker color implying a better value. Runs that
did not complete after 10 hours are marked with ’-’.

LightEA RelTBDeepBlocker RelTBAC RelTBTC RelTBAE CTT hyb
EM RR Rec RR Rec Rec Rec RR Rec RR Rec RR Rec

S-DW1 SIF 99.896 29.9 99.914 45.4 48.5 46.0 97.631 91.1 95.796 96.5
ST 99.896 33.8 99.914 49.3 42.6 47.4 99.414 89.8 99.014 90.5 98.886 90.1

S-DW2 SIF 99.917 23.9 99.918 47.5 47.8 39.9 96.397 99.9 94.866 100.0
ST 99.917 29.2 99.918 41.6 39.8 43.5 98.619 97.6 97.193 98.1 97.649 97.5

S-DY1 SIF 99.877 55.2 99.922 70.3 66.8 60.3 99.759 94.9 96.118 98.4
ST 99.877 36.8 99.922 67.2 59.7 56.8 99.835 95.1 99.617 96.1 99.625 95.4

S-DY2 SIF 99.870 35.4 99.905 46.4 55.7 52.5 99.561 99.0 93.730 100.0
ST 99.870 28.0 99.905 46.6 46.9 46.4 99.193 99.1 95.008 99.1 98.209 99.1

L-DW1 SIF 99.957 26.1 99.934 43.8 43.7 43.1 95.973 92.8 95.316 94.1
ST 99.957 29.6 99.934 46.1 44.9 46.2 99.312 83.7 99.031 84.6 98.815 84.2

L-DW2 SIF 99.968 20.4 99.929 44.3 45.2 - 98.245 97.3 91.984 99.8
ST 99.968 26.2 99.929 44.3 46.6 46.0 97.502 97.5 96.101 97.6 95.486 97.6

L-DY1 SIF 99.957 42.7 99.950 68.4 68.8 - 96.889 96.8 95.496 98.5
ST 99.957 26.4 99.950 68.7 69.3 70.4 99.600 96.4 99.316 96.9 99.258 96.5

L-DY2 SIF 99.965 38.1 99.938 74.9 - - 96.878 99.3 93.387 99.9
ST 99.965 24.0 99.938 74.3 73.8 74.1 98.008 99.4 96.851 99.3 96.201 99.5

S-ED1 SIF 99.910 30.4 99.877 77.7 76.6 72.5 99.421 92.3 97.035 96.2
ST 99.910 41.5 99.877 84.0 72.5 70.2 99.246 92.5 99.233 92.6 99.155 92.1

S-ED2 SIF 99.922 26.4 99.869 73.6 73.4 71.3 98.822 95.9 96.682 99.0
ST 99.922 34.7 99.869 80.1 71.4 69.6 98.383 96.3 98.421 96.4 98.453 95.9

S-EF1 SIF 99.759 37.4 99.846 65.5 69.7 67.7 99.196 84.6 93.686 88.5
ST 99.759 63.8 99.846 76.3 71.0 66.0 98.758 85.0 98.664 84.5 98.947 84.2

S-EF2 SIF 99.745 40.5 99.825 83.6 82.2 79.6 96.935 98.2 86.246 98.8
ST 99.745 72.4 99.825 87.1 80.2 76.0 95.012 98.1 95.199 97.0 96.934 96.9

L-ED1 SIF 99.960 20.6 99.925 66.5 66.4 67.1 99.531 89.3 95.902 96.2
ST 99.960 38.8 99.925 66.3 68.4 68.6 99.274 89.7 99.331 89.8 99.323 89.3

L-ED2 SIF 99.965 22.8 99.907 63.6 63.6 63.6 98.289 92.0 98.071 92.6
ST 99.965 33.4 99.907 63.4 65.1 64.9 98.277 92.4 98.353 92.6 98.475 92.0

L-EF1 SIF 99.924 22.2 99.939 59.5 59.8 59.8 99.027 80.4 98.611 81.1
ST 99.924 45.5 99.939 59.1 63.0 62.5 99.247 80.6 99.136 80.7 99.082 80.5

L-EF2 SIF 99.926 25.8 99.928 68.4 68.5 68.4 96.861 95.6 93.910 95.8
ST 99.926 53.1 99.928 67.9 70.8 70.6 96.876 96.0 94.740 95.9 95.515 95.5
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5.2 Setup

