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ABSTRACT
The high expressiveness and elasticity of graphs has led to the

design of a wealth of graph models and query languages, used by

practitioners to model real-world processes. The property graph

model and corresponding query languages, such as the widely

used Cypher, have become popular in both industry and research.

However, real-time data analysis and management is becoming

increasingly important for today’s businesses, but graph query

languages lack the features to handle streaming graph data and

their continuous query evaluation.

In this work, we propose Seraph, a Cypher-based language sup-

porting native streaming features within industry-ready property

graph query languages. We formally define the Seraph semantics

by combining stream processing with property graphs and time-

varying relations while treating time as a first-class citizen of

the underlying semantics, thus laying a formal foundation neces-

sary for future implementations. We further propose its syntax

and showcase the usage of Seraph for emerging graph-based

continuous queries of real-world industrial use cases.

1 INTRODUCTION
With the growing availability of information, interconnected data

have become pervasive. Graphs, in particular, Property Graphs

(PGs) [3] (also denoted as Labeled Property Graphs (LPGs)),

are a widespread data model in many industrial domains such

as healthcare, social media, cybersecurity, fraud detection and

genomics. Coherently, declarative graph query languages like

Cypher [22], G-CORE [4], and PGQL [49] have emerged as the

formalisms of choice for expressing sophisticated information

needs declaratively. Moreover, the efforts above are converging

into GQL [20, 25], the future standard graph query language that

will pave the road to workload portability and shared consensus

to manipulate PGs.

Graphs not only exhibit a notable increase in volume but also

demonstrate a significant level of dynamism [10]. When slow in

frequency, the changes on graphs can be addressed by temporal

graph data models and corresponding query languages [38] that

include operators for exploring graph versions across time. On
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the other hand, a paradigm shift in the query model is needed

when the frequency of changes grows and directly impacts the

high throughput and low latency of query results, as it often

occurs in streaming graph settings [34].

Continuous queries (CQs) [6, 42] are a class of queries that

repeatedly reports the results until explicitly terminated. CQs are

typically evaluated over data streams, i.e., unbounded sequences

of timestamped data items [7, 42]. To deal with the unbounded-

ness of the input streams, CQs include operators that leverage

data timestamps and operate the query evaluation by recency.

In practice, CQs enable reactive analytics, and thus, they are

popular in stream processing domains like network monitoring,

real-time surveillance, micro mobility. In such domains, it is of

paramount importance to output the results of the query before

the data becomes stale. However, the high cost of designing and

maintaining custom stream processing pipelines has paved the

road to declarative continuous query languages [23]. The data-

base literature shows that the declarative paradigm poses signif-

icant advantages in such domains, e.g., interoperability across

systems, optimisation opportunity, and simplicity of use [33].

Now that CQs are becoming relevant for various property-

graph-centric task [34, 39], it is important to bridge the gap

for a declarative PG continuous query language. Table 1 shows

examples of CQs for the stream processing domain mentioned

above that would benefit from a graph stream data model: the

first query, which devotes to network monitoring, asks for
paths that denote anomalies in the routes to the egress switch (i.e.

a router responsible for outgoing traffic in a time-based interval);

the second query, which devotes to real-time surveillance,
asks for computing the list of persons who passed by a crime

scene within 30 minutes; the last query, which relates tomicro
mobility, looks for the violations of a business rule for limited

time free bike rides in a given temporal lapse. It is worth noting

here that the above CQs not only need to be repeatedly evaluated

for incoming data, but they must also identify a temporal pattern

to bind the results.

On the one hand, the CQs presented above show the need

for enriching current declarative graph query languages with

the necessary abstractions and expressive power to formulate

continuous graph queries. However, current popular graph query

languages, such as Cypher, lack these abstractions. Moreover,

algebraic frameworks for streaming graph queries started to be

 

 

Series ISSN: 2367-2005 234 10.48786/edbt.2024.21

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.21


Domain Examples of Graph Continuous Queries

Network Monitoring What are the anomalous routes that connect to the egress switch during the last 15 minutes?
Real-Time Surveillance Who has passed by a given crime scene in the last 30 minutes?
Micro Mobility Did anyone violate the 20-minute free renting limit in the last hour?

Table 1: Summary of continuous information needs for use-cases in three different domains.

defined, along with data and query models and preliminary opti-

mizations [34] but as of today these cannot be encoded as bulk

queries in a declarative language. On the other hand, existing con-

tinuous declarative languages are either limited to the relational

model [47] or limited to RDF. The former are incapable of expres-

sive complex analytics such as path queries. At the same time,

the latter have focused on the relational subset of SPARQL [46],

neglecting advanced features such as regular path queries [34].

In this paper, we fill this gap and focus on the language aspects

of graph continuous queries. Precisely, we present the design

of syntactic and semantic components of a Cypher-based con-

tinuous query language for streaming property graphs, namely

Seraph. Motivated by other ongoing GQL standardization efforts

around graph query and schema languages [5, 20, 25], in which

formal semantics need to be defined prior to any implementation,

we define the syntax and semantics of Seraph and properly for-

malize the latter to avoid underlying ambiguities and incorrect

behavior of the queries.

In designing such a language, we elicit a set of design require-

ments acquired from our industrial-strength use cases:

R1 Declarative Semantics. The language must be declarative

to guarantee interoperable execution across systems, optimi-

sations, and simplicity of adoption.

R2 Continuous evaluation. The language must have operators

that allow the repeated evaluation over time, i.e., choosing a

time interval and a sequence to evaluate the query.

R3 Result emitting. The language must include operators that

allow controlling the report of results, i.e., what is part of the

result and when it will be ready to be emitted.

R4 Preserving expressiveness. The language should preserve

the expressiveness of the base language for querying a PG,

i.e., everything that can be expressed in the base language

can be expressed in the extended language.

Seraph results from a long-term collaboration between sev-

eral academic institutions and Neo4j. It conjugates Cypher, a

widely used graph query language with a key role in the ongo-

ing GQL standardization, with windowing mechanisms at the

core of continuous queries over streams [6, 12]. While the very

first version of GQL (without temporal extensions) is expected in

2024, at the moment GQL is only available to the members of the

standardization committee (ISO/IEC JTC1 SC32 WG3 Database

Languages). It will take some time for GQL to be implemented

into products even after the publication of the standard. This

justifies and motivates our choice of focusing on Cypher as a

basis for Seraph, given the wide availability of the former in

several industrial products/use cases and its closeness to GQL.

We believe that our work will help reach a consensus for the

future temporal expansions of GQL, which are certainly deemed

important but not included in the first version.

As a result, Seraph stands as a productive and industry-ready

language that allows querying graph streams. The proposed lan-

guage is simple, intuitive and highly expressive at the same time.

Anyone who is familiar with Cypher and can address a problem

in a static property graph setting will be able to use Seraph in a

streaming context. The language and its detailed formalization,

as presented in our work, lay the foundations for future imple-

mentations and are the necessary steps to be carried out in order

to guarantee their underlying correctness. Summarizing, in this

paper we make the following main contributions:

• we present the datamodel underlying graph continuous queries

and formally describe the duality between a stream of property

graphs and time-varying relations;

• we lay the foundations of a Cypher-based query model for

continuous queries over property graphs streams by using

the concept of snapshot reducibility from temporal relational

databases;

• we formally define the syntax and semantics of Seraph, an

easy-to-use Cypher-based query language that incorporate

primitives for continuous evaluation. The latter is, to the best

of our knowledge, nonexistent in current graph query lan-

guages. In contrast, they are urgently needed in industry-wide

applications and desirable for the development of ongoing GQL

standards.

The remainder of the paper is organised as follows: We will

go into details of the micro-mobility example in Section 2. We

provide an overview of the core of Cypher in Section 3, giving the

preliminary knowledge needed to formalize Seraph, and explain-

ing how a Cypher-only solution won’t satisfy the requirements.

Section 4 describes further two industrial use-cases and the use of

Seraph to answer the continuous questions in Table 1. Section 5

contains the formal specification of the semantics and syntax

of Seraph together with a solution of the running example. In

Section 6, we give an outlook to future implementations. Finally,

Section 7 discusses related work, while Section 8 concludes the

paper.

2 RUNNING EXAMPLE
In this section, we describe the use case of fraud detection in

the micro mobility domain mentioned in the introduction. The

scenario of a fictional vehicle sharing provider described below

is inspired by a real business scenario within a company namely

nextbike BY TIER1 from Leipzig, Germany. This company applies

graph technologies for demand prediction, usage increase and

optimization of rental stations and zones and their locations.

The company RideAnywhere is known as a leading company

that operates public bike, scooter and car-sharing systems. Vari-

ous rental stations and zones are available within a city, which

offer electrically operated cars, bicycles (e-bikes) and e-scooters,

and classic bicycles. A user can use a mobile app to rent an avail-

able vehicle at a rental station. RideAnywhere offers various price

models: from half-hourly to monthly subscriptions. If a vehicle

is returned, the app calculates the total price of the rental based

on the duration and the existing subscription.

1
https://www.nextbike.de
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Figure 1: Stream of property graphs representing the events captured into the RideAnywhere Kafka queue.

