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Abstract

Graphs, as simple yet powerful data structures, play a pivotal role in modeling and
analyzing relationships among real-world entities. In the data representation and analysis
landscape, graph data structures have established themselves as a fundamental paradigm
for modeling and understanding complex relationships in various domains. The intrinsic
domain independence, expressiveness, and the wide variety of analysis options based on
graph theory have gained significant attention in both research and industry.

In recent years, companies have increasingly leveraged graph technology to represent,
store, query, and analyze graph-shaped data. This has been notably impactful in uncover-
ing hidden patterns and predicting relationships within diverse domains such as social
networks, Internet of Things (IoT), biological systems, and medical networks. However,
the dynamic nature of most real-world graphs is often neglected in existing approaches,
which might lead to inaccurate analytical results or an incomplete understanding of
evolving patterns within the graph over time.
Temporal graphs, in contrast, are a particular type of graphs that maintain changing

structures and properties over time. They have gained significant attention in various
domains, from financial networks over micromobility networks to supply chains and
biological networks. A majority of these real-world networks are not static but rather
exhibit high dynamics, which are rarely considered in data models, query languages,
and analyses, although analytical questions often require an evaluation of the network’s
evolution.

This doctoral thesis addresses this critical gap by presenting a comprehensive study on
analyzing and exploring temporal property graphs. It focuses on scalability and proposes
novel methodologies to enhance accuracy and comprehensiveness in analyzing evolving
graph patterns over time. It also offers insights into real-time querying, addressing
various challenges that emerge when the time dimension is treated as an integral part of
the graph.
This thesis introduces the Temporal Property Graph Model (TPGM), a sophisticated

data model designed for bitemporal modeling of vertices and edges, as well as logical
abstractions of subgraphs and graph collections. The reference implementation of this
model, namely Gradoop, is a graph dataflow system explicitly designed for scalable and
distributed analysis of static and temporal property graphs. Gradoop empowers analysts
to construct comprehensive and flexible temporal graph processing workflows through a
declarative analytical language. The system supports various analytical temporal graph
operators, such as snapshot retrieval, temporal graph pattern matching, time-dependent
grouping, and temporal metrics such as degree evolution.
The thesis provides an in-depth analysis of the data model, system architecture, and

implementation details of Gradoop and its operators. Comprehensive performance
evaluations have been conducted on large real-world and synthetic temporal graphs,
providing valuable insights into the system’s capabilities and efficiency.

Furthermore, this thesis demonstrates the flexibility of the temporal graph model and
its operators through a practical use case based on a call center network. In this scenario, a
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TPGM operator pipeline is developed to answer a complex and time-dependent analytical
question. We also showcase the Temporal Graph Explorer (TGE), a web-based user inter-
face designed to explore temporal graphs, leveraging Gradoop as a backend. The TGE
empowers users to delve into temporal graph dynamics by enabling the retrieval of snap-
shots from the graph’s past states, computing differences between these snapshots, and
providing temporal summaries of graphs. This functionality allows for a comprehensive
understanding of graph evolution through diverse visualizations. Real-world temporal
graph data from bicycle rentals highlight the system’s flexibility and configurability of
the selected temporal operators.

The impact of graph changes on its characteristics can also be explored by examining
centrality measures over time. Centrality measures, encompassing both node and graph
metrics, quantify the characteristics of individual nodes or the entire graph. In the
dynamic context of temporal graphs, where the graph changes over time, node and graph
metrics also undergo implicit changes. This thesis tackles the challenge of adapting static
node and graph metrics to temporal graphs. It proposes temporal extensions for selected
degree-dependent metrics and aggregations, emphasizing the importance of including
the time dimension in the metrics.
This thesis demonstrates that a metric conventionally representing a scalar value for

static graphs results in a time series when applied to temporal graphs. It introduces a
baseline algorithm for calculating the degree evolution of vertices within a temporal
graph, and its practical implementation in Gradoop is presented. The scalability of this
algorithm is evaluated using both real-world and synthetic datasets, providing valuable
insights into its performance across diverse scenarios.

Such time series data can also be captured from the application scenario as properties
of nodes and edges, such as sensor readings in the IoT domain. In light of this, we
showcase significant advancements, including an extended version of the TPGM that
supports time series data in temporal graphs. Additionally, we introduce a temporal
graph query language based on Oracle’s language PGQL to facilitate seamless querying of
time-oriented graph structures. Furthermore, we present a novel continuous graph-based
event detection approach to support scenarios involving more time-sensitive use cases.

The increasing frequency of graph changes and the need to react quickly to emerging
patterns leads to the need for a unified declarative graph query language that can evaluate
queries on graph streams. To address the increasing importance of real-time data analysis
and management, the thesis introduces the syntax and semantics of Seraph, a Cypher-
based language that supports native streaming features within property graph query
languages. The semantics of Seraph combine stream processing with property graphs
and time-varying relations, treating time as a first-class citizen. Real-world industrial use
cases demonstrate the usage of Seraph for graph-based continuous queries.
After evaluating lessons learned from the development and research on Gradoop, a

dissertation summary and an outlook on future work are given in a final section. This
doctoral thesis comprehensively examines scalable analysis and exploration techniques
for temporal property graphs, focusing on Gradoop and its system architecture, data
model, operators, and performance evaluations. It also explores the evolution of node and
graph metrics and the theoretical foundation of a real-time query language, contributing
to the advancement of temporal graph analysis in various domains.

VI



Acknowledgments

A special thanks goes to Prof. Dr. Erhard Rahm for supervising this dissertation. He
supported me with all underlying publications and gave me the opportunity to work on
this topic for nearly 6 years at the database department of the University of Leipzig. I
benefited from his many years of research experience, which he always shared with me
and the other PhD students, thus significantly improving the quality of our research.
I would also like to thank the co-authors of my publications, especially Andreas

Thor, Peter Christen, Angela Bonifati, and Riccardo Tommassini, for helping me write
scientifically sound papers. I would also like to thank the Oracle team, especially Dieter
Gawlick and Souri, for their support during the collaborative project in 2020. Another
thanks go to the Neo4j team for discussing and supporting my last paper about Seraph.

Further, I would like to thank my colleagues in the database department, with whom I
had lively and helpful discussions at our regular coffee meetings. My former colleague
Kevin Gómez became one of my best and loyal friends during our work on graphs and
Gradoop- thank you for the memorable time in our shared office and for teaching me
all the basics of graph processing. I would also like to thank Andrea, our database mom,
for her help with personal and office matters and encouraging stories about her cats and
the conflict between cars and bicycles in Leipzig’s traffic. I am also very grateful to my
circle of friends, especially my former fellow students and colleagues from Leipzig, who
regularly had to listen to my complaints about my lack of progress with the dissertation
during our regular movie evenings.
Lastly, I want to thank my family. They were always there for me and supported me

psychologically on the way to my dissertation. A big thank you goes to my parents, Anka
and Burkhard, and my brother Andy, who supported me through all the ups and downs
and always found time to relax on weekends in my former home village. My final thanks
go to my dear wife and daughter. Dijana and Alina, I can’t even say how much I love and
appreciate you two. Thank you for always supporting me in all my plans and sticking
with me even when I’m away for one or more weeks on business or private bike trips.

Leipzig, 18. Dezember 2023 Christopher Rost

VII





Dissertation-related Publications

The following list is ordered ascending by publication year.

• Christopher Rost, Andreas Thor, Philip Fritzsche, Kevin Gómez, and Erhard
Rahm. “Evolution Analysis of Large Graphs with Gradoop”. In: Machine Learning

and Knowledge Discovery in Databases - International Workshops of ECML PKDD

2019, Würzburg, Germany, September 16-20, 2019, Proceedings, Part I, ed. by Peggy
Cellier et al. Vol. 1167. Communications in Computer and Information Science.
Springer, 2019, pp. 402–408. isbn: 978-3-030-43822-7. doi: 10.1007/978-3-030-
43823-4\_33

• Christopher Rost, Andreas Thor, and Erhard Rahm. “Temporal Graph Analysis
using Gradoop”. In: Datenbanksysteme für Business, Technologie und Web (BTW

2019), 18. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme"

(DBIS), 4.-8. März 2019, Rostock, Germany, Workshopband, ed. by Holger Meyer
et al. Vol. P-290. LNI. Gesellschaft für Informatik, Bonn, 2019, pp. 109–118. isbn:
978-3-88579-684-8. doi: 10.18420/BTW2019-WS-11

• Christopher Rost, Andreas Thor, and Erhard Rahm. “Analyzing Temporal Graphs
with Gradoop”. In: Datenbank-Spektrum 19.3 (2019), pp. 199–208. doi: 10.1007/
S13222-019-00325-8

• Kevin Gómez, Matthias Täschner, M. Ali Rostami, Christopher Rost, and Erhard
Rahm. “Graph Sampling with Distributed In-Memory Dataflow Systems”. In:
Datenbanksysteme für Business, Technologie undWeb (BTW 2021), 19. Fachtagung des

GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 13.-17. September

2021, Dresden, Germany, Proceedings, ed. by Kai-Uwe Sattler et al. Vol. P-311. LNI.
Gesellschaft für Informatik, Bonn, 2021, pp. 303–312. isbn: 978-3-88579-705-0. doi:
10.18420/BTW2021-15

• Christopher Rost, Kevin Gómez, Philip Fritzsche, Andreas Thor, and Erhard Rahm.
“Exploration and Analysis of Temporal Property Graphs”. In: Proceedings of the
24th International Conference on Extending Database Technology, EDBT 2021, Nicosia,

Cyprus, March 23 - 26, 2021, ed. by Yannis Velegrakis et al. OpenProceedings.org,
2021, pp. 682–685. isbn: 978-3-89318-084-4. doi: 10.5441/002/EDBT.2021.83

• Christopher Rost, Philip Fritzsche, Lucas Schons, Maximilian Zimmer, Dieter
Gawlick, and Erhard Rahm. “Bitemporal Property Graphs to Organize Evolving
Systems”. In: CoRR abs/2111.13499 (2021). arXiv: 2111.13499

• Christopher Rost, Kevin Gómez, Matthias Täschner, Philip Fritzsche, Lucas
Schons, Lukas Christ, Timo Adameit, Martin Junghanns, and Erhard Rahm. “Dis-
tributed temporal graph analytics with Gradoop”. In: VLDB J. 31.2 (2022), pp. 375–
401. doi: 10.1007/S00778-021-00667-4

IX

https://doi.org/10.1007/978-3-030-43823-4\_33
https://doi.org/10.1007/978-3-030-43823-4\_33
https://doi.org/10.18420/BTW2019-WS-11
https://doi.org/10.1007/S13222-019-00325-8
https://doi.org/10.1007/S13222-019-00325-8
https://doi.org/10.18420/BTW2021-15
https://doi.org/10.5441/002/EDBT.2021.83
https://arxiv.org/abs/2111.13499
https://doi.org/10.1007/S00778-021-00667-4


• Christopher Rost, Kevin Gómez, Peter Christen, and Erhard Rahm. “Evolution
of Degree Metrics in Large Temporal Graphs”. In: Datenbanksysteme für Business,

Technologie und Web (BTW 2023), 20. Fachtagung des GI-Fachbereichs „Datenbanken

und Informationssysteme" (DBIS), 06.-10, März 2023, Dresden, Germany, Proceedings,
ed. by Birgitta König-Ries et al. Vol. P-331. LNI. Gesellschaft für Informatik e.V.,
2023, pp. 485–507. isbn: 978-3-88579-725-8. doi: 10.18420/BTW2023-23

• Christopher Rost, Riccardo Tommasini, Angela Bonifati, Emanuele Della Valle,
Erhard Rahm, Keith W. Hare, Stefan Plantikow, Petra Selmer, and Hannes Voigt.
“Seraph: Continuous Queries on Property Graph Streams”. In: Proceedings of the
27td International Conference on Extending Database Technology, EDBT 2024, Paestum,

Italy, March 25 - March 28, 2024, ed. by Letizia Tanca et al. OpenProceedings.org,
2024. doi: 10.48786/edbt.2024.21

X

https://doi.org/10.18420/BTW2023-23
https://doi.org/10.48786/edbt.2024.21


Contents

Abstract V

Acknowledgments VII

Dissertation-related Publications IX

List of Figures XIV

List of Tables XV

I Foundations 1

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Scientific Contributions and Publications . . . . . . . . . . . . . . . . . . . 14
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Background and Related Work 17

2.1 Graph Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Temporal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Graph Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Query Language Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Graph Database and Graph Processing Systems . . . . . . . . . . . . . . . 30
2.6 Temporal Graph Processing Systems . . . . . . . . . . . . . . . . . . . . . . 30

II Temporal Property Graph Analysis 33

3 The TPGM and Gradoop 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 System Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Temporal Property Graph Model . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Gradoop Application Examples 69

4.1 Analyzing Call Center Data with Gradoop . . . . . . . . . . . . . . . . . . . 69
4.2 The Temporal Graph Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Evolution of Degree Metrics 81

XI



CONTENTS

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Degree-dependent metric evolution . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Degree evolution algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4 Distributed implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

III Continuous Querying 99

6 The Fusion of Graph and Time-Series Data 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 TPGM+: A TPGM extension with temporal properties . . . . . . . . . . . 103
6.3 T-PGQL: A Temporal Property Graph Query Language . . . . . . . . . . . 104
6.4 Continuous Graph Query Notifications . . . . . . . . . . . . . . . . . . . . 113
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Seraph: Continuous Queries on Property Graph Streams 115

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3 Background: the Cypher language . . . . . . . . . . . . . . . . . . . . . . . 120
7.4 Seraph By Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.5 Formalization of Seraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

IV Epilogue 139

8 Lessons Learned from Gradoop 141

8.1 Apache Flink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Logical graphs and collections . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.3 Operator concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.4 Temporal extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.6 Usage and acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9 Conclusion and Outlook 145

9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Bibliography 149

Selbständigkeitserklärung 173

XII



List of Figures

1.1 Example of a bike-sharing graph. Additional zones and districts add
further semantics to the graph elements. . . . . . . . . . . . . . . . . . . . . 5

1.2 Summarized bike-sharing graph where the rentals are monthly grouped. 8
1.3 Example of an analytical pipeline to predict the demand of bikes at stations

and flex zones for the following year. . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Three different graph structures. . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 A property graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 A temporal graph represented as a sequence of graph snapshots, which

is called a historical graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 A temporal graph represented as a version graph with time intervals

assigned to its edges, which is called an interval graph. . . . . . . . . . . . 21
2.5 Overview of different characteristics of graph streams. . . . . . . . . . . . 25
2.6 A simplified graph stream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Gradoop High-Level Architecture. . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Example temporal property graph of a bike rental network. . . . . . . . . 42
3.3 Resulting graph of the grouping example. . . . . . . . . . . . . . . . . . . . 48
3.4 Resulting graph of Temporal Pattern Matching example. . . . . . . . . . . 50
3.5 GVE layout of Gradoop. The accuracy of the timestamps has been

reduced for readability reasons. . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Dataflow implementation of the Subgraph operator using Flink DataSets

and transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7 Dataflow implementation of the Difference operator using Flink DataSets

and transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 Dataflow implementation of the grouping operator using Flink DataSets

and transformations. Lists of property values are denoted by A[]. . . . . 60
3.9 Dataflow representation of a pattern matching query. . . . . . . . . . . . . 62
3.10 Average runtime of pipeline execution for five operators by increasing

the data volume of the LDBC dataset. . . . . . . . . . . . . . . . . . . . . . . 66
3.11 Average runtime of pipeline execution by increasing the cluster size,

executed on the LDBC SF 100 dataset. . . . . . . . . . . . . . . . . . . . . . 66
3.12 Speedup by increasing the cluster size, executed on the LDBC SF 100

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Simplified example of a call center network from the financial domain
with underlined temporal properties. . . . . . . . . . . . . . . . . . . . . . 71

4.2 The resulting temporal graph collection from the graph analytical workflow. 72
4.3 Example temporal property graph representing bicycle rentals between

rental stations. The validity period of an edge is marked with a clock
symbol and simplified with numbers instead of timestamps. . . . . . . . . 75

XIII



LIST OF FIGURES

4.4 System architecture overview of Temporal Graph Explorer. . . . . . . . . 76
4.5 Screenshot of the TGE showing the snapshot view. . . . . . . . . . . . . . 77
4.6 Example visualization of a difference graph. Elements, that are in the first

snapshot, but not in the second, are colored red. Elements, that are in
both snapshots, are colored grey. Elements that are just in the second
snapshot are colored green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Screenshot of the TGE showing the grouping view. . . . . . . . . . . . . . 79

5.1 Degree evolution of selected rental stations in NYC for 2018. For each
day, the average degree is plotted. A indicates peaks on weekends, B a
construction embargo event and C a Halloween parade. . . . . . . . . . . 82

5.2 An example temporal graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Degree evolution of vertex v1, v2 and v3 from ω0 to ω12. In addition, the

indegree deg−(v1) and outdegree deg+(v1) are given for v1. . . . . . . . . 84
5.4 Resulting time-series of selected degree evolution metrics of dataset

citibike for year 2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Degree tree building for vertex v1 and Ψ = out. . . . . . . . . . . . . . . . . 93
5.6 Implementation details of the Degree Evolution-Operator. . . . . . . . . . 95
5.7 Runtimes for linearly growing dataset sizes. . . . . . . . . . . . . . . . . . . 97
5.8 Factor of runtime increase for linearly growing dataset sizes. . . . . . . . 97
5.9 Runtimes for #workers with Ψ = out. . . . . . . . . . . . . . . . . . . . . . . 97
5.10 Speedup of algorithm for Ψ = out. . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Sensors of an airplane [92]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Example of a TPGM+ graph with updates of vertex properties. For sim-

plicity, just the valid-time dimension is exemplified. . . . . . . . . . . . . . 104

7.1 Stream of property graphs representing the events captured into the
RideAnywhere Kafka queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Graph resulting from loading the events from 14:45h to 15:45h into a
Neo4j graph database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 Syntax of queries and clauses of Cypher [71]. . . . . . . . . . . . . . . . . . 122
7.4 Selecting the active substream. . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.5 Seraph’s data and query model Interaction. . . . . . . . . . . . . . . . . . . 132
7.6 Seraph’s syntax based on Cypher’s one in Figure 7.3. . . . . . . . . . . . . 133
7.7 Formal semantics of Seraph query and clauses. . . . . . . . . . . . . . . . . 135

XIV



List of Tables

3.1 Subset of frequently used analytical graph operators and algorithms avail-
able in Gradoop organized by their input type, i.e., temporal graph or
graph collection. (* auxiliary operators) . . . . . . . . . . . . . . . . . . . . 39

3.2 TPGM graph operators specified with GrALa. . . . . . . . . . . . . . . . . 44
3.3 Overview of TemporalGDL’s syntax to support temporal graph patterns. 49
3.4 Subset of Apache Flink DataSet transformations. We define DataSet<T>

as a DataSet that contains elements of type T (e.g., DataSet<String>,
DataSet<Vertex> or DataSet<Tuple2<Int,Int>>). . . . . . . . . . . . . 58

3.5 Characteristics of the datasets used for the evaluation. . . . . . . . . . . . 64

5.1 Dataset statistics, including their sizes on HDFS and number of result
set tuples for Ψ = both, i. e., ∑∣V ∣i=1 ∣degev(vi)∣. For example, 3.18B tuples
result for the LDBC dataset with SF 100. . . . . . . . . . . . . . . . . . . . . 96

7.1 Summary of continuous information needs for use-cases in three different
domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Results of the Cypher query in Listing 7.1 at 15:40h. . . . . . . . . . . . . 123
7.3 Summary of notation conventions. . . . . . . . . . . . . . . . . . . . . . . . 127
7.4 Time-annotated table as extension of Table 7.2. . . . . . . . . . . . . . . . 128
7.5 Outputs of Seraph continuous query at 15:15h. . . . . . . . . . . . . . . . . 137
7.6 Outputs of Seraph continuous query at 15:40h. . . . . . . . . . . . . . . . . 137

XV





Part I

Foundations

1





1
Introduction

"Large-scale temporal graphs are everywhere in our daily life." - Dr. Bo Zong (2015)

This first chapter motivates the importance of the temporal dimension for graphs in
Section 1.1, especially the benefits of native support of dynamics for graph data models,
query languages, metrics, and analytics. After a subsequent summary of the challenges
in this field of research, the scientific contributions of this dissertation are specified in
Section 1.2 whereas Section 1.3 gives an overview of the thesis structure.

1.1 Motivation

Graphs are a powerful data structure that can be used to represent complex relationships
between objects in a variety of domains [219], ranging from social networks [90], financial
transaction networks [162, 163], genome interactions [24], chemical compounds [188]
to electrical infrastructure [8]. The use of graphs as a data representation and analysis
tool has gained fundamental attention in recent years, driven by the growing availability
of large-scale network datasets [187] and the need to extract meaningful insights from
them. Noteworthy contributions in the domain have been made by both academic
institutions and major tech companies, such as Google, Amazon, Facebook, and Microsoft,
who have introduced diverse systems dedicated to the management and processing of
graphs [189]. According to Gartner, there is a projected exponential growth in the
adoption of graph technology, with an anticipated 80 percent incorporation into data and
analytics developments by 2025, a substantial increase from the 10 percent recorded in
2021 [21].
Unlike other data models, graphs are specifically designed to represent relationships

(called “edges”) between entities (called “vertices”) and, thus, recognize patterns that are
difficult to discern in other representations, such as tables. Graphs provide a flexible
and intuitive framework for modeling complex relationships and dependencies in data,
making them a valuable asset for researchers and practitioners. Many algorithms can be
executed on graphs, including graph traversal algorithms, shortest path algorithms, and
graph clustering algorithms, among others, all of which offer powerful ways to analyze
and understand complex relationships in data.
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However, the vast majority of graph databases, graph query languages, and processing
systems only consider traditional static graph data and neglect one crucial aspect:

time.

In contrast to static graphs, where time and changes only play a subordinate role,
so-called dynamic graphs treat real-world networks’ dynamic nature as a data structure’s
central feature. A special kind of dynamic graphs are temporal graphs, which maintains
the history of a graph’s changes over an observed period. Most real-world graphs
change over time and are thus implicitly temporal graphs if the information about when
the changes happen is available from the real-world observation. Let’s discuss some
applications.

Social Networks, like X (former Twitter), Facebook, or Instagram, is a prime example
of temporal graphs. New users continually join the network, forming connections through
friendships and follows, and communities evolve over time. Tracking the temporal aspects
of user activities, such as new posts and follows/unfollows, is essential for uncovering
patterns in user engagement and community dynamics. Moreover, the influence of users
on the network changes over time, making it imperative to consider the evolution of the
graph to capture the shifting landscape of social interactions accurately. This temporal
perspective is fundamental for comprehensively analyzing social network structures and
behaviors.
Supply Chains model the way of products that undergo a series of processes from

production to selling, and analyzing the chain’s evolution over time is essential for
efficient management. Temporal graph analysis enables the study of the flow of products,
the identification of bottlenecks, and the optimization of processes. By recognizing how
the supply chain transforms over time, organizations can make informed decisions to
enhance productivity and adapt to changing market demands, ensuring a more resilient
and responsive supply chain. The ability to visit the network at a previous stage also
provides a retrospective view of decisions made in the past.
Financial Networks build another use case where temporal graph analysis plays a

critical role, especially in detecting and preventing financial fraud. Money transfers, the
creation of new accounts and devices, and transaction patterns are all temporal. If the
temporal development of activities is considered, detecting anomalies and fraud patterns
can be improved compared to observing purely static patterns. The chronological order
of events, such as the sequence of transactions, provides an intuitive way of representing
fraudulent behavior.

Micromobility Networksmodel bike, car, and scooter rentals in urban environments.
Crucial for urban sustainability, understanding the network’s temporal evolution is
essential. The availability of rental vehicles, changes in the network structure, and
the introduction of new vehicles and stations all occur over time. Temporal graph
analysis helps predict demand, conduct historical analyses, and optimize the distribution
of resources to make informed decisions and improve service efficiency, enhance user
experience, and contribute to a more sustainable urban environment. We provide a more
detailed example of this domain later in this section.
In the last years, research focus on the evolution of graphs by treating time as an

essential part of the modeling, querying and analysis [130, 138, 139, 145, 197, 215]. Using
a temporal graph model instead of a static one, the evolving interconnectivity of entities is
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Station

name : "Church St."
location : (52.42 , 32.33)
slots : 30
installed : 2014-01-01 14:00:00
created : 2020-02-01 13:01:00
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durationSec : 1200
created : 2022-01-02 12:00:00
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created : 2022-01-02 12:00:00
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created : 2023-02-01 12:01:00

returned

at : 2023-02-01 13:00:00
created : 2023-02-01 13:01:00
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userId : 9921
name : "Alice B."
yob : 1990
created : 2022-01-02 12:00:00

Bike

bikeId : 1233
bikeType : "electric"
installed : 2022-01-15 14:00:00
created : 2022-01-16 12:00:00

Vertices Edges

usedBike

created : 2023-02-01 13:01:00

ofUser

created : 2023-02-01 13:01:00

Logical Graphs
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created : 2023-02-01 13:01:00
name : "West City"

District

created : 2023-02-01 13:01:00
name : "East City"

District

created : 2023-02-01 13:01:00
name : "West City"

Flex Zone

created : 2023-02-01 13:01:00
name : "University Zone"

Flex Zone

created : 2023-02-01 13:01:00
name : "University Zone"

Flex Zone

created : 2023-02-01 13:01:00
name : "Main Station Zone"

Figure 1.1: Example of a bike-sharing graph. Additional zones and districts add further semantics to the

graph elements.

captured and thus unlocks a surprisingly large domain of analysis opportunities focused
on the time dimension [197]. Existing graph algorithms and metrics can be extended to
take the graphs temporal evolution into account, e.g., temporal shortest paths [221] or
foremost paths [101] instead of shortest paths. But also completely new analyses can
be performed, e.g., the calculation of a difference graph [175], which shows structural
differences between two temporal states of the graph. The research landscape around
temporal graphs and their storage and processing presents a wide range of challenges,
which we will explore below using a real-world example from the micromobility domain.

Bike-sharing systems, ubiquitous in urban environments, exhibit a rich temporal
structure as users engage in time-varying bike rentals and return patterns. Entities such
as bikes of different types, users with different subscriptions, rental stations in different
locations, and rental zones are connected by highly dynamic relationships. A temporal
graph is the ideal representation of the development of such a highly dynamic network.
The graph models the relationships between the entities and, at the same time, the time
when and for how long they were valid or when information about their validity was
inserted into the graph.
Figure 1.1 shows an example of a bike-sharing graph. As in all transformations to

a graph data structure, different graph schemas can be chosen to model the same use
case. For this example, we chose five types of vertices (see the examples on the left side
of Figure 1.1), four types of edges (see top right), and two types of logical abstractions
of subgraphs (see bottom right), which we later define as so-called logical graphs (see
Section 3.3).
The vertices represent the real-world entities in our graph: users, bicycles, rental

stations, the rental itself and locations within a flex zone where a bike can be parked.
Each vertex is described in more detail by further properties, such as identifiers or
geo-coordinates for locations and rental stations. The edges represent the relationships
between the entities, e.g., rented assigns a rental vertex to the corresponding start location
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whereas returned assigns it to the end location. Flex zones (places where bicycles can
be returned without a rental station) and districts are logical graphs that help assign
vertices and edges to logically possibly overlapping subgraphs. For example, in the flex
zone “University Zone” are four Place vertices that are also partially part of districts. The
two places on the left side of the zone are also part of the district “West City”, whereas
the two on the right are also part of the district “East City”.
The graph is also enriched with various temporal data about its development. All

graph elements initially have a property createdAt, which contains the time when the
information about the element was inserted into the graph. We later refer to this time
dimension as system time or transaction time.
Furthermore, temporal information about their validity from real-world entities is

available: When was a rental station installed? How long has a bike been in use? When
did a user register, and is he or she deactivated again? When did the rental take place,
and when was the bike returned? We later refer to this time information as the valid time
or application time.
This example gives rise to the first challenge for the analysis of temporal graphs: a

rich temporal graph data model.

Challenge C1. Temporal graph data model. The development of a rich temporal graph

data model that can represent both structural and content changes is an important research

challenge. It should support nodes, edges and logical (sub)graphs to which nodes and edges

can be assigned. All three graph element types should support type labels and optional

properties to add further semantics. The temporal evolution of the elements should be a first-

class citizen of the data model to enable a more comprehensive understanding of dynamic

relationships in various domains.

The principle of extending a static data model with time dimensions to a temporal one
already existed in the relational world. So-called temporal tables [120], standardized with
SQL:2011, contain extra columns for storing historical information about the develop-
ment of the data they contain. What stands out in this modeling is the addition of not
only a single time dimension (unitemporal) but the possibility to choose a bitemporal
modeling [105], i.e., two orthogonal time dimensions. A distinction is made between the
valid time (application time) and the transaction time (system time) [105]. The former
describes the time when a fact occurred in the real world and how long this information
is valid. The transaction time, in turn, describes when this information was visible to the
system storing the data, i.e., when it was inserted or (logically) deleted.
This approach of adding two time intervals to the data structure can also be applied

to graphs. In some cases, companies must comply with specific legal requirements that
require accurate recording of data changes. For our bike-sharing graph, we also have
this bitemporal data available. For example, the edges of type rented and returned have
two times: when the rental/return happened in the real world and when it was inserted
into the graph. This could be important for more accurate billing or changing billing or
reconstructing predicted demands. However, bitemporal modeling in the graph domain
is also applicable in more critical domains such as finance, supply chains, or medical
research whenever the history of the real world and the database are both critical. For
example, a bank denied a person’s creditworthiness at a certain point in time because
the data on a sufficiently funded account was only transmitted with a delay. Or in
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medical research, bitemporal modeling can help track the progression of diseases along
a path in the graph and medical interventions over time. It enables the analysis of
patient trajectories, treatment effects, and identifying trends or path patterns that may
be relevant for improving healthcare. Both time dimensions can always be included, e.g.,
when exactly was a medication administered and under which state of knowledge? This
leads to the next challenge: integrating a bitemporal time model.

Challenge C2. Bitemporal modeling. A bitemporal modeling provides two time seman-

tics using two orthogonal time domains: the valid time (also called application time) to

distinguish when and how long a fact occurred in the observed real world and transaction

time (also called system time) to maintain when and how long the information about this

occurrence is available in the graph storage. A challenge is the integration of these two

orthogonal time dimensions into the graph data model and its use within queries, analyses,

and algorithms.

In the last decade, many practical, declarative query languages have been developed
for querying instances of graph data models. The two most fundamental graph querying
functionalities are graph patterns and navigational expressions [15]. Graph patterns
match a graph-structured query against the data, whereas navigational expressions
match patterns recursively against the graph to navigate paths of arbitrary length. For a
temporal bike-sharing graph like the one in Figure 1.1, a query should satisfy two criteria:
firstly, it must be possible to use all time information for projection, selection, and return,
and secondly, it should be possible to formulate chronological orders in the pattern. A
query could, for example, ask for traces of a user’s path through rented bikes and rental
stations over time or analyze the temporal utilization of flex zones by tracking the count
of bikes parked and their average duration within each flex zone over time. Another
query could explore how the connectivity between rental stations evolves, focusing on
the stations that experience the most frequent changes in incoming or outgoing bike
traffic. Executing a query on different graph states is also a challenge to answer questions
like “What is the result of my graph query, and what would the result be for the same
query if I had asked it last week, last month, or last year?”
The need to extend graph query languages to include temporal dimensions leads to

the next challenge for temporal graph research: a temporal query language.

Challenge C3. Temporal graph querying. Developing efficient temporal graph query

languages and evaluation mechanisms is an important research challenge. In addition to

the well-established graph patterns and navigational expressions, queries should support

the projection, selection, and return of all available temporal attributes. Further, it should

be easy to formulate historical queries, i.e., executing a query at a past graph state and

temporal patterns and paths.

There is much more to analyzing graphs than just querying for patterns or paths. The
graph data structure allows a variety of further analyses, such as detecting communities
or frequent patterns, centrality or connectivity analysis, or path analysis like Single
Source Shortest Paths (SSSP). Such essential graph analyses are indispensable tools for
graph analysis systems.

However, if applied on a temporal graph, the challenge is to consider the time dimension
within the respective algorithm. For example, suppose a community detection algorithm,
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Rental

avgDurationSec : 2600

month : 2023-01
count : 1223

rented

last : 2023-03-31 22:30:00
count : 1000

first : 2023-03-01 2:44:10

Rental

avgDurationSec : 3555

month : 2023-02
count : 1443

Rental

avgDurationSec : 3442

month : 2023-03
count : 1788

Station

count : 383

Place

count : 4203

Bike

count : 383

User

count : 15230

returned

count : 852
last : 2023-03-31 22:30:00
first : 2023-03-01 2:44:10

Figure 1.2: Summarized bike-sharing graph where the rentals are monthly grouped.

like the Louvain Algorithm [137], performs a static assignment of vertices to a cluster.
In that case, this assignment will most likely change as edges are added and removed,
which leads to the research area of dynamic community discovery [171].

Extending a static graph analysis to a temporal one is essential, but also the analysis
and exploration of the development of the graph itself. For example, an analyst wants to
know how a graph changed between a past an the current state, how frequent changes
of a specific vertex/edge type occurred, or how the average duration of relationships
between two vertex types changed over time. This brings us to the next challenge in
analyzing temporal graphs:

Challenge C4. Temporal graph analysis. The flexible analysis of temporal graphs

includes all the analysis capabilities of a static graph under consideration of the graph

evolution, as well as the analysis of the evolution and dynamics of the graph itself. Developing

flexible, extendable, and domain-independent temporal graph analysis techniques is a

significant research challenge.

Temporal graphs also tend to be very large, especially when looking at a high-frequent
graph evolution over a long period, such as several years. Here, it may be beneficial to
group the graph to get an overview of the evolution of similarities and differences in the
graph, reduce the number of nodes and edges to simplify it, gain deeper insights into the
structural dynamics, or reduce the granularity of the graph’s evolution. Such grouping
(also called summarization), essential in the relational world and already studied for static
graphs [111], is part of current research for temporal graphs. Again, the challenge is
considering the time dimension in the summarization method. Grouping is performed
not only for elements that are similar in structure or content but also for elements with
similar temporal properties, such as being valid on the same day of the week, having a
similar duration, or being close in time.

For example, if the temporal graph in Figure 1.1 is summarized by grouping nodes and
edges with the same label and that are also valid in the same year and month, the result
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would exemplary look like Figure 1.2. One can see that all rental vertices of a specific
month are grouped as one vertex (for simplicity, we just showed the result for 3 months
of a year), which is shown in the middle of the figure. Each is augmented with aggregated
values, e.g., the average duration of all rentals and the count. The remaining vertex types
are on the top and bottom of the figure, again with a count property. Edges are grouped
according to their label and annotated with an edge’s first and last occurrence and the
count. An analyst can thus get deeper insights into the evolution of the graph at different
temporal granularities. A system for analyzing temporal graphs should support such
grouping, which leads to the next challenge.

Challenge C5. Temporal graph summarization. Temporal graphs can be large and

complex due to the evolution of the graph elements as part of the graph model. Developing

techniques to summarize a temporal graph by its structure, content, and evolution is a

current research challenge to compute smaller, condensed, and possibly aggregated graph

versions that offer deeper insights into the graph’s evolution.

