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ABSTRACT
Record linkage is the task of identifying records from different
databases that refer to the same real-world entity. This task is an
essential component of data integration to facilitate data analysis
in a variety of domains, including healthcare, national security,
and e-commerce. To evaluate the quality of record linkage ap-
proaches, the performance measures of precision, recall, and
F-measure are commonly used. These measures require ground
truth data that specifies known matches and non-matches. How-
ever, in practical linkage applications there typically is no such
ground truth data available. Although linkage quality can be
assessed manually by domain experts, such a clerical review pro-
cess is time- and resource-consuming and generally not feasible
when linking databases that are very large or that contain sensi-
tive (personal) data. We review existing and propose improved
unsupervised approaches for estimating the quality of linkage re-
sults. We evaluate our approaches onmultiple datasets from three
different domains. This evaluation shows that our approaches
outperform existing methods and lead to estimates that are close
to the actual linkage quality.

1 INTRODUCTION
Comprehensive data analysis in multi-site research projects re-
quires careful preparation and integration of relevant data from
various heterogeneous databases. For instance, in (bio-)medical
research or clinical trials, data on patients treated at different
health facilities must be consolidated. Since global identifiers are
typically absent [7], it is necessary to identify records from the
different databases referring to the same real-world entity, such
as a patient. This problem is known as record linkage [7] and
relies on comparing available quasi-identifiers such as the names,
addresses, and dates of birth of patients.

Record linkage is a challenging task due to data quality, scal-
ability, as well as privacy and confidentiality issues [9]. Most
importantly, record linkage algorithms must achieve high link-
age quality, as this is essential for their practical applicability and
utility. Ideally, a record linkage approach should find all matches
(pairs of records referring to the same entity), despite possible
data quality problems, like erroneous, outdated, or incomplete
data, in the source databases [10]. At the same time, false matches
(pairs of records classified as matches, but referring to two differ-
ent entities) should be avoided as much as possible, as otherwise
conclusions based on incorrect assumptions may be drawn.
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In many record linkage applications, however, there is no
ground truth (gold standard) data available that specifies if two
records refer to the same entity or not (true match status) [7].
One possibility to acquire ground truth data is to manually gen-
erate such data by (smartly) sampling record pairs and manually
classifying them as a match or a non-match [7]. Similarly, domain
experts can manually assess linkage results by (visually) inspect-
ing classified record pairs in order to confirm or reject match
decisions [24]. However, such amanual classification (also known
as clerical review) is time- and resource-consuming as well as
error-prone, especially for datasets that are large and/or difficult
to classify. It can therefore lead to many potential matches, i.e.,
candidates for which it is unclear if they refer to the same entity
or not.

Evaluating linkage quality becomes even more challenging
when personal or sensitive data needs to be linked [9]. This prob-
lem is addressed by privacy-preserving record linkage (PPRL)
techniques [17], where linkage is conducted on encoded data
using secure protocols such that no sensitive information is re-
vealed during the linkage process to protect the privacy of indi-
viduals [50].

In privacy-constrained scenarios, it is generally not possible
to inspect actual (quasi-identifying) attribute values of classified
record pairs as these can be sensitive and reveal the identity of an
individual. Furthermore, the organizations conducting the link-
age are generally not allowed or willing to share ground truth
or training data. There is limited work [6, 24] that investigates
approaches formanual clerical reviewsworking on partially (visu-
ally) masked quasi-identifying attribute values. Such approaches,
however, will again be time- and resource-consuming while mak-
ing the clerical review process likely to be less accurate than if
complete attribute values were available for manual assessment.
Unsupervised approaches for estimating linkage quality are there-
fore required to overcome this lack of ground truth data. So far,
however, only a few such approaches have been proposed [21, 30].
As we show in our work, in many scenarios the estimated mea-
sures do not correlate well with the actual linkage quality. We
therefore propose several extensions to existing approaches, as
well as novel heuristics, to improve estimates for linkage quality.
In particular, we make the following contributions:

• We adapt existing and propose novel unsupervised meth-
ods for estimating linkage quality based on a given sim-
ilarity graph. Our methods address various data quality
issues such as heterogeneity of records and duplicates in
the same database. Our methods can be used in practice
for both traditional and privacy-preserving record linkage
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applications, in particular, to optimize linkage configura-
tions, such as the classification threshold, which is often a
challenging task.
• To estimate the overlap between datasets, our methods
require a set of attributes where the values for true match-
ing records are mostly the same, while the values for non-
matches mostly differ. To achieve this aim, we develop an
apriori-like strategy to automatically determine suitable
attribute combinations, in particular for heterogeneous
datasets where a manual selection of attributes is hard.
• We comprehensively evaluate our methods for estimating
linkage quality against two baseline methods proposed in
the literature [30, 31] using real-world datasets from three
different domains (persons, music, and cameras).

The remainder of this paper is structured as follows. In Sect. 2,
we outline the basic record linkage process and explain how
linkage quality is assessed. Then, we define the problem of esti-
mating linkage quality (Sect. 3) and discuss related work (sect. 4).
In Sect. 5 we present our novel approaches for estimating the
linkage quality for both clean and dirty databases. In Sect. 6, we
discuss the privacy aspects of using similarity graphs and cryp-
tosets. In Sect. 7, we evaluate our approaches on different datasets
to validate their practical applicability. Finally, we conclude our
work in Sect. 8.

2 BACKGROUND
The general linkage process consists of multiple steps as shown
in Fig. 1 [7]. Without loss of generality, we assume the task of
linking two databases, DA and DB. However, the process, as well
as our methods, can easily be extended to the linkage of multiple
(more than two) databases. In the following, we will describe
each step in more detail. It is assumed that general information
and linkage parameters, such as schema information or attributes
used for linkage, are exchanged in advance between the database
owners 𝐴 and 𝐵 that are providing the databases to be linked
[47].

The linkage of databases can be conducted under different pro-
tocols depending on the specific use case and (eventual) privacy
requirements [9, 17]. Depending on the protocol, the database
owners may be involved in all linkage steps, or they only need to
pre-process and possibly encode and block their databases before
sending them to a linking unit. Such a linkage unit is a special
party that participates in the linkage process by conducting the
linkage of the databases sent to it. A detailed description of the
different linkage protocols is provided in [9].

Pre-processing: This step focuses on resolving data quality
issues (data cleaning) and ensuring that all records follow the
same structure and formats (data standardization) [7].

Encoding: Linking sensitive databases requires that no private
or confidential information is revealed during the linkage [9, 17,
50]. In such scenarios, the database owners have to perform an
additional step where records are encoded or encrypted in a way
that sensitive attribute values are secured from re-identification.
To prevent the database owners from re-identifying each other’s
records, e.g., using dictionary attacks [51], the linkage process
must follow specific protocols that define how data is exchanged
between the linkage participants [9]. Most PPRL approaches
consider an honest-but-curious security model, which assumes
that all parties involved in a linkage project follow the linkage
protocol but try to learn the other parties’ sensitive data [51].

Blocking / Filtering: The trivial approach to link two databases
is to compare every possible pair of records. To overcome this qua-
dratic complexity, blocking or filtering techniques are commonly
used to reduce the number of record comparisons [37]. Record
pairs that do not meet predefined blocking or filtering criteria
are not considered to be a match and hence are not compared in
detail.

Comparison: Each candidate record pair is compared using sim-
ilarity functions that are applied on the records’ attributes. A
similarity function generally calculates a value between 0 and 1
that quantifies how similar two attribute values are [7]. In gen-
eral, several record attributes are compared using an appropriate
similarity function. Each record comparison therefore results
in a similarity vector, where each entry represents the result
of a specific similarity function evaluated on a specific pair of
attributes.