Each rental station is connected to the RideAnywhere head-

quarters via a 4G connection and transmits rental and return

events to a central Kafka event queue. Transmission takes place

every 5 minutes for traffic and energy-saving reasons. A collected

event thus represents all rentals and returns of the past 5 min-

utes, including the id of the station, the vehicles used and user

information. We model the relationship within the event appro-

priately as a property graph consisting of station and vehicle

nodes and relationships representing rentals and returns. Further,

properties about rental time, return time, duration and unique

identifiers for vehicles, users and stations, are provided.

The timeline reported in Figure 1 illustrates the events arriv-

ing in the Kafka queue of the RideAnywhere headquarter from

14:45h to 15:40h on a day in August 2022. Each event represents

a property graph that contains rentals of a 5 minute period. Let

us discuss the events of this example in detail.

14:45h An E-bike with id 5 was rented at station with id 1. The

rental was done at 14:40h from a user with id 1234, which

is stored in the edge properties. No further rentals or

returns happened in the period [14:40,14:45).

15:00h The E-bike with id 5 was returned at station 2 at 14:55h.

At the same station, two other bikes were rented. One of

them from the same user, the other of user with id 5678.

15:15h The bike with id 6 was returned at station 3 at 15:13h.

15:20h Again at station 3, bike 8 was returned by user with id

5678 at 15:15h and an e-bike with id 7 was rented again

by the same user 3 minutes later.

15:40h The E-bike with id 7 was returned at station 4 at 15:35h.

No further rentals or returns happened in the period

[15:35, 15:40).

Using the Neo4j Kafka Connector [32], all incoming events are

merged and persisted in a Neo4j graph database. Vertices sharing

the same identifier (e.g., for stations and bikes) will be merged

to a single vertex. For the example graph stream of Figure 1,

the resulting merged property graph of the interval from 14:45h

to 15:40h is visualized in Figure 2. The graph consists of four

station and four bike nodes as well as four rentals of two users

represented by eight timestamped relationships.

To make the service attractive and affordable for students, an

additional pricing model was developed with the local student

union a few months ago. It provides that the first 20 minutes of

e-bike or bicycle rental are free for valid students. If a vehicle

is returned by a student and the 20-minute rental period has

not been exceeded, no fee will be charged. If the time period is

exceeded, the regular rate will be charged. RideAnywhere’s goal

is to increase the number of younger customers, achieve broader

use of the service and generate more revenue by exceeding free

times.

Shortly after its introduction, the student offer was widely

used. The number of rentals increased by 35% compared to the

average monthly usage before the student offer. However, after

the first 3 months with this model, an analysis on the rental-graph

found that students rarely made rentals longer than 20 minutes:

only 5% of all student rentals per month. The RideAnywhere

analytics team suspects that longer distances are covered by

renting a vehicle again shortly thereafter (at a 5 minute interval),

which is prohibited by company policy. This trick allows students

to cover any length of distance using the free period multiple

times.

The data analytics team is now expected to find a way to

continuously detect users who use this trick so that they can

be immediately alerted that this will lead to expulsion from the

student offer by repeated violation. We present two solutions

to this problem: one with Cypher including its drawbacks in

Section 3.3, and one using Seraph that shows its strength in

Section 5.4. It should be noted that the selected example with

only minute-by-minute data does not do justice to the real-time

character of the possibilities of continuous querying on a graph

stream, but is suitable for demonstration.

Figure 2: Graph resulting from loading the events from
14:45h to 15:45h into a Neo4j graph database.
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3 BACKGROUND: THE CYPHER LANGUAGE
In the following, we provide as the necessary background the

formal specification of a core subset of Cypher [22] for static

property graphs. It consists of a data model including values,

graphs, and tables (Section 3.1) and the query language alongwith

its evaluation semantics including expressions, patterns, clauses,

and queries (Section 3.2). Finally, we discuss the drawbacks of

Cypher-only solution to the running example from Section 2

(Section 3.3).

3.1 Data model
Cypher’s data model is based on three first class objects, namely

values, property graphs, and relations, the latter being referred to

as tables in Cypher’s terminology. From [22], we consider three

disjoint sets K of property keys, N of node identifiers, and R of

relationship identifiers. These sets are all assumed to be countably

infinite. The setV of values contains multiple inductively defined

elements. We assume two base types: the integers Z, and the type
of finite strings over a finite alphabet Σ.

Definition 3.1 (Property graph [22]). Let L and Y be count-

able sets of node labels and relationship types, respectively. A

property graph is a tuple 𝐺 = (𝑁, 𝑅, 𝑠𝑟𝑐, 𝑡𝑟𝑔, ], _, ^) where:
• 𝑁 is a finite subset of N , whose elements are referred to

as the nodes (also denoted as vertices) of 𝐺 .

• 𝑅 is a finite subset of R, whose elements are referred to

as the relationships (or edges) of 𝐺 .

• 𝑠𝑟𝑐 and 𝑡𝑟𝑔 are functions 𝑅 → 𝑁 that map a relationship

to its source and target node, respectively.

• ] : (𝑁 ∪ 𝑅 ) ×K →V is a finite partial function that maps

a pair (node|relationship,property key) to a value.

• _ : 𝑁 → 2
L
is a function that maps each node id to a

finite (possibly empty) set of labels.

• ^ : 𝑅 →Y is a function that maps each relationship iden-

tifier to a relationship type.

For example, the graph of Figure 2 is formally represented in

this model as a graph 𝐺 = (𝑁, 𝑅, 𝑠𝑟𝑐, 𝑡𝑟𝑔, ], _, ^):
• 𝑁 = {𝑛1, . . . , 𝑛8}; 𝑅 = {𝑟1, . . . , 𝑟8};
• 𝑠𝑟𝑐 = {𝑟1 ↦→ 𝑛5, 𝑟2 ↦→ 𝑛5, 𝑟3 ↦→ 𝑛6, 𝑟4 ↦→ 𝑛8, . . . };
• 𝑡𝑟𝑔 = {𝑟1 ↦→ 𝑛1, 𝑟2 ↦→ 𝑛2, 𝑟3 ↦→ 𝑛2, 𝑟4 ↦→ 𝑛2, . . . };
• ] (𝑟1, user_id) = 1234, ] (𝑟1, val_time) = 14:40, . . . ;

• _ (𝑛1) = _ (𝑛2) = _ (𝑛3) = _ (𝑛4) = {Station},
_ (𝑛5) = _ (𝑛7) = {E-Bike}, _ (𝑛6) = _ (𝑛8) = {Bike};

• ^ (𝑟 ) =
{
rentedAt for 𝑟 ∈ {𝑟1, 𝑟3, 𝑟4, 𝑟7},
returnedAt for 𝑟 ∈ {𝑟2, 𝑟5, 𝑟6, 𝑟8}.

The flexibility of the property graph model also allows the

modelling of hierarchies, e.g. by using multiple type labels per

node (see _ ), e.g., :superclass:subclass or dedicated relation-
ship types, e.g., (a)-[:isSubclassOf]->(b).

Definition 3.2 (Tables [22]). LetA be a countable set of names.

A record is a partial function from names to values, convention-

ally denoted as a tuple with named fields𝑢 = (𝑎1 : 𝑣1, . . . , 𝑎𝑛 : 𝑣𝑛)
where 𝑎1, . . . , 𝑎𝑛 are distinct names, and 𝑣1, . . . , 𝑣𝑛 are values. The

order in which the fields appear is only for notation purposes. We

refer to 𝑑𝑜𝑚(𝑢), i.e., the domain of 𝑢 , as the set {𝑎1, . . . , 𝑎𝑛} of
names used in 𝑢 . We use () to denote the empty record, i.e., the

partial function from names to values whose domain is empty.

If A is a set of names, then a table with fields A is a bag, or

multiset, of records 𝑢 such that 𝑑𝑜𝑚(𝑢) = A. A table with no

fields is just a bag of copies of the empty record. Lastly, we define

1 query ::= query◦ | query UNION query | query UNION ALL
2 query◦ ::= RETURN ret | clause query◦

3 ret ::= ∗ | expr [AS a] | | ret , expr [AS a]
4 clause ::= [OPTIONAL] MATCH pattern_tuple [WHERE expr]
5 | WITH ret [WHERE expr] | UNWIND expr AS a
6 pattern_tuple ::= pattern | pattern , pattern_tuple

Figure 3: Syntax of queries and clauses of Cypher [22].

the bag difference of two tables 𝑇 and 𝑇
′
as their bag difference,

i.e., 𝑇 ∖𝑇
′
.

3.2 Query language
The Cypher query language, whose syntax is presented in

Figure 3, includes expressions, patterns, clauses, and queries. Due

to the limited space, like in [22] we only focus on the latter two.

A query is either a sequence of clauses ending with the RETURN
statement, or a union of two queries. The semantics of queries

associates a query 𝑄 and a graph 𝐺 with a function [[𝑄]]𝐺
that takes a table and returns a table. Notably, the semantics of

a query 𝑄 is a function and should not be confused with the

output of 𝑄 . The evaluation of a query starts with the table

containing one empty tuple, which is then progressively changed

by applying functions that provide the semantics of 𝑄 ’s clauses.