Typical graph analyses also include calculating and evaluating centrality measures.
Centrality is a fundamental concept in identifying important vertices in a graph. A
centrality measure (or metric) quantifies the importance of a vertex, depending on how
“importance” is defined. There are a variety of such centrality measures, from degree
centrality to betweenness centrality to the popular page rank. Such a metric results in a
static score for static graphs, but for temporal graphs, the graph’s structure changes over
time, which also may change the metrics. Thus, a vertex metric no longer represents a
scalar value but is a time series for temporal graphs [174], revealing hidden information
like periodical patterns or peaks at certain times. This problem leads to the next challenge
for temporal graph analysis:

Challenge C6. Temporal graph metrics. The temporal evolution of a vertex metric

reveals important patterns that would otherwise remain hidden in the static case. An

important challenge is defining and developing new temporal metrics and extending static

metrics with the available time dimension.

Analytical questions can be very complex. Thus, a single query or a specific graph
analysis operation can be insufficient to achieve the desired result. In addition to offering
a variety of analysis operators and algorithms, a system that enables the analysis of
temporal graphs should support the construction of analytical pipelines. These pipelines
allow concatenating multiple operations, e.g., a subgraph extraction followed by a pat-
tern matching query with a final community detection algorithm. Providing operator
composition would address a wide range of use cases and answer diverse questions that
a single query or analysis can not answer.
One aim of analyzing the bike-sharing graph in Figure 1.1 could be to predict the

demand for bicycles at stations and flex zones for the coming year. Such a question
can hardly be answered by a single query or by a single algorithm but requires the
combination of various successive steps. Figure 1.3 shows an example of such a pipeline.

Let’s briefly go through the figure step by step. Starting from the temporal bike-sharing
graph, we first apply a graph grouping 1 to group all place vertices in flex zones to
artificial vertex stations. Then, we extracted two temporal graph snapshots 2 that
represent the evolution of 2021 and 2022 to predict later the demand for 2023.
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Figure 1.3: Example of an analytical pipeline to predict the demand of bikes at stations and flex zones

for the following year.

In a subsequent step, we use a pattern-matching query 3 to match all return edges
to predict later how many bikes will be returned. In a later step, the whole pipeline can
be executed again by an alternative pattern that queries all rental edges to approximate
the rentals. After we temporally group 4 the resulting edges per hour of the day, we
calculate the evolution of each vertex degree metric 5 to get a time series of the bike
returns for each station. One way to extract temporal patterns from these time series is
using Nonnegative Matrix Factorisation (NMF) [164]. The rental station’s quantitative
affiliation of the time series to a temporal pattern retrieved through NMF 6 (e.g., typical
business hours or weekend-focused) characterizes the rental station.
Since we have applied all intermediate steps on both the 2021 and 2022 rentals, an

intersection 7 can now be applied to both results to determine which stations show a
consistent pattern for both years. This can then be taken as an indication of the stability
of behavior and can be used to predict demand for the following year. The analysis result
can also be used to augment the initial graph 8 with this information.
Such a possibility of forming analytical workflows thus represents an essential chal-

lenge for temporal graph analysis systems.

Challenge C7. Analytical pipelines. In addition to offering a variety of analysis operators
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and algorithms, a challenge is to provide the ability to compose analytical pipelines by flexibly

connecting single analysis steps.

One can now imagine that the (bi)temporal extension of a graph, which can already be
very large, makes it even more extensive compared to a static graph just representing
its state at the most current time. Depending on the performance of a single system
(CPU, main memory, disk space), the available resources may no longer be sufficient
for a particular graph size or complexity, which means a distributed solution is needed
to process and store the entire graph. Sahu et al. show in [187] that distributed graph
analysis systems are widely used in companies to respond to growing sizes of graph
datasets. Whether the overhead of distributed processing outperforms the increased
performance for a specific graph size, the COST-metric [135] can be determined using
appropriate benchmarks.

Challenge C8. Scalable storage and processing. Temporal graphs can become very

large, especially due to the additional time dimension(s) involved. A research challenge is to

provide scalable storage for the temporal graph and to guarantee the scalability of queries,

analysis, and algorithms to handle this large graph data using distributed and parallel

techniques.

The effective visualization of temporal graphs and analysis results presents a significant
challenge due to its dynamic nature, where edges and vertices constantly change over
time. A suitable visualization assists in conveying temporal information, such as the
emergence and dissolution of connections, evolving network structures, and temporal
patterns. It helps identify significant time points, anomalies, and recurring patterns,
allowing researchers and analysts to make advanced decisions that might not be possible
on a static graph view. This allows us to formulate the next challenge.

Challenge C9. Temporal graph visualization. Visualizing temporal graphs and their

analysis results can be more complex and difficult compared to static graphs due to the

additional time dimension(s). Developing suitable visualization techniques for temporal

graphs is challenging and an important research area.

Temporal graph analytics focuses on the dynamic nature of evolving systems repre-
sented by graphs. While the historical data in a temporal graph offers valuable insights
about what already happened, relying solely on the past may overlook emergent pat-
terns and anomalies that manifest in real-time. Quick decision-making is essential in
time-critical environments, such as IT security or financial transactions, necessitating
the ability to analyze streams of graph updates with low latency. Real-time querying and
analysis also enable the development of adaptive systems that respond dynamically to
changes. The prevalence of streaming data from sources like sensor networks reinforces
the challenge of analyzing temporal graphs as continuous streams to capture and pro-
cess the most recent information and provide query languages suitable for continuous
evaluation.

A plausible implementation in the described bike-sharing scenario entails introducing
a real-time bonus program designed to redistribute bicycles dynamically. More precisely,
when a user rents a bike, the system assesses the current usage patterns of stations and flex
zones. It suggests to the user that they return the bicycle to a station or zone experiencing
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high demand but with a low availability of bicycles. If the user accepts this suggestion,
they are rewarded with a discount for their ongoing trip. It is imperative to express such
a query in a suitable language and consistently evaluate the query concurrently with the
updates to the graph that arrive as a stream.

Challenge C10. Graph stream processing. Graph data can arrive as a continuous

unbounded stream of data, contrasting to the concept of temporal graphs, which maintain

the past evolution of graph elements. Developing suitable stream models, efficient stream

algorithms, and languages for processing and querying graph streams parallel to new

incoming data is an emerging research challenge. Another research challenge in this field is

the investigation of graph query operators for path-oriented semantics on graph streams.

To put everything together, current research on large-scale temporal graph processing
and analysis includes various research challenges. We selected ten important challenges
that can be finally summarized as follows:

C1 Temporal graph data model. The challenge is to develop a data model that can
fully represent the evolution of a graph and treats time as a first-class citizen.

C2 Bitemporal modeling. The integration of two orthogonal time dimensions into
the graph data model and its usage within queries, analyses and algorithms is a
current research challenge.

C3 Temporal graph querying. The development of efficient temporal graph query
languages and evaluation mechanisms is an important research challenge.

C4 Temporal graph analysis. Developing flexible, extendable, and domain indepen-
dent temporal graph analysis techniques considering the graph evolution is an
important research problem.

C5 Temporal graph summarization. Developing techniques to summarize a temporal
graph by its structure, content, and evolution is a current research challenge to
compute smaller, condensed, and possibly aggregated versions of the graph.

C6 Temporal graph metrics. The evolution of a vertex or graph metric reveals
important patterns that may otherwise remain hidden in the static case. A challenge
is the definition and development of new temporal metrics and the extension of
static metrics with the time dimension.

C7 Analytical pipelines. In addition to offering a variety of analysis operators and
algorithms, a challenge is to provide the ability to compose analytical pipelines by
flexibly connecting single analysis steps.

C8 Scalable storage and processing. A research challenge is to provide scalable stor-
age for the temporal graph and to guarantee the scalability of queries, analysis, and
algorithms to handle this large graph data using distributed and parallel techniques.

C9 Temporal graph visualization. Visualizing temporal graphs and their analysis
results is a current research challenge due to the additional time dimension(s)
involved.

C10 Graph stream processing. Graph data can arrive as a continuous unbounded
stream, which needs efficient stream models, algorithms for processing, and lan-
guages for querying graph streams in parallel to new incoming data.

This thesis deals with the elaborated ten challenges and shows how developed ap-
proaches fulfill them entirely or partially. Besides, many more challenges are ahead,
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which are mentioned in the following paragraph for completeness. However, they are
not considered further since they are far-reaching and thus would exceed the scope of
the work.

Further Challenges beyond this thesis. Another worth mentioning challenge
due to the topicality of the subject is graph machine learning, or Graph-ML for short.
Neural networks that operate on graph data (called graph neural networks, or GNNs)
were researched for over a decade [191]. The goal of GNNs are mainly link predicton [124],
node classification [222], graph classification [124] and graph reconstruction [48].

Link prediction aims to predict missing or future connections between vertices (e.g., a
bike rental), whereas node classification aims to predict the classes of unlabeled nodes as
node properties based on other node properties (e.g., to classify bike rental users according
to their rental behavior). In graph classification, the goal is to learn a classifier that can
accurately predict the class or category of a graph according to structural properties
(e.g., to classify places to demands to suggest a place for a new rental station), and graph

reconstruction aims to reconstruct a graph from a set of its subgraphs (e.g., to reproduce
lost rental information).

In recent years, GNN-based models for temporal graphs have emerged as a promising
research area to extend the capabilities of GNNs [128]. Such Temporal Graph Neural
Networks (TGNNs) focus on the time dimension in prediction and classification tasks,
e.g., to predict when a link will happen or when and how long a node is assigned to a class.
The temporal dynamics of graphs require models that are able to incorporate the time
dimension of the graph by creating suitable embeddings, i.e., a mapping of the graph
data into a lower-dimensional space.

Another challenge is the development of temporal graph schemas and temporal key
constraints. Graphs are known for being schema-free. However, a schema definition
for graphs has advantages related to various concepts, like query optimization, data
validation, interoperability, maintenance, and documentation. A schema definition is
crucial for structuring data and a desirable feature of graph users, which is shown by
a recent survey [187]. Towards this need, a recent work introduced a formalism for
specifying (static) property graph schemas, called PG-Schemas [18], which allows a user
to impose structure on nodes, edges, and properties of the underlying graph instances.
Similar requirements hold for key constraints, whose main goal is enforcing data

integrity and allowing the referencing and identifying of objects [17]. Key constraints
should apply to nodes, edges, and properties and provide combinations of basic restrictions
that require the key to be exclusive, mandatory, and singleton. A first framework for
defining keys for (static) property graphs is the recently published work with the title PG-
Keys [17]. However, a formalism for defining schemas and key constraints on temporal
property graphs need extensions to this existing work and is, to the best of our knowledge,
still missing and, thus an open challenge.

Another challenge is temporal graph clustering, whose main objective is to identify
patterns or trends in the temporal behavior of entities within the graph. Graph clustering
can be used for many applications, such as community discovery [171], anomaly detec-
tion [132] or social group analysis [62]. The main challenge, according to temporal graph
clustering, is incorporating the graph evolution in the algorithms with the goal, of reveal-
ing groups of nodes and edges that exhibit similar temporal dynamics and understanding
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how these groups interact and evolve.
In addition to the challenges mentioned above, there are many others, such as efficient

storage, indexing and retrieval [133] to enable fast ingestions and access, temporal
pattern mining [31] to identify recurring patterns that frequently appear in the graph
intending to identify temporal dependencies, change point detection [96] to identify
points in time with significant structural graph changes, or uncertain temporal graph
mining [146] to develop methods to uncover meaningful patterns or knowledge from
graph data that exhibit both temporal dynamics and uncertainty.

1.2 Scientific Contributions and Publications

The contributions of this dissertation refer to the challenges mentioned above. Most of the
contributions are published in scientific journals, conference proceedings, or workshops
and are thus peer-reviewed, which is accordingly marked by references.

Temporal Graph Model, Analysis Operators, and Query Language: Typi-
cally, graphs are viewed as a static construct representing a concrete or aggregated state
of interactions between entities of a real-world scenario. However, a temporal graph
model is needed if the evolution of the graph needs to be maintained as a first-class
citizen. Hence, queries and analyses can use this additional temporal information as an
essential component to reveal information hidden in a static view. We therefore extended
the existing property graph model EPGM and its analysis operators with a bitemporal
model to the Temporal Property Graph Model (TPGM). Besides a rich temporal data
model, it offers various temporal analysis operators (e.g., temporal pattern matching by a
developed declarative language TemporalGDL and time-dependent graph grouping) and
an analytical language to compose workflows. The model was integrated completely into
the existing distributed Gradoop system. All model, operator, and language concepts,
implementations, evaluations as well as lessons learned have been published in three
papers, including Temporal Graph Analysis using Gradoop [179] published 2019 at the
BigDS workshop which was co-located with the BTW 2019, its extended version Ana-

lyzing Temporal Graphs with Gradoop [178] published in the Datenbank Spektrum (vol.
19), and Distributed temporal graph analytics with Gradoop [176] published 2021 in the
VLDB Journal. This contribution is far-reaching and addresses the challenges C1, C2, C3,
C4, C5, C7 and C8.

Analytical Pipelines and Temporal Graph Exploration: With the TPGM,
we offer a flexible way to represent and analyze temporal graphs. Two works have been
published to demonstrate the usability by employing real examples. On the one hand, a
paper called Evolution Analysis of Large Graphs with Gradoop [177] was published in the
Large Evolving Graphs (LEG) workshop of the ECML PKDD 2019, which shows, based
on a call center network, how the operators of the TPGM can be combined to realize
a temporal graph analysis workflow. Furthermore, a web application called Temporal

Graph Explorer (TGE) was developed and published as a demo paper at the EDBT 2021
under the title Exploration and Analysis of Temporal Property Graphs [175]. The TGE
allows users to retrieve snapshots of past graph states, compute differences between
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graph snapshots, and temporally summarize graphs, thus gaining deeper insights into
graph evolution. The respective operator can be flexibly configured, visualizing the result
in a cartographic representation. The contributions behind both publications addressing
the challenges C4, C7, C5, and C9.

Evolution of temporal graph metrics: In a temporal graph, the graph structure
changes over time. New vertices and edges are added, or existing edges are removed or
lose their validity. As the graph changes, vertex and graph metrics change over time.
A vertex metric, such as the simple and frequently used vertex degree, is a scalar value
in a static graph but results in a time series for temporal graphs. In the work Evolution

of Degree Metrics in Large Temporal Graphs [174], published at the BTW 2023, a set of
temporal extensions of four degree-dependent metrics is proposed, as well as aggregations
like minimum, maximum, and average degree of (i) a vertex over a time interval and (ii) a
graph at a time point. Since using the static degree can lead to wrong assumptions about
the relevance of a vertex in a temporal graph, the need to include time as a dimension
in the metric is highlighted. Further, a baseline algorithm and its implementation in
Gradoop is outlined. This contribution addresses the challenges C4, C6 and C8.

Temporal GraphQuery Language and Continuous Graph Notifications:

A one-year research cooperation between Oracle Corp. and the University of Leipzig
in 2020 aimed to investigate the organization of relationships within multi-dimensional
time-series data, particularly sensor data from the IoT area. The project proposed us-
ing temporal property graphs, with some extensions, as a suitable approach for this
organizational task, combining the strengths of both graph and time-series data models.
The outcome of the research cooperation was published on arXiv as a summarized

project report, namely Bitemporal Property Graphs to Organize Evolving Systems [173]
and includes three major achievements: 1) TPGM+: the extension of the bitemporal
property graph model TPGM with support for property updates; 2) T-PGQL the extension
of Oracle’s PGQL graph query language by bitemporal operations; and 3) the conception
of CGN (Continuous Graph Notifications), which is a method for identifying and reacting
to significant events in the temporal property graph in real-time. The work presents new
graph modeling techniques, a query language, and real-time event detection capabilities
that can be used in various applications, particularly in the IoT domain. The contributions
of this work addressing the challenges C1, C2, C3 and C10.

Continuous graphqery language: Real-time data analysis and management
are becoming increasingly important for today’s businesses. According to the graph data
structure, static query languages like the widely used Cypher form Neo4j lack the features
to handle streaming graph data and their continuous query evaluation. In a collaborative
work between Neo4j Inc., the Université Lyon 1, and the University of Leipzig, we
developed Seraph, a Cypher-based continuous graph query language supporting native
streaming features.
The respective publication, namely Seraph: Continuous Queries on Property Graph

Streams [180], accepted at the research track of EDBT’2024, formally defines the language
semantics by combining stream processing with property graphs and time-varying rela-
tions. Besides formalizing the Seraph syntax, we discuss the potential impact both from
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a user and a system perspective and showcase the usage of the language for emerging
graph-based continuous queries based on real-world industrial use cases. With this
contribution we address the challenges C1, C3 and C10.
The collaboration on the project was also the basis for a joint research project called

HyGraph, funded by the German DFG and the French ANR for 3 years starting in 2023.

1.3 Structure

This dissertation contains eight further chapters with the following summarized content.
Chapter 2 gives the necessary preliminary knowledge to understand the individual

chapters and related work that relates to the entirety of the dissertation. Specific related
work to individual chapters is evaluated in the chapters themselves.

Chapter 3 introduces the Temporal Property Graph Model (TPGM), including a
bitemporal graph data model, a set of combinable analysis operators, and an analytical
language to build analytical workflows. Special attention is paid to TemporalGDL, a
declarative graph query language for bitemporal property graphs, and a grouping operator,
which summarizes temporal graphs based on their temporal characteristics. As a reference
implementation of the TPGM, we introduce a temporally extended version of Gradoop,
an open-source framework for distributed analysis of large property graphs.

Chapter 4 gives two applications of Gradoop and it’s temporal graph analysis features.
First, a call center network use case is solved with the TPGM and its combinable operators.
Second, a web-based user interface called Temporal Graph Explorer is demonstrated,
showing the usage of three temporal TPGM operators by real-world temporal graphs. It
further offers a visualization of temporal graphs and the analytical results.

Chapter 5 is about the implicit evolution of graph metrics of temporal graphs, specifi-
cally, degree-based metrics. Four selected metrics were extended by the temporal dimen-
sion and formally described. A prototypical implementation of a baseline algorithm in
Gradoop shows that it scales well for large temporal graphs.

Chapter 6 summarizes project results of a one-year cooperationwith a leading database
company. It defines an extended version of the TPGM data model, namely TPGM+, a
temporal extension of the property graph query language PGQL, namely T-PGQL, and a
continuous graph notification mechanism called CGN.
Chapter 7 proposes Seraph, a Cypher-based language supporting native streaming

features. The data model, language semantics, and syntax are formally defined by com-
bining stream processing with property graphs and time-varying relations. We show the
usage of the language for emerging graph-based continuous queries based on three use
cases.
Chapter 8 provides an overview of the lessons learned during the research on and

development of Gradoop.
Chapter 9 summarizes the dissertation and gives an outlook of open challenges and

future work.
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2
Background and Related Work

This chapter introduces basic concepts, terminologies, and related work as background
for the following sections of this dissertation. Starting with graph data structures in Sec-
tion 2.1, the main concepts of temporal graph models are given in Section 2.2. Graph
streams are particular types of dynamic graphs and will be discussed in more detail
in Section 2.3. An overview of temporal- and graph stream query languages is provided
in Section 2.4. After a short discussion of graph databases and processing systems char-
acteristics in Section 2.5, we finalize the chapter with an overview of temporal graph
processing systems in Section 2.6.

2.1 Graph Data Structures

In the data representation and analysis landscape, graph structures have established
themselves as a fundamental paradigm for modeling and understanding complex rela-
tionships in various domains [189]. Graphs provide a powerful framework for capturing
important connections between entities, making them ideal for modeling scenarios where
relationships are as crucial as the entities themselves. This section explores the basic
foundations of graph data structures to better understand more complex definitions in
the subsequent chapters of this dissertation.

A graph in its simplest form is a undirected simple graph [56] as shown in Figure 2.1a.
It consists of a set of vertices (or nodes), which represent the entities, and a set of edges
(or relationships) that represent the connections among them.

Definition 1. (Undirected Simple Graph) An undirected simple graph is a pairG = (V,E)
of distinct sets withE ⊆ [V ]2, i.e., elements ofE are 2-element subsets of V [56]. The elements

of v ∈ V are vertices, whereas the elements of E ⊆ {{vj, vk}∣vj, vk ∈ V and vj ≠ vk}} are
the edges of the graph, which are unordered pairs of vertices. The vertex set of a graph G
is referred to as V (G), its edge set as E(G). A vertex v is incident with an edge e if v ∈ e.
Two vertices vj, vk of G are adjacent (or neighbours), if {vj, vk} is an edge of G.

With a graph of this form, various scenarios can be represented, for example, friendship
connections between users of a social network or railroad connections between cities.
However, there are use cases where this simple structure is not sufficient. The meaning
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(a) A undirected simple graph. (b) A directed multigraph with a loop.

authorOffollows
Alice Bob Article

(c) A labeled graph.

Figure 2.1: Three different graph structures.

of a relationship may depend on its direction (e.g., a specific train goes from city A to

city B), which results in the need for directed edges, which start at a source vertex and
end at a target vertex. A graph with directed edges is called a directed graph. Further,
a vertex may be connected with itself, which is called a loop and the quantity of edges
between the same pair of vertices can be of importance, for example, there can be multiple
train connections between the same cities, which results in a so-called multigraph. The
definition of a simple undirected graph can be extended to a directed multigraph with

loops [56] where Figure 2.1b shows an example. It is formally defined as follows:

Definition 2. (Directed Multigraph) Let G = (V,E, s, t) be a directed multigraph with

two maps s ∶ E ↦ V and t ∶ E ↦ V assigning to every edge e ∈ E a source vertex s(e) and a
target vertex t(e) where multiple edges between the same two vertices can exist. The edges e1
and e2 are multiple edges, if s(e1) = s(e2) and t(e1) = t(e2). An edge e is a ordered pair of
vertices (vj, vk), where vj = s(e) and vk = t(e). The set E is thus a multiset of ordered pairs

E ⊆ {(vj, vk)∣vj, vk ∈ V }. The edge e is said to be directed from s(e) to t(e). If s(e) = t(e),
the edge is called a loop.

To add additional semantics to the vertices and edges, specific data values can be used
to describe the meaning of them. The first and simplest way is adding type labels to
vertices and edges, as shown in Figure 2.1c, where edge labels represent a follow and
authorship relationship between vertices that represent two specific users and an article
in a social network. Such a directed labeled graph is defined as follows:

Definition 3. (Directed Labeled Graph) A directed labeled graph G = (V,E, s, t,B, β)
contains in addition to Definition 2 a set of type labels B = {b1, b2, ..., bn} and the map

β ∶ (V ∪E) → B assigns a single label to every vertex or edge.

With this extension, vertices and edges can be distinguished by their respective type.
To describe the vertices and edges even more precise, i.e., add further specific semantics
to them, a directed labeled graph can be further extended. One possible extension is the
Property Graph Model (PGM) [14, 170] which supports an arbitrary number of properties
in form of key-value pairs to vertices and edges. A property graph, sometimes also called
Labeled Property Graph (LPG), is one of the most used graph data models in research and
industry and is implemented in several open-source and commercial graph databases and
processing systems [30, 88], such as Neo4j [142], JanusGraph [70] or TigerGraph [205],
and processing frameworks, such as Oracle Labs PGX [93]. Figure 2.2 shows an example
of a property graph, where the vertices and edges have no, one or two properties assigned
besides the type label. The following Definition 4 formally defines a property graph.

18



2.1. GRAPH DATA STRUCTURES

authorOffollows
Person Person Article

name : Alice
yob : 1990

name : Bob title: Graphs are awesome
since : 02-2022

Figure 2.2: A property graph.

Definition 4. (Property Graph) A property graph G = (V,E, s, t,B, β,K,A,κ) contains
in addition to Definition 3 a set of property keys K = {k1, k2, ..., kn}, a set of data values
A = {a1, a2, ..., an} and a partial function κ ∶ (V ∪E) ×K ⇀ A that assigns a data value

to a combination of a vertex or edge and a property key.

In addition to this definition, Angles allows in [14] multiple labels per vertex and edge,
whereas others add a uniquely identifiable ID to them [176, 178]. With Definition 4, the
property graph in Figure 2.2 can be noted as follows:

• the vertex set V = {v1, v2, v3}
• the edge set E = {e1, e2} = {(v1, v2), (v2, v3)}
• the set of type labels B = {”Person”, ”Article”, ”follows”, ”authorOf”}
• the set of property keys K = {name, yob, since, title}
• the set of data values A = {”Alice”, ”1990”, ”Bob”, ”02− 2022”, ”Graphs are...”}
• β(v1) = ”Person”, κ(v1, name) = ”Alice”, κ(v1, yob) = ”1990”
• β(v2) = ”Person”, κ(v2, name) = ”Bob”
• β(v3) = ”Article”, κ(v3, title) = ”Graphs are awesome”
• β(e1) = ”follows”, κ(e1, since) = ”02 − 2022”
• β(e2) = ”authorOf”

It is worth mentioning, that the Resource Description Framework (RDF) [115] is a second
widely used graph data model, which is standardized and uses a triple-based structure and
International Resource Identifiers (IRI) to represent entities and relationships. It was initially
developed to describe metadata of web-resources [88]. The expression of relationships
between resources is given through the utilization of subject-predicate-object triples,
wherein each triple encapsulates a descriptive assertion. Subjects represent resources,
predicates signify relationships, and objects denote values or associated resources.
Although both RDF and PGM are rich graph data models, they differ in their philo-

sophical orientation and use cases. RDF embodies the ideals of the Semantic Web by
enabling networked knowledge representation, while the PGM is primarily focused on
operational and analytical use cases based on specific graph database technologies. The
two data models, their suitability for particular use cases, and their interoperability have
been discussed in the literature for years. Petermann [158] as well as Hofer et al. [88]
provide an extensive overview of both data models as well as an interesting discussion
about pros and cons for both RDF and PGM.

Knowledge Graphs (KGs) are another class of graphs that organize information to query
and retrieve knowledge efficiently. It semantically represents heterogeneous entities
(gene mutations, publications, patients, etc.) and their relations, typically integrated from
different sources. Some KGs are represented in the PGM, like the current CovidGraph
project [69], but most of them are based on RDF, like DBPedia [87], as shown by Hofer et

19



CHAPTER 2. BACKGROUND AND RELATED WORK

al. [88]. However, this dissertation orients on property graphs, but the contributions and
developed concepts can be mostly adapted to RDF graphs, too.

One characteristic in all data model extensions considered in this section is particularly
noticeable: the graph is static and does not change. We call a graph static if the sets V
and E are fixed and we have no knowledge about their evolution. This is in contrast to
dynamic or temporal graphs and graph streams, where vertices and edges change over
time, and the knowledge about the evolution of the graph is part of the data model.

2.2 Temporal Graphs

Graph data models are used to model an observed network of the real-world to execute
queries, algorithms and analysis on it. Such networks are rarely rigid but exhibit a high
degree of dynamism, thus graph data models should natively support these dynamics.
In this section, we review such dynamic or temporal graph data models in the current
literature to get a basic understanding for the subsequent chapters of this dissertation.

Temporal graphs [74, 139, 176, 197, 221], i.e., graphs whose elements are unpredictably
updated over time [29], occur under various pseudonyms in literature, e.g, dynamic

graphs [226], time-varying graphs [38], time-dependent graphs [215], evolving graphs [5],
time-evolving graphs [99, 100] and temporal networks [89, 127]. Several surveys exist about
temporal graphs [38, 89, 117, 226], comparing data models, representations, algorithms
and analysis.
Temporal models are common for relational databases, and support for (bi)temporal

tables and time-related queries have been incorporated into the SQL standard [102, 105,
120]. By contrast, temporal graph models still differ in many aspects without a consen-
sus about the most promising approach (e.g. [38, 74, 139, 197]). Such differences exist
regarding the supported time semantic (valid time, transaction time or both/bitemporal),
the kinds of possible changes on the graph structure and of properties, and the temporal
graph representation. The latter is versatile and will thus be considered in more detail.

According to Pitoura [161], a temporal graph can either be represented as a historical
graph

1 or a version graph. A historical graph is a sequence of graph snapshots G =
{Gω1 ,Gω2 , ...}, where each snapshot represent the graph state at a single instant of time
ωi. A version graph is the union of the graph snapshots in a historical graph to one
single graph including all information about its evolution, i.e., each graph element (i.e.,
vertex, edge or attribute) is accompanied with a timestamp ωi or time interval τ = [ωs, ωe)
according to its model. A temporal graph whose graph elements are timestamped are
also called contact sequence [89], where the name for an extension with time intervals is
interval graph [89] or Interval-labeled temporal graph. Figure 2.3 and Figure 2.4 show a
toy example of a temporal graph in two different representations.

The historical graph representation is given in Figure 2.3. The example models a social
network with three users and an article. At the beginning of the observation, i.e., at ω1,
Bob is the author of the article and Carol follows Alice. A time instant later (at ω2) Alice
reads the article of Bob, which results in the fact that Alice follows Bob and Carol reads
the article too in the next observed time instant ω3. Newly added edges are indicated
blue. One can see, that there is a graph state for each time instant that represents the

1Ren et al. call a sequence of graph snapshots a graph sequence [165].
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Figure 2.3: A temporal graph represented as a sequence of graph snapshots, which is called a historical

graph.
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Figure 2.4: A temporal graph represented as a version graph with time intervals assigned to its edges,

which is called an interval graph.

real-world at this time2. As Pitoura shows in [161], merging all snapshot graphs of the
sequence leads to a version graph.

In Figure 2.4, the same graph is given in a version graph representation. For simplicity,
just the edges were assigned with a left-close right-open time interval3 that represents
their validity. For example, the edge with label “read” between Alice and the article is just
valid at ω2, whereas the “follows” edge between Carol and Alice starts it’s validity from
ω1 and do not provide information about its end, so we chose ω∞ as a representation of a
maximum timestamp.

After this brief insight into temporal graphs in general, some selected temporal property
graph data models are presented in the following. There are some similarities and some
differences between them, but no universally valid temporal graph model has yet been
agreed upon in the literature.

Pitoura [161] defines a temporal graph as a tuple G = (V,E), where each edge e ∈ E is

2Since bitemporal modeling is already introduced in Section 1.1, the given time instants of the example
could either represent the valid-time or the transaction-time domain, which is irrelevant for the given
example.

3For a left-closed right-open time interval τ = [ωstart, ωend) holds: ωstart ≤ ωi < ωend.
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a quadruple (u, v,ωs, δ) where u, v ∈ V , ωs is the starting time of e and δ is the delay or
duration of e. It is similar to the definition of an interval graph, with the difference that
the validity over a period of time is given as a timestamp and a duration. This extension
to the simple undirected graph model (see Definition 1) assumes non-temporal vertices
and does not define other graph characteristics like type labels or properties.
Casteigts et al. [38] introduced in their early work in 2012 so-called time-varying

graphs (TVG), a framework that tries to unify several concepts, formalisms and methods
about temporal graphs. Since they want to cover a multitude of different temporal graph
concepts, they defined a temporal graph as G = (V,E,T , ρ, ζ, ψ,φ), where V and E
represent the vertices and edges, T is a timespan referred to as the lifetime of the system,
ρ ∶ E × T → {0,1} is a presence function indicating whether an edge is available at a
given time (whereas ψ is the presence function for vertices respectively) and ζ a latency
function indicating the time that it takes to traverse the edge (or φ for the vertices).

Campos et al. [34] introduced a temporal graph data model suitable for interval graphs.
Time intervals are assigned to vertices only, whereas edges solely exist to model a
structural relationship without any further semantic. There are attribute-vertices and
value-vertices representing specific properties of a vertex. If a value changes, a new value-
vertex is created and assigned to the attribute-vertex. This graph model facilitates the
evolution of the graph, allowing alterations in values, attributes, objects, and relationships
while retaining all data intact. With each change, a new vertex is introduced, and the
concept of validity is represented through two timestamps for each vertex. This data
model varies from the traditional property graphmodels and is reminiscent of the concepts
of RDF, where properties are represented as nodes. One can see the tendency of the
data model to generate very extensive graphs in relation to the network that is to be
represented.
Debrouvier et al. [52] introduce a temporal graph data model, where not only nodes

and relationships but also properties have a validity interval. They build their data
model based on the approach of Campos et al. [34], and define a temporal property
graph as G = (No,Na,Nv,E), where E is a set of edges, and No, Na, and Nv are sets of
nodes, denoted object nodes, attribute nodes, and value nodes, respectively. Further, each
element is assigned with time intervals representing periods during which the element is
valid. Same for value nodes, which is how they enable temporality for properties. Finally,
they introduced several integrity constraints that must hold for a consistent temporal
graph of their model. The disadvantage of this model is that no properties for edges are
supported.

The temporal graph data model of Hartmann et al. [84] follows a different approach to
extend the property graph model with temporal support. They extend vertices, edges
and properties with a state that represents the beginning validity through a timestamp.
The graph model is defined through a set of vertices, where each vertex maps to its
incident edges and properties. Thus, edge properties are not directly supported, just by
intermediate vertices like in [34] or [52].
Huang et al. [95] introduced a temporal graph model for their system TGraph with

the focus on the evolution of property values. Each vertex and edge of the graph can
contain static properties and dynamic properties as key-value pairs. The characteristic
of the dynamic properties is that the value is an ordered list of key-value pairs, where
the corresponding key represents a timestamp. This modeling is similar to a time series.
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Each value, which is assigned to a timestamp, is valid from this time until the time of the
following element of the list. As said before, the model just supports the evolution of
properties but without supporting a structural evolution of the graph itself.

Moffitt and Stoyanovich [139] propose their approach of a temporal generalization of
the property graph model called also TGraph, which captures evolution both in graph
topology as well as in the properties. The main idea is to associate periods of validity
with graph nodes, edges, and property values. Assuming a linearly ordered discrete time
domain ΩT with time instances ω ∈ ΩT of limited precision, a time interval that represents
a discrete contiguous set of time instances from ΩT , starting from and including the start
time, continuing to but excluding the end time, they define a temporal graph (TGraph) as
follows:

Definition 5. (Temporal PropertyGraph according toMoffitt and Stoyanovich [139])

A TGraph is a 6-tuple G = (V,E,L, ρ, ξT , λT ), where:

• V is a finite sets of vertices, E a finite set of edges, L a finite set of property labels;

• ρ ∶ E → (V × V ) is a total function that maps an edge to its source and target vertex;

• ξT ∶ (V ∪E) ×ΩT ×ΩT → B is an existence function that maps a node or edge and

time period to a Boolean, indicating its existence during the time period; and

• λT ∶ (V ∪E) ×L ×ΩT ×ΩT → val is a partial function that maps a node or an edge,

a property label, and a time period to a value of the property during the time period.

They further provide an alternative representation of this model using a pair of nested
temporal relations and prove their equivalence [139]. The disadvantage of this model is
the focus on one time dimension (unitemporal) and the lack of logical abstractions of
subgraphs. However, because of the expressiveness and flexibility of the graph model
presented, it will serve as one basis for the model that is developed in this dissertation
(see Section 3.3 and Section 6.2).