The output of this step is a set of candidate record pairs to-
gether with their similarity vector. This result can be considered
as a similarity graph. A graph is a pair 𝐺 = (𝑉 , 𝐸) such that
𝐸 ⊆ [𝑉 ]2, i.e., elements of 𝐸 are 2-element subsets of 𝑉 . More
specifically, a similarity graph 𝑆𝐺 = (𝑉 , 𝐸) is a graph in which
vertices of 𝑉 represent records and edges of 𝐸 connect two com-
pared records and hold their resulting similarity vector.

Classification: In this step a classification model is used to as-
sign each candidate record pair (based on its similarity vector)
to one of two (or three) classes: matches, non-matches, and (op-
tionally) potential matches [7]. The class of potential matches
contains those candidate record pairs where the model was not
able to make a clear decision. While different classification tech-
niques have been developed [3, 36], many approaches rely on
threshold-based classification. At first, the similarity vector for a
pair of records is aggregated into a single similarity score 𝑠𝑖𝑚Δ,
by calculating, for example, a weighted sum over the vector ele-
ments.

Two threshold values 𝑡↑ and 𝑡↓ can then be defined such that
all record pairs with 𝑠𝑖𝑚Δ ≥ 𝑡↑ are classified as a match, while
pairs with 𝑡↑ > 𝑠𝑖𝑚Δ ≥ 𝑡↓ as a potential match and pairs with
𝑠𝑖𝑚Δ < 𝑡↓ as a non-match. If 𝑡↑ = 𝑡↓, then records are classified
into two classes only (matches and non-matches). We assume
that each edge in the similarity graph has been aggregated into
𝑠𝑖𝑚Δ and labeled by the class the connected record pair belongs
to (match, non-match, or potential match). Vertices without edges
are implicitly considered as non-matches. For the remainder of
the paper, we consider that both thresholds are the same (𝑡↑ = 𝑡↓).

Post-processing: The output of the classification step is gener-
ally not the final outcome of a record linkage process. Certain
link constraints must be satisfied depending on the character-
istics of the databases and the application that uses the linked
dataset [9]. Generally, two cases are distinguished [36]: (1) both
databases are clean in the sense that they are free of duplicates,
i.e., in each database there are no two records that refer to the
same entity. More formally, �𝑎, 𝑏 ∈ 𝐷 : 𝑎 ≡ 𝑏 ∧ 𝑎 ≠ 𝑏, where
≡ denotes equivalence (reference to the same entity), while =

denotes equality (reference to the same values). For instance, let
𝑎 = [Mary, Smith, 20 − 05 − 1985] and 𝑏 = [Marie, Smith, 20 −
05 − 1985], then 𝑎 ≠ 𝑏, while we can assume 𝑎 ≡ 𝑏. (2) at least
one database is dirty in the sense that it contains duplicates,
i.e., there are at least two records that refer to the same entity
(∃𝑎, 𝑏 ∈ 𝐷 : 𝑎 ≡ 𝑏 ∧ 𝑎 ≠ 𝑏).
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Figure 1: Outline of the general record linkage process. Steps in dashed boxes are optional. The highlighted box consists of
our proposed methods.

After the classification step, the similarity graph contains
edges (links) of different types that are important for post-process-
ing, as we describe below. In the following, the degree deg(𝑎) of a
graph vertex 𝑎 is defined as the number of edges that are incident
to that vertex [11]. Similarly, we define the degree deg(𝑒) of a
graph edge 𝑒 = (𝑎, 𝑏) as the maximum degree of its endpoints
(vertices) 𝑎 and 𝑏, i.e., deg(𝑒) = max (deg(𝑎), deg(𝑏)), where
(𝑎, 𝑏) ∈ 𝐸.
• One-to-one link: An edge 𝑒 = (𝑎, 𝑏) between two vertices
𝑎, 𝑏 ∈ 𝑉 with deg(𝑒) = 1.
• Multi-link: An edge 𝑒 = (𝑎, 𝑏) between two vertices
𝑎, 𝑏 ∈ 𝑉 with deg(𝑒) > 1.
• One-to-many link: An edge 𝑒 = (𝑎, 𝑏) between two
vertices 𝑎, 𝑏 ∈ 𝑉 where deg(𝑎) = 1 and deg(𝑏) > 1.
• Many-to-one link An edge 𝑒 = (𝑎, 𝑏) between two ver-
tices 𝑎, 𝑏 ∈ 𝑉 where deg(𝑎) > 1 and deg(𝑏) = 1.
• Many-to-many link: An edge 𝑒 = (𝑎, 𝑏) between two
vertices 𝑎, 𝑏 ∈ 𝑉 where both deg(𝑎) > 1 and deg(𝑏) > 1.

If the databases are duplicate-free, then records from the same
database are usually not compared. As a consequence, the similar-
ity graph forms a bipartite graph [11]. Thus, 𝑉 allows a division
into two partitions, namely 𝑉𝐴 and 𝑉𝐵 where 𝑉 = 𝑉𝐴 ∪𝑉𝐵 , such
that every edge has its ends in different partitions, i.e., vertices
in the same partition are not adjacent. The partition𝑉𝐴 only con-
sists of records from databaseDA and partition𝑉𝐵 only of records
from database DB, respectively. Since we assume duplicate-free
databases, any record ofDA can match to at maximum one record
of DB and vice-versa. Thus, the similarity graph needs to be 1-
regular and consequently must only contain edges with a degree
of 1 (one-to-one links). In this case, post-processing applies a
one-to-one link restriction to the match result by resolving all
multi-links [14, 35]. This is equivalent to finding a matching over
the similarity graph [11] (the term matching here refers to the
graph-theoretic terminology). Given a graph𝐺 = (𝑉 , 𝐸), a match-
ing 𝑀 ⊆ 𝐸 is a set of edges without common vertices, i.e., all
edges are pairwise non-adjacent.

If one database is clean and the other is dirty, then one-to-one
links and one-to-many links are permitted. If both databases are
dirty, then all types of links listed above can potentially occur.
In such a situation, each database owner could first individually
run a (intra-source) deduplication process before performing the

actual holistic (inter-source) linkage. While each database owner
can optimize the deduplication configuration locally and poten-
tially perform a manual assessment of the linking result, this
approach has some drawbacks. At first, intra-source duplicates
may be fused into a single record (cluster representative), e.g.,
by selecting attribute values that are more likely to be complete,
accurate, and up-to-date. Using this approach, the amount of
available information is reduced which potentially leads to more
false negatives.

Furthermore, errors in the deduplication process of a source
are possible, where two records are considered as match while
they actually refer to different entities (intra-source false positive).
As a consequence, entities are wrongly fused and this error is
propagated through the whole process, which in turn can lead to
inter-source false positives [32]. Therefore, it can be beneficial
to retain intra-source duplicates. Consequently, records from
the same database need to be compared leading to a similarity
graph with intra-source links. By definition, this will make the
similarity graph no longer bipartite. However, by removing all
intra-source links a bipartite subgraph can be obtained.

Besides enforcing link cardinality constraints, post-processing
ensures that the linkage result fulfills the transitive closure [7].
For records 𝑎, 𝑏, 𝑐 ∈ 𝑉 , this property guarantees that if both the
pair (𝑎, 𝑏) and (𝑎, 𝑐) are classified as a match, then the pair (𝑏, 𝑐)
must also be a match. The transitive closure may be violated due
to missed true matches, for example, due to blocking [7].
Evaluation: Given a ground truth (gold standard) dataset con-
taining the true match status of a set of record pairs, four classi-
fication outcomes are possible for each pair of records:
• True positive: A true positive is a record pair that has
been classified as a match and the pair is a true match. The
two records refer to the same entity.
• False positive: A false positive is a record pair that has
been classified as a match, but it is not a true match. The
two records refer to different entities.
• True negative: A true negative is a record pair that has
been classified as a non-match and it is a true non-match.
The two records refer to different entities.
• False negative: A false negative is a record pair that has
been classified as a non-match, but it is a true match. The
two records refer to the same entity.