The composition of such functions, i.e., the semantics of 𝑄 , is a

function again, which defines the output as:

𝑜𝑢𝑡𝑝𝑢𝑡 (𝑄,𝐺) = [[𝑄]]𝐺 (𝑇 ())
where 𝑇 () is the table containing the single empty tuple ().

Let us have a look at the semantics of a pattern. The MATCH
clause extends the set of field names of 𝑇 by adding field names

that correspond to names occurring in the pattern but not in 𝑢

(the value to field assignments). It also adds tuples to 𝑇 , based

on found matches of the pattern in graphs. We show how to

compute ⟦ MATCH 𝜋⟧𝐺 (𝑇 ), where 𝜋 is the path pattern [22] to

search for.

⟦MATCH 𝜋⟧𝐺 (𝑇 ) =
⊎
𝑢∈𝑇

{𝑢 · 𝑢′ |𝑢′ ∈𝑚𝑎𝑡𝑐ℎ(𝜋,𝐺,𝑢)}

The pattern 𝜋 is evaluated on the graph𝐺 and extending𝑇 by

adding field names and tuples based on the matches found in𝐺 .

Each existing assignment 𝑢 ∈ 𝑇 is extended by the assignments

𝑢′ that are part of the finite set𝑚𝑎𝑡𝑐ℎ(𝜋,𝐺,𝑢), which gives the

semantics of the pattern matching of Cypher. Note that a pattern

with variable length can be subsumed by a (possibly infinite) set

of fixed length patterns, so-called rigid patterns [22]. Let 𝜋 be

a path pattern, 𝑓 𝑟𝑒𝑒 (𝜋) the union of all free variables of each

node and relationship pattern occurring in 𝜋 , 𝑟𝑖𝑔𝑖𝑑 (𝜋) the set of
all rigid patterns subsumed by 𝜋 , 𝐺 the graph, 𝑢 an assignment,

𝑑𝑜𝑚(𝑢) the domain of 𝑢 (set of names) and 𝑝 a path with node

ids from 𝑁 and relationship ids from 𝑅, the set is defined as:

𝑚𝑎𝑡𝑐ℎ(𝜋,𝐺,𝑢) =
⊎
𝑝∈𝐺

𝜋 ′∈𝑟𝑖𝑔𝑖𝑑 (𝜋 )

{
𝑢′

����� 𝑑𝑜𝑚 (𝑢′ )=𝑓 𝑟𝑒𝑒 (𝜋 )−𝑑𝑜𝑚 (𝑢 )
∧(𝑝,𝐺,𝑢 ·𝑢′ ) |=𝜋 ′

}
Note that

⊎
is a bag-union, i.e., a new occurrence 𝑢′ is added to

𝑚𝑎𝑡𝑐ℎ(𝜋,𝐺,𝑢) if a new combination of 𝜋 ′ and 𝑝 is found that the

pattern matching relation holds: (𝑝,𝐺,𝑢 · 𝑢′) |= 𝜋 ′, i.e., a path 𝑝

in a graph 𝐺 satisfies a pattern 𝜋 under the assignments 𝑢 · 𝑢′ of
values to the free variables of the pattern. Additional details of

the Cypher semantics can be found in Francis et al. [22].
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1 WITH datetime() - duration('PT60M') AS win_start,
2 datetime() AS win_end,
3 MATCH (:Bike)-[r:rentedAt]->(s:Station),
4 q = (b)-[:returnedAt|rentedAt*3..]-(o:Station)
5 WITH r, s, q, relationships(q) AS rels,
6 [n IN nodes(q) WHERE 'Station' IN labels(n) | n.id] AS

hops
7 WHERE ALL(e IN rels WHERE
8 win_start <= e.val_time <= win_end AND
9 e.user_id = r.user_id AND e.val_time > r.val_time AND
10 (e.duration IS NULL OR e.duration < 20) )
11 RETURN r.user_id, s.id, r.val_time, hops

Listing 1: Cypher query to retrieve users that use the free
period for two subsequent rentals in the last hour.

3.3 Running Example vs Cypher
Following up on the Section 2 example to detect subsequent

rentals of the same user in the last hour, we designed the Cypher

query shown in Listing 1 that implements one possible but limited

solution representing this pattern. The drawbacks of this solution

are evaluated at the end of this section.

The first part from section 3.3 to section 3.3 defines two times-

tamps as bounds of a 1h window from the moment of the query

execution.

Lines 3-4 define the patterns: A bike was rented at a station s
from which a path with at least a length of 3 relationships ends

at a station o. The dynamic recursive pattern is assigned to a

path variable q for later use. Lines 7-8 define a condition that

the timestamp of all relationships of the path q have to be in

the 1h window. The selection at lines 9-10 ensure the same user

for all rentals and returns, guarantee that the first rental ended

chronologically before the second starts (section 3.3) and both

rentals do not exceed the free period of 20 minutes (section 3.3).

The user id, time of the first rental and ids of all involved stations

(derived in section 3.3) are returned, as stated in section 3.3.

Table 2 reports the result of the query evaluation at 15:40,

showing that in the last hour, the users with ids 1234 and 5678
illegally extended their free rental time each by a second subse-

quent rental.

However, this one-time Cypher query computes the informa-

tion need for the graph changes of one specific hourly interval,

but has several drawbacks. First, the PG data model on which

Cypher is based is static, i.e., there is no support of a continuous

stream of graph elements. Further, the query has to be continu-

ously evaluated on the most recent events and the results need to

be computed every 5 minutes from a defined time instant, which

results in the continuous evaluation requirement R2. Moreover,

they want to get user 1234 returned at 15:15 and user 5678 at

15:40, thus, only new results as soon as the last event arrived

in the last hourly period, which results in the result emitting

requirement R3.
With Cypher, this could be realized only by external code that

executes this query every 5minutes. However, such aworkaround

would break the declarative paradigm (violating R1). Moreover,

r.user_id s.id r.val_time hops

1234 1 14:40 [2,3]
5678 2 14:58 [3,4]

Table 2: Results of the Cypher query in Listing 1 at 15:40h.

the underlying system would be unaware of the continuous se-

mantics, which would almost certainly lead to suboptimal query

evaluation and possibly incorrect execution. In fact, each query

will run isolated from the other, possibly considering caching

mechanism design for the static case. Thus, a language like

Cypher lacks a query mechanism that natively controls the con-

tinuous evaluation of the query and the result emission while

at the same time preserving the expressive power of the non-

streaming language, which leads to the expressiveness require-

ment R4.

4 SERAPH BY EXAMPLES
Before we get into the technical definitions, we pick up the two

industrial use cases from Section 1 to justify the design (w.r.t. the

requirements) and formalization of Seraph. The goal is to give

high-level intuition of how a Seraph query looks and clarify what

queries we target in this work. To simplify understanding of the

syntax extensions, the original Cypher keywords are shown in

blue and those introduced by Seraph are shown in green.

4.1 Network Monitoring
Computer networks span all levels of the stack, from physical

connections up to mobile and microservices constituting a com-

pany’s cloud. Graphs offer a natural way of modelling such sce-

narios and performing network optimization, asset management

and inventory mapping. Network management is thus intrinsi-

cally a graph problem. While graph query languages like Cypher

play a key role in investigating dependencies and in running

diagnostic analyses (e.g., the root cause of a past network fault),

Seraph offers the possibility to execute network impact analysis

continuously.

Continuous Information Need: We want to monitor the net-

work connectivity for anomalous routes continuously.

Let’s assume thatwemodel the network endpoints (e.g., servers,

routers, switches and racks) of the data center as nodes and the

"cables" between them as relationships. For instance, a rack HOLDS
a switch that ROUTES an interface that CONNECTS a router in a

network. We consider connections redundant if one of the cables

gets loose or cut, i.e., the ROUTES relationship between a switch’s

interface and the network breaks, the number of hops can in-

crease, but no rack can become unreachable. We know from the

configuration of the network that the shortest routes from all

racks to the egress router require on average 5 hops, but network

events may cause this path to be longer, and we observed a stan-

dard deviation of 0.3 hops. We can identify anomalous routes

using the z-score, i.e., the number of standard deviations 𝜎 by

which an individual 𝑥 is above or below the mean value 𝛿 of

the population with (𝑥 − 𝛿)/𝜎 . Our patterns are routes whose

1 REGISTER QUERY anomalous_routes STARTING AT datetime() {
2 MATCH path = allShortestPaths(
3 (rack:Rack)-[:HOLDS|ROUTES|CONNECTS*]-(r:Router:Egress))
4 WITHIN PT10M
5 WITH rack, avg(length(path)) as 10minAvg, path
6 WHERE (10minAvg - 5 / 0.5) >= 3
7 EMIT path
8 SNAPSHOT
9 EVERY PT1M

10 }

Listing 2: Monitoring computer networks using Seraph.
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length has a z-score larger than 3, i.e., it is longer than 99,9% of

the paths.

Listing 2 illustrates how to encode this need in a Seraph query.