The last evaluated temporal graph model is the one of Graphite [74], which is a system
for distributed and iterative processing of temporal graphs, introduced by Gandhi and
Simmhan. They propose an interval-centric computing model (ICM) together with a
temporal graph data model, that covers graphs that are fully evolved and ready for
processing. Assuming a linearly ordered discrete time domain Ω containing time-points
ωi and a time interval τ = [ωstart, ωend) with ωstart, ωend ∈ Ω as a set of time points that
are part of the interval, Gandhi and Simmhan formally define a temporal graph as follows:

Definition 6. (Temporal Property Graph according to Gandhi and Simmhan [74])

A temporal graph is a directed multi-graph G = (V,E,L,AV ,AE), where:

• V is a finite set of vertices, where each vertex v ∈ V is a pair ⟨vid, τ⟩ with vid as a
unique identifier and τ as a time-interval for which the vertex is valid (its lifespan);

• E is a finite set of directed edges, where each edge e ∈ E is a 4-tuple ⟨eid, vidi, vidj, τ⟩
with eid as a unique identifier, vidi, vidj as the vertex identifiers of the source and

target vertex and τ as the time interval for which the edge is valid (its lifespan);

• L is a finite set of property labels that can be associated with either vertices or edges;

• AV (or AE) is a finite set of vertex (or edge) property values, represented as a 4-tuple

⟨id, l, val, τa⟩ ∈ AV which means that a value val that is associated with a label l ∈ L
of the vertex (or edge) identified by id is valid for the interval τa.
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Further, a label may have distinct values for non-overlapping intervals during its vertex (or

edge) lifespan.

Through the expressiveness and flexibility of this graph model, it will also serve
as one basis for two models introduced in this dissertation, which are the Temporal

Property Graph Model (TPGM) (see Section 3.3) and the TPGM+ as an extension of it
(see Section 6.2). With our contribution, we provide a simple yet powerful temporal
property graph model and temporal query support that avoids some of the limitations
of the ones above: our model supports the modeling of subgraphs, called logical graphs,
which are first-class entities of the model. It further supports not only single temporal
property graphs but also collections of such graphs. Temporal information is modeled
bitemporal, i.e., data for valid and transaction time intervals is represented within specific
attributes, thereby avoiding the dedicated storage of graph snapshots (snapshots can still
be determined). Further, the processing of temporal graphs is supported by temporal
graph operators that can be composed within analytical programs.
A temporal graph represents the evolution of a real-world network for an observed

period. If the graph-shaped data arrives continuously as a stream and queries need to be
continuously evaluated concurrently with these changes, concepts from the field of stream
processing are required [29]. A stream of graph data is called a graph stream [20, 134] or
streaming graph [58, 155] (both terms are used interchangeably), which is introduced in
the following section.

2.3 Graph Streams

A graph stream (also called streaming graph) is a special type of a dynamic graph [161],
namely a graph represented in the data stream model [22]. Besta et al. provide in their
survey [29] an extensive overview of the graph stream landscape including data models,
representations and existing systems supporting graph stream algorithms and processing.
In the following, we focus on data models for graph streams (Section 2.3.1) and the
concept of windowing (Section 2.3.2.)

2.3.1 Stream Data Model

As for temporal graphs, there is no universal data model for graph streams: approaches
differ in various characteristics, as visualized in the overview in Figure 2.5.

Boundedness. A graph stream can be differentiated by its boundedness. There are
bounded (or finite) graph streams and unbounded (or infinite) graph streams4. Since
the streaming model in general is an important model for the processing of massive
datasets (because it is too large to fit in memory) [63], early research defined a graph
stream as an alternative representation of graph with fixed size that has to be processed
in the streaming model [63, 134, 214]. The most simple data model of this type is to
model the edges as a sequence, sometimes with a fixed vertex set that can be stored
in memory. For example, Feigenbaum et al. [63] define their interpretation of a graph

4The stream processing system Apache Flink also follows that differentiation: they define a fixed
dataset as a bounded stream and a infinite stream of data as a unbounded stream [37].
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Figure 2.5: Overview of different characteristics of graph streams.

stream as a sequence of edges ei1 , ei2 , . . . , eim , where eij
= (vs, vt) ∈ E and i1, i2, . . . , im

is an arbitrary permutation of [m] = {1,2, . . . ,m}.
However, on the other hand, a graph stream can be unbounded (infinite) [80], e.g., live

user interactions on Instagram, thus modeled in the data stream model [22]. Some or
all of the input data that are to be operated on arrive as one or more continuous data
streams and are not available for random access from disk or memory. This paradigm
leverages the evolving nature of data to capture real-time changes and interactions within
complex networks, where the online analysis of such stream produce real-time results [1].
Definition 7 shows a simplified version of an unbounded graph stream defined by Pacaci
et al. [155, 156].

Definition 7. (Streaming Graph based on Pacaci et al. [156]) A streaming graph S is a

constantly growing sequence of tuples S = {t1, t2, . . . , tm} in which each tuple ti arrives at
a particular time ωi (ωi < ωj for i < j). A tuple t is a triple (ω, e, op) where ω is the event

(application) timestamp of the tuple assigned by the data source, e = (vs, vt) is the directed
edge with source vertex vs and target vertex vt, and op is the type of the edge, i.e., insert (+)
or delete (-).

Stream Elements. Another distinguishing feature of graph streams is the choice
of stream elements [29]. An element of the stream can be: 1) a graph representing
an (complex) event including the contained entities and relations, e.g., two bike rental
stations and a bike as vertices and the rental relationship as edges; 2) an edge representing
the relationship between two entities that are represented by an unique identifier, e.g.,
follow relationships between users of a social network; 3) a vertex and edge in a separate
stream, e.g., a stream of user vertices with meta information (name, age, etc.) and a
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stream of messages as edges that are sent between the users; or 4) a vertex with a list of
adjacent vertices, e.g., a user and its followers.

Supported Updates. If we say that a graph stream is a stream of graph updates, a
graph update can be manifold. In the simplest case, the stream consists of inserts (or
new elements), which is also called insert-only stream [134]. For example, an insert-only
graph stream consisting of simple edges (also denoted as edge stream) can be defined as
follows:

Definition 8. (Insert-only Edge Stream) A Graph Stream S = {(e1, ω1), (e2, ω2), . . .}
is an unbounded ordered sequence of pairs (e,ω), where e = (vs, vt) is an edge between the

source vertex vs and target vertex vt and ω is a non-decreasing timestamp.

If the graph elements can be both added and removed, it is called an insert-delete
stream. See Definition 7 for an example. There it is possible to encode in the stream that
the current arriving element is a delete operation, e.g., a user does not follow another
user anymore. The third variant is a graph stream that allows to update a previously seen
element, e.g. to update an edge weight.

Semantic Enrichment. Unlike rich graph models like Property Graphs (see Defini-
tion 4), graph streams typically adopt simpler data models, placing their emphasis on the
graph structure itself rather than extensive data associated with vertices or edges [29].
However, some models do offer basic additional data for vertices or edges, in the form of
weights, type labels and/or properties. Usually edges are directed, but undirected edges
are also possible. Additionally, edges can be assigned timestamps or time intervals, denot-
ing when they were added to the stream or when the modeled relationship happened in
the real-world. These time information can also indicate modifications, such as updates
to the weight of an existing edge [29].
Figure 2.6 shows a simple example of an unbounded insert-only graph stream on the

top and the temporal graph that results from merging the arrived elements on the bottom.
For simplicity, the vertices are identified by capital letters and colors. The graph stream
elements represent edge additions for each time point ω1, ω2, ... with currently ω8 as the
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most recent time in a time domain Ω. As an example, this could be a stream of follow
relationships between users of a social network or bike rentals between rental stations in
a micromobility network.

2.3.2 Windowing

Stream processing has emerged as the central paradigm for processing data in real
time, enabling seamless analysis of constantly evolving data sets [22]. A fundamental
component of stream processing is window processing, which divides the continuous
stream of data into finite, manageable segments or windows. This mechanism proves to
be indispensable in data stream processing as it enables operations on finite chunks of
data and facilitates timely insights into dynamic information [22].

This principle can also be extended to the graph stream domain. Window processing
introduces temporal boundaries into the data and allows for the examination of snapshots
of the evolving graph, which is essential for tracking changes, identifying patterns, and
gaining valuable insights. Just as in traditional stream processing, these windows enable
efficient and meaningful operations on the evolving structure of the graph.
In addition, window processing in graph streams is related to the need to effectively

manage limited computational resources. By setting temporal boundaries through a
window, the allocation of resources to graph analysis can be constrained so that the
computational load remains manageable [22, 29]. In this way, window processing not
only enables real-time analysis of evolving graphs but also enhances the scalability and
efficiency of graph stream processing systems.
According to the example graph stream in Figure 2.6, a window from ω0 to ω8 would

create a current view on the data (also called active [134]) of the most recent 9 time points.
If all graph elements of this window are combined, i.e. identical nodes are represented as
one node, this would result in the temporal graph shown below. This view on the most
recent state of the example graph stream provides the ability to apply all kinds of graph
algorithms, from static to temporal ones. For example, one can find out that there are
two directed paths from node A to C or the static degree of node B is with a value of 4
the highest.
In summary, the concept of window processing, well-established in stream process-

ing, bridges to the domain of graph streams, where it plays an equal role. It empowers
researchers and practitioners to follow the dynamic nature of graph data, offering a struc-
tured approach for analyzing interconnected entities while maintaining computational
efficiency [29].

2.4 Query Language Extensions

Having delved into the realms of temporal graphs and graph streams, our attention now
turns to the existing query languages tailored for graphs that incorporate the temporal
aspect or evolution of a graph. Section 2.4.1 shows several language extensions for
temporal graphs with a focus on property graphs. We refer to the survey of Analyti
and Pachoulakis [11] for temporal RDF languages like T-SPARQL [81]. In addition,
Section 2.4.2 shows languages supporting the continuous evaluation of graph streams.
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2.4.1 Temporal GraphQuery Languages

Subgraph pattern matching and navigational queries are one of the core concepts of
graph queries. Having temporal graph with all information about its evolution, a query
language should utilize the temporal information, e.g., to analyze different states or the
evolution of the graph data. Current declarative query languages [15] for property graph
databases, such as the prominent Cypher [71, 148], Gremlin [169], or Oracle PGQL [166],
are powerful languages supporting mining for complex graph patterns (pattern matching),
navigational expressions or aggregation queries [13, 15]. Moreover, the efforts of existing
languages are converging into GQL [55, 98], the future standard graph query language
that will pave the road to workload portability and shared consensus to manipulate
property graphs.
Another very recent development is SQL/PGQ [55, 220], an extension to the SQL

standard published in 2023 for defining and querying property graphs. However all
above mentioned approaches assume static property graphs and have no built-in support
for temporal queries that goes beyond the use of time and date properties. In addition,
particular interval types are missing to represent a period with concrete start and end
timestamps and relations between such time intervals, e.g., precedes or overlaps as defined
by Allen’s interval algera [10]. As a result, the analysis of graph evolution is difficult or
impossible to achieve, such as determining the chronological order of a path or finding
stable patterns for a particular duration of time. Similarly, queries that want to find a
pattern in the graph’s past or future state or that analyze the duration of relationships
are complex to express without dedicated statements. Another limitation of current
languages is their limited composability of graph queries, e.g., when the result of a query
is a table instead of a graph.
In recent years, however, temporal graph query languages have been developed in

research, which are mostly extensions of existing static languages.
T-Cypher [133] is part of the system Clock-G and an extension of Neo4j’s Cypher with

temporal constructs, such as temporal slicing (a temporal selection on a time point or
interval), temporal functions and operators (temporal predicates and relations according
to Allen’s interval algebra [10]) and temporal paths. Latter are divided into 3 classes:
continuous, sequential, and pairwise-continuous paths. They further provide a query
processor to create a query evaluation plan.
T-GQL [52] is also based on Neo4j’s Cypher and bases its naming on the currently

developed GQL standard language. It provides two temporal operators, namely Snapshot

and Between to query the state of the graph at a certain point in time and during the given
interval, respectively. Further, the extension supports three path semantics: continuous,
pairwise continuous, and consecutive path semantics. T-GQL queries are translated into
(static) Cypher for query evaluation to execute them over a regular Neo4j database.

ChronoGraph [61] is an open-source versioned graph database based on Apache Tin-
kerPop that provides temporal query extensions to the Gremlin language to support
temporal graph traversals. It provides solely system-time content versioning and analysis.
In this work, we will present two additional temporal property graph languages,

namely TemporalGDL [176], a GDL [109] and Cypher-based language to query bitemporal
property graphs, and the conceptual T-PGQL [173], a language based on Oracle’s graph
query language PGQL. Former is defined in Section 3.3 whereas the latter is exemplified in
Section 6.3. Both language extensions focus mainly on 3 categories of temporal extensions
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that are not entirely supported in the existing ones above: 1) bitemporal support with
complete access to time attributes of both dimensions, 2) the possibility of projecting the
time information of the graph, including time interval bounds as well as earliest and
latest time points of aggregations, 3) enabling evaluation of the whole query or specific
patterns at a past or the current graph state, and 4) enable temporal paths and patterns

through temporal constraints defined by SQL:2011 and Allen’s interval algebra.
Such extensions to query languages for temporal graphs are constrained by their

reliance on temporal graphs representing bounded datasets that encapsulate the historical
evolution of the graph. Consequently, these extensions are unsuitable for continuous
querying of graph streams, as they are tailored more for retrospective analysis rather
than adapting to the dynamic nature of ongoing data streams.

2.4.2 Graph StreamQuery Languages

As already discussed, graph streams are dynamic graphs that grow indefinitely [3], and
query answering must consider a stream’s unboundedness. For graph streams, the data
management system is assumed to be unable to store the whole graph state, therefore
it focuses on the finite sub-graph that is relevant for the query answering. Pacaci et al.
introduced in [155] a data model and a query evaluation algebra on streaming graphs,
including the semantics of persistent regular path queries (RPQ). Their considered stream
consists of single relationships, not graphs, as in our work on Seraph, a declarative
query language for graph streams, which will be introduced in Chapter 7. Our work can
complement their work on streaming complex graph queries in a landscape where no
declarative and industry-ready language exists.
Sakr et al. show in [189] that there is a current need for systems that can model and

process both dynamic graphs and graph streams. An essential research challenge is the
investigation of graph query operators for path-oriented semantics on graph streams (see
Challenge C10 in Section 1.1). These are necessary for standardized graph languages like
GQL. With our language Seraph and its query model and semantics, we address precisely
this need. Kankanamge et al. present with Graphflow [112] a prototype in-memory graph
database supporting continuous subgraph queries. Unlike Seraph, the queries cannot be
evaluated on property graph streams, and windowed queries are not supported.
Our language extensions and the other existing language extensions are related to

existing declarative stream processing languages, which have been around for two
decades. Most of the existing solutions, including those associated with the Big Data
initiative [85], present an SQL-like syntax [210], e.g. Streaming SQL [26], and build
upon the Continuous Query Language model (CQL) [33]. CQL prescribes making the
management of (relational) streams orthogonal to the management of relations. They
defined three operator families, namely Stream-to-Relation, Relation-to-Relation, and
Relation-to-Stream, which formalize the interoperability between relations and streams.
Our language Seraph follows the CQL orthogonalization principle because it makes

the language compositional and maintainable [50]. However, unlike CQL, Seraph works
on a stream of property graphs and provides the primitives to control the reporting
completely. Learning from Dindar et al. [57], who showed how the operational semantics
of stream processing engines is often uncontrollable by the user, Seraph’s clauses give
an end-to-end view of what impacts execution semantics from inputs to output. Hence,
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Seraph users have complete control of the query execution semantics.
Finally, RSP-QL [54] was proposed by the Semantic Web community in the late 2000s’

to accommodate the need for processing heterogeneous data streams. Seraph is similar
to RSP-QL, which extends CQL work on RDF streams. The main differences between
them are the data model, i.e., Seraph adopts streams of property graphs, and the query
model: Seraph temporal approach is maintained after windowing.

2.5 GraphDatabaseandGraphProcessing Systems

Graph database systems are typically based on the PGM or RDF and provide a query
language supporting operations such as patternmatching [13] and neighborhood traversal.
The analysis of current graph database systems in [110] showed that they mainly focus on
OLTP-like CRUD operations (create, read, update, delete) for vertices and edges as well
as on queries on smaller portions of a graph, for example, to find all friends and interests
of a specific user. Support for graph mining and horizontal scalability is limited since
most graph database systems are either centralized or can replicate the entire database
on multiple systems to improve read performance (albeit some systems also support
partitioned graph storage). As already discussed for the query languages, the focus is on
static graphs, so the storage and analysis of (bi)temporal graphs are not supported.

Graph processing systems are typically based on the bulk synchronous parallel (BSP)
programmingmodel [212] and provide scalability, fault tolerance, and flexibility to express
arbitrary static graph algorithms. The analysis in [110] showed that they are mainly
used for graph mining while they lack support for an expressive graph model such as
the property graph model and a declarative query language. There is also no built-in
support for temporal graphs and their analysis, so the management and use of temporal
information are left to the applications.
In this thesis, we aim to combine the advantages of graph databases and graph pro-

cessing systems and to provide several extensions, in particular, support for bitemporal
graphs and temporal graph analysis. As mentioned, this is achieved with a new temporal
property graph model TPGM and powerful graph operators that can be used within
analysis programs. All operators are implemented based on Apache Flink to support
parallel graph analysis on distributed cluster platforms for horizontal scalability.

2.6 Temporal Graph Processing Systems

We now discuss some selected systems for temporal graph processing that have been
developed in the last decade.
Kineograph [41] is a distributed platform ingesting a stream of updates to construct

a continuously changing graph. It is based on in-memory graph snapshots which are
evaluated by conventional mining approaches of static graphs (e.g., community detection).
ImmortalGraph [138] (earlier known as Chronos) provides a storage and execution

engine for temporal graphs. It is also based on a series of in-memory graph snapshots
that are processed with iterative graph algorithms. Snapshots include an update log so
that the graph can be reconstructed for any given point in time.
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Chronograph [61] implements a dynamic graph model that accepts concurrent modifi-
cations by a stream of graph updates including deletions. Each vertex in the model has
an associated log of changes of the vertex itself and its outgoing edges. Besides batch
processing on graph snapshots, online approximations on the live graph are supported.

A similar system called Raphtory [197] maintains the graph history in-memory, which
is updated through event streams and allows graph analysis through an API. The used
temporal model does not support multigraphs, i.e., multiple edges between two vertices
are not possible.
Tegra [100] provides ad-hoc queries on arbitrary time windows on evolving graphs,

represented as a sequence of immutable snapshots. An abstraction called Timelapse
comprises related snapshots, provides access to the lineage of graph elements and enables
the reuse of computation results across snapshots. The underlying distributed graph store
uses an object-sharing tree structure for indexing and is implemented on the GraphX
API of Apache Spark. A new snapshot is created for every graph change and cached in-
memory according to a least recently used approach where unused snapshots are removed
from memory and written back to the file system. So unlike Gradoop, where the entire
graph is kept in-memory, snapshots may have to be re-fetched from disk. Furthermore,
Tegra does not provide properties on snapshot objects and focuses on ad-hoc analysis on
recent snapshots while analysis with Gradoop relies more on pre-determined temporal
queries and workflows.
Tink [122] is a library for analyzing temporal property graphs built on Apache Flink.

Single time intervals represent temporal information for edges only, i.e., there is no
temporal information for vertices or support for bitemporality. It focuses on temporal
path problems and the calculation of graph measures such as temporal betweenness and
closeness.
The systems TGraph [95] and Graphite [74] also use time intervals in their graph

models where an interval is assigned to vertices, edges and their properties. TGraph
also provides a so-called zoom functionality [5] to reduce the temporal resolution for
explorative graph analysis, similar to Gradoop’s grouping operator (see Section 3.3.2).
Clock-G [133] is one of the most recently published temporal graph management

system. They introduce a space-efficient storage technique called δ-Copy+Log which
shall optimize space usage and query evaluation time. Their temporal graph data model,
the so-called Operation-based Property Graph Model (OPGM), models graph operations
as actions applied on a graph entity which translates to either an addition/deletion of
a vertex/edge or the update of a dynamic property [133]. The system supports three
types of temporal graph queries, namely 1) point-based local queries, 2) range-based local
queries, and 3) point-based and range-based global queries. Local queries are related to
path traversal queries starting from a selected vertex, whereas global queries retrieve the
state of a sub-graph at a time point or time range.

Compared to these systems, our work with Gradoop supports bitemporal graph data
to differentiate the graph’s evolution in the storage (transaction-time dimension) from the
application-oriented meaning of changes (valid-time dimension). The previous systems
also have less complete functionality regarding declarative graph operators and the
possibility to combine them in analytical workflows for flexible graph analysis, e.g.,
the retrieval of a graph snapshot followed by a temporal pattern matching and a final
grouping with aggregations based on the graph’s evolution. Furthermore, with Gradoop
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we cover a much broader range of temporal graph processing, from importing data from
various sources, offering a toolbox of analytical operators up to algorithms for temporal
graph metrics and the visualization of temporal graphs.
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3
The TPGM and Gradoop

Graphs are simple yet powerful data structures to model and analyze relations be-
tween real-world data objects, whereas temporal graphs are graphs whose structure
and properties change over time. The analysis of these graphs can utilize provided time
information, e.g., to answer analytical questions about the graph’s evolution. This section
gives a complete overview of Gradoop, a graph dataflow system for scalable, distributed
analytics of temporal property graphs that has been continuously developed since 2015.
Its graph model TPGM allows bitemporal modeling of vertices, edges, logical graphs and
graph collections. A declarative analytical language called GrALa enables analysts to
flexibly define analytical graph workflows by composing different temporal operators.
Built on a distributed dataflow system, large temporal graphs can be processed on a
shared-nothing cluster.

The contents of this section were published under the title Distributed Temporal Graph

Analytics with Gradoop [176].

3.1 Introduction

The analysis of graph data has gained fundamental interest, e.g., for web information
systems, social networks [49], business intelligence [159, 183, 216] or in life science
applications [123, 157]. There is a large spectrum of analysis forms for graph data,
ranging from graph queries to find specific patterns (e.g., biological pathways), over
graph mining (e.g., to rank websites or detect communities in social graphs) to machine
learning on graph data, e.g., to predict new relations.

Graph datasets are often large and heterogeneous, with millions or billions of vertices
and edges of different types, making the efficient implementation and execution of graph
algorithms challenging [110, 187]. Furthermore, the structure and contents of graphs and
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networks typically change over time, making it necessary to support temporal graph
analysis instead of being limited to the analysis of static graph data snapshots. Using
such time information for temporal graph queries and analysis is valuable in numerous
applications and domains, e.g., to determine how an infectious disease spreads over time.
Like in bitemporal databases [102, 105], time support for graph data should include both
valid time (also known as application time) and transaction time (also known as system
time), to differentiate when something has occurred or changed in the real world and
when such changes have been recorded and thus became visible to the system.

Two major categories of systems focus on the management and analysis of graph data:
graph database systems and distributed graph processing systems, as already discussed in
Chapter 2. To overcome the described limitations and combine the strengths of existing
systems, we started in 2015 already the development of a new open-source (https://
github.com/dbs-leipzig/gradoop) distributed graph analysis platform called Gradoop
(Graph Analytics on Hadoop), that has continuously been extended in the last years [78,
106, 107, 109, 111, 174, 177, 178]. Gradoop is a distributed platform to achieve high
scalability and parallel graph processing. It is based on an Extended Property Graph
Model (EPGM) [106] supporting both the processing of single graphs and of collections
of graphs, as well as an extensible set of declarative graph operators and graph mining
algorithms. Graph operators are not limited to a common query functionality such as
pattern matching but also include novel operators for graph transformation or grouping.
With the help of a domain-specific language called GrALa, these operators and algo-
rithms can be easily combined within dataflow programs to implement data integration
and graph analysis. While the initial focus has been on analyzing static graphs, we have
recently added support for bitemporal graphs, making Gradoop a distributed platform
for temporal graph analysis.

This section presents a complete system overview of Gradoop, focusing on the latest
extensions for temporal property graphs. This addition required adjustments in all system
components and the integration of analytical operators tailored to temporal graphs, for
example, a new version of the patternmatching and grouping operators, as well as support
for temporal graph queries. We also outline the implementation of these operators and
evaluate their performance.
The main contributions of this section address the challenges C1, C2, C3, C4, C5, C7

and C8, defined in Section 1.1. The contributions can be summarized as follows:

• Bitemporal graph model. We formally outline the bitemporal property graph
model TPGMused in Gradoop, supporting valid and transactional time information
for evolving graphs and graph collections.

• Temporal graph operators. We describe the extended set of graph operators that
support temporal graph analysis. In particular, we present temporal extensions of
the grouping and pattern matching operator with new query language constructs
to express and detect time-dependent patterns.

• Implementation and evaluation. We provide implementation details for the
new temporal graph operators and evaluate their scalability and performance for
different datasets and distributed configurations.

After a description of Gradoop’s architecture in Section 3.2, the bitemporal graph
data model, including an outline of all available operators and a detailed description
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of selected ones, is given in Section 3.3. After explaining implementation details in
Section 3.4, selected operators are evaluated in Section 3.5. We summarize our work in
Section 3.6. At the end of this thesis, in Chapter 8, we discuss lessons learned, related
projects, and ongoing work related to the Gradoop effort.

3.2 System Architecture Overview

With Gradoop, we provide a framework for scalable management and analytics of large,
semantically expressive temporal graphs. To achieve horizontal scalability of storage
and processing capacity, Gradoop runs on shared nothing clusters and utilizes existing
open source frameworks for distributed data storage and processing. The difficulties of
distributing data and computation are hidden beneath a graph abstraction allowing the
user to focus on the problem domain.
Figure 3.1 presents an overview of the Gradoop architecture. Analytical programs

are defined within our Graph Analytical Language (GrALa), which is a domain-specific
language for the Temporal Property GraphModel (TPGM). GrALa contains operators
for accessing static and temporal graphs in the underlying storage as well as for applying
graph operations and analytical graph algorithms to them. Operators and algorithms are
executed by the distributed execution engine, which distributes the computation across
the available machines. When the computation of an analytical program is completed,
results may either be written back to the storage layer or presented to the user. In the
following, we briefly explain the main components, some of which are described in more
detail in later sections. We will also discuss data integration support to combine different
data sources into a Gradoop graph.

Distributed Storage Gradoop supports several ways to store TPGM compliant
graph data. To abstract the specific storage, GrALa offers two interfaces: DataSource to
read and DataSink to write graphs. An analytical program typically starts with one or
more data sources and ends in at least one data sink. A few basic data sources and sinks are
built into Gradoop and are always available, e.g., a file-based storage like CSV that allows

Temporal Property Graph Model (TPGM)

Distributed Storage (Apache HDFS / HBase / Accumulo)

Extended Property Graph Model (EPGM)

Figure 3.1: Gradoop High-Level Architecture.
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reading and writing graphs from the local file system or the Apache Hadoop Distributed
File System (HDFS) [192]. Gradoop in addition supports Apache HBase [65] and Apache
Accumulo [67] as built-in storage, which provides database capabilities on top of the
HDFS. Data distribution and replication, as well as error handling in the case of cluster
failures, are handled by HDFS. A recent contribution to the open-source project [59]
added Apache Parquet [66] and Google’s data interchange format Protobuf [126] as a
supported format for sources and sinks. Due to the available interfaces, Gradoop is not
limited to the predefined storages. Other systems, e.g., a native graph database like Neo4j
or a relational database, can be used as graph storage by implementing the DataSource
and DataSink interfaces. Storage formats will be discussed in Section 3.4.5.

Distributed Execution Engine Within Gradoop, the TPGM and GrALa provide
an abstraction for the analyst to work with graphs. However, the actual implementa-
tion of the data model and its operators are transparent to the user and hidden within
the distributed execution engine. Generally, this can be an arbitrary data management
system that allows implementing graph operators. Gradoop uses Apache Flink, a dis-
tributed batch and stream processing framework, that allows executing arbitrary dataflow
programs in a data-parallel and distributed manner [9, 37]. Apache Flink handles data
distribution along with HDFS, load balancing and failure management. From an analytical
perspective, Flink provides several libraries that can be combined and integrated within
a Gradoop program, e.g., for graph processing, machine learning and SQL. Apache Flink
is further described in Section 3.4.1.

Temporal Property Graph Model The TPGM [178] describes how graphs and
their evolution are represented in Gradoop. It is an extension of the Extended Property
Graph Model (EPGM) [106] which is based on the widely accepted property graph
model [14, 170]. To handle the evolution of the graph and its elements (vertices and
edges), the model uses concepts of bitemporal data management [102, 105] by adding
two time intervals to the graph and to each of its elements. To facilitate integration
of heterogeneous data, the TPGM does not enforce any kind of schema, but the graph
elements can have different type labels and attributes. The latter are exposed to the analyst
and can be accessed within graph operators. For enhanced analytical expressiveness,
the TPGM supports handling of multiple, possibly overlapping graphs within a single
analytical program. Graphs, as well as vertices and edges, are first-class citizens of
the data model and can have their own properties. Furthermore, graphs are the input
and output of analytical operators which enables operator composition. Section 3.3.1
describes the TPGM model in more detail.

Graph Analytical Language Programs are specified using declarative GrALa
operators. These operators can be composed as they are closed over the TPGM, i.e., take
graphs as input and produce graphs. There are I/O operators to read and write graph
data and analytical operators to transform or analyze graphs. Table 3.1 shows a subset of
frequently used analytical operators and graph algorithms categorized by their input [106,
178]. There are specific operators for temporal graphs to determine graph snapshots
or the difference between two snapshots as well as temporal versions of more general
operators such as pattern matching [109] and graph grouping [111, 178]. Furthermore,
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Analytical Operators Graph Algorithms

T
e
m
p
o
r
a
l
G
r
a
p
h

Aggregation Combination PageRank
Pattern Matching [109] Overlap Community Detection
Transformation Exclusion Connected Components
Grouping [111, 178] Equality Single Source Shortest Path
Subgraph Call* Summarization
Snapshot [178] Hyperlink-Induced Topic Search
Difference [178] K-Means

G
r
a
p
h
C
o
l
l
. Selection Difference Frequent Subgraph Mining [160]

Distinct Equality
Limit Apply*

Union Reduce*

Intersection Call*

Table 3.1: Subset of frequently used analytical graph operators and algorithms available in Gradoop

organized by their input type, i.e., temporal graph or graph collection. (* auxiliary operators)

there are dedicated transformation operators to support data integration [119]. Each
category contains auxiliary operators, e.g., to apply unary graph operators on each graph
in a graph collection or to call external algorithms. GrALa already integrates well-known
graph algorithms (e.g., page rank or connected components), which can be seamlessly
integrated into a program. Graph operators will be further described in Section 3.3.2.

Programming interfaces Gradoop provides two options to implement an analyti-
cal program. The most comprehensive approach is the Java API containing the TPGM
abstraction including all operators defined within GrALa. Here, the analyst has the high-
est flexibility of interacting with other Flink and Java libraries as well as of implementing
custom logic for GrALa operators. For a user-friendly visual definition of Gradoop
programs and a visualization of graph results, we have incorporated Gradoop into the
data pipelining tool KNIME Analytics Platform [28]. This extension makes it possible
to use selected GrALa operators within KNIME analysis workflows and to execute the
resulting workflows on a remote cluster [181, 182]. KNIME and the Gradoop extension
offer built-in visualization capabilities that can be leveraged for customizable result and
graph visualization.

Data integration support Gradoop aims at the analysis of integrated data, e.g.,
knowledge graphs, originating from different heterogeneous sources. This can be achieved
by first translating the individual sources into a Gradoop representation and then per-
forming data integration for the different graphs. Gradoop provides several specific data
transformation operators to support this kind of data integration, e.g., to achieve similarly
structured graphs (see Section 3.3.2). Furthermore, we provide extensive support for
entity resolution and entity clustering within a dedicated framework called FAMER [184–
186] which is based on Gradoop and Apache Flink. FAMER determines matching entities
from two or more (graph) sources and clusters them together. Such clusters of matching
entities can then be fused to single entities (with a Fusion operator) for use in an integrated
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Gradoop graph. In future work, we will provide a closer integration of Gradoop and
FAMER to achieve a unified data transformation and integration for heterogeneous graph
data and the construction and evolution of knowledge graphs [147].

3.3 Temporal Property Graph Model

In this section, we present the Temporal Property Graph Model (TPGM) as the graph
model of Gradoop that allows the representation of evolving graph data and its analysis.
Having the evolutionary analysis of graphs as a focus, our goal is to model and understand
the changes of the graph, provided that the historical information is available to us. We
first describe the structural part of TPGM to represent temporal graph data and then
discuss the graph operators as part of GrALa. The last subsection briefly discusses the
graph algorithms currently available in Gradoop.

3.3.1 Graph Data Model

The Property Graph Model (PGM) [14, 170] is a widely accepted graph data model used
by many graph database systems [13], e.g., JanusGraph [70], OrientDB [152], Oracle’s
Graph Database [47] and Neo4j [142]. A property graph is a directed, labeled and
attributed multigraph. Vertex and edge semantics are expressed using type labels (e.g.,
Person or knows). Attributes have the form of key-value pairs (e.g., name:Alice or
classYear:2015) and are referred to as properties. Properties are set at the instance level
without an upfront schema definition. A temporal property graph is a property graph
with additional time information on its vertices and edges, which primarily describes
the historical development of the structure and attributes of the graph, i.e., when a
graph element was available and when it was superseded. Our presented TPGM adds
support for two time dimensions, valid and transaction time, to differentiate between
the evolution of the graph data with respect to the real world application (valid time)
and with respect to the visibility of changed graph data to the system managing the data
(transaction time). This concept of maintaining two orthogonal time domains is known
as bitemporality [105]. In addition, the TPGM supports graph collections, which were
introduced by the EPGM [106], the non-temporal predecessor of the TPGM. A graph
collection contains multiple, possibly overlapping property graphs, which are referred to
as logical graphs. Like vertices and edges, logical graphs also have bitemporal information,
a type label and an arbitrary number of properties. Before the data model is formally
defined, the following preliminaries1 have to be considered:

Preliminaries We assume two discrete linearly ordered time domains: Ωval describes
the valid-time domain whereas Ωtx describes the transaction-time domain. For each
domain, an instant in time is a time-point ωi with limited precision, e.g., milliseconds.
The linear ordering is defined by ωi < ωi+1, which means that ωi happened before ωi+1.
A period of time is defined by a closed-open interval τ = [ωstart, ωend) that represents
a discrete contiguous set of time instances {ω∣ω ∈ Ω ∧ ωstart ≤ ω < ωend} starting from
ωstart and including the start time, continuing to ωend but excluding the end time. To

1The preliminaries are partly based onmodel definitions of the systems TGraph [139] and Graphite [74].
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separate the time intervals depending on the corresponding dimension, we use the notion
τ val and τ tx.

Based on this, a TPGM database is formally defined as follows:

Definition 9. (Temporal Property Graph Model database)

A tuple G = (L,V,E, l, s, t,B, β,K,A,κ) represents a temporal graph database. L is a

finite set of logical graphs, V is a finite set of vertices and E is a finite set of directed edges

with s ∶ E → V and t ∶ E → V assigning source and target vertex.

Each vertex v ∈ V is a tuple ⟨vid, τ val, τ tx⟩, where vid is a unique vertex identifier, τ val

and τ tx
are the time-intervals for which the vertex is valid with respect to Ωval

or Ωtx
.

Each edge e ∈ E is a tuple ⟨eid, τ val, τ tx⟩, where eid is a unique edge identifier that allows
multiple edges between the same nodes, τ val

and τ tx
are the time-intervals for which the

edge exists, analogous to the vertex definition.