We tuned the hyperparameters4 on S-DW1 where necessary and used these val-
ues for all other datasets. Using all attributes was the best setting for the top
topna attributes. Still, for the topnr relations, we used the 90th percentile of the
number of distinct relations as the cutoff point to avoid highly connected nodes
gathering a vast neighborhood. For all approaches, we cleaned the literals from
XSD datatype information. For Token Blocking, we removed stopwords5 and
tokens shorter than character length 3. Approaches that utilize nearest neighbor
search use k = 500 on the small datasets and k = 1000 on the large datasets.
For RelDeepBlocker, the ΘA and ΘR components use half the k to ensure com-
parability. Our experiments include a comparison to LightEA, a state-of-the-
art unsupervised KGE method, as an embedding method that incorporates the
rich relational information present in the KG in a more elaborate manner. This
approach was chosen for its speed and high-quality results [16]. As previously
mentioned, we investigate two different embedding approaches: SIF aggregated
token embeddings, which rely on fasttext word embeddings, and Sentence-BERT
embeddings (ST), where we use GTR-T5 [20] for the mono-lingual datasets and
LaBSE [9] for the multi-lingual tasks. On the large datasets, we reduce the dimen-
sionality to fit the embeddings in one GPU. For the Sentence-BERT embeddings,
we perform PCA on 30% of the data and use the first principal component as the
final layer6 of the Sentence-BERT model to reduce to dimensionality from 768 to
196 dimensions. The fasttext embeddings can be reduced using the dimensional-
ity reduction provided by the fasttext library. Here, we reduce the dimensionality
from 300 to 100 dimensions. For RelTBAC and RelTBTC , we further reduce the
dimensionality since HDBSCAN works best on lower dimensional embeddings.
Here, we reduce the Sentence-BERT embeddings to 32, and the fasttext embed-
dings via UMAP [18] to 25 dimensions. In the future, we want to investigate
whether hubness-reduction methods are viable alternatives here [22]. We use the
RAPIDS7 library for faster GPU implementations of HDBSCAN and UMAP.
The experiments were run on a machine with an AMD EPYC 7551P CPU. For
the small datasets, we used a GeForce RTX 2080 Ti GPU; for the large datasets,
we used one Tesla V100. More detailed information on reproducibility can be
found in our GitHub repository.

5.3 Results

We rely on the Bayesian analysis for comparing machine learning models pro-
posed by Benavoli et al. [3] to make sound statistical performance comparisons.
A Bayesian signed rank test [4] determines significant differences between the
4 Detailled information can be found here: https://github.com/dobraczka/klinker/
tree/main/run_scripts/hyperparam_sweeps

5 Using NLTK’s [5] English stopword list
6 see https://www.sbert.net/examples/training/distillation/README.html#
dimensionality-reduction

7 https://rapids.ai/

https://github.com/dobraczka/klinker/tree/main/run_scripts/hyperparam_sweeps
https://github.com/dobraczka/klinker/tree/main/run_scripts/hyperparam_sweeps
https://www.sbert.net/examples/training/distillation/README.html#dimensionality-reduction
https://www.sbert.net/examples/training/distillation/README.html#dimensionality-reduction
https://rapids.ai/
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two approaches. Compared to frequentist hypothesis testing, this allows reject-
ing or accepting a null hypothesis. Furthermore, a region of practical equivalence
(ROPE) can be defined for approaches with equally good performance. We rely
on the Autorank [11] package to automatically set the ROPE in relation to effect
size. The Bayesian analysis gives us a probability that one approach is better,
worse, or equal to another. In our study, we decide if one of these probabilities
is ≥ 95%, or else we give no verdict (i.e., see it as inconclusive).

We first investigate the performance of the different approaches that utilize
DeepBlocker. Table 2 shows Recall and Reduction Ratio values on the small
datasets using the SIF embeddings. Since the number of neighbors controls
the reduction ratio, we show these values in a single column for each fam-
ily of approaches. For space reasons, the other datasets and embedding vari-
ants are omitted here. Per matching task, the three best approaches w.r.t h3r
values are highlighted in decreasing strength of color. It is evident that the
RelTBDeepBlocker variants outperform their counterparts, and using our statis-
tical comparison regime, we can say that this difference is significant. We can
also see that RelDeepBlocker is better than DeepBlocker, except for the hyb vari-
ant, which generally performs the worst. For AE and CTT, the RelDeepBlocker
variant is also significantly better than its non-relational counterpart.