At each time instant, an arriving property graph represents the

configuration of the entire network. The query uses the WITHIN
(section 4.1) and the reporting EVERY (section 4.1) clauses to de-

fine a 10 minutes wide sliding window that reports every minute

(i.e., PT1M) starting from the current system time (section 4.1),

which meets requirement R2. The query finds the shortest paths

from each rack to the egress router (section 4.1 and 3) and com-

putes the average length of those paths in the last 10 minutes

(section 4.1).

If the z-score of those paths related to each rack is greater

than 3 (section 4.1), all paths are emitted for every evaluation,

which meets requirement R3. Two extensions achieve this: First,

using the EMIT clause (section 4.1) to specify the projections for

the result stream (here all shortest paths by the path variable)

and second by the SNAPSHOT streaming operator (section 4.1),

which specifies that for each evaluation all result tuples will be

emitted regardless of whether they have already been emitted

in the previous evaluation. The result of this continuous query

is a stream of so-called time-varying tables containing possibly

anomalous routes.

4.2 Crime Investigations
From fraud detection to security, encompassing surveillance and

contact tracing, investigations often require connecting the dots.
Data models like POLE (Person-Object-Location-Events) under-

pin a number of analyses that require the identification of pat-

terns [44]. POLE was originally intended for historical analyses

that one can perform using graph query languages like Cypher.

However, POLE includes temporal metadata that Seraph can ex-

ploit. Thus, it already unlocking a number of additional analyses,

including, but not limited to, real-time surveillance and contact

tracing.

Continuous Information Need: We shall monitor in real-time

who is passing by crime scenes and detecting potential suspects.

As we adopt the POLEmodel for surveillance, we model crimes
and calls as Events, which OCCURRED_AT a Location. Moreover,

we assume that a number of smart cameras, which can iden-

tify each Person passing by (NEAR_TO), are deployed in different

Locations within the city of London. We also consider suspects

whoever has been convicted (PARTY_TO) for a crime of the same

type as the one reported. Moreover, assuming that on average a

person walks about 5km in an hour, we restrict the scope of the

monitoring to an area of 3km from the crime scenes and a time

range of 15 minutes.

Listing 3 illustrates how to encode the information-need above

in a Seraph query. The query focuses on the last 15 minutes, re-

porting every 5 minutes starting at the current system time. To

this extent, it uses the WITHIN clause once per MATCH (sec-

tion 4.2 and section 4.2), and controls the results reporting using

the EVERY clause (section 4.2) and STARTING AT (section 4.2),

which satisfies requirement R2. The query monitors the streams

of crime reports (Lines 2-4) and crosschecks if anyone, who is

identified by a smart-camera, was a convicted criminal (Lines 5-

8). To restrict the search space, the query looks only for cameras

within 3km from the crime scenes and to those suspects that

had taken part in a crime of the same type before. The functions

point() and distance() are user-defined functions to perform

geo-spatial comparisons. As an output, the query emits the last

1 REGISTER QUERY watch_for_suspects STARTING AT datetime() {
2 MATCH (call:Event)-[:OCCURRED_AT]->(l:Location)
3 WITHIN PT15M
4 WITH call, point(l) AS crime_scene
5 MATCH (crime:Event)<-[:PARTY_TO]-(person:Suspect)-[:

NEAR_TO]->(last_seen:Location)
6 WITHIN PT15M
7 WITH call, crime, person, last_seen,
8 distance(point(last_seen), crime_scene) AS distance
9 WHERE distance < 3000 AND call.type=crime.type

10 EMIT person, last_seen, call.description
11 SNAPSHOT
12 EVERY PT5M
13 }

Listing 3: Looking for suspects in crime scenes using
Seraph.

seen location, the suspect description, and the crime references

by EMIT (section 4.2) and SNAPSHOT (section 4.2), satisfying

requirement R3. With the queries for both use cases, one can

see that Seraph expands Cypher and thus does not reduce the

expressiveness, which addresses requirement R4.

5 FORMALIZATION OF SERAPH
This section presents how Seraph supports streaming computa-

tions while preserving the expressiveness of the Cypher language.

The key elements of Seraph are aligned with the requirements of

Section 1 and are summarized as follows:

• a data model that extends the PG model used by Cypher to

model streams of property graphs;

• a query model for continuous query evaluation with full con-

trol of reporting (R2,R3);
• syntax and semantics of novel time-aware operators over the

aforementioned data model (R1,R2,R3,R4).
Throughout all following descriptions, we use the notation

summarised in Table 3.

5.1 Data Model
We first explain how the data model of Cypher can be extended

to deal with property graph streams, where each graph maintains

its evolution. The first component of Seraph’s data model is a

linearly ordered discrete time domain Ω like in [6, 31].

Concept Notation Set notation

Time instant / time domain 𝜔 Ω
Time interval 𝜏 -

Table 𝑇 -

Time-annotated Table 𝑇 T̃
Time-varying Table Ψ -

Mapping u -

Time-annotated Mapping ` -

Property Graph 𝐺 -

Snapshot Graph 𝐺 -

Property Graph Stream 𝑆 -

Property Graph Substream 𝑆 S̃
Window w 𝑊

Table 3: Summary of notation conventions.
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Definition 5.1 (Time). Ω is a infinite sequence of time instants
(𝜔1, 𝜔2, . . . ) ∈ Ω . A time unit is the difference between two

consecutive time instants (𝜔𝑖+1 − 𝜔𝑖 ) and it is constant. A time
interval 𝜏 = [𝜔𝑜 , 𝜔𝑐 ) is a left-close right-open interval which

starts at 𝜔𝑜 and ends at 𝜔𝑐 . Formally, it holds 𝜏 = {𝜔𝑖 |𝜔𝑖 ∈
Ω ∧ 𝜔𝑜 ≤ 𝜔𝑖 < 𝜔𝑐 }.

According to the definition above, we can define property

graphs arriving in a sequence of time instants as a property

graph stream (see Figure 1 for an example).

Definition 5.2 (Property Graph Stream). A Property Graph

Stream 𝑆 is an unbounded ordered sequence of pairs (G,𝜔), where:

• 𝐺 is a property graph as per Definition 3.1, and

• 𝜔 is a non-decreasing timestamp.

𝑆 = ((𝐺1, 𝜔1), (𝐺2, 𝜔2), (𝐺3, 𝜔3), (𝐺4, 𝜔4), . . . )

Handling stream unboundedness is essential to Seraph’s se-

mantics. Thus, we introduce the notion of a snapshot graph that,

in turns, builds on the concepts of property graph substream and

union of property graphs.

Definition 5.3 (PropertyGraph Substream). Given a property
graph stream 𝑆 and a time interval 𝜏 = [𝜔𝑜 , 𝜔𝑐 ), we denote a
finite subset of 𝑆 in 𝜏 as a property graph substream:

𝑆𝜏 = 𝑆
𝜔𝑜
𝜔𝑐

= {(𝐺,𝜔 ) | (𝐺,𝜔 ) ∈ 𝑆 ∧ 𝜔 ∈ 𝜏,Ω ∧ 𝜔𝑜 ≤ 𝜔 < 𝜔𝑐 }

Definition 5.4 (Union of two Property Graphs). Assume that

𝐺1 = (𝑁1, 𝑅1, 𝑠𝑟𝑐1, 𝑡𝑟𝑔1, ]1, _1, ^1) and𝐺2 = (𝑁2, 𝑅2, 𝑠𝑟𝑐2, 𝑡𝑟𝑔2, ]2, _2,

^2) are Property Graphs. Under UNA [41], we define the union

of two Property Graphs as:

𝐺1 ∪𝐺2 =

(
𝑁1 ∪ 𝑁2, 𝑅1 ∪ 𝑅2, 𝑠𝑟𝑐1 ∪ 𝑠𝑟𝑐2, 𝑡𝑟𝑔1 ∪ 𝑡𝑟𝑔2,

]1 ∪ ]2, _1 ∪ _2, ^1 ∪ ^2

)
, if both graphs are consistent otherwise 𝐺1 ∪𝐺2 = ∅.

𝐺1 and𝐺2 are consistent iff∀𝑟 ∈ 𝑅1∩𝑅2, it holds that 𝑠𝑟𝑐1 (𝑟 ) =
𝑠𝑟𝑐2 (𝑟 ), 𝑡𝑟𝑔1 (𝑟 ) = 𝑡𝑟𝑔2 (𝑟 ),^1 (𝑟 ) = ^2 (𝑟 ) and ]1 (𝑟, 𝑘) = ]1 (𝑟, 𝑘)∀𝑘 ∈
K and ∀𝑛 ∈ 𝑁1 ∩ 𝑁2, it holds that _1 (𝑛) = _2 (𝑛) and ]1 (𝑛, 𝑘) =
]1 (𝑛, 𝑘)∀𝑘 ∈ K .

Definition 5.5 (Snapshot Graph). Given a time interval 𝜏 =

[𝜔𝑜 , 𝜔𝑐 ), a snapshot graph𝐺𝜏 (also𝐺
𝜔𝑐
𝜔𝑜

) is the result of the union

of all property graphs 𝐺 ∈ 𝑆𝜏 to a single property graph using

the union operation of Definition 5.4. It holds:

𝐺𝜏 = 𝐺
𝜔𝑐
𝜔𝑜

=
⋃

𝐺𝑖 ∈𝑆𝜔𝑐
𝜔𝑜

𝐺𝑖

Figure 2 shows the snapshot graph 𝐺15:45

14:45
resulting from co-

alescing the substream 𝑆15:45

14:45
highlighted with a red border in

Figure 1.