B is a set of type labels and β ∶ L ∪ V ∪E → B assigns a single label to a logical graph,

vertex or edge. Similarly, properties are defined as sets of property keysK , property values

A and a partial function κ ∶ (L ∪ V ∪E) ×K ⇀ A.
A logical graph G′ = (V ′,E′, τ val, τ tx) ∈ L represents a subset of vertices V ′ ⊆ V and

a subset of edges E′ ⊆ E. τ val
and τ tx

are the time-intervals for which the logical graph

exists in the respective time dimensions. Graph containment is represented by the mapping

l ∶ V ∪E → P(L) ∖ {∅} such that ∀v ∈ V ′ ∶ G′ ∈ l(v) and ∀e ∈ E′ ∶ s(e), t(e) ∈ V ′ ∧G′ ∈
l(e). A graph collection G = {G1,G2, ...,Gn} ⊆ P(L) is a set of logical graphs.

Constraints Each logical graph has to be a valid directed graph, implying that for
every edge in the graph, the adjacent vertices are also elements in that graph. Formally:
For every logical graph G = (V,E, τ val, τ tx) and every edge e = ⟨eid, τ val, τ tx⟩ there
must exist some v1 = ⟨v1id, τ val

1 , τ tx
1 ⟩, v2 = ⟨v2id, τ val

2 , τ tx
2 ⟩ ∈ V where s(eid) = v1id and

t(eid) = v2id. Additionally, the edge can only be valid with respect to Ωtx when both
vertices are also valid at the same time: τ tx ⊆ τ tx

1 ∧ τ tx ⊆ τ tx
2 . The same must hold for the

valid time domain Ωval: τ val ⊆ τ val
1 ∧ τ tx ⊆ τ val

2 .
Vertices are identified by their unique identifier and their validity in the transaction-

time domain Ωtx, meaning that a temporal graph database may contain two or more
vertices with the same identifier but different transaction-time values. The corresponding
intervals of all those vertices have to be pairwise disjoint, i.e., for every two vertices,
v1 = ⟨v1id, τ val

1 , τ tx
1 ⟩, v2 = ⟨v2id, τ val

2 , τ tx
2 ⟩ ∈ V it must hold that v1id = v2id ∧ v1 ≠ v2 Ô⇒

τ tx
1 ∩ τ tx

2 = ∅. Edges may be identified in the same way, meaning that the graph database
can also contain multiple edges with the same identifier but different transaction time
values.

Figure 3.2 shows a sample temporal property graph representing a simple bike rental
network inspired by the New York City’s bicycle-sharing system (CitiBike) dataset [129].
This graph consists of the vertex set V = {v0, .., v4} and the edge set E = {e0, .., e10}.
Vertices represent rental stations denoted by corresponding type label Station and are
further described by their properties (e.g., name: Christ Hospital). Edges describe
the relationships or interactions between vertices and also have a type label (Trip) and
properties. The key set K contains all property keys, for example, bikeId, userType
and capacity, while the value set A contains all property values, for example, 21233,
Cust and 22. Vertices with the same type label may have different property keys, e.g., v1
and v2.
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Station 0
name: 10 Ave & W 28 St
capacity: 49 
lat: 40.75066386
lon: -74.00176802
regionId: 71

Trip
bikeId: 21233
userType: Sub
gender: male
yob: 1971

 

Station 1
name: E 17 St & Broadway
capacity: 66 
lat: 40.73704984
lon: -73.99009296
regionId: 71

Station 2
name: S 3 St & Bedford Ave
capacity: 25
electric_bikes: 2 
lat: 40.71260486
lon: -73.96264403
regionId: 71

Station 4
name: Christ Hospital
capacity: 22 
lat: 40.734785818
lon: -74.050443636
regionId: 70

Station 3
name: Essex Light Rail
capacity: 22 
lat: 40.7127742
lon: -74.0364857
regionId: 70

1 Region | location: New York City, stationCount: 3

10
9

5

6

1

0

7 8

4
3

2

Trip
bikeId: 34443
userType: Sub
gender: male
yob: 1984

Trip
bikeId: 21233
userType: Sub
gender: female
yob: 1980

Trip
bikeId: 21233
userType: Cust
gender: male
yob: 1981

Trip
bikeId: 99633
userType: Sub
gender: male
yob: 1990

Trip
bikeId: 47522
userType: Sub
gender: male
yob: 1995

Trip
bikeId: 21233
userType: Cust
gender: female
yob: 1974

Trip
bikeId: 54549
userType: Cust
gender: female
yob: 1968

Trip
bikeId: 22987
userType: Sub
gender: male
yob: 1984

Trip
bikeId: 29933
userType: Sub
gender: male
yob: 1964

Trip
bikeId: 27371
userType: Sub
gender: male
yob: 1982

2 Region | location: Jersey City, stationCount: 2

0 BikeGraph

1

0 0
1
2
3
4

1
2
3
4

6
7
8
9

5

Ωval

2

10

8:00              9:00         10:00           11:00            12:00          13:00           14:00    
2019-09-06 ωmaxωmin

0

Ωtx

Figure 3.2: Example temporal property graph of a bike rental network.

To visualize the graph’s evolution, a timeline is placed below the graph in Figure 3.2
representing the valid- and transaction-time domain Ωval and Ωtx, respectively. Horizon-
tal arrows represent the validity for each graph entity and domain (dashed for Ωtx and
solid for Ωval). One can see different time points of a selected day, as well as the minimum
ωmin and maximum ωmax time as default values. The latter are used for valid times that
are not given in the data record (e.g., for logical graphs or the end of a station’s validity)
or period ending bounds of transaction times. Edges representing a bike trip are valid
according to the rental period. For example, edge e2 represents the rental of bike 21233
at station v0 at 10 a.m. and its return to station v1 at 11 a.m. The bike was then rented
again from 11:10 a.m. to 12:10 p.m., which is represented by edge e5. Completed trips are
stored in the graph every full hour, which is made visible by the transaction times.
The example graph consists of the set of logical graphs L = {G0,G1,G2}, where G0
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represents the whole evolved rental network and the remaining graphs represent regions
inside the bicycle sharing network. Each logical graph has a dedicated subset of vertices
and edges, for example, V (G1) = {v0, v1, v2} and E(G1) = {e2, e3, e4}. Considering G1
and G2, one can see that vertex and edge sets may not overlap since V (G1) ∩ V (G2) =
{∅} and E(G1) ∩ E(G2) = {∅}. Note that also logical graphs have type labels (e.g.,
BikeGraph or Region) and may have properties, which can be used to describe the graph
by annotating it with specific metrics (e.g., stationCount:3) or general information
about that graph (e.g., location: Jersey City). Logical graphs, like those in our
example, are either declared explicitly or are the output of a graph operator or algorithm,
e.g., graph pattern matching or community detection. In both cases, they can be used as
input for subsequent operators and algorithms.

3.3.2 Operators

In order to express analytical problems on temporal property graphs, we defined the
domain specific language GrALa containing operators for single logical graphs and graph
collections. Operators may also return single logical graphs or graph collections (i.e.,
they are closed over the data model), thereby enabling operator composition. In the
following, we use the terms collection and graph collection as well as graph and logical

graph interchangeably.
Table 3.2 lists our graph operators including their corresponding pseudocode syntax

for calling them in GrALa. The syntax adopts the concept of higher-order functions for
several operators (e.g., to use aggregate or predicate functions as operator arguments).
Based on the input of operators, we distinguish between graph operators and collection

operators as well as unary and binary operators (single graph/collection vs. two graph-
s/collections as input). There are also auxiliary operators to apply graph operators on
collections or to call specific graph algorithms. In addition to the listed ones, we provide
operators to import external datasets to Gradoop by mapping the data to the TPGM data
model, i.e., creating graphs, vertices and edges including respective labels, properties and
bitemporal attributes. In the following, we focus on a subset of the operators and refer to
our publications [106, 109, 111, 177, 178] and Gradoop’s GitHub-Wiki [172] for detailed
explanations.

Subgraph

In temporal and heterogeneous graphs, often only a specific subgraph is of interest for
analytics, e.g., only persons and their relationships in a social network. The subgraph
operator is used to extract the graph of interest by applying predicate functions on each
element of the vertex and edge sets of the input graph. Within a predicate function, the
user has access to label, properties and bitemporal attributes of the specific entity and
can express arbitrary logic. Formally, given a logical graph G(V,E) and the predicate
functions φv ∶ V → {true, false} and φe ∶ E → {true, false}, the subgraph operator
returns a new graph G′ ⊆ G with V ′ = {v ∣ v ∈ V ∧ φv(v)} and E′ = {⟨vi, vj⟩ ∣ ⟨vi, vj⟩ ∈
E ∧ φe(⟨vi, vj⟩) ∧ vi, vj ∈ V ′}.
In the following example, we extract the subgraph containing all vertices labeled

Station having a property capacity with a value less than 30 and their edges of type
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Operator

GrALa

Input and Operator Signature Output

U
n
a
r
y

Aggregation Graph.aggregate( propertyKey, aggregateFunction ) Graph
Transformation Graph.transform( graphFunction, vertexFunction, edgeFunction ) Graph
Pattern Matching Graph.query( patternGraph ) Collection
Subgraph Graph.subgraph( vertexPredicateFunction, edgePredicateFunction ) Graph
Snapshot Graph.snapshot( predicateFunction, [dimension] ) Graph
Difference Graph.diff( firstPredicate, secondPredicate, [dimension] ) Graph
Grouping Graph.groupBy( vertexGroupingKeys, vertexAggregateFunctions,

edgeGroupingKeys, edgeAggregateFunctions ) Graph
Sampling Graph.sample( samplingAlgorithm ) Graph

VertexToEdge Graph.vertexToEdge( vertexLabel, newEdgeLabel ) Graph
EdgeToVertex Graph.edgeToVertex( edgeLabel, newVertexLabel,

edgeLabelSourceToNew, edgeLabelNewToTarget ) Graph
PropertyToVertex Graph.propToVertex( vertexLabel, propertyKey, newVertexLabel,

newPropertyKey, edgeDirection, edgeLabel ) Graph
VertexToProperty Graph.vertexToProp( vertexLabel, propertyKey, newPropertyKey ) Graph
ConnectNeighbors Graph.connectNeighbors( sourceVertexLabel, edgeDirection,

neighborVertexLabel, newEdgeLabel ) Graph

Pattern Matching Collection.query( patternGraph ) Collection
Selection Collection.select( predicateFunction ) Collection
Distinct Collection.distinct( ) Collection
Limit Collection.limit( n ) Collection

B
i
n
a
r
y

Equality Graph.equals( otherGraph, [:identity|:data] ) Boolean
Combination Graph.combine( otherGraph ) Graph
Exclusion Graph.exclude( otherGraph ) Graph
Overlap Graph.overlap( otherGraph ) Graph
Fusion Graph.fusion( otherGraph ) Graph

Equality Collection.equals( otherCollection, [:identity|:data] ) Boolean
Difference Collection.difference( otherCollection ) Collection
Intersect Collection.intersect( otherCollection ) Collection
Union Collection.union( otherCollection ) Collection

A
u
x
. Apply Collection.apply( unaryGraphOperator ) Graph

Reduce Collection.reduce( binaryGraphOperator ) Graph
Call [Graph|Collection].callForGraph( algorithm, parameters ) Graph

[Graph|Collection].callForCollection( algorithm, parameters ) Collection

D
a
t
a

Graph Head Graph.getGraphHead( ) GraphHead
Graph Heads Collection.getGraphHeads( [label] ) GraphHeads
Vertices [Graph|Collection].getVertices( [label] ) Vertices
Edges [Graph|Collection].getEdges( [label] ) Edges
Graph Transactions Collection.getTransactions( [label] ) Transactions

I
/
O

Data source DataSource.readGraph( ) Graph
DataSource.readCollection( ) Collection

Data sink DataSink.write( [graph|collection] ) void

Table 3.2: TPGM graph operators specified with GrALa.

Trip with a property gender which value is equal to female:2

1 subgraph = g0
2 .subgraph(
3 (v => v.label == 'Station' AND v.capacity < 30),
4 (e => e.label == 'Trip' AND e.gender == 'female')
5 )

Applied to the graphG0 of Figure 3.2, the operator returns a new logical graph described
through G′ = ⟨{v2, v3, v4},{e8, e9}⟩. By omitting either a vertex or an edge predicate

2In our listings, label and property values of an entity n are being accessed using dot notation, e.g.,
n.label or n.name.
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function exclusively, the operator is also suitable to declare vertex-induced or edge-
induced subgraphs respectively.

Snapshot

The snapshot operator is used to retrieve a valid snapshot of the whole temporal graph
either at a specific point in time or a subgraph that is valid during a given time range.
It is formally equal to the subgraph operator, but allows for the application of specific
time-dependent predicate functions, which were partly adapted from SQL:2011 [120] and
Allen’s interval algebra [10].

The predicate asOf(t) returns the graph at a specific point in time whereas all others,
like fromTo(t1, t2), precedes(t1, t2), or overlaps(t1, t2), return a graph with all changes in
the specified interval. For each predicate function, the valid-time domain is used by
default but can be specified through an additional argument. Note that a TPGM graph
may represent the entire history of all graph changes. For analysis of the current graph
state, it is therefore advisable to use the snapshot operator with the asOf() predicate,
parameterized with the current system timestamp. Bitemporal predicates can be defined
through multiple operator calls.

For example, the following GrALa operator call retrieves a snapshot of the graph for
valid time 2020-09-06 at 9 a.m. and at the current system time as the transaction time:

1 pastGraph = g0
2 .snapshot( asOf(CURRENT_TIMESTAMP()), TRANSACTION_TIME )
3 .snapshot( asOf('2019-09-06 09:00:00'), VALID_TIME )

In the timeline of Figure 3.2, one can see that edges e1, e6, e8 as well as all vertices
and graphs meet the valid-time condition and are therefore part of the resulting graph.
All visible elements exist at the current system time according to the transaction-time
domain, therefore the result does not change. However, if one changes the argument of
the first (transaction time) predicate to ’2019-09-06 09:55:00’, edges e6 and e8 would
no longer belong to the result set, since the information about these trips was not yet
persisted at this point in time.

Difference

In temporal graphs, the difference of two temporal snapshots may be of interest for
analytics to investigate how a graph has changed over time. To represent these changes,
a difference graph can be used which is the union of both snapshots and in which each
graph element is annotated as an added, deleted, or persistent element.

The difference operator of GrALa consumes two graph snapshots defined by temporal
predicate functions and calculates the difference graph as a new logical graph. The
annotations are stored as a property _diff on each graph element, whereas the value of
the property will be a number indicating that an element is either equal in both snapshots
(0) or added (1) or removed (-1) in the second snapshot. This resulting graph can then be
used by subsequent operators to, for example, filter for added elements, group removed

elements or aggregate specific values of persistent elements.
For the given example in Figure 3.2, the following operator call calculates the difference

between the graph at 9 a.m. and 10 a.m. of the given day:

45



CHAPTER 3. THE TPGM AND GRADOOP

1 diffGraph = g0
2 .diff(
3 asOf('2019-09-06 09:00:00'),
4 asOf('2019-09-06 10:00:00'),
5 VALID_TIME
6 )

The operator returns a new logical graph described through G′ where V (G′) =
{v0, . . . , v4} and E(G′) = {e1, e2, e6, e7, e8}. Further, the property key _diff is added to
K and the values {−1,0,1} are added to A. Since all vertices and the edge e8 are valid in
both snapshots, a property _diff:0 is added to them. The edges e6 and e1 are not longer
available in the second snapshot, therefore they are extended by the property _diff:-1,
whereas the edges e2 and e7 are annotated by _diff:1 to show that they were created
during this time period.

Time-dependent Graph Grouping

For large graphs it is often desirable to structurally group vertices and edges into a
condensed graph which helps uncovering insights about hidden patterns [106, 111] and
exploratory analyse an evolving graph at different levels of temporal and structural
granularity. Let G′ be the condensed graph of G, then each vertex in V ′ represents a
group of vertices in V and edges in E′ represent a group of edges between the vertex
group members in V . Formally, V ′ = {v′1, v′2, ..., v′k} where v′i is called super vertex and
∀v ∈ V , sν(v) is the super vertex of v.
Vertices are grouped together based on the values returned by key functions. A

key function k ∶ V → V is a function mapping each vertex to a value in some set V .
Let {k1, . . . , kn} be a set of vertex grouping key functions, then ∀u, v ∈ V ∶ sν(u) =
sν(v) ⇐⇒ ⋀n

i=1 ki(u) = ki(v). Some key functions are provided by the system, namely
label() = v ↦ β(v)mapping vertices to their label, property(key) = v ↦ κ(v, key)mapping
vertices to the according property value as well as timeStamp(...) and duration(...) used to
extract temporal data from elements. The latter functions can be used to extract either
the start or end time of both time domains or their duration.

It is also possible to retrieve date-time fields from timestamps, like the corresponding
day of the week or the month. This can be used, for example, to group edges that became
valid in the same month together. Further, user defined key functions are supported by
the operator, e.g., to calculate a spatial index in form of a grid cell identifier from latitude
and longitude properties to group all vertices of that virtual grid cell together. The values
returned by the key functions are being stored on the super vertex as new properties.

Similarly, E′ = {e′1, e′2, . . . , e′l} where e′i is called a super edge and sϵ(u, v) is the super
edge for ⟨u, v⟩. Edge groups are determined along the super vertices and a set of edge
keys {k1, . . . , km}, where kj ∶ E → V are grouping key functions analogous to the
vertex keys, such that ∀e, f ∈ E ∶ sϵ(s(e), t(e)) = sϵ(s(f), t(f)) ⇐⇒ sν(s(e)) =
sν(s(f)) ∧ sν(t(e)) = sν(t(f)) ∧⋀m

j=1 kj(e) = kj(f). The same key functions mentioned
above for vertices are also applicable for edges. Additionally, vertex and edge aggregate
functions γv ∶ P(V) → A and γe ∶ P(E) → A are used to compute aggregated property
values for grouped vertices and edges, e.g., the average duration of rentals in a group
or the number of group members. The aggregate value is stored as new property at the
super vertex and super edge respectively.
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The following listing shows the application of the time-dependent grouping operator
using GrALa:

1 summary = g0.groupBy(
2 // Vertex grouping key functions
3 [label(), property('regionId')],
4 // Vertex aggregate functions
5 (superVertex, vertices =>
6 superVertex['count'] = vertices.count(),
7 superVertex['lat'] = avg(vertices.lat),
8 superVertex['lon'] = avg(vertices.lon)),
9 // Edge grouping key functions

10 [label(), timeStamp(
11 VALID_TIME, FROM, HOUR_OF_DAY)],
12 // Edge aggregate functions
13 (superEdge, edges =>
14 superEdge['count'] = edges.count(),
15 superEdge['avgTripLen'] =
16 averageDuration(VALID_TIME))

The goal of this example is to group Stations and Trips in the graph of Figure 3.2 by
region and to calculate the number of stations and the average coordinates of stations
in each region. Furthermore, we group trip edges by the hour of the day in which the
trip was started and calculate the number and average duration of trips. For example, we
can gain an insight into how popular each region was and which route between which
regions was the most popular or took the longest all day.

In line 3 we define the vertex grouping keys. Here, we want to group vertices by type
label (using the label() key function) and property key regionId (using the property()
key function). Edges are grouped by label and by the start of the valid time interval.
The timeStamp key function was used for the latter to extract the start of the valid time
interval and to calculate the hour of the day for this time (lines 10-11). Type labels are
added as grouping keys in both cases, since we want to retain this information on super
vertices and edges. In lines 5-8 and 13-16, we declare the vertex and edge aggregate
functions respectively. Both receive a super element (i.e., superVertex, superEdge) and
a set of group members (i.e., vertices, edges) as inputs. They then calculate values for
the group and attach them as properties to the super element. In our example, a count
property is set storing the number of elements in the group. We also use the avg function
to calculate the average value of a numeric property and the averageDuration function
to get the average length of the valid time interval for elements. Figure 3.3 shows the
resulting logical graph for this example.

Temporal Pattern Matching

A fundamental operation of graph analytics is the retrieval of subgraphs isomorphic or
homomorphic3 to a user-defined pattern graph. An important requirement in the scope of
temporal graphs is the access and usage of the temporal information, i.e., time intervals
and their bounds, inside the pattern. For example, given a bike-share network, an analyst

3GrALa support different morphism semantics, see [109].
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Trip
hour_of_day: 8
count: 3
avgTripLen: 62.3 min

3

Station 5
regionId: 70
count: 2
lat: 40.723780009
lon: -74,043464668

 

Station 6
regionId: 71
count: 3
lat: 40.73343952
lon: -73.98483500

 

1211

13

Trip
hour_of_day: 9
count: 1
avgTripLen: 203.2 min

Trip
hour_of_day: 10
count: 2
avgTripLen: 71.7 min

Trip
hour_of_day: 12
count: 1
avgTripLen: 88 min

Trip
hour_of_day: 13
count: 1
avgTripLen: 60 min

14

15

Trip
hour_of_day: 8
count: 1
avgTripLen: 203.2 min

16

Trip
hour_of_day: 9
count: 1
avgTripLen: 60 min

17

Trip
hour_of_day: 11
count: 1
avgTripLen: 61 min

18

Figure 3.3: Resulting graph of the grouping example.

may be interested in a chronological sequence of trips of the same bike that started
at a particular station with a radius of three hops (stations). To support such queries,
GrALa provides the pattern matching operator [109], where the operator argument is a
pattern (query) graph Q including predicates for its vertices and edges. To describe such
query graphs, we defined TemporalGDL, a query language which is based on the core
concepts of Cypher [71, 148], especially its MATCH and WHERE clauses. For example, the
expression (a)-[e]->(b) denotes a directed edge e from vertex a to vertex b and can be
used in a MATCH clause. Predicates are either embedded into the pattern by defining type
labels and properties or expressed in the WHERE clause. For a more detailed description
of the open-source Graph Definition Language (GDL), the (non-temporal) language on
which TemporalGDL is based, we refer to our previous publication [109] and the GitHub
repository [108].

We extended the language by various syntactic constructs that are partly inspired by
Allen’s conventions [10] and the SQL:2011 standard [120], to support the TPGM-specific
bitemporal attributes. These extensions enable the construction of time-dependent
patterns, e.g., to define a chronological order of elements or to define boolean relations
by accessing the element’s temporal intervals and their bounds.
Table 3.3 gives an overview of a subset of the TemporalGDL syntax including access

options for intervals and their bounds of both dimensions (e.g., a.val to get the valid time
interval of the graph element that is represented by variable a), a set of binary relations
for intervals and timestamps (e.g., a.val.overlaps(b.val) to check if the valid time
intervals of the graph elements assigned to a and b overlap), functions to create a duration
time constant of a specific time unit (e.g., Seconds(10) to get a duration constant of 10
seconds) and binary relations between duration constants and interval durations, e.g,
a.val.shorterThan(b.val) to check if the duration of the valid time interval of a is
shorter than the one of b or a.val.longerThan(Minutes(5)) to check if the duration
of the interval is longer than five minutes.

Pattern matching is applied to a graph G and returns a graph collection G′, such that
G′ ∈ G′⇔ G′ ⊆ G ∧G′ ≃ Q, i.e., G′ contains all isomorphic (or homomorphic) subgraphs
of G that match the pattern.

48



3.3. TEMPORAL PROPERTY GRAPH MODEL

Syntax Description Return type

Creation

Interval(t1,t2) Creates an interval. Interval

Timestamp(t_lit) Creates a timestamp. Timestamp

Millis(num)
Seconds(num)
Minutes(num)
Hours(num)
Days(num)

Creates a duration time constant by the
given number.

TimeConstant

Access

a.tx_from
a.tx_to
a.val_from
a.val_to

Access an element’s interval bound of the
given dimension.

Timestamp

a.tx
a.val

Access an element’s interval of the give
dimension.

Interval

Binary relations

t1 {<,<=,=,!=,>=,>} t2
t1.before(t2)
t1.after(t2)

Simple timestamp comparisons. Boolean

i1.overlaps(i2)
i1.contains(i2)
i1.precedes(i2)
i1.succeeds(i2)
i1.immediatelyPrecedes(i2)
i1.immediatelySucceeds(i2)
i1.equals(i2)

Binary interval relations. Boolean

d1.longerThan(d2)
d1.shorterThan(d2)
d1.lengthAtLeast(d2)
d1.lengthAtMost(d2)

Duration comparisons. Boolean

Legend

a a variable representing a vertex/edge
d1;d2 a interval instance or duration time constant
t_lit a timestamp literal with format: YYYY-MM-DDTHH:MM:SS or YYYY-MM-DD
i1,i2 a interval instance
num a numerical value
t1;t2 a timestamp instance

Table 3.3: Overview of TemporalGDL’s syntax to support temporal graph patterns.
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The pattern matching operator is applied on a logical graph as follows:

1 matches = g0.query("
2 MATCH (a:Station {name:'Christ Hospital'})-[e:Trip]->(b:Station)
3 (b:Station)-[f:Trip]->(c:Station)
4 (c:Station)-[g:Trip]->(d:Station)
5 WHERE e.bikeId = f.bikeId AND f.bikeId = g.bikeId AND
6 e.val.precedes(f.val) AND g.val.succeeds(f.val)")

The shown TemporalGDL pattern graph reflects the aforementioned bike-share network
query. In the example, we describe a pattern of four vertices and three edges, which are
assigned to variables (a,b,c,d for vertices and e,f,g for edges). Variables are optionally
followed by a label (e.g., a:Station) and properties (e.g., {name:’Christ Hospital’}).
More complex predicates can be expressed within the WHERE clause. Here, the user has
access to vertex and edge properties using their variable and property keys (e.g., e.bikeId
= f.bikeId). In addition, bitemporal information of the elements can be accessed in a
similar way using predefined identifiers (e.g., e.val) as described before. A chronological
order of the edges is defined by binary relations, for example, e.val.precedes(f.val).
When called for graphG0 of Figure 3.2, the operator returns a graph collection containing
a single logical graph as shown in Figure 3.4. Each graph in the result collection contains
a new property storing the mapping between query variables and entity identifiers, e.g.,
query variable a is mapped to entity with id 4.

Graph transformation operators

The transformation operator allows simple structure-preserving in-place selection or
modifications of graph, vertex and edge properties, for example, to align different sets of
properties for data integration, to reduce data volume for further processing or to map
property values to temporal attributes and vice versa. Transformation functions, e.g.,
ν ∶ V → V for vertices, can modify labels, properties and temporal attributes.
In addition there are several structural transformation operators to bring graph data

into a desired form, e.g. for data integration with other graphs or for easier data analy-

Station
name: 10 Ave & W 28 St
capacity: 49 
lat: 40.75066386
lon: -74.00176802
regionId: 71

Trip
bikeId: 21233
userType: Sub
gender: male
yob: 1971

 

Station 1
name: E 17 St & Broadway
capacity: 66 
lat: 40.73704984
lon: -73.99009296
regionId: 71

Station 4
name: Christ Hospital
capacity: 22 
lat: 40.734785818
lon: -74.050443636
regionId: 70

Station
name: Essex Light Rail
capacity: 22 
lat: 40.7127742
lon: -74.0364857
regionId: 70

mapping: {a: 4, b: 0, c: 1, d: 3, e: 1, f: 2, g:5}

1

Trip
bikeId: 21233
userType: Sub
gender: female
yob: 1980

Trip
bikeId: 21233
userType: Cust
gender: male
yob: 1981

4

2

5

0

3

Figure 3.4: Resulting graph of Temporal Pattern Matching example.
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sis [119]. For example, a bibliographic network with publications and their authors can
be transformed for an easier analysis of co-authorships, e.g., by generating a graph with
author vertices and co-authorship edges only. This is achieved with the help of operator
ConnectNeighbors that creates edges between same-type vertices (e.g., authors) with a
shared neighbor vertex, e.g., a co-authored publication. Further operators are available
to transform properties or edges into vertices (PropertyToVertex, EdgeToVertex) and vice
versa (VertexToProperty, VertexToEdge), to fuse together matching vertices, and others.
A description of these operators can be can be found in [119] and Gradoop’s GitHub
wiki [172].

Additional graph operators

As shown in Table 3.2, GrALa provides several additional compositional graph operators.
Aggregation maps an input graph G to an output graph G′ and applies the user-

defined aggregate function α ∶ L→ A to perform global aggregations on the graph. The
output graph stores the result of the aggregate function in a new property k, such that
κ(G′, k) = α(G). Common examples for aggregate functions are vertex and edge count
as well as more complex aggregates based on vertex and edge properties, e.g., the average
trip duration in a region.

Sampling calculates a subgraph of much smaller size, which helps to simplify and speed
up the analysis or visualization of large graphs. Formally, a sampling operator takes a
logical graph G(V,E) and returns a graph sample G′(V ′,E′) with V ′ ⊆ V and E′ ⊆ E.
The number of elements in G′ is determined by a given sample size s ∈ [0,1], where s
defines the ratio of vertices (or edges) the graph sample contains compared to the original
graph. Several sampling algorithms are implemented, three basic approaches will be
briefly outlined here: random vertex/edge sampling, the use of neighborhood information
and graph traversal techniques. The former is realized by using s as a probability for
randomly selecting a subset of vertices and their corresponding edges. The same concept
is applied on the edges in the random edge sampling. To improve the topological locality,
random neighborhood sampling extends the random vertex sampling approach to include
all neighbors of a selected vertex in the graph sample. Optionally, only neighbors on
outgoing or incoming edges of the vertex will be taken into account. Random walk

sampling traverses the graph along its edges, starting at one or more randomly selected
vertices. Following a randomly selected outgoing edge of such a vertex, the connected
neighbor is marked as visited. If a vertex has no outgoing edges, or all of them have
already been traversed, the sampling jumps to another randomly selected vertex of the
graph and continues traversing there. The algorithm converges when the desired number
of vertices has been visited. Amore detailed description of Gradoop’s sampling operators
can be found in [78] and the GitHub wiki [172].

Binary graph operators take two graphs as input. For example, equality compares two
graphs based on their identifiers or their contained data, combination merges the vertex
and edge sets of the input graphs while overlap preserves only those entities that are
contained in both input graphs.
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Graph Collection operators

Collection operators require a graph collection as input. For example, the selection

operator filters those graphs from a collection G for which a user-defined predicate
function ϕ ∶ L → {true, false} evaluates to true. The predicate function has access to
the graph label and its properties. Predicates on graph elements can be evaluated by
composing graph aggregation and selection. There are also binary operators that can be
applied on two collections. Similar to graph equality, collection equality determines, if two
collections contain the same entities or the same data. Additionally, the set-theoretical
operators union, intersection and difference compute new collections based on graph
identifiers.

It is often necessary to execute a unary graph operator on more than one graph, for
example, to perform aggregation for all graphs in a collection. Not only the previously
introduced operators subgraph, matching and grouping, but all other operators with
single logical graphs as in- and output (i.e., op ∶ L→ L) can be executed on each element of
a graph collection using the apply operator. Similarly, in order to apply a binary operator
on a graph collection, GrALa adopts the reduce operator as often found in functional
programming languages. The operator takes a graph collection and a commutative binary
graph operator (i.e., op ∶ L ×L→ L) as input and folds the collection into a single graph
by recursively applying the operator.

3.3.3 Iterative Graph Algorithms

In addition to the presented graph and collection operators, advanced graph analytics
often requires the use of application-specific graph algorithms. One application is the
extraction of subgraphs that cannot be achieved by pattern matching, e.g., the detection
of communities [64] and their evolution [79].

To support external algorithms, GrALa provides generic call operators (see Table 3.2),
which may have graphs and graph collections as input or output. Depending on the
output type, we distinguish between so-called callForGraph and callForCollection
operators. Using the former function, a user has access to the API and complete library
of iterative graph algorithms of Apache Flink’s Gelly [77], which is the Apache Flink
implementation of Google Pregel [131]. By utilizing Flink’s dataset iteration, co-group
and flat-map functions Gelly is able to provide different kinds of iterative graph algo-
rithms. For now, vertex-iteration, gather-sum-apply, and scatter-gather algorithms are
supported. However, since Gelly is based on the property graph model we use a bidi-
rectional translation between Gradoop’s logical graph and Gelly’s property graph, as
described in Section 3.4.4. Thus, Gradoop already provides a set of algorithms that can
be seamlessly integrated into a graph analytical program (see Table 3.1), e.g., PageRank,
Label Propagation and Connected Components. Besides, we provide TPGM-tailored
algorithm implementations, e.g., for frequent subgraph mining (FSM) within a graph
collection [160].
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3.4 Implementation

In this chapter, we will describe the implementation of the TPGM and GrALa on top of a
distributed system. Since Gradoop programs model a dataflow where one or multiple
temporal graphs are sequentially processed by chaining graph operators, the utilization
of distributed dataflow systems such as Apache Spark [224] and Apache Flink [37] is
especially promising. These systems offer, in contrast to MapReduce [51], a wider range
of dataflow operators and the ability to keep data in main memory between the execution
of those operators. The major challenges of implementing graph operators in these
systems are identifying an appropriate graph representation and an efficient combination
of the primitive dataflow operators to express graph operator logic.
As discussed in Section 2.6, the most recent approaches to large-scale graph analyt-

ics are libraries on top of such distributed dataflow frameworks, e.g., GraphX [223] on
Apache Spark or Gelly [77] on Apache Flink. These libraries are well suited for executing
iterative algorithms on distributed graphs in combination with general data transforma-
tion operators provided by the underlying frameworks. However, the implemented graph
data models have no support for temporal graphs or collections and are generic, which
means arbitrary user-defined data can be attached to vertices and edges. Consequently,
model-specific operators, i.e., based on labels, properties, or time attributes, need to be
user-defined, too. Hence, using those libraries to solve complex analytical problems
becomes a laborious programming task.
We thus implemented Gradoop on top of Apache Flink to provide new features for

flexible and general-purpose graph analytics and to benefit from existing capabilities for
large-scale data and graph processing at the same time. The majority of graph algorithms
listed in Table 3.1 are available in Flink Gelly. Gradoop adds automatic transformation
from TPGM graphs into Gelly graphs and vice versa, as later described. In this section,
we will briefly introduce Flink and its programming concepts. We will further show
how the TPGM graph representation and a subset of the introduced operators, including
graph algorithms, are mapped to those concepts. The last section focuses on persistent
graph formats.

3.4.1 Apache Flink

Apache Flink [9, 37] supports the declarative definition and execution of distributed
dataflow programs sourced from streaming and batch data. The basic abstractions of
such programs are DataSets (or DataStreams) and Transformations. A Flink DataSet is
an immutable, distributed collection of arbitrary data objects, e.g., Java Pojos or tuple
types, and transformations are higher-order functions that describe the construction
of new DataSets either from existing ones or from data sources. Application logic is
encapsulated in user-defined functions (UDFs), which are provided as arguments to the
transformations and applied to DataSet elements. Well known transformations are map

and reduce, additional ones are adapted from relational algebra, e.g., projection, selection,
join, and grouping (see Section 3.3.2). To describe a dataflow, a program may include
multiple chained transformations. During execution Flink handles program optimization
as well as data distribution and parallel processing across a cluster of machines.

The fundamental approach of sequentially applying transformations on distributed data
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sets is inherited byGradoop: Instead of generic DataSets, the user applies transformations
(i.e., graph operators and algorithms) to graphs and collections of those. Transformations
create new graphs which in turn can be used as input for subsequent operators hereby
enabling arbitrary complex graph dataflows. Gradoop can be used standalone or in
combination with any other library available in the Flink ecosystem, e.g., for machine
learning (Flink ML), graph processing (Gelly) or SQL (Flink Table).