296



For a specific classification configuration, e.g., certain classifica-
tion threshold, this results in a confusion matrix [18] reporting
the total number of true positives (tp), true negatives (tn), false
positives (fp) and false negatives (fn). Based on the confusion ma-
trix different quality measures can be calculated [19]. The most
common measures are recall (R), precision (P), and F-measure (F)
which are defined as follows:

𝑅 =
tp

tp + fn 𝑃 =
tp

tp + fp 𝐹 = 2 × 𝑃 × 𝑅
𝑃 + 𝑅 (1, 2, 3)

The F-measure (F) combines recall and precision into a single
number and can be defined as the harmonic mean of both mea-
sures [8].

3 PROBLEM DEFINITION
Let DA and DB be two databases from database owners 𝐴 and
𝐵, respectively. Let 𝑆𝐺 = (𝑉𝐴,𝑉𝐵, 𝐸) be the similarity graph
resulting from a record linkage process using a certain linkage
configuration. Based on an analysis of the two databases and the
given similarity graph 𝑆𝐺 , we aim to estimate the linkage quality
in terms of tp, fp and fn. From these estimates precision and recall,
as well as aggregated measures such as the F-measure, can be
calculated. We assume that no ground truth data is available
that can be used, for example, due to privacy or data protection
concerns.

4 RELATEDWORK
Existing methods to estimate linkage quality in the context of
record linkage can be roughly divided into the following cate-
gories.
Manual assessment: The result of a linkage is manually in-
spected by domain experts in order to assess the linkage quality
outcome [7]. The disadvantage of such approaches is that they
can be very time- and resource-consuming. To limit this effort,
often only a small sample of record pairs is revised, in particular
edge cases. These are pairs that are hard to classify and thus have
high uncertainty [7]. A simple sampling method is proposed by
Boyd et al. [5] where record pairs at different threshold values are
sampled and clerically reviewed. The obtained results are then
applied to the entire dataset providing estimates for the number
of false positives and false negatives. Marchant and Rubinstein
proposed OASIS [28], a tool that takes an unlabeled dataset as
input and intelligently selects items to be (manually) labeled
to provide an estimate of the linkage quality. To minimize the
amount of labeling required, OASIS uses an adaptive importance
sampling method.

In privacy-preserving settings, however, such manual inspec-
tion is even harder to employ. Initial work [24] addresses this
problem by visual masking and partly hiding actual attribute
values, in order to allow manual link decisions without compro-
mising the privacy of individuals. However, manual decisions
based on masked attribute values might also be less accurate
compared to reviews based on fully visible attribute values.
Supervised approaches: Linkage quality can be estimated based
on ground truth (training) data where the match status of a set of
record pairs is known. Such training data need to be of high qual-
ity and contain a large diversity of example pairs, especially those
that are difficult to classify. Heise et al. [21] proposed a sampling-
based approach for duplicity assessment which estimates the
number and sizes of duplicate record clusters in a dataset. The
main benefit of their approach is that it can efficiently approxi-
mate the number of duplicates while only performing a fraction

of the candidate comparisons compared to what an actual record
linkage process would take. Binette et al. [4] estimate linkage
quality from samples by using (partial) ground truth data. Sim-
ilarly, in [12, 20] partial ground truth data is submitted to the
linkage process in the form of positive/negative controls. Positive
controls are records that are known to be a match. In contrast,
negative controls are records that should definitely not match
any other record. In [29], such controls are used for the linkage of
prisoner records and a register of deaths. In that specific scenario,
for a subset of prisoners, it is known that they died in prison
(positive controls) while for another subset of prisoners, it is
known that they were alive at the time of the linkage (negative
controls). By counting the number of correctly classified control
records, the linkage quality can be calculated. In general, the con-
trol records can also be artificially created jointly by the database
owners and then employed in the linkage process.

Again, in privacy-preserving record linkage scenarios, data-
base owners might not be able or willing to prepare and exchange
training data due to privacy constraints [9].
Unsupervised approaches: These approaches do not have ac-
cess to the characteristics of true matching and non-matching
record pairs. Lamiroy and Sun [26] propose an approach to mea-
sure recall and precision in the absence of ground truth data.
Their method requires access to different competing approaches,
such as different classifiers, in order to establish a ranking and
find an overall consensus between these approaches. The draw-
back of this approach is that it is sensitive to collective bias,
namely if the competing approaches are consistent in their errors.
Similarly, Platanios et al. [39] propose methods for estimating
the accuracy of different competing classifiers based on their
agreement rates over unlabeled data. The authors show that their
approach is able to estimate accuracy if the competing classifiers
do not make independent errors.

Other unsupervised approaches rely on dataset characteristics
and the similarities between pairs or groups of records. Such ap-
proaches are closely related to clustering approaches that can be
used for classification, as well as for post-processing [7]. Cluster-
ing is the process of partitioning data objects into subsets (called
clusters), such that intra-cluster similarity is maximized while
inter-cluster similarity is minimized. This means that objects in
the same cluster have a high similarity while objects in differ-
ent clusters have a low similarity to each other [18]. Clustering
techniques utilize different heuristics but are generally executed
in an unsupervised fashion. In [31], Nikolov et al. propose an
unsupervised approach that aims to estimate linkage quality in
the absence of labeled data. Therefore, pseudo-precision (PP)
and pseudo-recall (PR) measures are used which are defined as
follows:

PP =
|{𝑎 ∈ 𝑉𝐴 |∃𝑏 ∈ 𝑉𝐵 : (𝑎, 𝑏) ∈ 𝐸}|∑

𝑎∈𝑉𝐴 |{𝑏 ∈ 𝑉𝐵 | (𝑎, 𝑏) ∈ 𝐸}|
(4)

PR =
|𝐸 |

min( |𝑉𝐴 |, |𝑉𝐵 |)
(5)

Assuming that the databases to be linked are clean, the pseudo-
precision measure is based on the following fact: If there are
multiple links originating from the same record, at most one can
be correct. The other links are necessarily errors. The pseudo-
recall measure considers the number of records in the smaller
partition (database) as the maximum number of possible matches.
However, this is only the case if one database is a subset of the
other database. This, in turn, will be rarely the case in most record
linkage scenarios [7]. As a consequence, pseudo-recall tends to
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(strongly) underestimate the actual recall, if the overlap between
the two databases is low. Besides, pseudo-recall can result in
values greater than 1, namely if |𝐸 | > min( |𝑉𝐴 |, |𝑉𝐵 |). To over-
come this issue, Ngomo and Lyko [30] refined the approach by
specifying an alternative pseudo-recall variant which is defined
as:
PRAlt =

|{𝑎 ∈𝑉𝐴 |∃𝑏 ∈𝑉𝐵 : (𝑎, 𝑏) ∈𝐸}| + |{𝑏 ∈𝑉𝐵 |∃𝑎 ∈𝑉𝐴 : (𝑎, 𝑏) ∈𝐸}|
|𝑉𝐴 | + |𝑉𝐵 |

(6)
This pseudo-recall measure indicates howwell the records in both
databases are covered by the linkage result. A pseudo-recall value
of 1 means that every record of database DA is linked to at least
one record of databaseDB and vice versa.While the results in [31]
are promising, the authors in [30] achieved varying results with
both positive and negative correlations between the estimated
and the actual linkage quality. However, the results are hard to
interpret as only F-measure values were reported and compared
(a weakness of the F-measure reported by others [8]). It is thus
difficult to assess if the ambiguous correlations reported are due
to the recall or precision estimates.