In Section 3.2, we recall that clauses in a Cypher-query are

functions that take a tableand output a table, potentially expand-

ing the number of fields and adding new tuples. Similarly, in

Seraph, we consider the time-based extensions of the notion

above. In particular, a time-varying table, which is inspired by

the time-varying relations from [9], generalizes the notion of

the table into a function that maps the time Ω to a finite table.

Moreover, we introduce time-annotated tables to extend Cypher’s
table with temporal boundaries.

Definition 5.6 (Time-annotated Table). Given a time interval

𝜏 = [𝜔𝑜 , 𝜔𝑐 ), we define a time-annotated table 𝑇𝜏 ( also 𝑇
𝜔𝑜
𝜔𝑐

) as

a bag or multiset of records ˜̀ , where each is a partial function

from names to values extended with names for the temporal

r.user_id s.id r.val_time hops win_start win_end

1234 1 14:40 [2,3] 14:40 15:40
5678 2 14:58 [3,4] 14:40 15:40

Table 4: Time-annotated table as extension of Table 2.

annotations of the interval bounds 𝜔𝑜 and 𝜔𝑐 . Extending the

convention used for Cypher’s tables, we denote them as a tuple:

˜̀ = (𝑎1 : 𝑣1, . . . , 𝑎𝑛 : 𝑣𝑛,𝑤𝑖𝑛_𝑠𝑡𝑎𝑟𝑡 : 𝜔𝑜 ,𝑤𝑖𝑛_𝑒𝑛𝑑 : 𝜔𝑐 )
where 𝑎1, . . . , 𝑎𝑛 are distinct names, and 𝑣1, . . . , 𝑣𝑛 are values. The

names win_start and win_end are reserved Keywords in Seraph
justified by their use as identifiers for the window bounds, as

per Definition 5.9. The order in which the fields appear is only for

notation purposes. We refer to 𝑑𝑜𝑚( ˜̀) = A as in Definition 3.2.

For instance, Table 4 extends Table 2 with the aforementioned

temporal annotations win_start and win_end with the values

𝜔𝑜 and 𝜔𝑐 , respectively.

Definition 5.7 (Time-varying Table). Let T̃ be the set of all

possible 𝑇 in Ω . A time-varying table Ψ is a function that maps

every time instant 𝜔 ∈ Ω to a time-annotated Table 𝑇 ∈ T̃ :

Ψ : Ω → T̃
Given a time-varying table Ψ, we use the term Ψ(𝜔 ) to refer

to the time-annotated table identified by the time-varying table

at the given time instant 𝜔 . Moreover, we pose the following

constraints on the definition of Ψ:

• Consistency, i.e., Ψ always identifies a time-annotated

table.

Ψ(𝜔𝑖 ) = 𝑇
𝜔𝑜
𝜔𝑐

s.t. ∀` ∈ 𝑇 : `.𝜔𝑜 ≤ 𝜔𝑖 < `.𝜔𝑐

• Chronologicality, i.e.,Ψ always identifies the time-annotated

table with the earliest (minimal) opening timestamp.

�𝑇𝑗 s.t. ` 𝑗 ∈ 𝑇𝑗 , ` 𝑗 .𝜔𝑜 ≤ 𝜔𝑖 < ` 𝑗 .𝜔𝑐

∀`𝑖 ∈ Ψ(𝜔𝑖 ), ` 𝑗 .𝜔𝑜 ≤ `𝑖 .𝜔𝑜

• Monotonicity, i.e., Ψ always identifies subsequent time-

annotated tables for subsequent time instants.

∀𝜔𝑖 , 𝜔 𝑗 s.t. 𝜔𝑖 < 𝜔 𝑗 ,∀`𝑖 ∈ Ψ(𝜔𝑖 )
∀` 𝑗 ∈ Ψ(𝜔 𝑗 ), `𝑖 .𝜔𝑜 < ` 𝑗 .𝜔𝑜 ≤ `𝑖 .𝜔𝑐 < ` 𝑗 .𝜔𝑐

For instance, the time-annotated table shown in Table 4 would

be identified by a given Ψ(𝜔𝑖 ) for any 𝜔𝑖 such that 14:40 ≤ 𝜔𝑖 <

15:40. Based on the presented Seraph’s data model, we are ready

to define the query model in the next section.

5.2 Query Model
This section presents the query model of Seraph that extends

Cypher to enable continuous queries over a property graph

stream and thus satisfies the requirements R2 and R3. Indeed,
Cypher supports only one-time queries, which are evaluated

once by the Cypher engine and whose result is a finite table.

Seraph queries, on the other hand, are intended to be contin-

uously evaluated until explicitly halted on a potential infinite

input stream.

This paradigm-shift in the query execution model is named

Continuous Semantics, i.e., processing an infinite input produces

an infinite output [42]. Continuous semantics poses the challenge

of formalizing a non-terminating evaluation. In practice, it im-

plies that the result of a continuous query is the set of results that
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would be returned if the query would be executed at every time

instant. Intuitively, if the objective computation is assumed to be

stateless, continuous semantics can be achieved simply operat-

ing on each individual element in the input stream. In Seraph,

this is the case for what concerns data ingestion. In fact, Cypher

supports graph-based data ingestion by mapping elements of an

input source, e.g., CSV, into property graphs. Similarly, Seraph

ingestion operates on one event at time as shown in Listing 4
2
.

On the other hand, the most common way to accomplish

continuous semantics for stateful computations is via snapshot
reducibility. In particular, we adapt the definition from [34], which

in turn was adapted from [29], as follow:

Definition 5.8 (Snapshot Reducibility). Let 𝑆 be a Property

Graph Stream, CQ a continuous query, and Q its non-streaming

counterpart. Snapshot reducibility states that each snapshot of

the result of evaluating CQ over 𝑆 is equivalent to applying Q

over a snapshot of S, i.e.,

∀𝜔𝑖 ∈ Ω,𝑤 = [𝜔𝑜 , 𝜔𝑐 ) 𝑠 .𝑡 . 𝜔𝑜 ≤ 𝜔𝑖 < 𝜔𝑐 ,𝐶𝑄 (𝑆)𝑤 == 𝑄 (𝑆𝑤)

Snapshot reducibility induces the definition of operators, named

Windows, that chunk the stream into finite snapshots for defin-

ing the evaluation scope. Several alternative window semantics

exist [48]. In Seraph, we focus on time-based windows which

operate according to the temporal annotation of the stream ele-

ments to define intervals that help select finite portions of the

input stream. A time-based window is deterministic, iff the set of

intervals it subsumes is independent of the timestamps of stream

elements.

Definition 5.9 (Time-based window). A time-based window

𝑤 = [𝜔𝑜 , 𝜔𝑐 ) is a time interval between a start time instant 𝜔𝑜

and an end time instant 𝜔𝑐 (exclusive). Let the triple (𝜔0, 𝛼 , 𝛽)

be a window configuration, where

• 𝜔0 is the earliest timestamp defining the start of the first

window instance,

• 𝛼 is the window size (in time units), and

• 𝛽 is the slide size (in time units), such that two consecutive

windows overlap of at most 𝛼 - 𝛽 .

A window operatorW(𝜔0, 𝛼, 𝛽) identifies a infinite set of win-
dows:

W(𝜔0, 𝛼, 𝛽) =
{
𝑤𝑖 = [𝜔𝑜𝑖 , 𝜔𝑐𝑖 )

���� 𝑖 ∈ N0 ∧ 𝜔𝑜𝑖 = 𝜔0 + 𝑖𝛽∧
𝜔𝑐𝑖 = 𝜔0 + 𝑖𝛽 + 𝛼

}
If further holds that |𝜔𝑜𝑖 −𝜔𝑐𝑖 | = 𝛼 and ∃𝑤𝑖+1𝑠 .𝑡 .|𝜔𝑜𝑖 −𝜔𝑜𝑖+1

| = 𝛽 ,

i.e., the distance of the lower bounds of two succeeding windows

𝑤𝑖 and𝑤𝑖+1 is the sliding size 𝛽 .

Applying a time-based window operator W to a Property

Graph Stream 𝑆 deterministically identifies an infinite set of sub-

streams S̃, which lays the ground of continuous query execution.

˜S = W(𝜔0, 𝛼, 𝛽) (𝑆) =
{
𝑆𝑤 |∀𝑤 ∈ W(𝜔0, 𝛼, 𝛽)

}
2
Example borrowed from Neo4j Kafka Connector: https://neo4j.com/docs/kafka/

1 LOAD STREAM FROM 'kafka:///bikes.stream' AS event
2 MERGE (b:Bike {id: event.bike_id})
3 MERGE (s:Station {id: event.location_id})
4 CREATE (b)-[:rentedAt {val_time: event.time,
5 user_id: event.uid}]->(s)

Listing 4: Example of graph-based ingestion in Seraph.