3.4.2 Graph Representation

One challenge of implementing a system for static and temporal graph analytics on a
dataflow system is the design of a graph representation. Such a representation is required
to support all data model features (i.e., support different entities, labels, properties and
bitemporal intervals) and also needs to provide reasonable performance for all graph
operators.
Gradoop utilizes three object types to represent TPGM data model elements: graph

head, vertex and edge. A graph head represents the data, i.e., label, properties and time
intervals, associated to a single logical graph. Vertices and edges not only carry data but
also store their graph membership as they may be contained in multiple logical graphs.
In the following, we show a simplified definition of the respective types:

1 class GraphHead{id,label,props,val,tx}
2 class Vertex{id,label,props,graphs,val,tx}
3 class Edge{id,label,sid,tid,props,graphs,val,tx}

Each type contains a 12-byte systemmanaged identifier based on the UUID specification
(RFC 4122, Version 1). Furthermore, each element has a label of type string, a set of
properties (props) and two tuples (val and tx) representing time intervals of the valid-
and transaction-time dimension. Each tuple consists of two timestamps that define
the interval bounds. Each timestamp is a 8-byte long value that stores Unix-epoch
milliseconds. Since TPGM elements are self-descriptive, properties are represented by
a key-value map whereas the property key is of type string and the property value is
encoded in a byte array. The current implementation supports values of all primitive
Java types as well as arrays, sets and maps of those. Vertices and edges maintain their
graph membership in a dedicated set of graph identifiers (graphs). Edges additionally
store the identifiers of their incident vertices (i.e., sid/tid).

Programming abstractions

Graph heads, vertices and edges are exposed to the user through two main programming
abstractions: LogicalGraph and GraphCollection. These abstractions declare methods
to access the underlying data and to execute GrALa operators. Table 3.2 contains an
overview of all available methods including those for accessing graph and graph collection
elements as well as to read and write graphs and graph collections from and to data
sources and data sinks.

The following example program demonstrates the basic usage of the Java API.
1 TemporalGraph graph = new TemporalCSVDataSource(⋅⋅⋅)
2 .getTemporalGraph();
3
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4 TemporalGraphCollection triangles = graph
5 .snapshot(new Overlaps('2019-09-06', '2019-09-07'))
6 .subgraph((e => e.yob > 1980))
7 .callForGraph(new PageRank('pr', 0.8, 10))
8 .query("
9 MATCH (p1)-->(p2)-->(p3)<--(p1)

10 WHERE ((p1.pr + p2.pr + p3.pr) / 3) > 0.8)
11 ");
12

13 new TemporalCSVDataSink(⋅⋅⋅).write(triangles);

We start by reading a logical graph from a specific data source (here in CSV format) in
line 2. We then retrieve a snapshot with all elements that overlap the given period in
the past in line 5. After that, in line 6, we extract an edge-induced subgraph containing
only edges with a property yob that is greater than the value 1980 and all source and
target vertices. Based on that subgraph, we call the PageRank algorithm (line 7) and
store the resulting rank as a new vertex property pr. Using the match operator (lines 9
and 10), we extract triangles of vertices in which the total page rank exceeds a given
value. The resulting collection of matching triangles is stored using a specific data sink
(line 13). Note that the program is executed lazily by either writing to a data sink or
by executing specific action methods on the underlying DataSets, e.g., for collecting,
printing, or counting their elements.
In a second scenario, related to the bike-sharing example of Section 3.3, we want to

answer the following question: In 2019, how did the minimum, maximum and average

trip duration change per month for male and female users born after 1990 between stations

located in different areas?

The following code snippet exemplifies the workflow to answer this question.
1 TemporalGraph summary = bikeGraph
2 // get all elements that overlap year 2019
3 .snapshot(new Overlaps('2019-01-01', '2019-12-31'))
4 // filter edges by year of birth
5 .subgraph((e => e.yob > 1990))
6 // summarize the graph
7 .groupBy(
8 // group vertices by label and grid id
9 [

10 label(),
11 v -> getGridId(v)
12 ],
13 // do not aggregate vertices
14 [ ],
15 // group edges by label, month and gender property
16 [
17 label(),
18 timeStamp(VALID_TIME, FROM, ChronoField.MONTH_OF_YEAR),
19 property("gender")
20 ],
21 // calc min, max and avg duration for grouped edges
22 [
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23 new MinDuration("minDur", VALID_TIME),
24 new MaxDuration("maxDur", VALID_TIME),
25 new AvgDuration("avgDur", VALID_TIME)
26 ]
27 );
28

29 new TemporalCSVDataSink(⋅⋅⋅).write(summary);

We first use the snapshot operator (line 3) to retrieve all information about trips, users,
and stations of the whole year of 2019. We further apply a subgraph operator with
specific predicates (line 5) to filter for users born after 1990. At the end of our pipeline, we
want to summarize our graph by calling the grouping operator (groupBy) with specific
grouping key functions for vertices (line 10 and line 11) and edges (line 17-19). Besides
the predefined label() function, we also show the usage of a user-defined grouping key
function (line 11). It calculates a map grid using latitude and longitude properties of our
vertices. We further group the edges for each month of the year, separated by the two
genders of the users. During this step, we also apply multiple aggregation functions to
calculate the minimum, maximum, and average duration of trips (line 23-25).
The example illustrates the level of abstraction using our operators. A user does not

have to care about the underlying graph data structure, operator implementation, or
distributed execution details. In Section 3.5, we will provide more complex examples as
part of our evaluation.

Graph Layouts

While the two programming abstractions provide implementation-independent access to
the GrALa API, their internal Flink DataSet representations are encapsulated by specific
graph layouts. The most common GVE Layout (Graph-Vertex-Edge layout) is the default
for single logical graphs and graph collections. The layout corresponds to a relational
view of a graph collection by managing a dedicated Flink DataSet for each TPGM element
type and using entity identifiers as primary and foreign keys. Operations that combine
data, e.g., computing the outgoing edges for each vertex, require join operations between
the respective DataSets. Since graph containment information is embedded into vertex
and edge entities, an additional DataSet storing mapping information is unnecessary.
Another experimental layout is Indexed GVE, a variation of the GVE layout in which
vertex and edge data are partitioned into separate DataSets based on the entity label.
Other user-defined graph layouts can be easily integrated by implementing against a
provided interface.

Figure 3.5 shows an example instance of the GVE layout for a graph collection contain-
ing logical graphs of Figure 3.2. The first DataSet L stores the data attached to logical
graphs, vertex data is stored in a second DataSet V and edge data is in a third, E. Vertices
and edges store a set of graph identifiers which is a superset of the graph identifiers in
L as an entity can be contained in additional logical graphs (e.g., G0 and G1). A logical
graph is a special case of a graph collection in which the L DataSet contains a single
element. Each element stores in addition the two time intervals to capture the visibility
for the valid- and transaction-time dimension.
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id label properties tx val

0 BikeGraph {} [2019-05-21, 9999-12-31) [2013-06-01, 9999-12-31)

1 Region {location: New York City, ...} [2019-05-21, 9999-12-31) [2013-06-01, 9999-12-31)

2 Region {location: Jersey City, ...} [2019-05-21, 9999-12-31) [2013-06-01, 9999-12-31)

DataSet<GraphHead>

id label properties graphs tx val

0 Station {name: 10 Ave & W 28 St, ...} [0,1] [2019-05-21, 9999-12-31) [2013-06-01, 9999-12-31)

1 Station {name: E17 St & Broadway, ...} [0,1] [2019-05-21, 9999-12-31) [2013-06-01, 9999-12-31)

2 Station {name: S 3 St & B. Ave, ...} [0,1] [2019-05-21, 9999-12-31) [2013-06-01, 9999-12-31)

3 Station {name: Essex Light Rail, ...} [0,2] [2019-05-21, 9999-12-31) [2015-11-10, 9999-12-31)

4 Station {name: Christ Hospital, ...} [0,2] [2019-05-21, 9999-12-31) [2015-11-03, 9999-12-31)

DataSet<Vertex>

id label srcId trgId properties graphs tx val

0 Trip 4 0 {bikeId: 99633, ...} [0] [2019-05-21, 9999-12-31) [2019-09-06, 2019-09-06

1 Trip 4 0 {bikeId: 21233, ...} [0] [2019-05-21, 9999-12-31) [2019-09-06, 2019-09-06)

2 Trip 0 1 {bikeId: 21233, ...} [0,1] [2019-05-21, 9999-12-31) [2019-09-06, 2019-09-06)

...

DataSet<Edge>

Figure 3.5: GVE layout of Gradoop. The accuracy of the timestamps has been reduced for readability

reasons.

3.4.3 Graph Operators

The second challenge that needs to be solved when implementing a graph framework on
a dataflow system is the efficient mapping of graph operators to transformations provided
by the underlying system. Table 3.4 introduces a subset of transformations available in
Apache Flink. Well-known transformations have been adopted from the MapReduce
paradigm [51]. For example, the map transformation is applied on a DataSet of elements
of type IN and produces a DataSet containing elements of type OUT. Application-specific
logic is expressed through a user-defined function (udf: IN -> OUT) that maps an
element of the input DataSet to exactly one element of the output DataSet. Further
DataSet transformations are well-known from relational systems, e.g., select (filter), join,
group-by, project and distinct.

Subsequently, we will explain the mapping of graph operators to Flink transformations.
We will focus on the operators introduced in Section 3.3: Subgraph, Snapshot, Difference,
Time-dependent Grouping, and Temporal Pattern Matching. For all operators, we assume
the input graph to be represented in the GVE layout (see Section 3.4.2).

Subgraph The subgraph operator takes a logical graph and two user-defined predicate
functions (one for vertices, one for edges) as input. The result is a new logical graph
containing only those vertices and edges that fulfill the predicates. Figure 3.6 illustrates
the corresponding dataflow program. The dataflow is organized from left to right, starting
from the vertex and edgeDataSets of the input graph. Descriptions on the arrows highlight
the applied Flink transformation and its semantics in the operator context. First, we use
the filter transformation to apply the user-defined predicate functions on the vertex and
edge DataSets (e.g., (v => v.capacity >= 40)). The resulting vertex DataSet V1 can
already be used to construct the output graph. However, we have to ensure, that no
dangling edges exist, i.e., only those filtered edges are selected where source and target
vertex are contained in the output vertex set. To achieve that, the operator performs
a join transformation between filtered edges and filtered vertices for both, sourceId
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Name Description

Map

Themap transformation applies a user-definedmap function to each element of
the input DataSet. Since the function returns exactly one element, it guarantees
a one-to-one relation between the two DataSets.
DataSet<IN>.map(udf: IN -> OUT) : DataSet<OUT>

FlatMap

The flatMap transformation applies a user-defined flat-map function to each
element of the input DataSet. This variant of a map function can return zero,
one or arbitrary many result elements for each input element.
DataSet<IN>.flatMap(udf: IN -> OUT) : DataSet<OUT>

Filter

The filter transformation evaluates a user-defined predicate function to each
element of the input DataSet. If the function evaluates to true, the particular
element will be contained in the output DataSet.
DataSet<IN>.filter(udf: IN -> Boolean) : DataSet<IN>

Project

The projection transformation takes a DataSet containing a tuple type as input
and forwards a subset of user-defined tuple fields to the output DataSet.
DataSet<TupleX>.project(fields) : DataSet<TupleY>
(X,Y in [1,25])

Equi-Join

The join transformation creates pairs of elements from two input DataSets
which have equal values on defined keys (e.g., field positions in a tuple). A
user-defined join function is executed for each of these pairs and produces
exactly one output element.
DataSet<L>.join(DataSet<R>)
.where(leftKeys)
.equalTo(rightKeys)
.with(udf: (L,R) -> OUT) : DataSet<OUT>

ReduceGroup

DataSet elements can be grouped using custom keys (similar to join keys). The
ReduceGroup transformation applies a user-defined function to each group of
elements and produces an arbitrary number of output elements.
DataSet<IN>.groupBy(keys)
.reduceGroup(udf: IN[] -> OUT[]) : DataSet<OUT>

Table 3.4: Subset of Apache Flink DataSet transformations. We define DataSet<T> as a

DataSet that contains elements of type T (e.g., DataSet<String>, DataSet<Vertex> or

DataSet<Tuple2<Int,Int>>).

and targetId of an edge. Edges that have a join partner for both transformations are
forwarded to the output DataSet. During construction of the output graph, a new graph
head is generated and used to update graph membership of vertices and edges.4

Snapshot The snapshot operator [178] provides the retrieval of a valid snapshot of
the entire temporal graph by applying a temporal predicate, e.g., asOf or fromTo. We
implemented the operator analogous to the subgraph operator by using two Flink filter

4Depending on the size of the filtered DataSets, the transformations need to be distributed which
might require data shuffling. Since the join step is used for verification, it also can be disabled if domain
knowledge allows it.
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Figure 3.6: Dataflow implementation of the Subgraph operator using Flink DataSets and transforma-

tions.

FlatMap

Check Predicates

Add property

Check Predicates

Add property

FlatMap

Figure 3.7: Dataflow implementation of the Difference operator using Flink DataSets and transforma-

tions.

transformations. Each transformation applies a temporal predicate to each record of V
and E, respectively. Remember that a graph in TPGM is fully evolved and contains the
whole history of all changes for both time-dimensions. Therefore, the predicate will check
the valid or transaction time of each graph element, depending on an optional identifier
of the dimension to be used, and thus decides whether to keep the element or to discard
it. Just like subgraph, the filter may produce dangling edges, since vertices and edges are
handled separately. The subsequent verification step (two join transformations) is thus
performed to remove these dangling edges.

Difference To explore the changes in a graph between two snapshots, i.e., states
of the graph at a specific time, we provide the difference operator (see Section 3.3.2),
which we previously introduced [178]. In our case, a snapshot is represented by the same
predicates that can be used within snapshot operator. The operator is applied on a logical
graph and produces a new logical graph that contains the union of elements of both
snapshots, where each element is extended by a property that characterizes it as added,
deleted or persistent.

The architectural sketch of the difference operator is shown in Figure 3.7. Again, since
all temporal information is stored in the input graph, we can apply the two predicates
on the same input dataset, i.e., V or E, respectively. This gives us an advantage, as each
element only has to be processed once in a single flatMap transformation, which has
a positive effect on distributed processing. Now we can check if that element exists in
both, none, only the first or only the second snapshot. It will be collected and annotated
with a property as defined in Section 3.3.2, or discarded if it does not exist in at least
one snapshot. The annotation step is also implemented inside the flatMap function.
The resulting set of (annotated) vertices and edges is thus the union of the vertices and
edges of both logical snapshots. Dangling edges are removed analogous to subgraph and
snapshot by two joins.
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Extract keys Extract keys

Figure 3.8: Dataflow implementation of the grouping operator using Flink DataSets and transformations.

Lists of property values are denoted by A[].

Time-dependent Graph Grouping The grouping operator is applied on a single
logical graph and produces a new logical graph in which each vertex and edge represents
a group of vertices and edges of the input graph. The algorithmic idea is to group vertices
based on values returned by grouping key functions (or just key functions). Elements for
which every one of these functions returns the same value are being grouped together.
The group is then represented as a so called super vertex and a mapping from vertices to
super vertices is extracted. Edges are additionally grouped with their source and target
vertex identifier. Figure 3.8 shows the corresponding dataflow program.

Given a list of vertex grouping key functions, we start by mapping each vertex v ∈ V
to a tuple representation containing the vertex identifier, values returned by each of
the key functions and property values needed for the declared aggregation functions
(DataSet V1). In the second step, these vertex tuples are grouped on the previously
determined key function values (position 1 in the tuple). Each group is then processed
by a ReduceGroup function with two main tasks: (1) creating a super vertex tuple for
each group and (2) creating a mapping from vertices to super vertices via their identifier.
The super vertex tuple has a similar structure to the vertex tuple, except that it stores
the super vertex identifier, the grouping keys and calculated aggregate values for every
aggregation function. In the final step for vertices, we construct super vertices from
their previously calculated tuple representation. We therefore filter out those tuples from
the intermediate DataSet V2 and apply a map transformation to construct new Vertex
instances for each tuple.
After applying another filter to DataSet V2 we get a mapping from vertex to super

vertex identifier (DataSet V3) which can in turn be used to update the input edges in
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DataSet E and to group them to get super edges E′. Similar to the first step for vertices,
DataSet E1 stores a representation of edges as tuples, including their source and target
identifier, values of grouping key functions and property values used for aggregation
functions. We can then join this DataSet with V3 twice, first to replace each source
identifier with the identifier of the corresponding super vertex and again to replace
the target identifier. Since the resulting edges (now stored in DataSet E2) are logically
connecting super vertices, we can group them on source and target identifier as well as
key function values. This step yields tuple representations of super edges, which finally
mapped to the new Edge instances, representing the final super edges.
Similar to the other operators, the resulting vertex and edge DataSets are used as

parameters to instantiate a new logical graphG′ including a new graph head and updated
graph containment information.

Temporal Graph Pattern Matching The graph pattern matching operator takes
a single logical graph and a Cypher-like pattern query as input and produces a graph
collection where each contained graph is a subgraph of the input graph that matches the
pattern. As Flink already provides relational dataset transformations, our approach is to
translate a query into a relational operator tree [91, 109] and eventually in a sequence of
Flink transformations. For example, the label and property predicates within the query
MATCH (a:Station) WHERE a.capacity = 25

are transformed into a selection with two conditions σlabel=′Station′∧capacity=25(V ) and
evaluated using a filter transformation on the vertex DataSet. Structural patterns are
being decomposed into join operations. For example the query
MATCH (a)-->(b)

is transformed into two join operations on the vertex and edge DataSets, i.e., V &id=sid

E &tid=id V .
Figure 3.9 shows a simplified5 dataflow program for the following temporal query:

1 MATCH (a:Station)<-[e:Trip]-(c:Station)
2 (b:Station)<-[f]-(c)
3 WHERE e.val.asOf(Timestamp(2019-09-06)) AND
4 e.val.overlaps(f.val) AND
5 a.capacity > b.capacity

We start by filtering vertices and edges that are required to compute the query re-
sult. Predicates are evaluated as early as possible. Especially when specifying temporal
predicates with constant time values the amount of data is often enormously reduced
by the filtering. In addition, only property values needed for further predicate evalu-
ation are being kept. For example, to evaluate (e:Trip) and e.val.asOf(...)), we
introduce a Filter transformation on the input vertex DataSet E0 and a subsequent Map

transformation to convert the edge object into a tuple containing only the edge id, source
id and target id for subsequent joins and the val interval (that represents the edge’s

5Several steps are being simplified for clarifying the operator logic. For example, the filter and map
transformations are actually implemented using a single flatMap transformation to avoid unnecessary
serialization. Morphism checks are being executed in a flatJoin transformation that allows to implement a
filter on each join pair in a single UDF.
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a:Station
e:Trip
e.val.asOf() c:Station b:Station

(b.id,b.cap)

(f.id,f.sid,f.tid,f.val)

(c.id)

(e.id,e.sid,e.tid,e.val)

(a.id,a.cap)

(a.id,a.cap,e.id,e.sid,e.val)

(a.id,a.cap,e.id,e.val,c.id)
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e.id != f.id
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 c.id,e.id,f.id)

(a.id,b.id,c.id,
e.id,f.id)

Figure 3.9: Dataflow representation of a pattern matching query.

valid-time) for later predicate evaluation (DataSet E1). Join transformations compute
partial structural matches (DataSetMi) and subsequent Filter transformations validate
the edge isomorphism semantics that demands a Filter transformation on DataSetM2.
Predicates that span multiple query variables (e.g., a.capacity > b.capacity) can be
evaluated as soon as the required input values are contained in the partial match (DataSet
M4). Each row in the resulting DataSet represents a mapping between the query variables
and the data entities and is converted into a logical graph in a post-processing step.

Since there is generally a huge number of possible execution plans for a single query,
Gradoop supports a flexible integration of query planners to optimize the operator
order [109]. Our reference implementation follows a greedy approach which iteratively
constructs a bushy query plan by estimating the output cardinality of joined partial
matches and picking the query plan with minimum cost. Cardinality estimation is based
on statistics about the input graph (e.g., label and property/id distributions). Predicate
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evaluations and property projections are generally planned as early as possible.

3.4.4 Iterative Graph Algorithms

Gelly, the Graph API of Apache Flink, uses iteration operators to support large-scale
iterative graph processing [77]. It provides a library of graph algorithms as well as
methods to create, transform and modify graphs. In Gradoop, iterative graph algorithms,
e.g., PageRank, Connected Components, or Triangle counting, are implemented by using
this Graph API. We provide a base class called GradoopGellyAlgorithm which includes
transformation functions to translate a logical graph to a Gelly graph representation.
Various algorithms are already available in Gradoop and can be integrated into an

analytical GrALa pipeline using the Call operator (see auxiliary operators in Table 3.2).
Custom or other Gelly algorithms can also be integrated simply by extending the afore-
mentioned base class and using the provided graph transformations. Algorithm results,
e.g., the PageRank scores of vertices, the component identifiers, or the number of triangles,
are typically integrated in the resulting logical graph by adding new properties to the
graph (head), vertices, or edges.

3.4.5 Graph Storage

Following the principles of Apache Flink, Gradoop programs always start with at least
one data source, end in one or more data sinks and are lazily evaluated, i.e., program
execution needs to be triggered either explicitly or by an action, such as counting DataSet
elements or collecting them in a Java collection. Lazy evaluation allows Flink to optimize
the underlying dataflow program before it is being executed [37]. To allow writing
to multiple sinks within a single job, a Gradoop data sink does not trigger program
execution.
To define a common API for implementers and to easily exchange implementations,

Gradoop provides two interfaces: DataSource and DataSink with methods to read and
write logical graphs and graph collections, respectively (see the listing in Section 3.4.2).
Notwithstanding, Gradoop contains a set of embedded storage implementations, includ-
ing file formats and NoSQL stores.

We provide several formats to store graphs and graph collection within files. A promi-
nent example is the CSV format which stores data optimized for the GVE layout (see
Section 3.4.2). A separate metadata file contains information about labels, property keys
and property value types. Generally, a sensible approach is to store the graph in HDFS
using the CSV format, run analytical programs and export the result using the CSV data
sink for simpler post-processing.
In addition to the file-based formats, Gradoop supports two distributed database

systems for storing logical graphs and graph collections: HBase [65] and Accumulo [67].
Both storage engines follow the BigTable approach allowing wide tables including column
families and fast row lookup by primary keys [40].

Another supported format which is purely used for visualization purpose is the open
graph description format DOT [60, 75]. A detailed description of both sources and sinks
can be found in Gradoop’s GitHub wiki [172].
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3.5 Evaluation

This section is split into two parts. First we show scalability results for a subset of
individual TPGM operators, namely Snapshot, Difference, Time-dependent Grouping and
Temporal Pattern Matching. In the second part, we analyze the performance evaluation for
an analytical program composing several operators. In both cases we evaluate runtimes
and horizontal scalability with respect to increasing data volume and cluster size. The
experiments have been run on a cluster with 16 worker nodes. Each worker consists of a
E5-2430 6(12) 2.5 Ghz CPU, 48 GB RAM, two 4 TB SATA disks and runs openSuse 13.2,
Hadoop 2.7.3 and Flink 1.9.0. On a worker node, a Flink Task Manager is configured with
6 task slots and 40GB memory. The workers are connected via 1 Gigabit Ethernet.
We use two datasets referred to as LDBC and CitiBike in the evaluation. The LDBC

dataset generator creates heterogenous social network graphs with a fixed schema and
structural characteristics similar to real-world social networks, e.g. dynamic updates [218]
and p-law distribution [97]. CitiBike is a real-world dataset describing New York City bike
rentals since 2013 [129]. The schema of this dataset corresponds to the one in Figure 3.2
in Section 3.3. Table 3.5 contains some statistics about the two datasets considering
different scaling factors (SF) for LDBC. The largest graph (SF=100) has about 283 million
vertices and 1.8 billion edges. The CitiBike graph covers data over almost eight years
with up to 20M new edges per year.

To evaluate individual operators, we execute each workflow as follows: First we read a
graph from a HDFS data source, execute the specific operator and finally write all results
back to the distributed file system. The graph analytical program is more complex and
used to answer the following analytical questions: What are the areas of NYC where people

frequently or rarely ride to, in at least 40 or 90 minutes? What is the average duration of

such trips and how does the time of the year influence the rental behavior?

The exemplified GrALa workflow for this analysis is shown in Listing 3.1. The input is
the fully evolved CitiBike network as a single logical graph. First, we extract a snapshot
containing only bike rentals happened in 2018 and 2019 with operator Snapshot (line 2-3).
In lines 4-5, we add a specific cellId calculated from the geographical coordinates in its
properties to each vertex (rental station) with the Transformation operator. The Temporal

Pattern Matching operator in lines 6-14 uses the enriched snapshot to match all pairs of
rentals with a duration of at least 40 or 90 minutes, each where the first trip starts in a
specific cell (2883) in NYC and the second trip starts in the destination of the first trip
after the end of the first trip. Since the result of the Temporal Pattern Matching operator
is a graph collection we use a Reduce operator (line 15) to combine the results to a single

Name SF ∣V ∣ ∣E∣ Size on disk

LDBC 1 3.3 M 17.9 M 4.2 GB

LDBC 10 30,4 M 180.4 M 42.3 GB

LDBC 100 282.6 M 1.77 B 421.9 GB

CitiBike - 1174 97.5 M 22.6 GB

Table 3.5: Characteristics of the datasets used for the evaluation.
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logical graph. We further group the combined graph by the vertex properties name and
cellId (line 17) and the edge creation per month (line 19) using the Time-dependent

Grouping operator. By applying two aggregation functions on the edges (lines 20-22),
we determine both the number of edges represented by a super edge and the average
duration of the found rentals. Finally, we apply a Subgraph operator to output only super
edges with a count greater than 1 (line 23). The corresponding source code is public
available at https://git.io/JULPM.
Figures 3.10, 3.11 and 3.12 show the performance results for both the execution of

individual operators (Snapshot, Difference, Grouping and Pattern Matching (Query) for
the LDBC dataset and for the analytical program on the real-world Citi Bike dataset
(CBA40 and CBA90). We run each experiment five times and report average execution
times. Figure 3.10 shows the impact of the LDBC data size on the runtime of individual
operators. Figure 3.11 and Figure 3.12 show runtimes and speedup for different cluster
sizes with LDBC SF 100 (for individual operators) and the CitiBike dataset (for the CBA
program).

Snapshot and Difference Both temporal operators scale well for both increasing
data volume (Fig. 3.10) and cluster size (Figs. 3.11 and 3.12). In general, the execution of
Difference is slower than Snapshot since it has to evaluate two predicates as intermediate
results and add a property to each element.
Figure 3.12 shows the speedup for LDBC.100 grows nearly linearly until 4 parallel

workers and is slightly declining then for more workers. This behaviour is typical for
distributed dataflow engines since a higher worker count increases the communication
overhead over the network (especially for the semi-join performed in the verification

1 outGraph = citiBikeGraph
2 .snapshot(Overlaps('2017-01-01', '2019-01-01'))
3 .transform(v => v['cellId'] = getGridCellId(v))
4 .query("MATCH (v1:Station)-[t1:Trip]->(v2:Station)
5 (v2)-[t2:Trip]->(v3:Station)
6 WHERE v1.cellId == 2883 AND
7 v2.id != v1.id AND
8 v2.id != v3.id AND
9 t1.val.precedes(t2.val) AND

10 t1.val.lengthAtLeast(Minutes(X)) AND
11 t2.val.lengthAtLeast(Minutes(X))")
12 .reduce(g, h => g.combine(h))
13 .groupBy(
14 [label(),prop('name'),prop('cellId')],
15 (),
16 [label(),timestamp(val-from, MONTH)],
17 (superEdge, edges =>
18 superEdge['count'] = edges.count(),
19 superEdge['avgDur'] = edges.avgDur()))
20 .subgraph(e => e['count'] > 1)

Listing 3.1: CitiBike Analytical (CBA) program. (X defines the minimum duration of the bike rentals)
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step) while the useful work per worker becomes smaller with larger configurations.

Grouping The evaluated Grouping operator on the LDBC datasets uses two grouping
key functions, one on label values and one that extracts the week timestamp of the lower
bound of the valid time interval. The grouping result thus consists of super vertices and
edges that show the weekly evolution of created entities and their respective relationships
over several years. For aggregation, we count the number of new entities and relationships
per week.
Figure 3.10 shows that Grouping also scales nearly linearly for increasing data size

(from LDBC.10 to LDBC.100) similar to the two previously discussed operators. The
runtime reductions for smaller graphs are limited due to job initialization times. The
execution time for LDBC.100 is reduced from 8,097 seconds on a single worker to 967
seconds on 16 workers (Figure 3.11) resulting in a speedup of more than 8. Figure 3.12
shows that the speedup for Grouping is almost linear for up to 8 workers while more
workers result only in modest improvements. These results are similar to the original
evaluation of the non-temporal Grouping operator in [111].
The shown performance results are influenced by the communication overhead to

exchange data, in particular for the join and group-by transformations in our operator

66



3.5. EVALUATION

implementations. This overhead increases and becomes dominant for more workers.
In addition, the usage of a ReduceGroup transformation on the grouped vertices (see
Section 3.4.3) can lead to an unbalanced workload for skewed group sizes. We already
addressed this issue in [111], however, a more comprehensive evaluation of the influence
of skewed graphs is part of future work.

Pattern Matching (Query) In this experiment, we execute a pre-defined temporal
graph query on the LDBC data on various cluster sizes and two partitioning methods:
First, hash-partitioned, which uses Flink’s default partitioning approach combined with
Gradoop’s basic GVE Layout and second, label-partitioned, a custom partitioning ap-
proach which combines benefits of data locality and Gradoop’s experimental Indexed
GVE Layout (see Section 3.4.2). The used TemporalGDL query is shown below and
determines all persons that like a comment to a post within partly overlapping periods.

1 MATCH (p:person)-[l:likes]->(c:comment),
2 (c)-[r:replyOf]->(po:post)
3 WHERE l.val_from.after(Timestamp(2012-06-01)) AND
4 l.val_from.before(Timestamp(2012-06-02)) AND
5 c.val_from.after(Timestamp(2012-05-30)) AND
6 c.val_from.before(Timestamp(2012-06-02)) AND
7 po.val_from.after(Timestamp(2012-05-30)) AND
8 po.val_from.before(Timestamp(2012-06-02))

Regarding the default hash partitioning, Fig. 3.10 shows that the execution of this
query scales linearly with a larger data size from LDBC.10 (78 seconds) to LDBC.100
(733 seconds). Increasing the cluster size for LDBC.100 reduces the query runtime from
6,857 seconds for one worker to 733 seconds using 16 workers (Fig. 3.11). The speedup
behavior (Fig. 3.12) is perfect for up to 4 workers and levels out for more workers to 7.8
for 16 workers due to increasing communication overhead resulting from semi-joins.
Applying the experimental label-partitioned approach, both the runtimes and the

speedup results improve significantly compared to the use of hash partitioning. As shown
in Fig. 3.10, the runtime improvements increase with growing data volume from a factor
of 2 for LDBC.10 (37 instead of 78 seconds) to a factor of 4 for LDBC.100 (178 vs. 733
seconds).

This significant improvement is mainly achieved by a reduced complexity during semi-
join execution, since our Indexed GVE Layout provides an indexed access via type labels.
Therefore, Flink is able to optimize the execution pipeline by avoiding complex data
shuffling and minimizing intermediate result sets. This is also confirmed by analyzing the
impact of a growing number of workers on runtimes (Fig. 3.11) and speedup (Fig. 3.12) for
LDBC.100. For 16 workers, our label-partitioned approach achieves an excellent speedup
of 13.5 compared to only 7.8 with the hash-partitioned GVE Layout.
Overall, the results of the hash-partitioned experiment are similar to the ones of

the other operators while the label-partitioned experiment significantly improves run-
times and speedup by reducing the semi-join complexity and communication effort. A
more comprehensive evaluation including selectivity evaluation for different queries and
partitioning approaches is left for future work.
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City Bike Analysis (CBA) The results for the more complex analytical pipelines
CBA40 and CBA90 are shown in Figure 3.11 and 3.12. Note that both analytical programs
contain the same operator pipeline but with different rental durations for the query
operator resulting in largely different result sets of 10M (CBA40) and 150K (CBA90)
matches (i.e., matching subgraphs of the query graph) representing trips with a duration
of at least 40 or 90 minutes.

Themore selective CBA90 program could be executed in 223 seconds on a single worker
and only 42 seconds on 16 workers, while CBA40 takes 1336 and 352 seconds for 1 and
16 workers, respectively. The sequence of multiple operators within the program leads to
smaller speedup value compared to the single operators. This is especially pronounced
for CBA40 leading to large intermediate results to be processed by the operators coming
after the pattern matching operator. Intermediate results are graphs kept in memory
as input for subsequent operators and the execution time of these operators is strongly
dependent on the size and also the distribution of their input.
Generally, the size and distribution of the graph data has a significant impact on the

analysis performance in Gradoop. Assume, we ask for a grouping of vertices on type
labels but there are only 4 different type labels for vertices available. An execution of
grouping on a cluster of 16 machines will see that only 4 machines of the cluster can be
well utilized while the other machines remain largely idle. Such bottleneck operators
can easily occur with analytical programs and limit the overall runtime. Resolving such
problems would ask for more scalable implementations of operators, e.g. for a parallel
grouping of one label on several workers, and for an optimized dynamic data distribution
for intermediate graph results within analytical programs.

3.6 Conclusion

In this sectionwe provided a system overview of Gradoop, an open-source graph dataflow
system for scalable, distributed analytics of static and temporal property graphs. The core
of Gradoop is the TPGM, a property graph model with bitemporal versioning and graph
collection support, which is formally defined in this work. GrALa, a declarative analytical
language enables data analysts to build complex analytical programs by connecting
a broad set of composable graph operators, e.g., time-dependent graph grouping or
temporal pattern matching with TemporalGDL as a query language. Analytical programs
are executed on a distributed cluster to process large (temporal) graphs with billions of
vertices and edges. Several implementation details show how the parts of the framework
are realized using Apache Flink as distributed dataflow system. Our experimental analyses
on real-world and synthetic graphs demonstrate the horizontal scalability of Gradoop. By
applying a suitable custom partitioning, we where able to speedup the performance of our
pattern matching operator by a large margin. Besides more performance optimizations
and graph partitioning, future research directions we consider are: (i) using alternative
technologies for Gradoop, its model and operators, (ii) extend our analysis from temporal
graphs to graph streams, (iii) the integration of analysis using graph ML. We refer to
Chapter 8 for a reflection on several lessons learned during our experience working on
that project.
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Gradoop Application Examples

The temporal analysis of evolving graphs is an essential requirement in many domains.
With the previous introduction of the TPGM and the reference implementation Gradoop,
a domain-independent possibility of modeling and analyzing such graphs is provided. This
section presents two application examples of the TPGM and Gradoop. The modularity
and combinability of analytical TPGMoperators are demonstrated on a call center network
in Section 4.1. Further, in Section 4.2, a web-based user interface called Temporal Graph

Explorer is demonstrated using rental data of a bike-sharing provider as a running example.
The contributions of both sections addressing the challenges C4, C7, C5, and C9 from
Section 1.1.

4.1 Analyzing Call Center Data with Gradoop

This section provides a summary of the temporal graph grouping features implemented
in Gradoop. This background information sets a base for the upcoming use case in the
customer service domain. The use case serves to showcase the flexibility of the temporal
graph model and its operators.