5 ESTIMATING LINKAGE QUALITY USING
SIMILARITY GRAPHS

The key idea of our methods for estimating linkage quality in the
absence of ground truth data is to analyze both the input data
and the similarity graph generated by a record linkage algorithm.
For assessing the quality in terms of recall and precision, the
number of true positives (tp), false positives (fp), and false nega-
tives (fn) need to be approximately determined. In the following,
we discuss different strategies considering the degree of vertices,
similarity of edges, and cryptosets, to determine the relevant
counts required for calculating precision and recall.

Because of possibly different data quality levels regarding
duplicates in a database, we distinguish our methods as being
suitable for deduplicated databases (clean) and databases contain-
ing (intra-source) duplicates (dirty). Assuming that the databases
to be linked are duplicate-free, the number of possible matches
for each record is limited to one (see Sect. 2), and therefore our
heuristics need to be more strict. In general, we assume that
the similarity graph was generated without applying a one-to-
one cardinality restriction as part of a post-processing step. By
applying a one-to-one cardinality restriction, the most likely
matching record out of a set of candidates would be selected [15].
This would lead to a loss of information about the ambiguity of
possible match candidates.

5.1 Deduplicated Databases
The main difference between clean and dirty data sources is that
with the former a record 𝑎 ∈ 𝐷𝐴 can correspond to at maximum
one record 𝑏 ∈ 𝐷𝐵 . Otherwise, the database 𝐷𝐵 is not duplicate-
free if a record 𝑏′ ∈ 𝐷𝐵 exists where 𝑏′ = 𝑎. Due to the transitive
closure of 𝑎 regarding equality [7], record 𝑏 would be equal to 𝑏′,
which contradicts the assumption of duplicate-free data sources.

We utilize this constraint and the degree of nodes in the sim-
ilarity graph as indicators for true positives. A one-to-one link
implies that there is exactly one match candidate for a record.
In contrast, a multi-link implies that there are several match
candidates for a record leading to uncertainty regarding the deci-
sion of which records to match. While for clean databases each
additional match candidate will be a false positive (without a

post-processing step), for dirty databases multiple match candi-
dates may form an intra-source duplicate (as we will discuss in
Sect. 5.2). In addition to the edge degree, the edge weight (the
aggregated similarity 𝑠𝑖𝑚Δ or a confidence value) is also an im-
portant criterion. The higher the edge weight and the greater the
difference to the similarity threshold value is, the more certain a
match decision will be.

In the following, we describe the different strategies using the
vertex degree and the edge similarity to estimate the number
of true positives and false positives, as well as cryptosets to
determine the number of false negatives.

5.1.1 Vertex Degree. Due to the constraint for duplicate-free
databases, we can approximate the set of true positives by the
records of a database 𝐷𝐴 that have been linked to at most one
record from the other database 𝐷𝐵 . We can formalize the set of
estimated true positives TPA regarding a data source𝐴 as follows:

TPA = {𝑎 ∈ 𝑉𝐴 | ∃𝑏 ∈ 𝑉𝐵 : (𝑎, 𝑏) ∈ 𝐸} (7)

Using the estimation of the set of true positives, we can approx-
imately determine precision with Eq. (8) where |𝐸 | represents
the number of edges. In this approximation, the number of true
positives is limited by the minimum number of expected true pos-
itives regarding the set of records from TP𝐴 and TP𝐵 being linked.
To relax the assumption of one-to-one links, Eqs. (9) and (10) con-
siders the average of the number of records from TP𝐴 and TP𝐵 .
Eq. (10) limits the number of links by the minimum of |𝑉𝐴 | and
|𝑉𝐵 | motivated by the duplicate-free assumption.

PP1:1 =
min( |TPA |, |TPB |)

|𝐸 | PP1:n =
|TPA | + |TPB |

2 · |𝐸 |

PRAltMin =
|TPA | + |TPB |

2 ·min( |𝑉𝐴 |, |𝑉𝐵 |)
(8, 9, 10)

5.1.2 Similarity Scores. In addition to the graph structure,
similarity graphs provide information for each edge representing
how likely a match between the linked records is. Therefore, we
utilize the similarities to calculate for each edge a probability to
be a true positive depending on its adjacent edges. As we discuss
below, the intuition is that we can select for each record only
one edge, and therefore we utilize the similarities of adjacent
edges as a probability to select one edge per record. The calcu-
lated probability for each edge and the restriction of edges based
on the duplicate-free assumption can then be used to calculate
the expectation of the number of true positives for the given
similarity graph.

For calculating the probability of a true positive given an edge
𝑒 = (𝑎, 𝑏) ∈ 𝐸, we determine two probabilities, 𝑝𝐴tp (𝑒) and 𝑝𝐵tp (𝑒)
representing how likely 𝑒 is a true positive considering records
𝑎 ∈ 𝑉𝐴 and 𝑏 ∈ 𝑉𝐵 . The probability 𝑝𝐴tp (𝑒) defined in Eq. (11)
(with 𝑝𝐵tp (𝑒) calculated in a similar way) is based on the similarity
of edge 𝑒 and normalized by the sum of the similarities of its
adjacent edges associated with a record 𝑎. Here, 𝑁 (𝑣) denotes the
neighborhood of a vertex 𝑣 which is the set of vertices adjacent
to 𝑣 [11].

𝑝𝐴tp (𝑒) = P[𝑒 = (𝑎, 𝑏) ∈ TP | 𝑎 ∈ 𝑉𝐴] =
𝑠𝑖𝑚Δ (𝑒)∑

𝑏′∈𝑁 (𝑎) 𝑠𝑖𝑚Δ (𝑎, 𝑏′)
(11)

The probabilities 𝑝𝐴tp (𝑒) and 𝑝𝐵tp (𝑒) are used to determine a joint
probability indicating how likely it is that 𝑒 is a true positive.
To estimate the number of true positives, we then calculate the
expected value of true positives based on the joint probability
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of 𝑒 where 𝑒 ∈ ESel . The set ESel defined in Eq. 12 consists of
edges maximizing the similarity for at least one incident vertex
𝑎 or 𝑏 regarding the edges being adjacent with the vertices of
the neighborhood of 𝑎 respectively of 𝑏. Due to our assumption
that the data sources are deduplicated, we assume that for each
record the edge with the largest similarity is most likely a true
link.

Esel =
{
(𝑎, 𝑏) ∈ 𝐸

�� max
𝑏′∈𝑁 (𝐴)

(
𝑠𝑖𝑚Δ (𝑎, 𝑏′)

)
= 𝑠𝑖𝑚Δ (𝑎, 𝑏)∨ (12)

max
𝑎′∈𝑁 (𝐵)

(
𝑠𝑖𝑚Δ (𝑎′, 𝑏)

)
= 𝑠𝑖𝑚Δ (𝑎, 𝑏)

}
To calculate the expected value of true positives considering the
edges of Esel , we determine the sum of the joint probability over
all edges 𝑒 ∈ 𝐸𝑠𝑒𝑙 that is formally defined as follows:

E(TP) =
∑︁

𝑒=(𝑎,𝑏 ) ∈𝐸sel

𝑝𝐴tp (𝑒) · 𝑝𝐵tp (𝑒) (13)

We can then define our new precision estimate PPprob as:

PPprob =
E(TP)
|𝐸 | (14)

Example: Using the various methods, we can estimate the
number of true positives for our example shown in Fig. 2. In
this example, |𝐸 | = 10, |𝑉𝐴 | = |𝑉𝐵 | = 6 as well as |TP𝐴 | = 6 and
|TP𝐵 | = 5. The determined sets are used to calculate PP1:1 =

min(5,6)/10 = 0.5, PP1:𝑛 = (5+6)/2·10 = 0.55 and PP = 6/10 = 0.6.
For calculating PPprob, we need to calculate the probabilities
𝑝𝐴tp (𝑒) and 𝑝𝐵tp (𝑒) for each edge 𝑒 ∈ 𝐸𝑠𝑒𝑙 := {(0, 8), (1, 6), (2, 10),
(3, 9), (4, 7), (5, 9)} being aggregated by E(TP). For instance, the
probabilities𝑝𝐴tp ((3, 9)) and 𝑝𝐵tp ((3, 9)) for edge (3, 9) are𝑝𝐴tp ((3, 9)) =
0.68/(0.68+0.41+0.43) ≈ 0.45 and 𝑝𝐵tp ((3, 9)) = 0.68/(0.68+0.73) ≈
0.48, respectively. Overall, the expected number of true positives
is E(TP) = 2.662 resulting in PPprob = 0.266.