Active substream

ωi ∈ ETwi wi+1
wi+2 wi+3

wi+4
wi+5

S
Ωωo ωc β

ɑ

Figure 4: Selecting the active substream.

As per their characterisation [8], continuous queries yield their

results as if the queries were evaluated for every time instant.

Since such an approach is impractical, stream processing engines

typically control the execution by customising the reporting of

results [21]. However, delegating the definition of the reporting

to the internals of the engines has caused idiosyncrasies in the

operational semantics [1] in the past that may lead equivalent

queries to produce different results on different engines [18].

Moreover, declarative control of the query results reporting is a

well-known stream processing desideratum [40]. To this extent,

we define the sequence of evaluation time instants as follows.

Definition 5.10 (Evaluation time instants). We define the

sequence of time instants at which an evaluation of the query

occurs as evaluation time instants. Such a sequence, namely 𝐸𝑇 , is

potentially infinite. Notably, the sequence depends on the initial

time instant 𝜔0 and the slide size 𝛽 , as defined in Definition 5.9.

In particular, we define the ET sequence as follows:

𝐸𝑇 = {𝜔 | (𝜔 − 𝜔0)/𝛽 = 0}

For every 𝜔𝑖 ∈ 𝐸𝑇 , a query evaluation is triggered. It is now

necessary to identify the property graph substream 𝑆𝜏 with 𝜔𝑖 ∈
𝜏 , fromwhich a snapshot graph𝐺𝜏 is constructed that is the input

of the query evaluation. We refer to 𝑆𝜏 as the active substream.

Definition 5.11 (Active Substream). Given a time instant 𝜔𝑖

and the infinite set of all substreams
˜S, the active substream 𝑆𝑤 is

the earliest property graph substream of all substreams that are

valid at𝜔𝑖 . I.e., it exists one window𝑤 = [𝜔𝑜 , 𝜔𝑐 ) ∈ W(𝜔0, 𝛼, 𝛽)
such that 𝜔𝑖 ∈ 𝑤 and ∀𝑤 = [𝜔𝑜 , 𝜔𝑐 ) ∈ W(𝜔0, 𝛼, 𝛽) : 𝜔𝑜 =

𝑚𝑖𝑛(𝜔𝑜 ).

For hopping time-based window operators (also denoted as

tumbling), the identification is intuitive, since there is just one

substream per time instant: 𝑆𝑤 = 𝑆𝜏 with 𝑤 = 𝜏 = [𝜔𝑜 , 𝜔𝑐 ) =

[𝜔𝑜 , 𝜔𝑐 ). For overlapping time-based window operators (also de-

noted as sliding), i.e.,W(𝜔0, 𝛼, 𝛽) s.t. 𝛽 < 𝛼 , multiple substreams

could be identified at each 𝜔𝑖 . In such scenario, we consider the

one with earliest opening timestamp as defined above.

Figure 4 illustrates the identification of the active substream.

One can see the set of windows𝑤𝑖 ,𝑤𝑖+1, . . . where each has the

size 𝛼 and a distance of 𝛽 . The infinite property graph stream 𝑆

is represented as multiple circles ⃝. For a given evaluation time

instant 𝜔𝑖 ∈ 𝐸𝑇 , marked with a red dashed line, two windows

exist that include this time instant: 𝑤𝑖+2 and 𝑤𝑖+3. Note that

𝜔𝑖 ∉ 𝑤𝑖+1, since a window is a close-open interval excluding

the upper interval bound. From both windows𝑤𝑖+2 and𝑤𝑖+3 we

select the one with the earliest (smallest) lower interval bound𝜔𝑜
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Figure 5: Seraph’s data and query model Interaction.

as𝑤 = [𝜔𝑜 , 𝜔𝑐 ). The substream 𝑆𝑤 is thus the active substream,

whose property graphs are marked with green circles in the

figure.

The union of all property graphs of 𝑆𝑤 results in a snapshot

graph 𝐺𝑤 , which we call active snapshot graph. On each evalu-

ation time instant, the inner Cypher query is evaluated on the

respective active snapshot graph. Each query evaluation results

in a time-varying table Ψ that holds the tuples ` representing

the time-annotated mappings of found matches. Finally, the con-

tinuous semantics implies an infinite output stream as result of

a query evaluation. Streaming operators, as defined by Arasu et

al. [6], reintroduce the temporal dimension in the data to con-

struct a stream. We adapt this approach for creating a output

stream of timestamped tuples (`, 𝜔 ) from the time-varying table

Ψ(𝜔 ).

Definition 5.12 (Streaming Operators). A streaming operator

is defined by the pair (Ψ,𝜔 ), i.e., a time-varying table and a time

instant, typically the current evaluation time instant 𝜔𝑛𝑜𝑤 ∈ 𝐸𝑇 .

We differentiate three streaming operators:

• The RStream outputs each tuple derived from Ψ times-

tamped with the evaluation time.

𝑅𝑆𝑡𝑟𝑒𝑎𝑚(Ψ, 𝜔 ) = {(`, 𝜔 ) |` ∈ Ψ(𝜔 )}
• The IStream outputs the results that are part of the current

evaluation result but are not in the previous one.

𝐼𝑆𝑡𝑟𝑒𝑎𝑚(Ψ, 𝜔 𝑗 , 𝜔 𝑗−1) = {(`, 𝜔 𝑗 ) | ` ∈ Ψ(𝜔 𝑗 ) ∖ Ψ(𝜔 𝑗−1)}
• The DStream outputs the results that are part of the previ-

ous evaluation result but are not in the current one.

𝐷𝑆𝑡𝑟𝑒𝑎𝑚(Ψ, 𝜔 𝑗 , 𝜔 𝑗−1) = {(`, 𝜔 𝑗 ) | ` ∈ Ψ(𝜔 𝑗−1) ∖ Ψ(𝜔 𝑗 )}

After a detailed formalization of the query model in this sec-

tion, the syntax and semantics of Seraph will be discussed in the

following by bringing all the introduced concepts together.

5.3 Formal Syntax and Semantics
Seraph’s key components are declarative (R1) clauses and queries
that operate timely on the presented data model (Section 5.1) and

query model (Section 5.2). From now on we will color Seraph

syntax in green, leaving Cypher syntax in blue. We preserve

the expressiveness of Cypher by defining only extensions, which

satisfies requirementR4. In Figure 5, we illustrate the interactions
and transitions from one component to another. In the upper

left corner, we can see the input property graph stream, formally

defined as 𝑆 in Definition 5.2. The combination of three clauses

(marked (1)), namely STARTING AT , WITHIN and EVERY , form

the configuration of the window operatorW from Definition 5.9.

The window operator generates substreams 𝑆𝜏 from the property

graph stream 𝑆 , each of which is combined into a snapshot graph

𝐺𝜏 .

The semantics of a MATCH clause is the pattern matching

which takes as input a (initially empty) time-varying table Ψ,
evaluates a pattern 𝜋 matching on the snapshot graph 𝐺𝜏 , and

in turn generates a time-varying table Ψ with extended set of

field names and rows as output. In the figure, this is shown as

a semicircular arrow marked with (2). The set of assignments

that are the result of a MATCH clause as a time-varying table can

be filtered via a selection using the WHERE clause (marked (3))

and thus again has a time-varying table as the result. Likewise,

a projection of a time-varying table can be made via the WITH
clause (also marked with (3)), which serves as input for another

MATCH clause. This concept is taken from Cypher and allows the

combination of several MATCH clauses.

In Seraph, the output of the evaluation result of one (or more)

MATCH clauses can be emitted in two ways: a) as a stream of time-

annotated tables𝑇 via the EMIT clause (marked with (4)) or b) as

a single time-annotated table𝑇 via RETURN clause (marked with

(5)). The former a) converts each time-varying table into a time-

annotated table at each evaluation time 𝐸𝑇 using the projections

specified by EMIT and the evaluation time instants specified by

EVERY . It thus creates a stream of time-annotated tables. Second

b) emits only one result. At the first evaluation time instant after

the start time (defined by STARTING AT ), the query is evaluated

and the resulting time-varying table is converted into a time-

annotated table using the projections specified by RETURN .

After this high-level overview, we can now present the for-

mal syntax of a Seraph query, which is given in Figure 6. The

semantics of expressions of Cypher, like values, variables, maps,

lists etc., remain unchanged and can be derived from [22]. Fur-

thermore, we provide a Seraph query parser open-source on

GitHub [15].

Queries. The REGISTER QUERY clause allows for registering a

new query with name a ∈ A into the system that implements Ser-

aph. The name is used to identify the registered query and allows

editing and deleting a previously registered query. The STARTING
AT clause defines the first evaluation time instant, which is im-

portant for all window semantics, since from this points all win-

dows are defined. This time instant, given as ISO8601 datetime,

is used as the configuration 𝜔0 of the window operator from

Definition 5.9, and is constant for the registered query.