The contents of this chapter were already published under the title Evolution Analysis

of Large Graphs with Gradoop [177].

4.1.1 Introduction

Temporal graphs represent the evolution of entities and relationships among them
throughout time. Many real-world scenarios dynamically change over time, e.g., friend-
ships and likes in social networks, citations and authorship affiliations in literature, or
transactions between accounts in the financial domain [89]. Instead of neglecting this
prevailing time dimension by using a static graph model, it is advisable to represent the
continuously changing network in a temporal graph data model to enable studying the
effect of time on the graph [215].

To provide an extensive framework for temporal graph analysis, we developed the pre-
viously introduced TPGM that enables modeling a graph with bitemporal time semantics
and a set of operators to build distributed analysis workflows considering the additional
time dimensions in the graph. We refer to Chapter 3 for further details of the model
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and its implementation Gradoop. In the following, we first recap the time-dependent
grouping operator, which is important for the following use case. We then show the
expressiveness of the analytical language of Gradoop by composing new and existing
operators to answer an analytical question from a call center use case.

4.1.2 Recap: Gradoop’s temporal grouping

The temporal extension of Gradoop’s grouping operator offers a flexible mechanism
to group (summarize) vertices and edges, which belong to a given time instance. Users
can either define their own or use predefined functions to extract keys from a vertex or
edge on which to group. Any information of a graph element can be used including all
temporal information, such as the day of the week on which the validity of an edge begins
or the rounded duration of a vertex validity. Additionally, multiple aggregate functions
can be specified to compute aggregates within a vertex or edge group and store them as
a new property on the super-vertex (the vertex representing the group) or super-edge
respectively.

Not only properties can be aggregated, but also information from the additional time
dimensions of the graph. For example, the earliest or latest beginning of an edge validity
or the average, minimum, or maximum vertex duration can be calculated. The resulting
grouped graph is again temporal, i.e., the valid times of the super-vertices and -edges are
defined by the earliest beginning and latest ending of the elements that are responsible
to the group.
Since timestamp values can be analyzed and grouped at different granularities (e.g.

year, month, day, hour, minute etc.), time properties inherently lead to hierarchically
organized dimensions. Graph summaries determined by the grouping operator can thus
be additionally "rolled up" on the time hierarchy to have aggregations on multiple levels
of time granularity. A detailed description of graph grouping with Gradoop including the
roll-up feature and predefined aggregate functions can be found in our GitHub wiki [172].

4.1.3 The call center use case

Supporting graph analysis at a large scale is necessary in various domains like Internet-
of-Things (IoT), finance, and web to perform risk analysis, customer profiling, etc. In
addition, time plays an important role in such analysis since analysts want to know, e.g.,
how a specific result of their query looks in the past or changes over time. As a result,
a graph processing system has to offer a flexible and rich library of functionalities and
algorithms to support a wide range of analyses respecting the additional time dimension.

To show the expressiveness and flexibility of Gradoop and its temporal model among
its declarative operator principle, we choose a business case from the customer rela-
tionship management domain. Specifically, the scenario deals with interactions in a call
center for 25 banks of the Banks Association of Turkey [203]. More than 7,500 agents
are employed in about 16 service types (e.g., card, stock, ATM, online banking, etc.). Per
month, about 46 million incoming calls are answered by agents, and 24 million calls are
outgoing calls to customers. These entities and their relations form a huge heterogeneous
network that continuously evolves.
Figure 4.1 shows a simplified example of the resulting graph schema. It includes

different types of vertices (entities), like Bank and Customer, as well as edges (relations),
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Figure 4.1: Simplified example of a call center network from the financial domain with underlined

temporal properties.

like a call representing the telephone call between customers and call center agents. Each
element includes a variety of properties describing it with additional information, e.g.,
an Agent vertex has a defined staff number, a name, and city. We can put all the collected
data in our temporal property graph model. Properties containing temporal information
(e.g., the started at and duration properties of the calls edge) can be directly mapped to
the valid-time attributes of the model, to enable various time-related analyses.

In the following, we delve into the processing of an analytical question within this use
case. Leveraging the modularity of our temporal graph operators, along with operators
from the reference EPGM implementation, we will construct an analytical workflow.
This demonstration aims to illustrate an effective method for addressing the analytical
question at hand. Let’s consider the following question: “What is the average duration of

calls per month, week and day between agents of different cities and customers of Istanbul,

where both agents and customers joined the bank in 2018?”

The question includes the need for aggregations over time hierarchies besides filters for
a subset of entities on an extracted graph snapshot. The following exemplary workflow
definition shows the use of four operators that result in a collection of graphs where each
describes one out of the three time granularities month, week, and day.

1 groupedGraphs = graph
2 .subgraph(
3 v -> { v._label = 'Agent' OR
4 (v._label = 'Customer' AND v.city = 'Istanbul' }),
5 e -> { e._label = 'calls'})
6 .snapshot(CreatedIn(2018))
7 .verify()
8 .groupBy(
9 [Label(), Property('city')], // V grouping key func.

10 [Count()], // V aggregate func.
11 [Month(from)), Week(from), Day(from)] BY ROLLUP, // E grouping key func.
12 [AvgDuration(), Count()] // E aggregate func
13 );
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The initial subgraph operator (line 2 to 5) applies a filter using the given vertex and
edge predicates to get a subgraph that contains only Agent vertices and Customer vertices
with a property city that is equal to the string Istanbul. This operator is part of the
EPGM. To receive customers who joined a bank in 2018, we apply the newly developed
TPGM snapshot operator (line 6) with a predefined predicate. Since the result of the
snapshot operator can contain dangling edges (i.e., their source or target vertices are
not contained in the result set), we apply the verify operator (line 7) to remove these
from the graph. The final grouping operator (line 8 to 12) summarizes the graph. The
vertices will be grouped by their label and the property city (line 9). A property with the
count is added to each grouped vertex as a result of the given Count() vertex aggregate
function (line 10). The edges representing the calls are grouped by month, week, and
day of the calls beginning timestamp (from) through the usage of time-specific value
transformation functions of the same name (line 11). Since we want to know the average
call duration, the predefined aggregate function AvgDuration() is specified in addition
to the Count() aggregate function (line 12). Equivalent to the vertices, new properties
storing the aggregates are added to each super-edge.

The additional BY ROLLUP (line 11) leads to three different aggregations comparable to
SQL. First, the graph will be grouped by day, then by week, and, besides, by the month of
the call’s beginning. This leads to deeper insights into the evolution of the number and
average duration of calls between agents of different cities and customers from the city
of Istanbul. The resulting three graphs are contained in a graph collection, which is the
result of our workflow and exemplified in Figure 4.2. Within the figure, each multi-edge
graph represents one temporal granularity. For example, the edges of the lower graph are
grouped by the month of their beginning timestamp. For simplicity, each grouped graph
contains only a tiny subset of agents and call edges without temporal data. In the lower
graph, 24 edges (twelve for each direction) exist between the grouped customer vertex
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Figure 4.2: The resulting temporal graph collection from the graph analytical workflow.
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and agents of a particular city. One of Gradoop’s data sinks can store or visualize the
collection. Further, an analyst may again use the subgraph operator to filter this result
for periods with very low or high average call duration.

4.1.4 Conclusion

In this subsection, we showed how the temporal operators and further extensions of
Gradoop enable a flexible answering of time-oriented analytical questions on temporal
graphs by chaining several operators. We demonstrated the use of Gradoop’s declar-
ative workflows for a time-related use case scenario of the customer services domain.
The described extensions are already implemented and available in Gradoop, which is
comprehensively described in Chapter 3.
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4.2 The Temporal Graph Explorer

In this section we introduce the Temporal Graph Explorer (TGE), a distributed open-source
framework that enables time-dependent graph exploration and analysis on large real-
world networks using the TPGM and it’s temporal graph operators. Besides retrieving
a snapshot from a past graph state or calculating the difference between two graph
snapshots, users can use the TGE to summarize the graph to reduce its complexity and
to obtain deeper insights into its evolution.

The contents of this section were published under the title Exploration and Analysis of

Temporal Property Graphs [175].

4.2.1 Introduction

Graphs are an intuitive way to model and analyze complex relationships between entities
representing real-world scenarios. Since most entities and interconnections evolve in
the real-world, graphs also change over time in terms of their structure and content. For
example, Figure 4.3 shows a toy example of bicycle rentals (represented as directed edges)
between fixed stations (vertices) over time. Such temporal property graphs [4] additionally
allow tracking changes in the graph over time. In the example of Figure 4.3 both vertices
and edges store temporal information (marked by a clock symbol) as attributes (valid
times) and, thus, the graph reveals that the bike with id 2115 was moved from station
[1] to [2] by three consecutive rentals over time.
In this paper, we demonstrate the Temporal Graph Explorer (TGE), a tool for user-

friendly exploration, analysis, and visualization of large temporal property graphs. The
core of this application is Gradoop (see Chapter 3), an open-source framework for
distributed graph analysis. Its Temporal Property Graph Model (TPGM) [178] enables
modeling and analysis of graphs with bitemporal time semantics and comes with a set
of composable temporal graph operators that can be combined with the help of the
declarative language GrALa.
The TGE thus enables the analysis of the evolution of graphs, i.e., to figure out when

something happened or changed, rather than a static view representing something that
happened at some time [215]. To this end, it provides the execution of three temporal
graph operators, namely snapshot retrieval and graph difference) to compute and visualize
changes, including additions and deletions, that have been occurred. This can be used in
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Figure 4.3: Example temporal property graph representing bicycle rentals between rental stations. The

validity period of an edge is marked with a clock symbol and simplified with numbers instead

of timestamps.

the given bicycle example to find, for a given week in the past, all rentals that have been
added, removed, or remained the same.

The TGE can also be employed for the analysis of large graphs by using time-related

grouping and aggregation. This allows for a profound exploration of a graph’s structure,
semantics, and development over time, which is a significant part of knowledge discovery
for temporal graphs. Such a graph grouping mechanism helps to find out how different
types of vertices and edges are connected as well as when and how long they were
connected. In addition, the graph can be grouped on different dimensions, e.g., by rental
time or by station location, as well as on different dimension levels, e.g., per year or
month for the time dimension. The grouped vertices and edges can further be aggregated
in any conceivable way, from a simple count to the minimum, maximum and average
duration of a specific relationship type.

Section 4.2.2 gives a short view on related work, while Section 4.2.3 provides an system
overview. Section 4.2.4 and Section 4.2.5 explain the usage of the operators snapshot,
difference and time-related grouping and aggregation inside the TGE. Section 4.2.6
concludes this section.

4.2.2 Related Work

There are also other research that deals with the exploration of temporal graphs. Orlando
et al. present the TGV [153], a framework for temporal property graph visualization that
allows editing and running T-GQL [52] queries (see Section 2.4), displaying the result, and
navigating such result across time. The focus is thus the temporal querying and result
navigation. Compared to this, the TGE shown here focuses on extracting a snapshot
from the temporal graph, generating a difference graph between two snapshots, and
dynamically grouping the graph.
Aghasadeghi et al. [5] focus in their work on the temporal grouping. They propose

two types of “zooming” (i.e., summarization/grouping), which is attribute-based zoom and
temporal window-based zoom to support exploratory analysis of an evolving graph at dif-
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ferent levels of resolution. It uses the TGraph data model of Moffitt and Stoyanovich [139].
The attribute-based zoom allows to model new temporal vertices from property values of
existing vertices. The new vertices get time intervals for their validity and aggregated
values like the count of the summarized vertices. This operation is similar to Gradoop’s
time-dependent graph grouping (see Section 3.3), where grouping key functions are
used. The temporal window-based zoom allows the specification of time windows. The
resulting graph reveals the information, which elements were in which window. The
TGE provides similar functionality through grouping key functions that extract temporal
features (e.g., the day of the week) from the time interval of vertices and edges to group
them.

4.2.3 TGE System Overview

The Temporal Graph Explorer is an application to explore, analyze and visualize temporal
property graphs. An intuitive web-based user interface enables the configuration of
selected temporal graph operators and their application on a predefined graph dataset of
the user’s choice. The whole processing is then executed using Gradoop as a backend
framework. The resulting graph is again temporal and sent back to the user interface for
visualization. Frontend and backend communicate through a RESTful webservice.

The visualized graph is interactive, i.e., visitors can zoom in and out, drag vertices
and edges to other positions or click on them to show their properties and temporal
attributes. The visual representation is adjusted to the temporal characteristics of the
graph and realized using Apache ECharts [68] and Cytoscape.js [72], an open-source
software platform for visualizing complex attributed networks. By default, the coloration
of vertices and edges is based on the respective label, i.e., elements with the same label
are equally colored. Further, identifiers, properties, and temporal attributes are displayed
in a tooltip after selecting a vertex or an edge. An architectural overview of the system is
given in Figure 4.4.

The heart of the TGE is Gradoop, which offers many generic operators on graphs that
can be used within workflows for graph analysis. To maintain the full history of a graph,
including any insertion, deletion, or update of a vertex, edge, or its properties, Gradoop
was extended by the recently introduced TPGM (see Section 3.3) as a graph data model.
It supports labeled, directed multi-graphs where the vertices and edges are characterized
by a unique identifier, a type label, and a set of properties, modeled as key-value pairs. In
addition, each vertex and edge is extended by two time intervals τ val and τ tx that define a
lifespan regarding to valid- and transaction time dimension, which ensures a bitemporal
data modeling [105]. All further details about Gradoop can be found in Chapter 3.
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Figure 4.4: System architecture overview of Temporal Graph Explorer.
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Figure 4.5: Screenshot of the TGE showing the snapshot view.

4.2.4 Graph snapshot and difference

To enable temporal and evolutionary queries and analysis, one data management chal-
lenge for large historical graphs is the retrieval of graph snapshots as of any time-point
in the considered time domain [113]. To achieve this, we developed the snapshot operator
that can be applied on a temporal graph instance and allows to retrieve a valid state of
the graph either at a specific point in time or a subgraph that is valid during a time range.
The user can configure the operator by pre-defined time-dependent predicates such as
asOf(), overlaps() or precedes(). Furthermore, user-defined predicates, as well as helper
functions to extract certain time dimensions, can be used. Through the visualization, the
user receives instant feedback on the changes made and thus can explore and compare
various states of different times.

Figure 4.5 shows a screenshot of the TGE with selected snapshot operator. On the left
menu, the user chooses the graph dataset, the time dimension (here Valid-time) and the
predicates to configure. After pressing Execute, the snapshot graph is visualized. Since
the vertex data contain real coordinates as properties, the visualization of the graph uses
a geographical layout to place vertices on a map.
An important part of the analysis of graphs is the examination of changes that have

occurred between two points in time. Changes, i.e. additions, deletions, and edits, repre-
sent the evolution of a temporal graph and can be selected or aggregated in subsequent
analysis steps. Therefore, we demonstrate the difference operator that computes a graph
△G between two graph snapshots G1 and G2 by determining the union G1 ∪G2 and
extending each element by a property that expresses the addition, deletion, or persistence
of this element respectively. The user configures both snapshots by using time-dependent
predicate functions, as described before. In addition, the desired time-dimension can be
selected. For the visualization, graph elements are colorized depending on the annota-
tion with which the elements are expanded by the difference operator to provide more
information about their temporal evolution, which can be seen in Figure 4.6. A vertex or
edge is colored red if the elements have been deleted in the time between both snapshots,
grey if the elements were not changed at all, or green if the elements were created. Using
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this kind of visualization, a user gains insights about how and how frequently the graph
evolves between two states.

4.2.5 Time-specific grouping and aggregation

Themaintenance of the entire history of a real-world graph entails a huge amount of graph
elements. For example, the real-world citibike dataset we used in Section 3.5 contains
up to 97.5M edges. A structural grouping of the graph (also denoted as summarization)
will help to reduce the overall complexity and offers deeper insights into the graph’s
structure, distribution, and evolution. For example, a graph with billions of vertices and
edges can be first grouped by the element’s label to explore the schema that reveals how
the heterogeneous types are connected. In addition, temporal and content information of
the grouped vertices and edges can be aggregated in many ways to get knowledge about
the respective groups.

The temporal grouping operator of Gradoop goes further and offers a flexible mech-
anism to group a temporal property graph by all available information of the vertices
and edges, especially their temporal characteristics. This is achieved by the possibility of
defining a function f(v) ↦ k, denoted as key function, that maps a vertex v (or edge) to a
key k on which to group. All elements mapped to the same key are grouped together
and form a new super-vertex or -edge, respectively. To simplify the specification for
users, Gradoop offers predefined key functions, e.g. label() to group elements by their
label, as well as helper functions, e.g., functions for extracting time-related information
to summarize the graph at different temporal resolutions. Since real-world graphs are
usually very heterogeneous, the application of the key functions can also be restricted
to nodes or edges of a certain label (what we call label-specific grouping), e.g., to group
Station vertices by district, Person vertices by gender and Trip edges by bike.
Besides the grouping itself, one main feature is to enrich the grouped elements by

summarized information about the group, which can be achieved by applying pre- and
user-defined aggregate functions. Not only properties but also information from the addi-
tional time dimensions can be aggregated. For example, the earliest or latest beginning of
an edges validity can be calculated by usingminTime() ormaxTime() aggregate functions.
The configuration options of this operator are very extensive and depend on the

characteristics of the selected graph dataset and the objectives of the corresponding

Figure 4.6: Example visualization of a difference graph. Elements, that are in the first snapshot, but

not in the second, are colored red. Elements, that are in both snapshots, are colored grey.

Elements that are just in the second snapshot are colored green.
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Figure 4.7: Screenshot of the TGE showing the grouping view.

analysis. The Temporal Graph Explorer supports the user in the configuration of the
operator by a flexible selection of the predefined key functions for vertices and edges, as
well as aggregate functions, which can be seen in the screenshot in Figure 4.7 on the left
side. Appropriate arguments are offered for parameterized key functions. For example,
a list of property names is offered for the function property(<name>). Timestamps
which appear to be useful for the selected temporal graph are also suggested for use
with temporal key functions. Besides, the user can choose from pre-defined aggregate
functions to additionally configure the grouping and thus to enrich the grouped elements
with detailed information about the grouped element, which can be accessed in the
graph visualization. The user can thus interactively add key and aggregate functions
to the configuration step by step until the grouped graph and its aggregated values
provide information about a specific analysis question. Since the grouped vertices have
geographic properties (see that two key-functions are selected, that group vertices on
the properties latitude (lat) and longitude (long)), they can be placed on a map-view.
Edges can also be colored according to a certain property. The properties created by the
aggregates are displayed after selecting a vertex or an edge, as can be seen in Figure 4.7.
For the visualized result of the grouping operator, aggregated properties (e.g., count,

minDuration, maxTimestamp) can be used to adjust the radius of vertices and width of
edges to the corresponding property value. This configutation possibility can be seen on
the bottom of Figure 4.7. For example, the width of a super-edge could depend on the
average duration of the grouped edges.

4.2.6 Conclusion

In conclusion, this section has introduced the Temporal Graph Explorer (TGE), a powerful
tool designed for the exploration, analysis, and visualization of large temporal property
graphs. By leveraging the Temporal Property Graph Model (TPGM), the TGE enables the
study of evolving graphs. Rather than a static view, it allows us to delve into the dynamic
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nature of graphs, uncovering when and how changes occur.
The TGE’s functionality includes essential temporal graph operators such as snapshot

retrieval and graph difference, facilitating the computation and visualization of changes,
additions, and deletions within the graph. This is particularly valuable for scenarios
like the bicycle rental example, where one can pinpoint rentals that have been added,
removed, or remained unchanged during a specific time frame.
Furthermore, the TGE supports the analysis of large graphs through time-related

grouping and aggregation, enhancing our understanding of a graph’s structure, semantics,
and development over time. This grouping mechanism enables the exploration of various
aspects, such as how different types of vertices and edges are connected, when they were
connected, and for how long. The tool’s flexibility extends to grouping dimensions and
levels, allowing users to aggregate data in ways that suit their specific analysis needs.
The Temporal Graph Explorer represents a significant contribution to the field of

temporal graph analysis, offering a user-friendly and efficient means to gain insights into
the evolution of complex, time-dependent relationships in various domains.
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5
Evolution of Degree Metrics

Graph metrics, such as the simple but popular vertex degree and others based on it, are
well defined for static graphs. However, adapting static metrics for temporal graphs is
still part of current research. In this paper, we propose a set of temporal extensions of four
degree-dependent metrics, as well as aggregations like minimum, maximum, and average
degree of (i) a vertex over a time interval and (ii) a graph at a specific point in time. We
show why using the static degree can lead to wrong assumptions about the relevance of
a vertex in a temporal graph and highlight the need to include time as a dimension in the
metric. We propose a baseline algorithm to calculate the degree evolution of all vertices
in a temporal graph and show its implementation in a distributed in-memory dataflow
system. Using real-world and synthetic datasets containing up to 462 million vertices
and 1.7 billion edges, we show the scalability of our algorithm on a distributed cluster
achieving a speedup of around 12 on 16 machines.

The contents of this section were published under the title Evolution of Degree Metrics

in Large Temporal Graphs [174].

5.1 Introduction

Temporal graphs are graphs that change in structure and content over time, where
changes are captured and maintained as part of the graph data model. Many approaches
exist to formally define a temporal graph [83, 100, 117, 176]. A graph’s evolution is either
represented as a series of snapshots, or by vertex and edge annotations for timestamps or
time intervals describing their validity. These extended graph models allow analyzing
the current or a past state of a graph as well as the evolution of the graph. Examples for
temporal graph analysis are the exploration of human contact networks to detect the
transmission of a disease [168, 190] or analyzing the change in the utilization of bike
rental stations [121, 206]. In such graphs, the concepts of graph metrics also change
because time is added as a new dimension. Metrics used for the characterization of static
graphs need to be redefined or extended to take temporal evolution into account [145].

One simple yet important metric of a vertex is the vertex degree [82]. It is determined
by the number of incoming and outgoing edges (which is, except for multigraphs, equal to
the number of neighbors) and thus a simple indicator for the relevance or importance of a
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Figure 5.1: Degree evolution of selected rental stations in NYC for 2018. For each day, the average

degree is plotted. A indicates peaks on weekends, B a construction embargo event and C a

Halloween parade.

vertex in a static graph. A vertex with a high degree can be seen as a strongly connected
vertex, whereas a vertex with a degree of zero is an isolated vertex or singleton. The
vertex degree is also known as the centrality measure degree centrality [73], that can
be used to find, for example, popular people according to their number of friendships
in a social network, or the stations with the highest throughput of bike rentals in a
bike-sharing network.
The minimum and maximum degrees are metrics that describe the vertices with the

smallest and largest numbers of connections, respectively. The degree range [125], degree
variance [125, 193, 194] and the average nearest neighbor degree (ANND) [94, 125], are
aggregate metrics that can reveal important graph and vertex characteristics. The degree
range of a graph (the difference between the maximum and minimum degree) describes
the connectivity gap between the best and least connected vertices. For a bike-sharing
network, a small degree range indicates a good distribution of rental stations without any
hardly visited stations, whereas a high degree range indicates irregular usage. Another
extended measure of a graph’s heterogeneity is the degree variance, where a high variance
shows a high inequality in the connectivity of the vertices. The ANND, on the other hand,
reveals if a vertex is connected to others with a high connectivity, e.g., a social network
user who is mainly friend with other users who are strongly connected.

Using only the static vertex degree is of limited value in an evolving graph as it cannot
reflect the impact of topology changes. The same restriction applies for static aggregated
metrics such as the average degree value [114] or the sum of all degrees [204]. There is
no information about when a vertex has what degree, how long this degree is valid, and
when it increases or decreases. This is important, for example, in a bike-sharing network
where vertices represent stations and directed edges connect the start and return stations
of bike rentals.
Figure 5.1 shows the time series representing the evolution of the vertex degree of
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Figure 5.2: An example temporal graph.

three selected bike rental stations in NYC for 2018, calculated from the publicly available
dataset also used in our evaluations (see Section 5.5). For example, one can see the
popularity of the station at Centre St & Chambers St on weekends by periodic peaks
(marked with A) or the significantly higher rental rate of two stations during the Summer
Streets Construction Embargo [46] in August (marked with B). Further, the impact of
a Halloween parade [195] on Cherry St. (marked by C) is visible in these time-series.
This shows that there are stations that are generally popular, such as in a city center
or near train stations, as well as stations that are only popular at certain times, e.g., on
weekends or during events. Further, comparing stations using the static or aggregated
metrics, which are shown in Figure 5.1 as dotted lines, may lead to the assumption that
they seem equal by sharing a similar degree value, which in fact is not true over time
which can be revealed by temporal metrics.

Figure 5.2 shows a toy example of a temporal graph, which we use to illustrate the
problem further. Each vertex and directed edge has a unique numeric identifier and a left-
close right-open time interval [ωa, ωb)1 assigned. For example, the edge with identifier 5
(hereinafter referred to as e5) is valid from time point 3 (in the following denoted as ω3)
to ω6, whereas the vertex v1 is valid from ω0 to the maximum upper bound, denoted by
the infinity symbol∞ (ωmax).
From a static perspective, if we disregard the graph’s evolution, we can see that the

vertex degrees are deg(v1) = 6, deg(v2) = 7, and deg(v3) = 3. However, if time is
considered, then the degree values change continuously so that the evolution of the
degree value forms a time series. For example, at time ω1, the degree of v1 is 1, and
the same at time ω5. Further, since v1 is valid until forever and the last validity of its
edges end at time ω11 (exclusive), the degree from ω11 to forever (ωmax) is 0. Figure 5.3
exemplifies the evolution of the degrees of v1, v2 and v3, inclusive in- and outdegree of v1
(deg−(v1) and deg+(v1)).

It can be seen that the maximum degree of vertex v1 is only 3 over its entire period
of validity. From the vertex lower bound ω0 to time ω1, the degree is 0 – the same from
ω11 onwards. Compared to the static point of view, where the degree is 6 for v1, we can
see that during the evolution of the graph the vertex never reaches this value. The same
holds for the bike rental example of Figure 5.1. For example, the static degree of the
station “Cherry St.” is 50, whereas the maximum value over the year is just 20 for a single
day. This shows the importance of considering the changes of the degree metric over

1For simplicity we use integer interval bounds. It holds [ωa, ωb) ∶= {ω ∈ N ∶ ωa ≤ ω < ωb}.
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Figure 5.3: Degree evolution of vertex v1, v2 and v3 from ω0 to ω12. In addition, the indegree deg−(v1)
and outdegree deg+(v1) are given for v1.

time. The use of the static degree metric for assessing the importance of a vertex can lead
to misinterpretations, whereas using the degree evolution provides the exact degree for
any time in the lifetime of the graph.

Contributions: In this work we focus on four time-sensitive degree-dependent graph
measures: the vertex degree itself and its aggregations, the degree range, the degree
variance, and the average nearest neighbor degree. We extend these well-known static
metrics with a time dimension and establish two new formal definitions per metric: (i) a
temporal version that defines the metric at a specific point in time, and (ii) an evolutionary
version that defines the change of the metric within a time interval as a time series. We
then present a baseline algorithm that can calculate the degree evolution for all vertices
of a given temporal graph. Using a binary search tree called degree tree, the algorithm
efficiently maintains the degree changes of each vertex. We show how our algorithm
can be adapted to a distributed processing model, which is further illustrated by the
implementation as a graph analysis operator using a distributed in-memory dataflow
system. In our experiments, we evaluate the scalability of our implementation which
shows a sublinear growth of runtime by increasing dataset size as well as a speedup of up
to 12 on a cluster with 16 physical machines. The contributions address the challenges
C4, C6, and C8, from Section 1.1.

Related work Some works have defined a degree metric for vertices in a temporal
graph, mainly by expanding the static version for temporal graphs. Thompson et al. [204]
introduce a temporal degree centrality metric for the domain of network neuroscience.
They show that a node’s influence in a temporal network can be represented by the
centrality metric, which is the sum of the number of edges across a series of time points.
If an edge is valid for multiple time points, it will be counted multiple times. However,
this approach does not quantify the temporal order of edges so that different vertices
with identical metrics cannot be distinguished.

A similar definition of temporal degree centrality is given by Long et al. [127] and
Wu et al. [221]. Both calculate the sum of degrees over a time interval, which provides
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an estimate of a node’s centrality in a temporal network. Wang et al. [217] propose
the temporal degree deviation centrality metric that can be calculated from a temporal
network using graph snapshots. A similar approach defines the temporal degree as the
number of nodes to which a vertex is linked in all timestamps of an interval without
interruption [45].
The time-ordered graph model by Kim et al. [114] can represent a dynamic network

with a fixed vertex set and interval edges. For graphs of this model, several centrality
metrics were introduced (including degree) to include the graph’s temporal characteristic.
Temporal degree is defined as the degree Di,j(v) for a vertex v ∈ V in a time interval
[i, j]. Tlebaldinova et al. [206] use the degree as a temporal measure of centrality for bike-
sharing stations. They show that the changing degree determines the time-distributed
intensity of incoming and outgoing bike flows at a station.
In all these related works, the temporal degree is mostly seen as a scalar, aggregated

(summed) value over a certain time interval, that is used as a centrality measure. In our
approach, described next, we define both a temporal degree at a specific point in time as
well as degree evolution for a time interval as a time series. This allows exact statements
when a metric has what value for how long. In addition, our data model allows both
changes in vertices and edges, as we describe in Section 5.2.1.
After the publication of this work, Andriamampianina et al. [12] introduced the se-

mantic temporal degree, a centrality metric that integrates both temporal and semantics
aspects. With semantic aspects, they mean the type label of the incident edges. A vertex
degree thus does not just depend on the time, but also on the label of its edges. Besides
the average semantic temporal degree they also defined the semantic temporal degree

distribution.

5.2 Degree-dependent metric evolution

We first define the temporal graph data model we use as a basis for our work in Sec-
tion 5.2.1, and then introduce new temporal notations of degree-dependent metrics for
vertices in Section 5.2.2, and metrics for a whole temporal graph in Section 5.2.3.

5.2.1 Temporal graph model

We use a simplified version of the Temporal Property Graph Model (TPGM) data model,
which was already introduced in Section 3.3. Although the model supports bitemporal
versioning, for simplicity we limit ourselves to one time dimension. Thus, vertices and
edges are assigned with a left-closed right-open time interval to represent the element’s
validity according to application-specific valid-time. Unlike most temporal graph mod-
els [39], not only the edge set is dynamic, but the vertex set can also change over time.
Contact sequence graphs [90] can also be modeled by representing the time ωi of the
contact as time interval [ωi,∞), [ωi, ωi+1) or [ωi, ωj) (depending on the use-case), where
ωj is the time of a subsequent contact. The formal definition of a TPGM graph, including
consistency constraints, is given in Section 3.3.

As an addition to the model definition, we introduce two time-dependent sets of nodes
and edges that we use later in the formal definitions in Section 5.2.2 and Section 5.2.3:
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• V (ωi) ⊆ V is a finite subset of vertices, where each vertex is valid at the given
time point ωi, i. e., for all v = ⟨vid, τ⟩ ∈ V (ωi) with τ = [ωstart, ωend) it holds:
ωstart ≤ ωi < ωend.

• E(ωi) ⊆ E is a finite subset of edges, where each edge is valid at the given time
point ωi, i. e., for all e = ⟨eid, sid, tid, τ⟩ ∈ E(ωi) with τ = [ωstart, ωend) it holds:
ωstart ≤ ωi < ωend.

• G(ω) = (V (ω),E(ω)) is a graph snapshot (or state) of a temporal graph G at a
specific point in time ω.

5.2.2 Vertex-centric temporal degree metrics

For each of the following degree-based metrics, we first refer to the static version and
then introduce our temporal and evolutionary version of the respective metric.
Vertex degree and aggregations. According to graph theory [56, 82], the static

(non-temporal) vertex degree deg(v) is formally defined as follows:

Definition 10 (Vertex degree [56, 82]). The degree (or valence) of a vertex v in a static

graph G = (V,E), denoted deg(v), is the number of proper edges incident to v plus twice
the number of self-loops. Simplified, the degree of a vertex is the number of its edges. The

indegree of a vertex v, denoted as deg−(v), is the number of edges directed to v whereas the
outdegree of vertex v, denoted as deg+(v), is the number of edges directed from v. Each
self-loop at v counts one toward the indegree of v and one toward the outdegree.

Having a static view on the graph of Figure 5.2, example vertex degrees are deg(v1) = 6,
deg(v2) = 7, deg+(v2) = 3, and deg−(v3) = 1.

For temporal graphs, we now define the temporal degree as the degree of a vertex at a
specific point in time.

Definition 11 (Temporal degree). The temporal degree of a vertex v in a temporal graph

G = (V,E), denoted as degt(v,ω), is the degree of that vertex at time ω in the graph

snapshot G(ω). It is defined as:

degt(v,ω)
⎧⎪⎪⎨⎪⎪⎩

deg(v), if v ∈ V (ω),
not defined, otherwise.

(5.1)

If v ∉ V (ω), the degree is not defined. Analogous to the static degree, the temporal inde-
gree degt−(v,ω) is the number of edges directed to v, and temporal outdegree degt+(v,ω)
is the number of edges directed from v, at time ω.

For example, in the graph of Figure 5.2, the temporal degree of vertex v1 at time ω4 is
degt(v1, ω4) = 2, whereas the temporal indegree of vertex v1 at time ω8 is degt−(v1, ω8) =
3. There are clear differences between the static compared to the temporal metrics.

From the perspective of a vertex v, the degree of that vertex changes according to
the existence of neighbours of v. For a given time interval τ , we thus define the degree
evolution as a time series of temporal degrees, which contains all degree values with their
corresponding time in the given interval.

Definition 12 (Degree evolution). The degree evolution degev(v, τ) ∶= {x1, x2, ..., xm}
of a vertex v is a time series of elements xi ∶= degt(v,ω), with 1 ≤ i ≤m andm = ωend−ωstart.
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Each xi represents a temporal degree at time ωj , i.e., x1 at time point ωstart and xm at ωend−1,
for the interval τ = [ωstart, ωend). Further, the temporal degree is a special case of the degree

evolution: degev(v, τ) = {degt(v,ωi)} with τ = [ωi, ωi+1) as an interval with a single time

point. Furthermore, degev+(v, τ) denotes the outdegree evolution whereas degev−(v, τ)
denotes the indegree evolution.

For our example graph of Figure 5.2, the degree evolution of vertex v1 in the interval
τ = [ω0, ω11) is degev(v1, τ) = {0,1,2,3,2,1,1,1,3,3,1}.
The degree evolution defines the development of a vertex degree over a given time

interval. This can now be used to determine the minimum, maximum and average degree
of a vertex over a time interval, i.e., a vertex-centric aggregation.

Definition 13 (Vertex-centric min/max/avg degree). The vertex-centric minimum
degree of a vertex v within a time interval τ is the smallest value of all temporal degrees of

v in this interval. Similarly, the vertex-centric maximum degree is the largest value and
the vertex-centric average degree is the average value over all time points ω ∈ τ . With ∣τ ∣
as the number of all time points in the interval τ holds:

degmin(v, τ) ∶=min{degt(v,ω)∣∀ω ∈ τ}, (5.2)

degmax(v, τ) ∶=max{degt(v,ω)∣∀ω ∈ τ}, (5.3)

degavg(v, τ) ∶=
1
∣τ ∣ ∑ω∈τ

degt(v,ω). (5.4)

Average Nearest Neighbor Degree. An analyst may be interested in whether entities
in a graph tend to connect to others with a high connectivity, or, the opposite case,
connections occur randomly and irrespective of the degree [125]. The former situation
is referred to as preferential attachment in network science [103] and applies to many
real-world networks [35, 144], including evolving networks [103]. A metric to measure
this tendency is the average nearest neighbor degree (ANND) degnn(v). For a vertex v,
the ANND is the sum of the direct neighbor degrees divided by the degree of v.