5.1.3 Cryptosets. To approximate recall, we need to deter-
mine the number of overlapping records. In order to guarantee
the privacy of sensitive personal information we utilize cryp-
tosets [46]. The main idea of using cryptosets is the analysis
of histograms consisting of record-depending information from
both databases. An example of how cryptosets are generated is
illustrated in Fig. 3.

For each record, a private identifier is constructed by applying
specific functions on a set of attributes. These private identifiers
do not need to be unique, but the number of records with the
same private identifier should be kept small. On the one hand,
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Figure 2: Example similarity graph of records from
databases A and B. True positive links are shown with
thick green lines.

the more unique the private identifiers are, the more accurate the
cryptoset estimate of the overlap between the two databases will
be. On the other hand, the construction of the private identifiers
should be error-tolerant. Records that refer to the same entity but
contain errors or inconsistencies, such as typos or missing values,
should ideally produce the same private identifier otherwise the
overlap will be underestimated. In our example shown in Fig. 3,
the private identifiers are generated by concatenating the first
three characters of the first name and last name and the last two
digits of the year of birth.

The resulting private identifier idpriv is transformed to a public
identifier idpub in the range [0, 𝐿 − 1] using a one-way crypto-
graphic hash function ℎ, i.e., idpub = ℎ(idpriv) [9]. Then, each
database owner initializes a histogram of length 𝐿 and increments
for each record the count at the position idpub mod 𝐿 correspond-
ing to the public ID of the record (bottom of Fig. 3).

Cryptosets have a trade-off between estimation error and secu-
rity risk [46]. This trade-off is controlled by the cryptoset length
𝐿. Longer cryptosets result in fewer collisions as fewer public
identifiers (records) are mapped to the same position. While this
makes the estimates more accurate, the cryptosets become less
secure.

Overlap Estimation. Assuming two (sensitive) databases DA
and DB for which cryptosets 𝐶𝐴 and 𝐶𝐵 have been constructed
using the same protocol, then the overlap of records CE(𝐶𝐴,𝐶𝐵)
(crypotset estimation) in these two databases, |DA ∩ DB |, can be
estimated as follows:

CE(𝐶𝐴,𝐶𝐵) = pc(𝐶𝐴,𝐶𝐵) ·

√︄
max( |DA |, |DB |)
min( |DA |, |DB |)

(15)

where pc(·, ·) is the Pearson correlation coefficient. Note that
|DA | =

∑𝐿−1
𝑖=0 𝐶𝐴

𝑖
and |DB | =

∑𝐿−1
𝑖=0 𝐶𝐵

𝑖
. The Pearson correlation

coefficient is defined in Eq. 16 based on the covariance between
the cryptosets of 𝐶𝐴 and 𝐶𝐵 normalized by the product of the
standard deviations of 𝐶𝐴 and 𝐶𝐵 , where 𝐶𝐴 and 𝐶𝐵 are the
means of frequencies of the idpub distribution of 𝐶𝐴 and 𝐶𝐵 ,
respectively.

pc(𝐶𝐴,𝐶𝐵) =
∑𝐿−1
𝑖=0 (𝐶𝐴 [𝑖] −𝐶𝐴) (𝐶𝐵 [𝑖] −𝐶𝐵)√︃∑𝐿−1

𝑖=0 (𝐶𝐴 [𝑖] −𝐶𝐴)2 ·
√︃∑𝐿−1

𝑖=0 (𝐶𝐵 [𝑖] −𝐶𝐵)2
(16)

We can now determine recall by utilizing the cryptoset-based
approximation of the overlap from Eq. (15) and the approximation
of the number of true positives based on |TPA | and |TPB |, or
E(TP) as calculated in Eqs. 7 and 13 for the databases 𝐷𝐴 and
𝐷𝐵 .

PRCE1:1 =
min( |TPA |, |TPB |)

CE
PRCE1:n =

|TPA | + |TPB |
2 · CE

PRCEprob =
E(TP)
CE

(17, 18, 19)

Generation of Private Identifiers. Due to the importance of pri-
vate identifiers for estimating the overlap, automatic approaches
are required if the databases consist of heterogeneous or sensi-
tive data which makes manual selection infeasible. We propose
a method, as outlined in Algorithm 1, that automatically selects
a subset of attributes to generate the identifiers based on the at-
tribute characteristics such as uniqueness as well as value distri-
bution. The selected attributes representing the private identifier
influence the estimated overlap. A high number of records with
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Figure 3: Illustration of the cryptoset approach to estimate the overlap of two (private) datasets (adapted from [46]).

ALGORITHM 1: Apriori-like approach to determine attributes
for generating meaningful private identifiers

Input: D: dataset from a certain party, A: set of attributes
mr : threshold for the ratio of missing attribute values
𝑡info : threshold to filter uninformative attribute
combinations

Output: AC set of attribute combinations to generate private ids
1 AC← ∅
2 Avalid ← filterAttributes (D,A,mr )
3 tempAttCombs← apriori (Avalid )
4 do
5 filteredCombs← ∅
6 for 𝑎𝑐 ∈ tempAttCombs do
7 𝑢 ← computeUniqueness (D, 𝑎𝑐 )
8 𝑠 ← computeWeightedUniformitySim(D, 𝑎𝑐,𝑢 )
9 info← 2 · (𝑠 ·𝑢)/(𝑠+𝑢)

10 if info ≥ 𝑡info then
11 filteredCombs← filteredCombs ∪ {𝑎𝑐 }
12 AC← AC ∪ {𝑎𝑐 }
13 tempAttCombs← apriori (filteredCombs)
14 while tempAttCombs ≠ ∅
15 return AC

the same identifier results in an overestimated overlap whereas
a small number leads probably to underestimation since the pri-
vate identifiers are too unique so the intersection of the resulting
histograms is small.

Therefore, we propose an automatic approach for selecting a
subset of attributes satisfying different criteria so that the result-
ing identifiers enable an effective estimation [40]. The approach
follows an apriori-like strategy [2], where we start with attribute
sets of size one and combine them. An attribute combination
is added to the final result set AC if the harmonic mean based
on the uniqueness (𝑢) and the weighted similarity (𝑠) regarding
a uniform distribution is above a threshold 𝑡info (Algorithm 1
line 5-13). The attribute combination is also added to the candi-
date set filteredCombs to generate larger attribute combinations
tempAttCombs being validated in the next iteration. The gen-
eration process stops if we cannot derive larger attribute sets
satisfying the defined criteria in terms of uniqueness and simi-
larity to a uniform distribution.

We define uniqueness (𝑢) as the ratio of distinct values regard-
ing an attribute combination and the number of records. More-
over, the similarity 𝑠 is determined by computing the histogram
intersection between the value distribution regarding a certain
attribute combination and a uniform distribution. To avoid a high
impact of combinations leading to a high uniqueness, we weigh
the similarity by the uniqueness of an attribute combination with
𝑢 · (1−𝑢 )/0.25 mitigating the impact of combinations with a high
(𝑢 ≈ 1) or small uniqueness (𝑢 ≈ 0). To reduce the number of
attribute combinations, we filter the possible attributes based on
the number of existing values at first (line 2). Our assumption
here is that attributes or combinations with a high number of
missing values result in ineffective identifiers for representing
the underlying records.