The following body of the Seraph query is encapsulated by

curly braces {...} and consists of three parts: the query, the
stream operator and the evaluation interval. A query is a sequence

1 query𝑆𝑟𝑝ℎ ::= REGISTER QUERY a STARTING AT time { 𝑎 ∈ A
2 queryΔ

3 stream_op
4 EVERY range }
5 queryΔ ::= RETURN ret | EMIT ret | clauseΔ queryΔ

6 clauseΔ ::= MATCH pattern_tuple WITHIN range
7 [WHERE expr]
8 | WITH ret [WHERE expr] | UNWIND expr AS a
9 stream_op ::= ON ENTERING | ON EXIT | SNAPSHOT

10 range ::= <ISO_8601_duration>
11 time ::= <ISO_8601_datetime>
12 ret ::= ∗ | expr [AS a] | | ret , expr [AS a]

Figure 6: Seraph’s syntax based onCypher’s one in Figure 3.
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⟦ RETURN ∗⟧
𝐺
(Ψ, 𝜔 ) = Ψ(𝜔 ) where 𝜔 ∈ [𝜔𝑜 , 𝜔𝑐 ), and 𝜔𝑜 , 𝜔𝑐 are the time annotations of Ψ(𝜔 )

⟦ EMIT ∗⟧
𝐺
(Ψ, 𝜔 ) = ∀𝜔𝑒 ∈ 𝐸𝑇 ⟦ RETURN ∗⟧

𝐺
(Ψ, 𝜔𝑒 ) a proposal

⟦ EMIT ∗ ON ENTERING⟧
𝐺
(Ψ, 𝜔 ) = ⟦ EMIT ∗⟧

𝐺
(Ψ, 𝜔 ), where Ψ = {` | ` ∈ Ψ(𝜔 ) ∖ Ψ(𝜔 − 1)}

⟦ EMIT ∗ ON EXIT⟧
𝐺
(Ψ, 𝜔 ) = ⟦ EMIT ∗⟧

𝐺
(Ψ, 𝜔 ), where Ψ = {` | ` ∈ Ψ(𝜔 − 1) ∖ Ψ(𝜔 )}

⟦ EMIT ∗ SNAPSHOT⟧
𝐺
(Ψ, 𝜔 ) = ⟦ EMIT ∗⟧

𝐺
(Ψ, 𝜔 ), where Ψ = {` | ` ∈ Ψ(𝜔 )}

⟦ WITH ∗⟧
𝐺
(Ψ, 𝜔 ) = Ψ(𝜔 ) if Ψ(𝜔 ) has at least one field

⟦ WITH ret WHERE expr⟧
𝐺
(Ψ, 𝜔 ) = Ψ(𝜔 ) if Ψ(𝜔 ) has at least one field

⟦ STARTING AT 𝜔0 MATCH 𝜋 WITHIN 𝛼 EVERY 𝛽⟧𝑆 = ⟦ MATCH 𝜋⟧𝑊 (𝜔0,𝛼,𝛽 )
𝑆

(Ψ, 𝜔 )
=̂ ⟦ MATCH 𝜋⟧𝑊 (𝜔0,𝛼,𝛽 ) (𝑆 ) (Ψ, 𝜔 )
=̂ ⟦ MATCH 𝜋⟧

𝑆
𝜔𝑜
𝜔𝑐 (𝜔 ) (Ψ, 𝜔 )

=̂ ⟦ MATCH 𝜋⟧
𝐺𝑤

(Ψ, 𝜔 )

=
⊎

`∈Ψ(𝜔 ) {` · `′ |`′ ∈𝑚𝑎𝑡𝑐ℎ(𝜋,𝐺, `)}

Figure 7: Formal semantics of Seraph query and clauses.

of clauses ending with the RETURN or EMIT statement. Both

contain the return list, which is either ∗, or a sequence of ex-

pressions, optionally followed by AS a, to provide their names.

They define what to include in the query result set. The stream
operator determines which streaming operator is used, which are

defined in Definition 5.12. In particular, the SNAPSHOT clause

specifies that the 𝑅𝑆𝑡𝑟𝑒𝑎𝑚 operator has to be used, while the ON
ENTERING and ON EXIT clauses allow for selecting 𝐼𝑆𝑡𝑟𝑒𝑎𝑚

and 𝐷𝑆𝑡𝑟𝑒𝑎𝑚, respectively. The evaluation interval, i.e., sequence
of evaluation time instances, can be specified using the EVERY
clause, together with the STARTING AT clause. In particular,

the EVERY clause defines the frequency of the evaluation, which

can be specified with an ISO 8601 duration. The STARTING AT
clause, instead, defines the first evaluation time instant as an ISO

8601 datetime.

Clauses. Seraph clauses are functions that take time-varying

tables and produce time-varying tables. Analogous to Cypher,

matching clauses are pattern matching statements of the form

MATCH pattern WITHIN range WHERE expr, where WHERE is

optional. The width parameter of windows is defined using the

WITHIN clause, which is attached to every MATCH and its pattern

definition. Thus, every pattern can be matched in its ownwindow

width. The MATCH clause extends the set of field names of Ψ(𝜔 )
by adding field names that correspond to names occurring in

the pattern but not in `. It also adds tuples to Ψ(𝜔 ), based on

matches of the pattern that are found in the snapshot graph 𝐺𝜏 .

Analogous to the Cypher definitions is UNWIND another clause

that expands the set fields, and WITH clauses that can change the

set of fields. In addition, WITH allows query parts to be chained

together, piping the results from one to be used as starting points

or criteria in the next.

Finally, we model the continuous evaluation process by in-

cluding the evaluation time in the Cypher evaluation semantics.

The continuous query answering is done by executing the query

at each time instant of the sequence 𝐸𝑇 Given a fixed time in-

stant, the operators can work in a time-agnostic way composing

the semantics of Cypher in the one of Seraph. The semantics of

queries associates a query 𝑆𝑄 and a snapshot Property Graph

𝐺 with a function ⟦𝑆𝑄⟧
𝐺
that takes a time-varying table and a

time instant and returns a time-varying table. The evaluation of

a query starts with the time-varying table containing one empty

tuple, which is then progressively changed by applying functions

that provide the semantics of 𝑆𝑄’s clauses. The composition of

such functions, i.e., the semantics of 𝑆𝑄 , is also a function, which

defines the output as:

𝑜𝑢𝑡𝑝𝑢𝑡 (𝑆𝑄,𝐺,𝜔 ) = [[𝑆𝑄]]
𝐺
(Ψ, 𝜔 )

This new concept requires a revision of the definitions of the

existing Cypher evaluation of queries, clauses and expressions.

We show all continuous evaluation semantics of redefined queries

and clauses in Figure 7. In particular, the semantics of the MATCH

clause is described through the set 𝑚𝑎𝑡𝑐ℎ(𝜋,𝐺, `), which is a

redesign of the𝑚𝑎𝑡𝑐ℎ(𝜋,𝐺,𝑢) of Cypher (Section 3.2) with re-

spect to the continuous evaluation semantic and the concept of

snapshot graphs. Let 𝜋 a path pattern, 𝐺 a snapshot graph, `

a time-annotated assignment, 𝑝 a path in 𝐺 , 𝜋 ′ a path pattern

in the set of all rigid paths rigid(𝜋 ) and (𝑝,𝐺, ` ∗ `′) |= 𝜋 ′ as
satisfaction of 𝜋 ′ in a path 𝑝 in 𝐺 , the set of matches is defined

as follows:

𝑚𝑎𝑡𝑐ℎ(𝜋,𝐺, `) =
⊎
𝑝∈𝐺

𝜋 ′∈rigid(𝜋 )

{
`′

����� dom(`′ )=free(𝜋 )−dom(` )

∧(𝑝,𝐺,`∗`′ ) |=𝜋 ′

}

For space reasons, we did not include the semantics of non-

essential language components like UNWIND , OPTIONAL , renam-

ing, and expressions. However, under the snapshot reducibility

assumption [34], the continuous extension of such an operation

is trivial. For a complete overview, we invite the interested reader

to read the Cypher technical report [22].

5.4 Running Example vs Seraph
In this section we define a continuous query for the micromo-

bility example of Section 2. With Seraph, the analytics team of

RideAnywhere can register a continuous query that checks the

rentals for student users applying the described trick of subse-

quent rentals. Lets discuss the Seraph query depicted in Listing 5,

which continuously monitors the rentals for the pattern.

The REGISTER QUERY clause (section 5.4) allows for naming

and registering the query into the system that manages Seraph

queries. To define the time when the first evaluation will start, the

STARTING AT clause is used, with a time instant. The query itself

(section 5.4 to 13) is the query body that defines the pattern, its

conditions, the projections and result emitting. Let us go through

the query and compare it with the Cypher solution given in
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1 REGISTER QUERY student_trick STARTING AT 2022-10-14T14:45
2 {
3 MATCH (:Bike)-[r:rentedAt]->(s:Station),
4 q = (b)-[:returnedAt|rentedAt*3..]-(o:Station)
5 WITHIN PT1H
6 WITH r, s, q, relationships(q) AS rels,
7 [n IN nodes(q) WHERE 'Station' IN labels(n) | n.id] AS

hops
8 WHERE ALL(e IN rels WHERE
9 e.user_id = r.user_id AND e.val_time > r.val_time AND
10 (e.duration IS NULL OR e.duration < 20) )
11 EMIT r.user_id, s.id, r.val_time, hops
12 ON ENTERING
13 EVERY PT5M
14 }

Listing 5: Continuously retrieve users that use the free
period for two subsequent rentals in the last hour using
Seraph.

r.user_id s.id r.val_time hops win_start win_end

1234 1 14:40 [2,3] 14:15 15:15

Table 5: Outputs of Seraph continuous query at 15:15h.

r.user_id s.id r.val_time hops win_start win_end

5678 2 14:58 [3,4] 14:40 15:40

Table 6: Outputs of Seraph continuous query at 15:40h.