Definition 14 (Average nearest neighbor degree [125]). The average nearest neighbor
degree degnn(vi) of a vertex vi of a static graph G is defined as the sum of the degrees of

each of the vertex’ neighbor vj divided by the degree of vi:

degnn(vi) ∶=
1

deg(vi)
∑

vj∈N(vi)

deg(vj). (5.5)

The set N(vi) ⊂ V is defined as the set of vertices incident to a vertex vi (its neighbors).

From a static perspective of the example graph of Figure 5.2, the ANNDs are degnn(v1) =
deg(v2)+deg(v3)

deg(v1)
= 1.67, degnn(v2) = 1.43 and degnn(v3) = 4.34. These results suggest that

vertex v3 seems to have the strongest tendencies to connect to others who are also
popular, while v1 and v2 display weaker tendencies. The average degree of the graph
(here degavg = 5.34) can be used to interpret an ANND value. The larger the value
compared to the average degree of the graph, the more likely we can assume that its
neighbors are more popular than average. As the other degree-dependent metrics, the
ANND will change over time if a graph evolves. To calculate the ANND of a vertex at a
specific point in time, we now define the temporal average nearest neighbour degree:
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Figure 5.4: Resulting time-series of selected degree evolution metrics of dataset citibike for year 2018.

Definition 15 (Temporal ANND). The temporal average nearest neighbor degree
(TANND) degtnn(vi, ω) of a vertex vi is defined as the sum of the temporal degrees of each

of the vertex’ neighbor (at time ω) divided by the temporal degree of vi. Furthermore, the set

N(vi, ω) ⊂ V (ω) is defined as the set of neighbors of vertex vi at time ω. It then holds:

degtnn(vi, ω) ∶=
1

degt(vi, ω)
∑

vj∈N(vi,ω)

degt(vj, ω). (5.6)

For the example in Figure 5.2, the TANND for v1 at time ω4 is degtnn(v1, ω4) = 2.5,
while at time ω9 it is degtnn(v1, ω9) = 1.

An analyst may be also interested in the evolution of the ANND over a time interval,
like how people’s propensity to rent a bike from one popular location and ride to another
popular location is changing within a month. We introduce the average nearest neighbor
degree evolution to define a series of TANND values within a time interval.

Definition 16 (ANND evolution). The average nearest neighbor degree evolution
(ANNDE) degevnn(v, τ) ∶= {x1, x2, ..., xm} of a vertex v is a time series of elements xi ∶=
degtnn(v,ω), with 1 ≤ i ≤m andm = ωend − ωstart. Each xi represents the TANND at time
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ωj , i.e., x1 at time point ωstart and xm at ωend − 1, for the interval τ = [ωstart, ωend). The
TANND is a special case of the ANNDE: degevnn(v, τ) = {degtnn(v,ω)}, with τ = [ωi, ωi+1)
as an interval with a single time point.

For example, the ANNDE of v1 in the interval τ = [ω1, ω5) is degevnn(v1, τ) =
{1,1,2.67,2}. For our small example graph, the ANND remains quite small in this
interval, which means that the popularity of the neighbours of v1 does not increase much.
Figure 5.4a shows the resulting ANNDE time series of a selected rental station for the
real world bike-sharing graph we are using in our evaluation in Section 5.5. One can
see that the tendency that rentals happen between popular stations are high during the
summer months.

5.2.3 Graph-centric temporal degree metrics

After looking at metrics for individual vertices of a graph, we now develop metrics that
concern an entire graph. Several metrics have already been defined for aggregating all
vertices of a static graph, such as the minimum, maximum, and average degree.

Definition 17 (Min/max/avg degree of a graph [125]). The minimum, maximum, and

average degree of a static graph G are defined as the minimum, maximum, and average

value of all vertex degrees deg(v) for all v ∈ V . It holds:

degmin(G) ∶=min{deg(v)∣v ∈ V }, (5.7)

degmax(G) ∶=max{deg(v)∣v ∈ V }, (5.8)

degavg(G) ∶=
1
∣V ∣ ∑v∈V

deg(v), (5.9)

with degmin(G) ≤ degavg(G) ≤ degmax(G).

For the example graph in Figure 5.2, the minimum, maximum, and average degrees are
degmin(G) = 3, degmax(G) = 7 and degavg(G) = 5.34.

With the evolution of a graph, any aggregated graph metric can change over time. We
therefore define the minimum, maximum, and average temporal degree as an aggregated
value of all vertices V (ω) in a temporal graph at time ω.

Definition 18 (Min/max/avg temporal degree). Theminimum,maximum and average
temporal degree of a temporal graph G are the minimum, maximum and average values

of all temporal vertex degrees at time ω. With V (ω) as the set of vertices at time ω it holds:

degtmin(G,ω) ∶=min{degt(v,ω)∣v ∈ V (ω)}, (5.10)

degtmax(G,ω) ∶=max{degt(v,ω)∣v ∈ V (ω)}, (5.11)

degtavg(G,ω) ∶=
1

∣V (ω)∣ ∑v∈V (ω)

degt(v,ω), (5.12)

with degtmin(G,ω) ≤ degtavg(G,ω) ≤ degtmax(G,ω).
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For the example graph in Figure 5.2, at timeω4, the aggregated degrees are degtmin(G,ω4) =
1, degtmax(G,ω4) = 5 and degtavg(G,ω4) = 2.67.

Degree range. The minimum degree reveals the smallest set of connections of a
graph’s vertices, whereas the maximum degree gives a measure of the most connections
an vertex has in the graph. The difference between the minimum and maximum degree
of any vertex in a graph is called the degree range [125]. It provides a measure of the
heterogeneity (or gap) between the connectivity of the most and the least connected
vertices in a graph [125].
Definition 19 (Degree range [125]). The degree range of a static graph G = (V,E),
denoted as degr(G), is the difference between the maximum and minimum degree:

degr(G) = degmax(G) − degmin(G). (5.13)

From a static view on the example graph of Figure 5.2, the degree range is degr(G) =
7 − 3 = 4, which suggests that it has a high inequality related to connectivity. Now
considering a temporal graph, the temporal degree range provides information about the
degree range of a graph at a specific point in time.
Definition 20 (Temporal degree range). The temporal degree range degtr(G,ω) of a
temporal graphG at time ω is defined as the difference between the maximum and minimum

temporal degree:

degtr(G,ω) = degtmax(G,ω) − degtmin(G,ω). (5.14)

With respect to the example graph from Figure 5.2, the temporal degree range at time
ω4 is degtr(G,ω4) = 5 − 1 = 4, which is equal to the static metric, while at times ω1, ω6
and ω10, the temporal degree range is degtr(G,ω1) = degtr(G,ω6) = degtr(G,ω10) = 1.
Thus, as the graph evolves, the degree range changes as well.

To obtain any changes of the degree range over a defined time interval, we introduce
the degree range evolution that defines a series of temporal degree range values for all
time points in a given interval.
Definition 21 (Degree range evolution). The degree range evolution degevr(G, τ) ∶=
{x1, x2, ..., xm} of a temporal graph G is a time series of elements xi ∶= degtr(G,ω), with
1 ≤ i ≤m andm = ωend−ωstart. Each xi represents the temporal degree range at time ωj , i.e.,

x1 at time point ωstart and xm at ωend − 1, for the interval τ = [ωstart, ωend). The temporal

degree range is a special case of the degree range evolution: degevr(G, τ) ∶= {degtr(G,ω)},
with τ = [ωi, ωi+1) as an interval with a single time point.

For the example graph of Figure 5.2, the degree range evolution for τ = [ω0, ω7) is
degevr(G, τ) = {0,1,2,5,4,3,1}, which shows a changing gap of connectivity in this
interval. Figure 5.4a shows the time series of the degree range evolution for the real
world bike sharing graph we are using in our evaluations. One can see that the value
is below 2 over the whole year which indicates a low inequality of rentals between all
rental stations.
Degree variance. Besides the simple metric of range, Snijders introduced the more

complex metric called degree variance of a graph [194], which involves its average degree
to characterize the heterogeneity in connectivity across nodes. This metric reveals infor-
mation about the spread of both well-connected and not so well-connected vertices in a
graph. It is formally defined as follows:
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Definition 22 (Degree variance [125]). The degree variance degv(G) of a graph G is

defined as the sum of the square of the difference between each vertex degree deg(v) and
the average degree of the graph degavg(G), divided by the total number of vertices ∣V ∣:

degv(G) ∶=
∑i(deg(v) − degavg(G))2

∣V ∣
. (5.15)

This metric quantifies the extent to which there are differences in the connectivity of
the vertices in a graph. High differences in connectivity mean high variance; if all node
degrees are the same then the degree variance is zero. If the example graph in Figure 5.2
is considered static it has a degree variance of degv(G) = 2.89.
For temporal graphs, the degree of vertices can change over time, and so can the

average degree as well as the number of vertices. Therefore, we formally define the
temporal degree variance as follows:
Definition 23 (Temporal degree variance). The temporal degree variance, degtv(G,ω),
of a temporal graphG is defined as the sum of the square of the difference between each tem-

poral vertex degree degt(v,ω) and the temporal average degree of the graph degtavg(G,ω)
at time ω, divided by the total number of vertices ∣V (ω)∣ at that time:

degtv(G,ω) ∶=
∑i(degt(v,ω) − degtavg(G,ω))2

∣V (ω)∣
. (5.16)

Considering the example graph in Figure 5.2 at ω4, the temporal degree variance is
degtv(G,ω4) = 2.89, which is equal to the static value since the inequality of connectivity
is the same for this small example. In contrast, at time ω1, the temporal degree variance
is degtv(G,ω1) = 0.22 since there is a quite high equality of connectivity at this time. To
evaluate whether and how the degree variance changes in a given time interval, i.e., if
the inequality of degrees in a graph decreases or increases over time, or if it retains a
similar value, we define the degree variance evolution.
Definition 24 (Degree variance evolution). The degree variance evolution degevv(G, τ)
∶= {x1, x2, ..., xm} of a temporal graph G is a time series of elements xi ∶= degtv(G,ω),
with 1 ≤ i ≤m andm = ωend − ωstart. Each xi represents the temporal degree variance at

time ωj , i.e., x1 at time point ωstart and xm at ωend − 1, for the interval τ = [ωstart, ωend).
Further, the temporal degree variance is a special case of the degree variance evolution:

degevv(G, τ) = {degtv(G,ωi)} with τ = [ωi, ωi+1) as an interval with a single time point.

The degree variance evolution of vertex v1 in the example graph of Figure 5.2, for time
interval τ = [ω0, ω5), is the series: degevv(G, τ) = {0,0.22,0.89,2.89,2.89}. The degree
variance increases over time in this example, which indicates a growth of the inequality
of the vertex’ connectivity. With regard to the real world bike sharing graph, Figure 5.4b
shows the degree variance evolution of the temporal graph. The inequality of the rental
stations’ utilization is low over the whole year but reaches its lowest values in the winter
months.

5.3 Degree evolution algorithm

We now describe a baseline algorithm that calculates the degree evolution (see Defini-
tion 12) for all vertices in a temporal graph.
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We assume that the input is a temporal graph G = (V,E) including a set of temporal
vertices V and temporal edges E according to the TPGMmodel described in Section 5.2.1,
where the degree type Ψ = {in, out, both} is given as configuration parameter. The
output of the algorithm is a time series representing the degree evolution for each vertex,
where we reduce the size of the result by merging succeeding time points without a
degree change into intervals. These intervals are tuples ⟨vid, τi, degt(vid, ωj)⟩, where vid

is a vertex identifier, τi is the interval in which the degree is valid without interruption,
and degt(vid, ωi) the constant temporal degree of vid for any time point ωj of the interval
τi. We split the algorithm into five steps which we described next.

(1) Vertex mapping. For each vertex v ∈ V we extract the vertex identifier and its time
interval into a tuple ⟨vid, ωstart, ωend⟩. This tuple is later used as input of step (5). This
step can be skipped if the vertex times are not of relevance. Considering our example
graph in Figure 5.2, each of the graph’s vertices V = {v1, v2, v3} is mapped to a tuple,
resulting in a set of three tuples ⟨v1,0,∞⟩, ⟨v2,−∞,∞⟩ and ⟨v3,0,11⟩2.

(2) Edge mapping. For each edge e ∈ E we extract the required vertex identifiers and
the edge’s time interval into one or two tuples ⟨vid, ωstart, ωend⟩ depending on the degree
type Ψ. For Ψ = in, one tuple is created with vid ← tid (the target vertex identifier), for
Ψ = out one tuple is created with vid ← sid (the source vertex identifier), and for Ψ = both
both of these tuples are created. Considering the example graph in Figure 5.2 and Ψ = out,
each of the graphs edges E = {e1, e2, ..., e8} is mapped to one tuple as described above.
For example, edge e4 is mapped to ⟨v2,6,10⟩, whereas e5 is mapped to ⟨v2,3,6⟩.
(3) Interval collection. We group the set of tuples ⟨vid, ωstart, ωend⟩ from step (2)

by vertex identifier and create a mapping vid → Ivid
= {τ0, τ1, ..., τn} which assigns a

unsorted set of edge intervals Ivid
to the corresponding vertex identifier. For vertex v1

and Ψ = out of our example, the mapping to the collection of all incident edge intervals
is v1 → Iv1 = {[1,5), [2,6), [3,4)}.
(4) Capture degree evolution. For each vertex v and its corresponding unsorted

set of (incoming, outgoing, or both) edge intervals created in step (3), a data structure
maintaining the rise or fall of the metric at all respective points in time, i.e., when the
degree of the vertex changes, is needed. A baseline approach is the maintenance of a
typed list holding two types of points in time: the lower interval bounds which indicate
a degree rise of 1, and the upper interval bounds which indicate a fall of 1. The space
complexity is always O(n) with n = 2 ⋅ ∣Ivid

∣, i.e., the number of all time points including
duplicates. All points in time can be inserted with a time complexity O(n) (O(1) each),
and the list has to be sorted before the iteration which costs O(n ⋅ log(n)). The degree
evolution for this vertex can be created by iterating the list (with O(n)) and adding 1 to
a aggregate value for all lower interval bounds and -1 for all upper bounds.

An alternative is a Binary Search Tree (BST) [27] Tv . Each node of the tree has a value
ω ∈ Ω and a payload ρ ∈ Z. ω represents a point in time, whereas ρ (initialized with 0)
stores an aggregated value indicating the quantity of change (positive or negative) of the
degree at this specific time ω compared to the aggregated value of the evolution until
this point in time. For a left-close right-open interval τ = [ωstart, ωend), the payload ρ
of node ωstart is increased by 1, whereas ρ of ωend is decreased by 1. Further, the left
child node ωl of a parent node ωp has a value ωl < ωp and the right child node ωr has a
value ωr > ωp, respectively. The worst case space complexity is O(n), too, but having

2Note that we use integers for time points to improve readability.
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Figure 5.5: Degree tree building for vertex v1 and Ψ = out.

n without duplicate time points. The time complexity of inserting a node in this tree is
O(log(n)) on average (O(n) if all time points are different). The random insertion of
points in time, while keeping the tree sorted, and the lower memory requirements by
avoiding duplicated points in time, is our reason for choosing the BST, which will be
called degree tree in the following. Thus, the output of this step (4) is a mapping vid → Tv

that assigns a degree tree to its corresponding vertex identifier.
If we again consider v1 in our example, the building of the degree tree Tv1 assuming

Ψ = out is shown in Figure 5.5. Inserting the interval [1,5) first inserts a node with
value ω = 1 and payload ρ = 1, and then a node with ω = 5 and payload ρ = −1. For the
subsequent two intervals, four additional nodes are added. A degree tree with six nodes
is the result, as shown on the right side.

(5) Tree traversal and result collection For each vertex, we now have a degree tree
Tv that represents the degree evolution of this vertex for the degree type Ψ, and the lower
and upper bounds of the vertex’ validity interval, ωstart and ωend. If the validity of the
vertices can be neglected, a default minimum and maximum time point can be used as
initial values. Each degree tree is now traversed using Depth First Search (DFS) [200]
and in-order traversal (LNR) starting at the root node to obtain an ascending order of
points in time. Algorithm 1 outlines this step.
The algorithm starts by traversing the tree Tv in line 5 with the recursive function

InOrderDFS (lines 8 to 11). Function ProcessNode describes the logic of a node visit,
where we first handle the special case of an vertex lower interval bound that is equal to
the value of first visited node of the tree (lines 13 to 15). For every following visited node,
the resulting temporal degree tuple is collected in line 17 if payload ρ ≠ 0.
Next, to get the degree for the subsequent interval, the payload ρ is first added to d

(line 18), and second the time point ω is remembered as lower interval bound for the
next interval (line 19). After all nodes of the tree are visited, we check for a remaining
time interval from the last time point ωlast to the vertex upper interval bound ωmax and
collect a last tuple with d = 0 accordingly (line 7). The final algorithm output is a series
of tuples ⟨vid, τ, degt(vid, ω)⟩, with degt(vid, ω) as constant temporal degree for all time
points ω ∈ τ , that were collected by both collect() calls (lines 7 and 17).

For a better understanding, we exemplary go through Algorithm 1 by using the degree
tree Tv1 of vertex v1, shown on the right side in Figure 5.5, as input. Remember this is
the representation of the outdegree of v1. In addition, from step (1), the algorithm gets
the lower bound ωstart = 0 and upper bound ωend = ∞ of the vertex interval as input
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Algorithm 1: Tree traversal and result collection
Data: Tv, vid, ωstart, ωend; /* Input data */

1 ωlast ← ωstart ; /* ωstart = −∞ if not given */
2 ωmax ← ωend ; /* ωend = ∞ if not given */
3 d← 0 ; /* Initialize degree with 0 */
4 Function Main():
5 InOrderDFS(Tv); /* Traverse the tree with in-order DFS */
6 if ωlast < ωmax then /* Check for last remaining interval */
7 collect(⟨vid, [ωlast, ωmax), d⟩); /* Collect tuple for last

interval */

8 Function InOrderDFS(tree):
9 if tree.left ≠ null then InOrderDFS(tree.left);

10 ProcessNode(tree.value,tree.payload);
11 if tree.right ≠ null then InOrderDFS(tree.right);
12 Function ProcessNode(ω, ρ):
13 if ωlast == ω then /* Check first node visit */
14 d← d + ρ; /* Add payload to degree */
15 return ; /* Leave function */

16 if ρ ≠ 0 then /* Check if the degree changes */
17 collect(⟨vid, [ωlast, ω), d⟩) ; /* Collect tuple */
18 d← d + ρ ; /* Add degree change to degree */
19 ωlast ← ω; /* Remember ω for next call */

parameters to initialize ωlast and ωmax. During the in-order traversal of the DFS, function
ProcessNode(ω, ρ) is called first with the arguments (1,1) (value,payload), followed by
(2,1), (3,1), (4,−1), (5,−1) and (6,−1).

According to the first tuple, the interval [0,1) is defined and collected as part of the
first resulting temporal degree tuple ⟨v1, [0,1),0⟩ afterwards (line 17). Then, the payload
1 is added to the degree value d (line 18) and the timestamp value 1 is remembered
in variable ωlast (line 19). In the next function call with input tuple (2,1), an interval
τ ← [1,2) is defined and collected together with the current degree value of d which is 1.
The collected result tuple is thus ⟨v1, [1,2),1⟩. Again, the degree value is updated by the
payload and the timestamp is remembered. For the remaining four input tuples (3,1),
(4,−1), (5,−1) and (6,−1) will be the following result tuples collected: ⟨v1, [2,3),2⟩,
⟨v1, [3,4),3⟩, ⟨v1, [4,5),2⟩ and ⟨v1, [5,6),1⟩.

To collect also the remaining interval from 6 to ∞, the condition (line 7) checks
whether the largest timestamp in the tree (ωlast) is smaller than the maximum timestamp
(ωmax = ∞). Since this is true in our case, we define the remaining interval τ = [6,∞)
and collect the output tuple ⟨v1, [6,∞),0⟩ which states that the degree of v1 is 0 for the
interval [6,∞). The result of this final step is a compact representation of the degree
evolution of the outdegree of vertex v1 as defined by Definition 12: degev+(v1, [0,∞)) =
{⟨0, [0,1)⟩, ⟨1, [1,2)⟩,
⟨2, [2,3)⟩, ⟨3, [3,4)⟩, ⟨2, [4,5)⟩ ⟨1, [5,6)⟩ ⟨0, [6,∞)⟩}.
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Figure 5.6: Implementation details of the Degree Evolution-Operator.

5.4 Distributed implementation

The ability to process very large graphs efficiently is often a limitation of existing graph
processing systems [187], requiring partitioning of large graphs and distributed pro-
cessing for example of analytical tasks. There are distributed graph processing systems,
such as Tegra [100] based on Apache Spark [225], or Gradoop [175, 176] which uses
Apache Flink [37]. An analytical operator in Gradoop is a smart combination of Flink
transformations. A Flink transformation, e.g., map, flatMap and join, is a processing
unit that can be applied in parallel on a distributed Flink DataSet. A DataSet represents
a distributed collection of elements of the same type in Apache Flink. Its tuples are
distributed among all nodes of a cluster according to a partitioning strategy. We use
this operator concept for our distributed implementation of the algorithm described in
Section 5.3.

Figure 5.6 shows an architectural sketch of a Degree Evolution-Operator3 as a Directed
Acyclic Graph (DAG) representing multiple Flink transformations that are applied on
the input graph DataSets: V with vi = ⟨vid, τ⟩ and E with ei = ⟨eid, sid, tid, τ⟩. The
enumeration of the data flow follows the algorithm steps given in Section 5.3.
First, in step (1), each vertex of the input vertex DataSet V , is mapped to a minimal

representation holding the vertex identifier and the bounds of the vertex’ time interval.
The resulting DataSet is named V1 in the figure. If the temporal information of the vertices
can be neglected, this step can be skipped and default min/max timestamps can be used
as input to step (5), which avoids the later described distributed join. Then, we apply a
FlatMap transformation, step (2), to the edge DataSet E that is configured by the degree
type (Ψ ∈ {in, out, both}) as selected by the user. According to the degree type, one or
two tuples of the format ⟨vid, ωstart, ωend⟩ are extracted from an input edge tuple (step (2)
in Section 5.3). The resulting DataSet is denoted as E1.
On E1, we apply a Group transformation which groups all entities by the vertex

identifier, and creates a set of tuples ⟨ωstart, ωend⟩ for each group. In the figure, this
step is marked by (3), whereas the resulting grouped DataSet is denoted as E2. Due
to the grouping, E2 is partitioned by the vertex identifier. For each group, we apply
a GroupReduce transformation in step (4) which calls a user-defined function for each
group. This function receives the whole group at once and produces a mapping vid → Tv

assigning a degree tree to its corresponding vertex identifier, represented as a tuple

3The operator code is open-source: https://github.com/dbs-leipzig/gradoop/tree/develop/
gradoop-temporal/src/main/java/org/gradoop/temporal/model/impl/operators/metric.
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∣V ∣ ∣E∣ Size (GB) ∑∣degev()∣
LDBC SF1 3.2 M 17.3 M 4.2 30.6 M
LDBC SF10 30.0 M 176.6 M 42.3 319.6 M
LDBC SF100 282.6 M 1.77 B 421.9 3.18 B
Citi Bike 1174 97.5 M 22.6 381.0 M
Stackoverflow 462.9 M 664.8 M 199.0 1.3 B

Table 5.1: Dataset statistics, including their sizes on HDFS and number of result set tuples for Ψ = both,

i. e., ∑∣V ∣i=1 ∣degev(vi)∣. For example, 3.18B tuples result for the LDBC dataset with SF 100.

⟨vid, Tv⟩. The resulting tuples are part of DataSet E3, which is partitioned by the vertex
identifier.

Now, each tuple of V1 needs to be joined by the vertex identifier to it’s corresponding
degree tree tuple of DataSetE3 to extend it with the interval bounds of the vertex. As said
before, this step can be optionally skipped. As a result of the join, the DataSet E3 consists
of tuples ⟨vid, Tv, ωstart, ωend⟩. As a last step, annotated with a (5), a FlatMap transforma-
tion is applied on DataSet E3 where its internal logic implements the tree traversal and
result collection process defined in Algorithm 1. For each input tuple, the transformation
produces multiple (at least one) result tuples in the form ⟨vid, τ, degt(vid, ω)⟩, describing
the constant temporal degree (see Definition 11) of vertex v ∈ V (identified by vid) for the
whole interval τ . The resulting DataSet is named E4.

5.5 Experimental Evaluation

We now evaluate the runtime and scalability of the temporal degree operator we discussed
in Section 5.4 with respect to increasing data set and cluster sizes. We ran all experiments
on a cluster with 16 worker nodes connected via 1 GBit Ethernet, where each worker
consists of a E5-2430 6(12) 2.5 Ghz CPU, 48 GB RAM, two 4 TB SATA disks, and running
openSuse 13.2, Hadoop 2.7.3 and Flink 1.9.0. On a worker node, a Flink Task Manager [37]
is configured with 6 task slots and 40GB memory.
We use three datasets for the evaluation, referred to as LDBC [97] (a synthetic social

network in three scale factors: 1, 10 and 100), citibike [129] and stackoverflow [196] (both
real-world data). In Figure 5.4 we show example time series of four evolution metrics for
the citibike dataset. Each graph is stored distributed using the Hadoop Distributed File
System (HDFS) by hash partitioning as two datasets V and E. Table 5.1 shows statistics
of the three datasets with the different scaling factors (SF) for LDBC. Each experiment
includes reading the graph dataset from the HDFS, executing the specific workflow, and
finally writing all results back to the HDFS. We ran each experiment five times and report
average runtimes.
Impact of dataset size. Figures 5.7 and 5.8 show the impact of the dataset size to

the operator runtime with full parallelism of 16 workers with respect to different degree
types Ψ ∈ {in, out, both}. While Figure 5.7 shows the actual runtime in seconds for all
three dataset sizes, Figure 5.8 visualizes the factor by which the runtime has increased
compared to the runtime of the LDBC SF1 dataset. For example, the runtime for the
LDBC SF1 dataset for Ψ = both is only 23.3 seconds, for LDBC SF10 164.6 seconds (factor
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7 higher compared to LDBC SF1) and for LDBC SF100 1433.6 seconds (factor 61). The
best result is given by degree type Ψ = in, where the runtimes of LDBC SF100 are only
35.4 times larger compared to LDBC SF1, although the dataset is 100 times larger. From
LDBC SF10 to LDBC SF100 the runtimes of all three degree types rise equally.

The results, specifically Figure 5.8, show that a linear increase of the dataset size leads
to only a sublinear increase in the running time for a constant graph structure. Further,
the runtimes of Ψ = both are always higher compared to the others which is due to the
double amount of collected tuples in step (2), as we discussed in Section 5.4.

Impact of worker count. We next examine the runtime and scalability of the algorithm
for all datasets. In addition, the effect of excluding the vertex time information as described
in Section 5.3 is evaluated. Without using the vertex time, the complete step (1) and the
expensive join after step (4) can be avoided (see Section 5.4). In the following, we refer to
an execution without vertex time as base and extended for the full algorithm. The results
in Figure 5.9 show that the mentioned higher complexity has a significant impact on the
running time. For example, the runtime on a single machine for the citibike dataset is
397.6 seconds (base) and 533.6 seconds (extended), which means an increase of 34.2%. For
the stackoverflow dataset, the execution takes 2,536 seconds (base) and 5,216 seconds
(extended), which means almost doubling the runtime on a single machine.

The more workers are added, the smaller the runtime and the difference between the
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two algorithm variants, which can be seen in Figure 5.10. With the citibike dataset, we
can see that the runtimes on a single machine are already low and that only a moderate
improvement can be achieved through horizontal scaling of resources. For this dataset,
we reach a speedup of about 6.7 for 16 machines using the extended variant, while for the
LDBC SF100 and stackoverflow datasets, we achieve a speedup of up to 11.1 and 12.07,
respectively.

5.6 Conclusion

Most graphs that model real-world entities and their relationships are dynamic, where
edges and vertices can be valid for only a certain period of time. One simple but often used
centrality measure is the degree centrality using a vertex’ degree to judge it’s popularity
in a network.
We show in this work that it is necessary to determine a vertex degree over time, to

know exactly when a node has which degree and how long this value is valid and in
which quantity it does change over time. We therefore provide temporal extensions to
the vertex degree metric itself, its aggregations and others based on it, namely the degree
range, the degree variance and the ANND, and define them formally. We further describe
an algorithm to calculate the newly introduced degree evolution for all vertices of a
temporal graph. We implemented the algorithm as a graph analysis operator in Gradoop,
an open-source distributed graph analysis system.

We evaluated runtimes and scalability of the operator on a cluster with 16 machines to
determine the impact of different datasets and sizes. In summary, we have shown that
a linear increase in the dataset size leads to only a sublinear increase in runtime of our
algorithm. We also showed that the operator scales well by increasing the number of
machines. Speedup values between 10 and 12 were achieved on 16 machines using the
two largest datasets.
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6
The Fusion of Graph and Time-Series Data

This work is a summarized view on the results of a one-year cooperation between Oracle
Labs and the University of Leipzig under the grant name “Temporal Property Graphs as
Organizing Principles” [76]. The goal was to research the organization of relationships
within multi-dimensional time-series data, such as sensor data from the IoT area. We
showed in this project that temporal property graphs with some extensions are a prime
candidate for this organizational task that combines the strengths of both data models
(graph and time-series). The outcome of the cooperation includes three achievements,
which are summarized in this section: 1) a bitemporal property graph model as an
extension of the already introduced TPGM, 2) a temporal graph query language based on
Oracle’s PGQL language, and 3) a conception of a continuous graph-based event detection
approach.

The contents of this section were published on arXiv under the title Bitemporal Property

Graphs to Organize Evolving Systems [173].

6.1 Introduction

Time series data are omnipresent. From share prices, population trends, price indices,
weather data or sensor readings from complex machines, time series data can be multi-
dimensional and generated discretely in finite time intervals. The inherent temporal
dimension of time series data provides a rich source of information, enabling the analysis
of sequential events and dependencies, essential for understanding and predicting various
real-world processes. However, a prominent challenge is the organization of such multi-
dimensional time series data, e.g., to connect correlating sensor data from the IoT area.
Even though time series data has very high information content, the data structure offers
no possibility of depicting or describing the relationships between entities that produce
time series. For example, an aircraft, like the one in Figure 6.1, is a complex system of
many bigger and smaller components, many of which are equipped with various sensors
that continuously capture data to determine its current status. One component (also
denoted as an asset) is often a complex system of smaller components, e.g., the airplane
turbine, which is again equipped with sensors.
Imagine that each sensor in such a complex system delivers a time series of values,
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Figure 6.1: Sensors of an airplane [92].

e.g., temperatures, rotational speeds, centrifugal forces, accelerations, etc. To model
the relationships between sensors and components themselves, as well as sensors and
components among each other, a data structure is required that can model such a complex,
heterogeneous network and allow structural and content changes to the network and
store precisely when these changes took place. Having such a network (or graph), one
can query for these relationships and find correlations that might be hidden by looking
at the time series isolated from each other.

We figured out that temporal property graphs are the prime candidates for this organi-
zational task that combines the strengths of both data models (graph and time series).
Several requirements emerged for this technology combination, including: 1) the need
for a rich graph data model with full auditing of the graph’s evolution - in the observed
real world as well as in the graph database, 2) the need for a declarative query language
to match patterns in a changing graph, and 3) the need for an event detection mechanism
through a continuous evaluation of registered patterns against graph changes.
The contributions of this collaborative project addressing the challenges C1, C2, C3

and C10 from Section 1.1 and can be summarized as follows:

• the TPGM+, a bitemporal property graph model based on the TPGMwith a focused
support of property changes;

• the T-PGQL, a temporal graph query language with similar features as Temporal-

GDL but based on Oracle’s PGQL language,
• and Continuous Graph Notifications CGN, a mechanism to continuously notify
about query result updates.

Section 6.2 introduces the TPGM+, whereas Section 6.3 presents T-PGQL with many ex-
ample queries. The Continuous Graph Notification (CGN), a technology for continuously
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evaluating registered T-PGQL queries for event detection, is introduced in Section 6.4.
We summarize the work and give an outlook on ongoing work in Section 6.5.

6.2 TPGM
+
: ATPGMextensionwithtemporal prop-

erties

A property graph (see Section 2.1) is characterized by vertices and directed edges, type
labels and properties. The latter are represented as key-value pairs and describe the entity
or relationship in more detail, e.g., name:Christopher or city:Leipzig. Based on the
PGM, we previously introduced the TPGM and formally defined it in Section 3.3. One
downside of the TPGM is the limited support for property changes. If a property of a
vertex or edge changes, i.e., it is created updated or removed, a logical copy of the vertex
or edge is created that stores the updated state and the information about the time of the
update. All properties that are not affected by the changes stay unchanged and exist as
overhead in this new version. Thus, high frequent changes of properties and their values
thus result in a huge amount of duplicated elements.
To overcome this weakness, we defined the TPGM+, an extended version of the

TPGM that adds bitemporal modeling to the layer of properties. For each TPGM+

graph, two linear ordered discrete time domains Ω exist: Ωtx for the transaction time and
Ωval for the valid-time. Each instant in time is a time point ωi. The linear ordering is
described as ωi < ωi+1, i.e., ωi happened before ωi+1. Per time domain, each vertex, edge,
and property value has an associated time-period τ . Given ωs, ωe ∈ Ω, a time-period
τ = [ωs, ωe) is defined as a close-open time interval starting at and including ωs and
ending at but excluding ωe. The time points of τ are thus a set {t ∣ t ∈ Ω ∧ ωs ≤ t < ωe}.
The length or size of a period τ is defined by len(τ). Default values for lower and upper
bounds are ωmin = −∞ and ωmax = ∞.
Further, we defined several integrity constraints of a TPGM+ graph, to ensure the

consistency of the graph at each point in time. Each constraint is valid per time domain.

1. Unique vertices, edges and properties. At every point in time, vertices, edges, and
properties are unique, i.e., exist at most once. The uniqueness constraint of vertices
and edges is a combined key of the element’s identifier and the end timestamp. The
uniqueness constraint of a property is its name.

2. Referential integrity of edges. For each edge, the time intervals associated with its
source and target vertices must contain the edge’s time interval. In other words,
an edge can only exist when its incident vertices exist.

3. Referential integrity of properties. For a property value, the interval of the ver-
tex/edge must contain the interval of the property value. In other words, a property
value can only exist when the corresponding vertex/edge exists.

4. Constant edges. Source and target vertices of an edge never change at existence.
5. Constant types. Vertex and edge labels, as well as property key names, never change.

Figure 6.2 shows an example of a TPGM+ graph that demonstrates the evolution of
property values. The temporal graph shows two Sensor vertices that are connected to
an Asset vertex. The time dimensions on the vertex and edge layer are already known
from the TPGM and are for demonstration purposes valid forever (through the interval
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partOf

🕐  [ωmin,ωmax)
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s_id : { ( 233 , 🕐  [ωmin,ωmax) ) }
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    }

partOf

🕐  [ωmin,ωmax)

Figure 6.2: Example of a TPGM
+
graph with updates of vertex properties. For simplicity, just the valid-

time dimension is exemplified.