5.2 Dirty Databases
The proposed methods in the previous section assume one-to-one
links between the two databases. Consequently, if we use these
methods for databases with duplicates, we would underestimate
the number of true positives since multi-links are possible.

For estimating the number of true positives, we rely on the
assumption that records being the same entity are similar to
each other, which is also reflected in the similarity graph. As
a result of the linkage process, records representing the same
entity are elements of one connected component. Moreover, the
records of a component should be similar to each other which is
explicitly represented by the computed similarities. Nevertheless,
the similarities can be different due to quality issues or edges
missing due to the specified threshold. In this case, we cannot
utilize the similarities directly to quantify the number of true
positives. We reformulate the assumption that each record is sim-
ilar to the other records using the personalized PageRank [33]. In
the context of the personalized PageRank considering a certain
record, each record of a connected component should be reach-
able with roughly the same probability. Otherwise, a record is
more (dis)similar to a subset of records indicating that not all
records refer to the same entity.

To quantify the number of true positives, we introduce a true
positive score tpscore (𝑎, 𝑏) for each edge 𝑒 = (𝑎, 𝑏) based on the
personalized PageRank 𝑝𝑝 (𝑎, 𝑏) of the adjacent records 𝑎 and 𝑏
as well as the similarity 𝑠𝑖𝑚Δ. Ideally, the probability of reaching
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a record 𝑏 starting from 𝑎 is equal to the probability by randomly
selecting a record𝑏′ from the connected component𝐶𝐶 of 𝑎 since
each record should be similar to the other records. The probability
of randomly selecting a record of a connected component is
𝑝𝑢𝑛𝑖 =

1
|𝐶𝐶 | . Using the probabilities, we define the true positive

score of an edge as:

tpscore (𝑒 = (𝑎, 𝑏)) = (1 − |𝑝𝑝 (𝑎, 𝑏) − 𝑝𝑢𝑛𝑖 |)
· (1 − |𝑝𝑝 (𝑏, 𝑎) − 𝑝𝑢𝑛𝑖 |) · simnorm (𝑎, 𝑏)

The first factor and the second factor represent the probability
difference reaching node 𝑏 starting from 𝑎 and reaching node 𝑎
starting from 𝑏, respectively. The third factor weighs the two dif-
ferences using the min-max normalized similarity simnorm (𝑎, 𝑏)
between 𝑎 and 𝑏. The smaller the differences and higher the
similarity, the higher the tpscore for the edge 𝑒 = (𝑎, 𝑏). The to-
tal number of true positives TPscore is estimated by the sum of
tpscore (𝑒) overall identified matches 𝑒 ∈ 𝐸. The resulting estima-
tion is used to compute the precision PPdup as follows:

PPdup =
TPscore
|𝐸 | (20)

To measure recall, we use the estimated number of true positives
TPscore compared to the estimated overlap CE by using cryptosets.

6 DISCUSSION OF PRIVACY ASPECTS
Our methods for estimating linkage quality rely on analyzing
similarity graphs as well as cryptosets of the databases to be
linked.

In the context of PPRL, there are only a few works that pro-
pose attacks on similarity graphs [49]. Such attacks aim to deter-
mine a mapping between the encoded data and publicly available
plaintext data by using graph features (such as weighted node
degrees). Our estimation methods, however, utilize existing simi-
larity graphs which are typically generated by the linkage unit
in PPRL scenarios. Therefore, our approaches do not add any
privacy flaws but rather rely on the security of the method that
was used to generate the similarity graph.

Cryptosets can be seen as a summary of the databases’ con-
tents that can be shared in public, untrustworthy environments to
measure the overlap between private databases. In the literature,
cryptosets are considered as information-theoretic secure [46]
as it is not possible to determine which records are in a private
database based on its cryptoset. For the overlap estimation, the
cryptosets of the databases to be linked need to be shared with
the linkage unit or between the database owners. Each cryptoset
is a vector of length 𝐿 containing the counts of public identifiers.
Those public identifiers are determined by mapping the private
identifiers of records representing (parts of) attribute values to
an integer value in the range [0, 𝐿 − 1] using a cryptographic
one-way hash function. Setting 𝐿 ≪ min( |𝐷𝐴 |, |𝐷𝐵 |) results in a
many-to-one relationship between private and public identifiers
where the number of records being mapped to the same public
identifier is typically large and thus impeding the alignment of
specific records [46]. Consequently, even if an adversary knows
the encoding function, dictionary-based attacks are not feasible.

In addition to this theoretical argument, information gain [9]
can be used as a measure to quantify how much information is
exposed by a cryptoset 𝐶𝐴 compared to a theoretically optimal
cryptoset 𝐶𝑈 consisting of all possible values in the domain of
private identifiers. Due to the large number of possible values in a
domain, the public identifiers in𝐶𝑈 are approximately uniformly
distributed so that each position in 𝐶𝑈 is set with a probability

of 1/𝐿. We can calculate the information gain 𝐼
(
𝐶𝐴

���� 𝐶𝑈 )
using

both entropies of𝐶𝐴 and𝐶𝑈 as shown in Eq. (21), where smaller
information gain values represent higher privacy. If information
gain is high, the frequency distribution of a cryptoset can poten-
tially be used in a cryptanalysis attack to align it to a public value
distribution such as telephone books or census data for names.
However, no such attack has so far been developed.

𝐼
(
𝐶𝐴

���� 𝐶𝑈 )
=

(
−
𝐿−1∑︁
𝑖=0

1
𝐿
· 𝑙𝑜𝑔2

1
𝐿

)
−

(
−
𝐿−1∑︁
𝑖=0

𝐶𝐴 [𝑖]
|𝐷𝐴 |

· 𝑙𝑜𝑔2
𝐶𝐴 [𝑖]
|𝐷𝐴 |

) (21)

Securely computing the intersection of private databases is
an intensively studied problem with various approaches show-
ing different security and complexity properties [25]. In general,
two parties want to compute the intersection of their private
sets without revealing anything to the other party other than
the (number of) elements in the intersection. For a detailed dis-
cussion of different private set intersection protocols, we refer
to [38]. Many approaches focus only on two parties, compute
only the exact overlap (not considering errors or inconsistencies
between matching records), or do not account for duplicate ele-
ments (multiset intersection) [1, 13, 16]. Therefore, we employ
cryptosets as a specific solution to the private set intersection
cardinality problem that meets our requirements. However, our
approaches for estimating linkage quality are not strictly limited
to cryptosets.

7 EXPERIMENTAL EVALUATION
In this section, we evaluate the proposed approaches for linkage
quality assessment using datasets from three distinct domains
with different characteristics. In the following, we describe the
datasets we used as well as the methods and parameter settings
for generating the similarity graphs.

7.1 Datasets
We use datasets from three different domains: voter records (per-
sonal information), records about music albums, and records
about consumer products (cameras). In contrast to the voter
datasets, the music and camera datasets are more heterogeneous
(have different attribute structures) and show diverse types of
errors. The voter and music datasets are clean (duplicate-free),
while the product dataset is dirty and contains intra-source dupli-
cates. We use the voter dataset to estimate the linkage quality in
a PPRL scenario. The music and product datasets, in contrast, are
used for estimating the quality in a non-privacy-oriented linkage
context.