Listing 1. Since the desired window behavior is now natively

supported by Seraph, we directly start by defining the desired

pattern.

The MATCH clause defines the pattern 𝜋 we are looking for

(section 5.4 to 4). Note that compared to the previous Cypher

query, the predicate applying the edge filtering for the window

is obsolete. By WITHIN we define the width of the window for

this pattern, which is 1 hour (PT1H). The predicates of the WHERE
clause are equal to the ones of the Cypher query. Instead of

the RETURN clause we use the EMIT clause to get a continu-

ous stream of time-annotated tables and define the projected

attributes for the resulting tuples enhanced with bounds of the

current window that is built by Seraph (win_start and win_end).
At section 5.4 the ON ENTERING operator allows for emitting

only new matches entering the window, which satisfies require-

ment R3. The EVERY operator specifies the frequency of the

evaluation process. Here, we define it as 5 minutes specified by

PT5M. The operators STARTING AT , WITHIN and EVERY build

the continuous evaluation and thus satisfy requirement R2. As
Seraph only expands Cypher, we preserve the expressiveness

and hence meet requirement R4.
To summarize, every 5 minutes starting from 14:45h, the sys-

tem evaluates a pattern on the active snapshot graph defined by

a 1h window and emits a stream of time-annotated tables, includ-

ing the users that extend their rental time by using subsequent

free rentals.

Let us analyze the output of the query at different time instants.

14:45h The 1h window covers only the outer left graph depicted

in Figure 1. Just a bike was rented, which needs no noti-

fication.

15:00h The two left graphs in Figure 1 are merged. User 1234
returned a bike and rented one again. User 5678 rented

a bike, too. However, the resulting snapshot graph is

queried without any match.

15:15h The three left graphs in Figure 1 are in the active sub-

stream and thus merged to a snapshot graph, which leads

to a match: user 1234 applying the trick. Since 15:15h is

an evaluation time, the time-annotated table (Table 5) is

emitted.

15:20h The fourth graph arrived with the information that user

5678 returned and rented again a bike.

15:40h All graphs of Figure 1 are in the active substream and

thus unified to a snapshot graph (cf. Figure 2). Another

match is found: user 5678 is applying the trick, too. The

query’s output at 15:40h is depicted in Table 6. Since we

used ON ENTERING , just the new match, i.e., user 5678,
is part of the resulting time-annotated table.

6 IMPLEMENTATION
Since this paper provides the formal description of Seraph for

paving the road to future implementations, we briefly discuss

our plans in such a direction.

Graph Stream Processing (GSP) Engine. We built an proof

of concept implementation [35] of a GSP engine with Seraph

language support. It is open-source available under Apache-2.0

license and based on Neo4j and RSP4J [45], a library for fast-

prototyping stream processing engines. A query parser [15] based

on ANTLR is also available to validate the syntax design. Notably,

this first POC has the goal of empirically proving Seraph’s fea-

sibility and enabling various tests and evaluations. In the short

term, we also plan to test other Cypher-compatible embedded

graph engines like Kuzu [26] or Memgraph [30].

Optimizations. We plan a first round of optimization focusing

on query planning at different levels, including native operators

and efficient window maintenance. We also plan to explore the

adoption of advanced windowing as described in the recent sur-

vey [50], as well as optimizations regarding concurrent queries

and avoidable re-executions on equal window contents.

Distributed GSP. In the medium term, we plan to explore a

distributed implementation of Seraph based on a stream process-

ing framework such as Apache Flink [14] or Apache Spark [43].

Here we can benefit from previous work on Gradoop [27, 38], a

distributed temporal property graph analysis framework with in-

tegrated Cypher-based pattern matching based on Apache Flink.

Optimizations. A second round of optimization will focus on

system-level investigation as in [24]. In particular, we will explore

operator placement and fusions, graph stream partitioning and

distributed join algorithms.

7 RELATEDWORK
This section positions Seraph in the literature and discuss its rela-

tion with other work on dynamic graphs and stream processing.

Temporal, Dynamic and Streaming Graphs are attempts to

extend existing graph datamodels with temporal dimension(s) [10].

Temporal graphs are graphs that maintain the history of its

evolution [37, 38]. They enable temporal analysis, algorithms

and querying the graph at the current or a past state in a batch-

processing way. For this adapted declarative languages exist [17,

36, 38] but despite the possibility of historical path queries, they

do not provide continuous querying of graph streams like Seraph.

Dynamic Graphs are graphs whose elements are unpredictably
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updated by insertions and deletions [10]. The data system that

manages the dynamic graph either stores the most recent version

of the graph or the graph’s entire change history. Differently

from Seraph, languages for querying dynamic graphs do not

necessarily require a continuous semantics, but scalable and time-

sensitive query answering in presence of changes is one of the

key research focuses.

Streaming Graphs (also called Graph Streams) are dynamic

graphs that grow indefinitely [2] and, as for Seraph, query an-

swering must take unboundedness into account. Moreover, the

data management system is assumed to be unable to store the

whole graph state, therefore it focuses on the finite sub-graph

that is relevant for the query answering. Pacaci et al. introduced

in [34] a data model and a query evaluation algebra on streaming

graphs including semantics of persistent regular path queries

(RPQ). Their considered stream consists of single relationships

not graphs as in Seraph. Our work can be seen as a complement

of their work on streaming complex graph queries in a landscape

where no declarative and industry-ready language exist.

Sakr et al. show in [39] that there is a current need for sys-

tems that can model and process both dynamic graphs and graph

streams. An essential research challenge is the investigation of

graph query operators for path-oriented semantics on graph

streams. These are necessary for standardized graph languages

like GQL. With Seraph and its query model and semantics, we

address exactly this need. Kankanamge et al. present with Graph-

flow [28] a prototype in-memory graph database supporting

continuous subgraph queries. Unlike Seraph, the queries cannot

be evaluated on property graph streams and windowed queries

are not supported.

Declarative Stream Processing Languages have been around

for two decades. Most of the existing solutions, including those

associated with the Big Data initiative [23], present an SQL-

like syntax [47], e.g. Streaming SQL [9], and build upon the

Continuous Query Language model (CQL) [13]. CQL prescribes

making the management of (relational) streams orthogonal to the

management of relations. They defined three operator families,

namely Stream-to-Relation, Relation-to-Relation and Relation-to-

Stream, which formalize the interoperability between relations

and streams.

Seraph follows CQL orthogonalisation principle because it

makes the language compositional and maintainable [16]. How-

ever, differently from CQL, Seraph works on a stream of property

graphs and provides the primitives to fully control the reporting.

Learning from Dindar et al. [21], who showed how the opera-

tional semantics of stream processing engines is often uncon-

trollable by the user, Seraph’s EMIT ... EVERY ... clauses give

an end-to-end view of what impacts execution semantics from

inputs to output. Hence, Seraph users have full control on the

query execution semantics.

Finally, RSP-QL was proposed by the Semantic Web commu-

nity in the late 2000s’ to accommodate the need for processing

heterogeneous data streams. Seraph is similar to RSP-QL [19],

which in turn extends CQL work on RDF streams. The main

differences between them are the data model, i.e., Seraph adopts

streams of property graphs; and the query model: Seraph tempo-

ral approach is maintained after windowing.

8 CONCLUSIONS AND FUTUREWORK
This paper presented Seraph, a declarative graph query language

that compositionally enriches Cypher for dealing with streams

of property graphs and continuous query answering. In par-

ticular, it shows that Seraph is designed to overcome Cypher

limitations for continuous processing: i) Seraph’s data model can

represent streams of property graphs; ii) Seraph’s query model

enables continuous evaluation on top of Cypher semantics by cre-

ating snapshot graphs from the graph stream using windowing

and evaluating the query under snapshot reducibility. Moreover,

iii) we showed Seraph’s features in three industrial use cases:

network monitoring, real-time tracing and bike sharing (our run-

ning example). The formal foundations we lay in this paper will

pave the road for future continuous graph query languages, such

as a continuous extension to GQL, the ISO standard graph query

language, whose first version is expected to appear in 2024.

In addition to the implementation plans, we will explore i)

how to query multiple streams simultaneously, ii) partition a

property graph stream in logical substreams, and iii) incorporate

static graph data within the continuous computation. Finally, we

plan to vi) focus on graph-to-graph transformations as in GQL.

Finally, the current limitations of Seraph are in the support

of features of the language used. For example, Cypher does not

currently fully support conjunctive regular path queries (CRPQs),

which means that CRPQs are not supported in Seraph either. A

more expressive language, such as a future Cypher version or

GQL with temporal extensions, would overcome such limitations.
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