In Table 3, we show the results on all datasets with both embedding vari-
ants. Per matching task, the three best approaches w.r.t h3r values are again
highlighted in decreasing strength of color. We can see that RelTB and the at-
tribute/token embedding clustering variants RelTBAC and RelTBTC perform
the best. In fact, on all 16 matching tasks, the best value is achieved either by
RelTBAC or RelTBTC . Looking at the RR and Recall values, we can see that
RelTBAC generally has a higher RR than RelTBTC , with the latter dominat-
ing in Recall, even achieving 100% on two datasets (S-DW2 and S-DY2). The
KGE-based approach LightEA performs the worst, not managing to outperform
RelTBDeepBlocker on a single dataset. In Figure 2, we provide the result of the
Bayesian statistical analysis w.r.t h3r values. We also distinguished the different
embedding approaches to provide a more detailed analysis. All other approaches
outperform LightEA. It is also notable that RelToken and the RelTB variants
without DeepBlocker are significantly better than the other approaches. Among
these five dominant approaches, we cannot reach a conclusive answer as to which
of these performs the best. In Figure 3, we take a more detailed analysis w.r.t
Recall and Reduction ratio on these five approaches. While RelTBTC with SIF
embeddings is significantly better regarding Recall than all other approaches, it
is also significantly worse regarding Reduction Ratio. RelTBAC with Sentence-
Transformer embeddings strikes the best balance between Recall and Reduction
Ratio of these approaches. It performs similarly to, e.g., RelToken regarding
Recall but is significantly better in terms of Reduction Ratio. While it is incon-
clusive whether RelTBAC with SentenceTransformer embeddings is significantly
better than RelToken w.r.t h3r values, we see this nuanced analysis on Recall
and Reduction Ratio as a sign that hybrid approaches deserve more research
attention.
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Fig. 4: Time in seconds as aggregated box plots, with the first row showing the
15k datasets and the second row showing the 100k datasets. Note the differing
ranges of the y-axis per row.

Since the main goal of employing blocking is to speed up the matching pro-
cess, runtime is an important factor. In Figure 4, we show the runtimes of the
different approaches. The purely symbolic approach RelToken is the fastest of
the high-quality methods. RelTBTC and RelTBAC are roughly on par with the
AutoEncoder variant of RelTBDeepBlocker. The more sophisticated DeepBlocker
variants are one order of magnitude slower. While LightEA is the fastest (espe-
cially when using Sentence-BERT embeddings), it does not produce high-quality
results.

5.4 Impact of relational enhancement

Since one of our contributions is enhancing some state-of-the-art blocking ap-
proaches for the KG domain, we will now examine the differences between rela-
tional and non-relational blocking. In Figure 5, we compare relational blockers
and their non-relational counterparts on S-DY2. Since LightEA is relational by
design, we compare it with the SIF aggregated fasttext embeddings. For the
RelTBDeepBlocker variants, we compare them with their DeepBlocker counter-
parts. In terms of Recall, we can, in many cases, more than double the values
while retaining a high Reduction Ratio. The highest cost of relational enhance-
ment is in terms of speed. For example, Token Blocking without relational en-
hancement takes 8 seconds, while RelToken takes 27. The speed penalty is higher
for the attribute/token embedding clustering variants, where the additional steps
of embedding and clustering take most of the time and up to 313 seconds. The
dimensionality reduction needed for HDBSCAN is included in this time as well.
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Fig. 5: Comparison between relational blockers with their non-relational coun-
terparts on S-DY2, with SIF aggregated fasttext embeddings (where applicable).

6 Conclusion and Future Work

In this work, we presented a unified framework that integrates embedding-based
and symbolic approaches, enhances state-of-the-art methods to utilize relational
information, and explores various hybrid methods that combine embedding-
based and symbolic techniques. Our study showed that simple symbolic ap-
proaches can outperform sophisticated, state-of-the-art deep learning methods
like DeepBlocker, even when adapted to incorporate neighborhood information.
We showed that Relational Token Blocking and the hybrid variants that uti-
lize clustering on token/attribute embeddings are significantly better than the
other approaches we investigated. Token Blocking relies on symbolic overlap at
a lower level of granularity than entity embeddings. Our study has shown that
similarities at this level can be exploited by embedding-based methods as well.
Subsequent studies should investigate how these findings can be incorporated
into new hybrid methods, which are currently an underexplored field in (rela-
tional) blocking research. Future work must address the current limitations of
existing benchmark datasets to enable more robust investigations. Even on some
of the datasets used in this study, no approach managed blocking quality that
would be deemed acceptable in a practical setting (e.g., on L-EF1 we achieved
at best 81% Recall), emphasizing the importance of additional research.
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