7.1.1 NCVR. We first consider a dataset provided by Panse
et al. [34] that is based on the North Carolina Voter Registration
(NCVR) database (https://www.ncsbe.gov/). This dataset contains
over 120 million historic voter records with person-related at-
tributes such as first name (FN), middle name (MN), last name
(LN), year of birth (YOB), place of birth (POB), city, ZIP code, and
sex. Compared to the other two datasets, MusicBrainz and Dexter
as described next, it represents a homogeneous dataset in terms
of the number of attributes and the characteristics of attribute
values such as length distribution and amount of missing values.
From this dataset, we extracted subsets 𝐴 and 𝐵 with |𝐴| = |𝐵 | =
200,000 and varying degrees of overlap (number of matches):
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Table 1: Dataset overview and linking configuration of MusicBrainz and Dexter.

Dataset Attributes #Records #Matches Blocking Key Similarity Function

Music
Brainz

Artist, title, album, year,
length, language, number 20,000 16,250 preLen1(album) Trigram(title)

Dexter Heterog. key-value pairs 21,023 185,839 mfr. name, model
number

Trigram(model names, product code, sensor type),
Euclid(opt./digital zoom, camera dim., price, weight, resolu-
tion)

• NCVRH (high overlap) where |𝐴 ∩ 𝐵 | = 160,000.
• NCVRMH (medium-high overlap) where |𝐴∩ 𝐵 | = 120,000.
• NCVRM (medium overlap) where |𝐴 ∩ 𝐵 | = 100,000.
• NCVRLM (low-medium overlap) where |𝐴 ∩ 𝐵 | = 80,000.
• NCVRL (low overlap) where |𝐴 ∩ 𝐵 | = 40,000.

Each singleton record is drawn from the NCVR snapshot of ‘2021-
01-01’. Each duplicate pair (𝑎, 𝑏) consists of records 𝑎 ∈ 𝐴 and
𝑏 ∈ 𝐵 where record 𝑎 is drawn from a snapshot between ‘2008-01-
01’(inclusive) and ‘2021-01-01’(exclusive), while record 𝑏 is from
snapshot ‘2021-01-01’. Moreover, there is a difference or error in at
least one attribute that is not the year of birth: ∀𝑎, 𝑏 : (YOB(𝑎) =
YOB(𝑏)) ∧ ∃attr ∈ {FN ,MN , LN , POB, SEX } : 𝑎𝑡𝑡𝑟 (𝑎) ≠ 𝑎𝑡𝑡𝑟 (𝑏).

As we use this dataset to estimate the linkage quality in a
PPRL scenario, we utilize Bloom filters as proposed by Schnell et
al. [45] as an encoding technique. Bloom-filter-based encodings
have become the quasi-standard for recent PPRL approaches in
both research and real applications [9, 48]. We use record-level
Bloom filters with a length of𝑚 = 1024, trigrams, and attribute
weighting. To overcome the quadratic complexity of linkage, we
use LSH-based blocking based on the Hamming distance as in
previous work [14, 15]. To determine the similarity of candidate
record pairs we use the Jaccard coefficient [9].

7.1.2 MusicBrainz. TheMusicBrainz dataset is a synthetically
generated dataset from the MusicBrainz (https://musicbrainz.
org/) database. The dataset is corrupted by [22] consisting of
five sources with duplicates for 50% of the original records. Each
data source is duplicate-free but the records are heterogeneous
regarding the characteristics of attribute values such as the num-
ber of missing values, length of values, and ratio of errors. The
similarity graphs we used in our evaluation have been utilized in
several previous studies [27, 41–43]. The linkage configuration
is shown in Tab. 1.

7.1.3 Dexter. This dataset is derived from the camera dataset
of the ACM SIGMOD 2020 Programming Contest (http://www.
inf.uniroma3.it/db/sigmod2020contest/index.html). The dataset

Table 2: Averaged information gain 𝐼 (𝐶𝐴 | |𝐶𝑈 ) and
𝐼 (𝐶𝐵 | |𝐶𝑈 ).

Config. private ID NCVRL NCVRM NCVRH

[2FN, 2LN, YOB] 0.0497 0.0506 0.0522
[3FN, 3LN, YOB] 0.0317 0.0320 0.0316
[SD_FN, SD_LN, YOB] 0.0302 0.0314 0.0317

consists of 23 sources with ≈21,000 records and intra-source
duplicates. Each data source consists of source-specific attributes.
We used the same linkage configuration as in previous studies [41,
43] (see Tab. 1).

7.2 Results
In the following, we evaluate our proposed methods for estimat-
ing the linkage quality on both clean (deduplicated) and hetero-
geneous/dirty databases. For each dataset, we analyze the recall,
precision, and the resulting F-measure estimates and compare
them with the actual results as calculated from ground truth data.

7.2.1 Clean Databases. An essential part of estimating the
linkage quality is the estimation of the overlap of two databases
utilizing the cryptoset method we described in Sect. 5.1.3. Due to
independence regarding various similarity graphs, we evaluate
the approach considering different manual-defined private identi-
fiers on the NCVR datasets representing a homogeneous dataset.
We consider three different private identifier configurations:
[2FN,2LN,YOB], [3FN,3LN,YOB], and [SD_FN,SD_LN,YOB],
where 2𝐴/3𝐴 extract the first 2/3 letters from the value of at-
tribute 𝐴. Similarly, SD_𝐴 computes the Soundex [23] from the
value of attribute 𝐴. We empirically set the cryptoset length to
𝐿 = 8192 as this results in more accurate estimates with a lower
standard deviation.

The results, as depicted in Fig. 4 (green bars), show that the
cryptoset approach is able to estimate the overlap for differ-
ent private identifier generation configurations. The estimates
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Figure 4: Evaluation of cryptoset approach to measure recall. Results based on ground truth are shown as horizontal lines.
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Figure 5: Results on NCVR datasets with different overlaps considering different thresholds to generate the similarity
graph

.

for NCVR𝐻 (with 160,000 matches) range from roughly 117,000
(73.1%) to 153,000 (95.6%), for NCVR𝑀 (100,000 matches) from
76,000 to 124,000 and for NCVR𝐿 (40,000 matches) from 35,000
(87.5%) to 94,000 (235%). The configuration [3FN,3LN,YOB] pro-
vides the best estimate with an average absolute difference of
around 19,660 matches between the estimate and the actual num-
ber of matches over all datasets. To reduce the impact of different
configurations to construct the private identifiers, we calculate
the average estimated overlap over a set of configurations. Using
this average leads to the best estimate with an average difference
of only around 13,400 matches to the actual number of matches.
We therefore use the average over the estimated overlaps as
default in the following experiments.

We also compared the cryptoset approach against estimating
the overlap using the private identifiers directly. The results (red
bars) show that only the configuration [2FN,2LN,YOB] leads
to similar results compared to the cryptoset estimate. The non-
private overlap estimation is more sensitive regarding the used
configuration. The overhead of the encryption is negligibly small
with an average runtime of 1.9s compared to 0.9s using the non-
private estimation considering all configurations and datasets.

The results of the different quality estimation approaches for
the NCVR dataset are shown in Fig. 5. The precision estimates for
NCVRH (high overlap) are very close to each other and also to the
real precision. With decreasing overlap the estimates PP, PP1:1,
and PP1:𝑛 are increasingly overestimating the actual precision.
In such cases, PPprob is providing better estimates. In terms of

recall, the PR, PRAlt and PRAltMin are underestimating the actual
recall, in particular for the datasets with medium and low overlap.
Due to the same size of both data sources PRAlt and PRAltMin are
equal.

The cryptoset approach, in contrast, provides estimates that
are much closer to the actual recall, especially for NCVR𝑀 and
NCVR𝐿 . The recall estimates for PRCEprob are dropping below
a certain threshold which is caused by the small number of ex-
pected true positives for small thresholds using the probability-
based estimation method. Using low thresholds results in graphs
with low similarities and a high number of edges for each record.
Thus, the number of true positives is underestimated if the thresh-
old is too low and the difference to the optimal threshold is too
high because of the high ambiguity in terms of the similarities of
correct and incorrect matches. To avoid the effect of dropping
recall estimates considering thresholds 𝑡1 < 𝑡2, the estimated re-
call for threshold 𝑡1 can be bounded to the recall value obtained
by threshold 𝑡2 assuming that lower thresholds will not result in
fewer true positives.

For dataset NCVRH , all approaches provide estimates that are
relatively close to the actual F-measure. Here, the approaches PF ,
PFAlt and PFAltMin (slightly) underestimate the actual F-measure,
while the other approaches (slightly to moderately) overestimate
the actual F-measure. The highest F-measure of 0.823 is reached
for 𝑡 = 0.75, followed closely by an F-measure of 0.811 for 𝑡 = 0.7
and 0.766 for 𝑡 = 0.8. Using the estimations for the threshold se-
lection, the estimationmethods PF1:1, PF1:n, and PFprob lead to the
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Figure 6: Results on MusicBrainz dataset. Results based on ground truth are shown as horizontal lines.

optimal threshold configuration. In contrast, the approaches PF ,
PFAlt and PFAltMin reach their maximum estimated F-measure at
𝑡 = 0.7.

For NCVRM , the estimates of PF , PFAlt and PFAltMin begin
to diverge more from the actual F-measure. The F-measure is
heavily underestimated for thresholds 𝑡 > 0.65, with a maximum
at 𝑡 = 0.7, while the optimal threshold is at 𝑡 = 0.75. This trend
continues for datasetNCVRL where the estimates of PF , PFAlt and
PFAltMin are even worse. For NCVRM , PFprob achieves the best
estimates where the predicted F-measure slightly differs from
the actual F-measure by at most 0.06. Considering the threshold
selection, the estimation results in selecting the optimal threshold
of 𝑡 = 0.75.

In addition to the quality estimation, we analyzed the privacy
of the cryptosets for the person datasets NCVRL, NCVRM and
NCVRH . Each entry of a cryptoset is set by on average 24 ele-
ments (with a standard deviation ranging from 4.98 to 6.55). We
also calculated information gain as described in Sect. 6 using the
proposed identifier configurations and 𝐿 = 8192. The informa-
tion gain values are small, similar to the original work [46], and
range from around 0.03 to 0.052 as shown in Tab. 2. Moreover,
the more specific the private identifier is, the more evenly the
public identifiers are distributed in the cryptoset resulting in a
smaller information gain. We also observe that the information
gain increases with a higher overlap, which is because the pri-
vate identifiers are generated from a finite set of values (such as
first/last names). Therefore, the number of identifiers mapped
to one public identifier increases with the number of records in
the overlap while the number of identifiers of non-overlapping
records remains constant.

7.2.2 Heterogeneous and Dirty Databases. In contrast to the
voter datasets, MusicBrainz and Dexter contain heterogeneous
records regarding the characteristics of values. Therefore, we uti-
lize our proposed automatic selection method to determine the
private identifiers being utilized to estimate the overlap. To gen-
erate the private identifiers, we extract the first three characters

from the value of an attribute. For the MusicBrainz dataset, we
use all available attributes as candidates. For the Dexter dataset,
we utilize a subset of the available attributes, such as product
name, brand, and model. Both datasets consist of more than two
data sources, we therefore calculate the macro precision and
recall (the average of pairwise precision and recall values) [44].

The results for the MusicBrainz dataset are shown in Fig. 6.
The recall estimates based on cryptosets in combination with the
automatic generation of private identifiers are abbreviated with
‘..a..’. To determine the estimated overlap, we follow the same
aggregation strategy as for the NCVR dataset, where we aver-
aged the estimations regarding the generated private identifiers.
Moreover, we compare the automatic selection method of the
private identifiers with manually selected identifiers.

The cryptoset method in combination with the private iden-
tifier generation approach results in recall estimates where the
average difference between the true and estimated recall values
over all thresholds is below 0.03 for 𝑡info = 0.1. In contrast to
the cryptoset estimation, the baseline estimations PR , PRAlt and
PRAltMin lead to an average difference ranging from around 0.33
(PR) up to around 0.4 (PRAlt , PRAltMin). 𝑡info highly influences the
quality of the cryptoset estimation resulting in different overlaps
so that the recall differs up to 0.2 using 𝑡info = 0.3 compared to
𝑡info = 0.1. Comparing the automatic approach with the manu-
ally defined private identifiers, the method achieves comparable
results using 𝑡info = 0.1. However, due to the manual effort of
selecting appropriate attribute combinations, we suggest using
an automatic method.

Considering the estimates of precision, the probabilisticmethod
PPprob achieves the best results for the applied thresholds with
differences below 0.018. In contrast to the probabilistic method,
the baseline approach PP as well as the adapted PP1:1 and PP1:n
lead to similar estimates being far away from the real precision
with a difference ranging from around 0.04 to around 0.09.

The combination of PPprob and PRCEaprob to estimate precision
and recall leads to the best F-measure approximation PFaprob with
an average difference of around 0.01 to the actual value. However,
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Figure 7: Results on Dexter dataset. Results based on ground truth are shown as horizontal lines.

due to the harmonic mean, PP1:1 and PRCEa1:1 with 𝑡info = 0.2
achieve similar results regarding the F-measure with a difference
of 0.011 because of the neutralization effect of an overestimated
precision and an underestimated recall.

The Dexter dataset consists of heterogeneous data sources
containing intra-source duplicates. Consequently, the previous
methods for estimating the true positives will lead to inaccurate
estimates since the number of true positives for each record is
limited to one. Therefore, we apply our method based on the per-
sonalized PageRank to determine the precision estimate (PPdup)
that incorporates intra-source similarities as well. Due to the
heterogeneity regarding various attributes and different types of
quality issues, the manual selection of attributes for computing
the private identifiers is a challenging task. Nevertheless, we use
the brand and name attribute to determine the private identifiers
resulting in reasonable results regarding a small manual effort.
The results for the Dexter dataset are shown in Fig. 7.

Considering the estimations of recall using the cryptosetmethod
in combination with the automatic private identifier generation,
recall values are highly overestimated due to the underestimation
of the overlap between the data sources. In contrast, the manually
defined cryptoset methods highly underestimate recall values
due to an overestimated overlap. The overestimation indicates
that the private identifiers are not specific enough to represent
records in this dataset. As expected, the baseline and the modified
precision estimations utilizing the one-to-one assumption result
in poor estimates being almost half of the actual precision. The
precision estimate PPdup achieves values that differ only slightly
by at most 0.03 compared to the real precision for thresholds
from 0.3 and 0.5. The accuracy of PPdup is also reflected by the
achieved F-measure estimates differing by at most 0.06.

Overall, our results show that the probabilistic and the person-
alized PageRank-based methods accurately estimate the number
of true positives for clean and dirty databases. Moreover, the
cryptoset-based approach improves the recall estimations sig-
nificantly compared to the baseline approaches. The automatic

generation of private identifiers for the cryptoset-based estima-
tion leads to comparable results as the application of manually
defined rules. However, for very heterogeneous datasets such as
the Dexter dataset, our method does not always lead to accurate
results showing the need for further work.

8 CONCLUSION
Typically, quality measures for record linkage results, such as
precision and recall, are calculated based on ground truth data.
However, in most real-world linkage scenarios such ground truth
data is not available. A manual inspection of linkage results is
also often not feasible, in particular, due to privacy constraints
when linking sensitive data. In this paper, we presented different
approaches for estimating the quality of a linkage result given
in the form of a similarity graph. We showed that our methods
outperform existing approaches and lead to accurate estimates
on different datasets. These estimates can be used in practical
applications to identify suitable linkage methods and to optimize
their parameters, such as the classification threshold. In future
work, we plan to investigate clustering-based approaches for
estimating the linkage quality in deduplication scenarios.
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