[ωmin, ωmax)). This also holds for rather static property values, like the sensor ID or
type. For changing property values, like the measured value of a sensor, we have the
time information as an interval attached to each value. For example, sensor 233 captured
the value 37.8 at time ω3, which is valid until the next value was captured at ω4. This
simple extension of the data model now makes it possible to model time series data as a
changing property of a node or edge.

6.3 T-PGQL: A Temporal Property Graph Query

Language

In Section 3.3, we already introduced a bitemporal graph query language called Tem-

poralGDL. The underlying GDL [108] language is rather a research prototype than an
industrial language supported by commercial graph databases. In contrast, PGQL [150,
166], Oracle’s declarative graph query language, is fully supported by Oracle’s graph
database. In cooperation with Oracle, we developed T-PGQL, an alternative temporal
graph query language based on PGQL. It adapts some of the features of TemporalGDL, but
also has new features that specifically support the temporality of properties introduced
by TPGM+.

We will first look at some preliminaries needed to understand the extensions we made
to the graph query language PGQL, which are explained afterward.

6.3.1 Preliminary: PGQL - A (Non-temporal) Graph Query

Language

PGQL [150, 166] combines graph pattern matching with SQL-like syntax and functionality
and has full-blown support for regular path queries and graph construction. Because its
syntax is SQL-like, the language is intuitive to use for existing SQL users. Furthermore,
PGQL queries return a result set with variables and bindings, just like in SQL. In this
work, we refer to PGQL version 1.3 [151].

Matching graph patterns is one main functionality of PGQL realized by a SELECT
query. Similar to SQL, a SELECT query is composed of several clauses, starting with
the mandatory SELECT clause and FROM clause. In PGQL, the SELECT clause defines the
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returned result entities of the query. Since the result of a SELECT query is always a
table, the SELECT clause defines the attributes of the result table. The graph pattern to be
matched is defined by the FROM clause that includes one or multiple MATCH clauses. A
MATCH clause defines a path- or graph pattern, where a graph pattern is a composition
of path patterns. Listing 6.1 shows the syntactic structure of a PGQL SELECT query
including the FROM- and MATCH clauses, taken from [151].
SelectQuery ::= SelectClause

FromClause
WhereClause?
⋅⋅⋅

SelectClause ::= 'SELECT' 'DISTINCT'? ExpAsVar ( ',' ExpAsVar )*
| 'SELECT' '*'

FromClause ::= 'FROM' MatchClause ( ',' MatchClause )*
MatchClause ::= 'MATCH' ( PathPattern | GraphPattern ) OnClause?
GraphPattern ::= '(' PathPattern ( ',' PathPattern )* ')'
PathPattern ::= SimplePathPattern | ShortestPathPattern | ⋅⋅⋅
ExpAsVar ::= ValueExpression ( 'AS' VariableName )?

Listing 6.1: Syntax definition of a PGQL Select Query [151].

Path patterns describe topology constraints, where a topology constraint is a composi-
tion of one or multiple vertices and edges. A vertex or edge is optionally identified by a
variable, i.e., a symbolic name to reference it in other clauses. It is also possible to define
one or more label predicates directly in the pattern. A PGQL SELECT query returning all
person and movie names that match this pattern can be formulated as follows:

1 SELECT p.name, m.movie
2 FROM MATCH (p:Person)-[l:like|dislike]->(m:Movie)

For more details we refer to the official documentation of PGQL, available at [150].

6.3.2 Extensions of PGQL toQuery TPGM
+
Graphs

In current graph query languages patterns (or paths) are searched in the whole available
graph database without observance of any evolution. Having a temporal graph modeled
by the TPGM+ (see Section 6.2), several new requirements arise for a query language to
support temporal features of the model. In this work, we limit to the retrieval of data. The
manipulation of data as well as functions for the definition and manipulation of database
structures are not considered yet and part of future work. In all subsequent T-PGQL
query examples, syntax highlighting was chosen to highlight the extension, showing the
original PGQL syntax in blue (e.g., MATCH), and the extended T-PGQL syntax green (e.g.,
AS OF).

Access of Temporal Attributes

Our data model tracks changes in a bitemporal model on a level of vertices, edges and
properties. We introduce the possibility to add these attributes via projection to the
resulting relation and to use these attributes in expressions for selection. We distinguish
four different temporal characteristics of a vertex, edge and property: 1) the period itself,
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TimeIdentifier ::= 'TX_TIME' | 'VAL_TIME' | 'TX_FROM' | 'TX_TO' | 'VAL_FROM'
| 'VAL_TO'

Property ::= Identifier
VarRef ::= Identifier
PropRef ::= VarRef '.' Property
ElementTimeRef ::= VarRef '.' TimeIdentifier
PropertyTimeRef ::= PropRef '.' TimeIdentifier
TimeRef ::= ElementTimeRef | PropertyTimeRef

Listing 6.2: Syntax definition of accessing temporal attributes in T-PGQL.

2) its lower bound timestamp (inclusive), 3) its upper bound timestamp (exclusive) and 4)
the length/duration of a period.
The period identifier is defined as VAL_TIME for the valid time domain and TX_TIME

for the transaction time domain. A period is, like in SQL, not a data type but a type
definition [120]. The textual representation a period projection is a concatenated result
of both period bounds in the form of: [{from},{to}). A period type can be used for
several predicates, as later described. The identifiers for the period bounds are VAL_FROM
and VAL_TO for the valid time domain and TX_FROM and TX_TO for the transaction time
domain. The result of a period-bound access is a timestamp.
To access these attributes of a vertex or edge, they can be used like a property ac-

cess by dot notation, e.g., var1.TX_FROM or var2.VAL_TIME. According to the temporal
attributes of a property, the same suffix can be used on a property access expression,
like var1.prop1.TX_FROM or var2.prop2.VAL_TIME. Listing 6.2 shows the respective
syntax definition.
For example, the following query returns all available temporal characteristics of

person vertices and their name property.

1 SELECT n.TX_FROM, n.TX_TO, n.TX_TIME,
2 n.VAL_FROM, n.VAL_TO, n.VAL_TIME,
3 n.name.TX_FROM, n.name.TX_TO, n.name.TX_TIME,
4 n.name.VAL_FROM, n.name.VAL_TO, n.name.VAL_TIME
5 FROM MATCH (n:Person) ON student_network

Besides the period of a graph element or its property, the length/duration of this period
can be queried. We introduce a LENGTH([unit,]period) expression which consumes a
period access identifier (period) as argument and an optional unit (i.e., YEAR, QUARTER,
MONTH, WEEK, DAY, HOUR, MINUTE, SECOND, MILLISECOND). If no unit is given, the
default unit MILLISECOND is used. This expression returns a numerical value that can be
used within several expressions, e.g., binary constraints. The following query returns
the duration in days of the valid time period of a person’s name property for all persons
whose valid time exceeds one day.

1 SELECT LENGTH(DAY, n.name.VAL_TIME)
2 FROM MATCH (n:Person) ON student_network
3 WHERE LENGTH(DAY, n.name.VAL_TIME) > 1
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Temporal Filtering and Chronological Pattern Matching

Graphs with a managed valid-time are intended for meeting the requirements of applica-
tions that are interested in capturing time periods during which the data is (believed to
be) valid in the real world. For each vertex or edge, as well as their properties, a valid-time
period is available. As described above, the identifier of this period is VALID_TIME and
the beginning and ending bounds are VAL_FROM and VAL_TO. They can be used as a suffix
to variable and property access. Analogous to the transaction time attributes, the valid
time period returns a new period type definition and the bounds return a timestamp
type. Latter can be used like regular timestamp attributes, e.g., within binary relations
in the WHERE clause, which is defined in Listing 6.3. Note that TemporalExpression is a
temporal extension of this work and not part of the origin PGQL clause.
WhereClause ::= 'WHERE' ValueExpression
ValueExpression ::= VariableReference

| PropertyAccess
| ⋅⋅⋅
| TemporalExpression

TemporalExpression ::= ElementTimeRef
| PropertyTimeRef
| Overlaps | Equals
| Precedes | Succeeds
| Contains

Overlaps ::= TimeRef 'OVERLAPS' TimeRef
Equals ::= TimeRef 'EQUALS' TimeRef
Precedes ::= TimeRef ('IMMEDIATELY')? 'PRECEDES' TimeRef
Succeeds ::= TimeRef ('IMMEDIATELY')? 'SUCCEEDS' TimeRef
Contains ::= TimeRef 'CONTAINS' TimeRef

Listing 6.3: Syntax definition of the T-PGQL WHERE clause.

For example, to retrieve all students who studied at a University in Leipzig as of
February 15, 2019, one can express the query by accessing the period bounds in predicates
of the WHERE clause:

1 SELECT n.name
2 FROM MATCH (n:Person)-[s:studiedAt]->(u:University)
3 WHERE u.city = 'Leipzig'
4 AND s.VAL_FROM <= DATE '2019-02-15'
5 AND s.VAL_TO > DATE '2019-02-15'

To simplify the expression of such predicates, several language extensions are further
defined. For example, we can use one of the period predicates provided in SQL:2011 [120]
for expressing conditions involving periods: CONTAINS, OVERLAPS, EQUALS, (IMMEDIATELY)
PRECEDES, and (IMMEDIATELY) SUCCEEDS. All period predicates need two expressions
that return a period as arguments, except for CONTAINS, which also allows a timestamp as
a second argument. The query above can be simplified by using the CONTAINS predicate:

1 SELECT n.name
2 FROM MATCH (n:Person)-[s:studiedAt]->(u:University)
3 WHERE u.city = 'Leipzig'
4 AND s.VAL_TIME CONTAINS DATE '2019-02-15'
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To retrieve all students of Universities in Leipzig who are matriculated from January 1,
2018, to January 1, 2019, one could formulate the query by using a temporal condition, in
our case, the OVERLAPS predicate:

1 SELECT n.name
2 FROM MATCH (n:Person)-[s:studiedAt]->(u:University)
3 WHERE u.city = 'Leipzig'
4 AND s.VAL_TIME OVERLAPS PERIOD(DATE '2018-01-01', DATE '2019-01-01')

In the example, we also show a new period constructor expression (PERIOD(ω1,ω2))
that allows the creation of a period instance from two timestamps ω1 and ω2 with ω1 ≤ ω2.
The timestamps can be defined by any expression that returns a date or timestamp
instance. For example, they can be created through a date or timestamp constructor as
in the example or extracted from a graph element or property through a period bound
identifier, like shown in the next query.

1 SELECT n.name
2 FROM MATCH (n:Person)-[s:studiedAt]->(u:University)
3 WHERE u.city = 'Leipzig'
4 AND s.VAL_TIME OVERLAPS PERIOD(DATE '2018-01-01', n.VAL_TO)

In addition, the transaction time period of elements and properties can be used in
such predicates. The following query returns the name and system-time period for
students matriculated in a University located in Leipzig where the information about
the matriculation was added to the database after March 1, 2018. The syntax part FOR
TX_TIME ALL is explained in the next section.

1 SELECT n.name, n.TX_TIME
2 FROM MATCH (n:Person)-[s:studiedAt]->(u:University) FOR TX_TIME ALL
3 WHERE u.city = 'Leipzig'
4 AND s.TX_FROM >= TIMESTAMP '2018-03-01 00:00:00'

The classical graph pattern matching is used to find a matching subgraph in the graph
database that matches exactly with the defined query pattern. In static languages, a query
pattern has no information about the chronological ordering of the given entities and
relationships. For example, the following pattern includes no information about when
the likes happened or if one like happened before the other of if they happened at the
same time:

(p1:Person)-[l1:likes]->(p2:Person)-[l2:likes]->(p3:Person)

To overcome this lack, the above introduced temporal predicates can be used to enrich
such patterns with temporal information. The following code exemplifies that:

1 SELECT p1.name, p2.name, p3.name
2 FROM MATCH (p1:Person)-[l1:likes]->(p2:Person)-[l2:likes]->(p3:Person)
3 WHERE l1.VAL_TIME PRECEDES l2.VAL_TIME

Here we add a constraint, that the like between p1 and p2 must happen before the
like between p2 and p3. These kinds of predicates can thus be used to define a temporal
ordering in a path pattern.
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Graph Snapshot Retrieval and Historical Pattern Matching

T-PGQL can be used to find matching subgraphs in a specific state of the temporal graph
concerning the transaction time domain. This state can be 1) a snapshot at a defined
timestamp or 2) all changes of a given period. Former represents a valid snapshot graph
without multiple versions of a single instance. The transaction time dimension is reduced
to a single point in time. Latter is again a temporal property graph that can have multiple
versions of a single instance. The transaction time dimension is reduced to a range in
time.

To search for a defined pattern using this kind of time traveling, we extended PGQL’s
FROM clause with statements similar to the SQL extension for temporal tables. The name
of the transaction time period definition is fixed to TX_TIME. To query the historical data,
the clause FOR TX_TIME {predicate} has to be used directly after a MATCH clause
(see Section 6.3.1). To define the timestamp or period to query for, we provide four
predicates as syntactic extensions, as stated in Listing 6.4.
GraphMatch ::= 'MATCH' PathPattern OnClause? SysTimeCond
SysTimeCond ::= 'FOR' 'TX_TIME' ( AsOf | FromTo

| BetweenAnd | 'ALL')
AsOf ::= 'AS' 'OF' TimeRef
FromTo ::= 'FROM' TimeRef 'TO' TimeRef
BetweenAnd ::= 'BETWEEN' TimeRef 'AND' TimeRef

Listing 6.4: Syntax definition of the T-PGQL MATCH clause.

The argument TimeRef could be any expression returning a timestamp attribute, i.e.,
a date or timestamp constructor (e.g., TIMESTAMP(’2020-01-01’)), current timestamp
expression (CURRENT_TIMESTAMP) or access expressions of temporal attributes for vertices,
edges or properties. If the FOR TX_TIME clause is not used, the result will show the
current data, as if one had specified FOR TX_TIME AS OF CURRENT_TIMESTAMP. Thus,
the following two queries are equal:

1 SELECT n.name
2 FROM MATCH (n:Person)

1 SELECT n.name
2 FROM MATCH (n:Person) FOR TX_TIME AS OF CURRENT_TIMESTAMP

The predicate AS OF {timestamp} is used to see the graph as it was at a specific point
in time in the presence or past. The following example query retrieves the graph as it
was on 1st February 2020 at 1 pm.

1 SELECT n.name
2 FROM MATCH (n:Person) FOR TX_TIME AS OF TIMESTAMP '2020-02-01 13:00'

The next query using the BETWEEN {timestamp} AND {timestamp} predicate will
show all graph elements that were visible at any point between two specified points in
time. It works inclusively, i.e., an element visible exactly at the start or exactly at the end
will be added to the result set, too.

1 SELECT n.name
2 FROM MATCH (n:Person) FOR TX_TIME
3 BETWEEN TIMESTAMP '2020-02-01 12:00' AND TIMESTAMP '2020-02-28 12:00:00'
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The extension FROM {timestamp} TO {timestamp} will also show all elements that
were visible at any point between two specified points in time, including start, but
excluding end.

1 SELECT n.name
2 FROM MATCH (n:Person) FOR TX_TIME
3 FROM TIMESTAMP '2020-02-01 12:00' TO TIMESTAMP '2020-02-28 12:00:00'

To query for the current state and complete history of a given pattern the predicate
ALL can be used.

1 SELECT n.name
2 FROM MATCH (n:Person) FOR TX_TIME ALL

In PGQL, it is possible to define multiple patterns within a single FROM clause by using
multiple match clauses separated by a comma. Our extension can be used within each
of these match expressions. This provides a flexible mechanism to define patterns with
parts occurring at different times. For example, to find people who currently liked a post
that already existed on January 1st, 2020, the following query can be used.

1 SELECT m.firstName, m.lastName
2 FROM MATCH (p:Post) FOR TX_TIME AS OF DATE '2020-01-01',
3 MATCH (m:Person)-[:likes]->(p) // current

For example, this powerful mechanism could be used in IoT applications to find a
sensor that is currently connected to an asset that existed in the past. Besides a path
pattern, a graph pattern is a concatenated list of path patterns in round brackets, which
can be also specified after the match keyword. If a transaction time predicate should be
applied to a set of path patterns, it can be used after such a graph pattern, as can be seen
in the following example.

1 SELECT m.firstName, m.lastName
2 FROM MATCH (
3 (p:Post)-[:hasTag]->(t:Tag)-[:inClass]->(tc:TagClass),
4 (m:Person)-[:likes]->(p:Post)
5 ) FOR TX_TIME AS OF DATE '2020-01-01'

BitemporalQueries

A TPGM+ graph has both a managed transaction- and valid-time domain. Graph elements,
as well as their properties, are associated with both transaction-time and valid-time
periods. This concept is very useful for use cases where it is necessary to capture both
the periods during which facts were believed to be true in real-world as well as periods
during which those facts were recorded in the database.

For example, a student changes his address. Typically the address changes legally at a
specific time, but it is not changed in the database concurrently with the legal change.
In that case, the transaction-time period automatically records when the new address is
known to the database, and the valid-time period records when the address was legally
effective. Successive updates to bitemporal graphs can journal complex twists and turns
in the state of knowledge captured by the database [120].
Queries on bitemporal graphs can specify predicates on both dimensions to qualify

rows that will be returned as the query result. For example, the following query returns all
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students of Universities in Leipzig who are matriculated as of December 1, 2019, recorded
in the graph database as of January 1, 2020.

1 SELECT n.name
2 FROM MATCH (n:Person)-[s:studiedAt]->(u:University)
3 ON student_network FOR TX_TIME AS OF DATE '2020-01-01'
4 WHERE u.city = 'Leipzig'
5 AND s.VAL_TIME CONTAINS DATE '2019-12-01'

Query the Evolution of a Property

Every vertex and edge can have zero, one or more properties in form of key-value pairs,
where the key represents the name of the property. For every property, transaction-
time versioning is supported to track the addition of new properties, changes in values
or deletion of exiting properties. Thus a property behaves like a vertex or an edge.
By inserting a vertex or edge with properties into the database, each gets the same
system-time period as the respective vertex or edge. The previous introduced FROM clause
extensions have also an effect on the property retrieval since their transaction-time period
will be considered, too.

In addition, each property contains a valid-time period. For example, each University
vertex has a property studentCount whose value is periodically updated. Each value has
an application time period that defines, for which time the value was true. If no further
condition is specified for an application time enabled property, all values are returned
without information about the validity. The following query finds all university vertices
and outputs the name and the value of the property studentCount.

1 SELECT u.name AS name, u.studentCount AS cnt
2 FROM MATCH (u:University)
3 WHERE u.city = 'Leipzig'

The since the property has three different values for different valid time periods, the
resulting table consists of three rows.

name cnt

Leipzig University 28004
Leipzig University 28797
Leipzig University 29061

To retrieve the information of the validity of the values, the period of validity can be
selected, as shown in the next query.

1 SELECT u.name AS name, u.studentCount AS cnt, u.studentCount.VAL_TIME AS val
2 FROM MATCH (u:University)
3 WHERE u.city = 'Leipzig'

The result of the query is given in the following table. Since the return value of a
period identifier is a period, the values are represented as intervals with the according
period bounds.

All previously introduced conditions of the WHERE clause that are applicable for vertices
and edges can be used on properties too. In the following example, we use the CONTAINS
predicate to get the number of students for this time.
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name cnt val

Leipzig University 28004 [2016-04-01 00:00, 2017-04-01 00:00)
Leipzig University 28797 [2017-04-01 00:00, 2018-04-01 00:00)
Leipzig University 29061 [2018-04-01 00:00, 2019-04-01 00:00)

1 SELECT u.name, u.studentCount, u.studentCount.VAL_TIME as val
2 FROM MATCH (u:University)
3 WHERE u.city = 'Leipzig'
4 AND u.studentCount.VAL_TIME CONTAINS TIMESTAMP '2018-01-01 00:00'

The resulting table thus consist just of one row, as shown below.

name cnt validity

Leipzig University 28797 [2017-04-01 00:00, 2018-04-01 00:00)

6.3.3 Aggregations

An aggregate function allows performing a calculation on a set of values to return a
single scalar value. Aggregate functions are used with the GROUP BY and HAVING clauses
of the query.
In this work, the PGQL language was extended by two functions: FIRST({date or

time values}) and LAST({date or time values}). The former returns the chrono-
logical earliest date or timestamp, while the latter returns the chronological last.

The following query asks for the the first beginning of a studentAt relationship accord-
ing to the application-time and system-time domain.

1 SELECT FIRST(s.VAL_FROM) AS earliestStart,
2 FIRST(s.TX_FROM) AS earliestTx
3 FROM MATCH ()-[s:studiedAt]->()

The result of the query is given in the table below, which consists of one row that
contains the aggregated values.

earliestStart earliestTx

1409-04-01 00:00:00 2006-05-12 14:45:22

To bring another example, the following query can be used to answer the question:
“For universities of a certain city, when was the first time a student began his studies,
and when was the most recent time?”

1 SELECT u.city,
2 FIRST(s.VAL_FROM) AS earliestStart,
3 LAST(s.VAL_FROM) AS latestStart
4 FROM MATCH (n:Person)-[s:studiedAt]->(u:University)
5 GROUP BY u.city ORDER BY earliestStart

An exemplary result of this query is given in the following table. All matching sub-
graphs are grouped by the city property of university nodes. For all grouped paths, the
first and most recent start of studies is returned through the aggregation.
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city earliestStart latestStart

Leipzig 1409-04-01 00:00:00 2020-04-01 00:00:00
Munich 1472-04-01 00:00:00 2020-04-01 00:00:00
Berlin 1810-04-01 00:00:00 2020-04-01 00:00:00

6.4 Continuous GraphQuery Notifications

We introduced T-PGQL (Section 6.3) as a query language for executing SELECT queries
on TPGM+ (Section 6.2) graphs. Querying a graph with T-PGQL is usually done in a
single graph query execution called one-time query [22], i.e., a user formulates a SELECT
query, executes that query on the current state (an isolated snapshot) of a database system
that maintains a TPGM+ graph and gets a result in form of a table back. In this way, one
can query for current and historical data of the graph where one query leads to one fixed
result. Subsequent changes of the graph are not taken into account unless the query is
executed again which leads to a result that recognizes all transactions that are made until
the time when the query was executed.
Talking about changes in a graph leads to the observation of events. An event rep-

resents an occurrence of interest at a point in time [6], e.g., an asset’s sensor captures
a temperature or a user liked a post in a social network. We semantically distinguish
between application-world events and transaction-world events. Former is an event that
happened in the observed real world. In the graph context, such an event can be described
by a graph pattern and its predicates inside a graph query. In contrast, the discovery of
an instance of a pattern in the data store at a specific time is a transaction-world event, i.e.,
the most recent commit (1) created an instance of a pattern that did not exist before, e.g.,
a captured temperature of a sensor exceeds a threshold, or (2) destroys an instance of
the pattern that already existed, e.g. a friendship relation between two users of a social
network is removed.

The question arises, how a user can get a notification about a transaction-world events,
i.e., when graph data changes that affect the elements that are accessed to create the query
result. For RDBMS, there is a feature called Continuous Query Notification (CQN) [149],
which is currently implemented by the Oracle database. It allows to register a SQL query
and receive notifications when an event occurs that changes a table, i.e., that rows have
been updated. This is useful in applications like near real-time monitoring, auditing
applications, or for such purposes as mid-tier cache invalidation [149, 201].
In the collaborative project that this section is about, approaches were developed to

apply these concepts of the relational CQN to graph databases. In the following only
conceptual approaches are described. A reference implementation and evaluation is part
of future work. For now, only a bachelor thesis [227] has implemented parts of it.

A requirement of a graph database that implements the TPGM+ is to not only execute a
T-PGQL query, but also to register one as a continuous query [201] that notifies a recipient
if the graph changes in a way that affects the query or its result. We call this a Continuous
Graph Notification (CGN). A registration should be configured by the T-PGQL SELECT
query itself, a registration validity period that specifies when the notification is enabled
and when it will be disabled, a notification endpoint (e.g., a messaging queue) and a
notification type. For the latter, there are two types of graph query notifications:
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1. the Graph Change Notification (GCN) which creates a notification, if an event
that changed the queried graph affects the graph elements queried (what does not
automatically mean that the query result has also changed); and

2. the Graph Query Result Change Notification (GRCN) which creates a notification, if
an event that changed the queried graph in a way that affects the query result.

Note that both types are a evaluation of a registered query and no query re-execution.
Thus, the recipients are notified about the event but do not get the updated query result.

Assume the following example T-PGQL query. The query describes the event of a
temperature measurement above a value of 40 from a sensor that is part of an asset that
is connected to an asset with id ’42’. The projection of the query is the sensor value
and its validity timestamp, which describes the time when the measure happened in the
observed real world.

1 SELECT s.value, s.value.VAL_FROM
2 FROM MATCH (a1:Asset)-[p:partOf]->(a2:Asset)-[:hasSensor]->(s:Sensor)
3 WHERE a1.id = 42 AND s.type = 'temperature' AND s.value > 40

We assume that there are several matches for this pattern without recognizing the
predicate of the value threshold, but none that fulfills this condition (i.e., all temperature
values are below a value of 40). Further assume, that at a time ω1, the value of a sensor’s
property is updated from 39 to 40. If the query is registered by a GCN, a notification
about that event is created, since one of the involved graph elements changed its state,
but the query result is not affected. If the query is registered by a GRCN, no notification
is created, since the query result does not change (it is still empty). Now, assume that
at time ω2 the value of the sensor changes from 40 to 41. At this time, a notification is
created for both types, since 1) a graph element that is part of the pattern changes and 2)
the query result changes in the form that now one row is part of the result.

6.5 Conclusion

This section summarises the results of a one-year research collaboration between Oracle
Labs and the University of Leipzig. The goal of the collaboration was to show that
temporal graphs are suitable for modelling changing relationships between entities that
produce time series data themselves. This organising principle was illustrated by three
contributions. First, we presented a bitemporal graph data model TPGM+, which, unlike
its predecessor TPGM, also supports the evolution of property values. We also presented
a property graph query language, T-PGQL, which adds temporal extensions to Oracle’s
existing PGQL language. The syntax as well as the usability was demonstrated by means
of various examples. Finally, an approach to implementing continuous queries using
such T-PGQL queries was presented. These so-called CGNs react to events that change
the graph and then generate a notification when relevant parts of the graph or the
corresponding query result change. Due to the short duration of the project, formal
definitions, evaluations and prototypical implementations are part of future work.
It is worth mentioning that this work inspired a recent research project called Hy-

Graph [43], funded by the German DFG and French ANR starting in 2023 for a period of
3 years.
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7
Seraph: Continuous Queries on Property

Graph Streams

The versatility and expressive power of graphs have prompted the development of
various graph models and query languages utilized by practitioners to simulate real-
world phenomena. The property graph model, along with its associated query languages
- one of which is the prevalent Cypher- have gained widespread use both in industry
and academia. Real-time data analysis and management are increasingly critical for
modern businesses, however, graph query languages lack the necessary features to
handle streaming graph data and continuous query evaluation.

This work proposes Seraph, a Cypher-based language that supports native streaming
features within industry-ready property graph query languages. We formally define
the Seraph semantics by combining stream processing with property graphs and time-
varying relations, propose its syntax, and demonstrate the usage of Seraph for emerging
graph-based continuous queries in real-world industrial use cases.
The contents of this section are published under the title Seraph: Continuous Queries

on Property Graph Streams [180].

7.1 Introduction

With the growing availability of information, interconnected data have become pervasive.
Graphs, in particular, Property Graphs (PGs) [14] (also denoted as Labeled Property
Graphs (LPGs)), are a widespread data model in many industrial domains such as health-
care, social media, cybersecurity, fraud detection, and genomics. Coherently, declarative
graph query languages like Cypher [71], G-CORE [16], and PGQL [166] have emerged as
the formalisms of choice for expressing sophisticated information needs declaratively.
Moreover, the efforts above are converging into GQL [55, 98], the future standard graph
query language that will pave the road to workload portability and shared consensus to
manipulate PGs.

Graphs not only exhibit a notable increase in volume but also demonstrate a significant
level of dynamism [29]. When slow in frequency, the changes on graphs can be addressed
by temporal graph data models and corresponding query languages [176] that include
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operators for exploring graph versions across time. On the other hand, a paradigm shift
in the query model is needed when the frequency of changes grows and directly impacts
the high throughput and low latency of query results, as it often occurs in streaming
graph settings [155].
Continuous queries (CQs) [19, 201] are a class of queries that repeatedly reports the

results until explicitly terminated. CQs are typically evaluated over data streams, i.e.,
unbounded sequences of timestamped data items [23, 201]. To deal with the unbound-
edness of the input streams, CQs include operators that leverage data timestamps and
operate the query evaluation by recency.
In practice, CQs enable reactive analytics, and thus, they are popular in stream pro-

cessing domains like network monitoring, real-time surveillance, micro-mobility. In such
domains, it is of paramount importance to output the results of the query before the
data becomes stale. However, the high cost of designing and maintaining custom stream
processing pipelines has paved the road to declarative continuous query languages [85].
The database literature shows that the declarative paradigm poses significant advantages
in such domains, e.g., interoperability across systems, optimisation opportunity, and
simplicity of use [154].
Now that CQs are becoming relevant for various property-graph-centric task [155,

189], it is important to bridge the gap for a declarative PG continuous query language.
Table 7.1 shows examples of CQs for the stream processing domain mentioned above
that would benefit from a graph stream data model: the first query, which devotes to
network monitoring, asks for paths that denote anomalies in the routes to the egress
switch (i.e. a router responsible for outgoing traffic in a time-based interval); the second
query, which devotes to real-time surveillance, asks for computing the list of persons
who passed by a crime scene within 30 minutes; the last query, which relates tomicro

mobility, looks for the violations of a business rule for limited time free bike rides in
a given temporal lapse. It is worth noting here that the above CQs not only need to be
repeatedly evaluated for incoming data, but they must also identify a temporal pattern to
bind the results.

On the one hand, the CQs presented above show the need for enriching current declar-
ative graph query languages with the necessary abstractions and expressive power to
formulate continuous graph queries. However, current popular graph query languages,
such as Cypher, lack these abstractions. Moreover, algebraic frameworks for streaming
graph queries started to be defined, along with data and query models and preliminary op-
timizations [155] but as of today, these cannot be encoded as bulk queries in a declarative

Domain Examples of Graph Continuous Queries

Network Monitoring What are the anomalous routes that connect to the egress
switch during the last 15 minutes?

Real-Time Surveillance Who has passed by a given crime scene in the last 30 min-

utes?
Micro Mobility Did anyone violate the 20-minute free renting limit in the

last hour?

Table 7.1: Summary of continuous information needs for use-cases in three different domains.
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language. On the other hand, existing continuous declarative languages are either limited
to the relational model [210] or limited to RDF. The former are incapable of expressive
complex analytics such as path queries. At the same time, the latter have focused on the
relational subset of SPARQL [209], neglecting advanced features such as regular path
queries [155].
In this work, we fill this gap and focus on the language aspects of graph continuous

queries. Precisely, we present the design of syntactic and semantic components of
a Cypher-based continuous query language for streaming property graphs, namely
Seraph. Motivated by other ongoing GQL standardization efforts around graph query
and schema languages [18, 55, 98], in which formal semantics need to be defined prior
to any implementation, we define the syntax and semantics of Seraph and properly
formalize the latter to avoid underlying ambiguities and incorrect behavior of the queries.

In designing such a language, we elicit a set of design requirements acquired from our
industrial-strength use cases:

R1 Declarative semantics. The languagemust be declarative to guarantee interoperable
execution across systems, optimizations, and simplicity of adoption.

R2 Continuous evaluation. The language must have operators that allow repeated
evaluation over time, i.e., choosing a time interval and a sequence to evaluate the
query.

R3 Result emitting. The language must include operators that allow controlling the
report of results, i.e., what is part of the result and when it will be ready to be emitted.

R4 Preserving expressiveness. The language should preserve the expressiveness of
the base language for querying a PG, i.e., everything that can be expressed in the
base language can be expressed in the extended language.

Seraph results from a long-term collaboration between several academic institutions
and Neo4j. It conjugates Cypher, a widely used graph query language with a key role in
the ongoing GQL standardization, with windowing mechanisms at the core of continuous
queries over streams [19, 32]. While the very first version of GQL (without temporal
extensions) is expected in 2024, at the moment GQL is only available to the members of
the standardization committee (ISO/IEC JTC1 SC32 WG3 Database Languages). It will
take some time for GQL to be implemented into products even after the publication of
the standard. This justifies and motivates our choice of focusing on Cypher as a basis
for Seraph, given the wide availability of the former in several industrial products/use
cases and its closeness to GQL. We believe that our work will help reach a consensus for
the future temporal expansions of GQL, which are certainly deemed important but not
included in the first version.
As a result, Seraph stands as a productive and industry-ready language that allows

querying graph streams. The proposed language is simple, intuitive and highly expressive
at the same time. Anyone who is familiar with Cypher and can address a problem in
a static property graph setting will be able to use Seraph in a streaming context. The
language and its detailed formalization, as presented in our work, lay the foundations
for future implementations and are the necessary steps to be carried out in order to
guarantee their underlying correctness.

In summary, we make the following main contributions, which address the challenges
C1, C3 and C10 from Section 1.2:
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Figure 7.1: Stream of property graphs representing the events captured into the RideAnywhere Kafka

queue.

• we present the data model underlying graph continuous queries and formally describe
the duality between a stream of property graphs and time-varying relations;

• we lay the foundations of a Cypher-based query model for continuous queries over
property graphs streams by using the concept of snapshot reducibility from temporal
relational databases;

• we formally define the syntax and semantics of Seraph, an easy-to-use Cypher-based
query language that incorporate primitives for continuous evaluation. The latter
is, to the best of our knowledge, nonexistent in current graph query languages. In
contrast, they are urgently needed in industry-wide applications and desirable for the
development of ongoing GQL standards.

The remainder of the section is organised as follows: We will go into details of the
micro-mobility example in Section 7.2. We provide an overview of the core of Cypher in
Section 7.3, giving the preliminary knowledge needed to formalize Seraph, and explaining
how a Cypher-only solution won’t satisfy the requirements. Section 7.4 describes further
two industrial use-cases and the use of Seraph to answer the continuous questions in
Table 7.1. Section 7.5 contains the formal specification of the semantics and syntax of
Seraph together with a solution of the running example. In Section 7.6, we give an outlook
on future implementations, while Section 7.7 concludes the section. For related work on
graph streams and graph stream languages, we refer to Chapter 2.

7.2 Running Example

In this section, we describe the use case of fraud detection in the micro mobility domain
mentioned in the introduction. The scenario of a fictional vehicle sharing provider
described below is inspired by a real business scenario within a company namely nextbike
BY TIER (https://www.nextbike.de) from Leipzig, Germany. This company applies
graph technologies for demand prediction, usage increase and optimization of rental
stations and zones and their locations.

The company RideAnywhere is known as a leading company that operates public bike,
scooter and car-sharing systems. Various rental stations and zones are available within a
city, which offer electrically operated cars, bicycles (e-bikes) and e-scooters, and classic
bicycles. A user can use a mobile app to rent an available vehicle at a rental station.
RideAnywhere offers various price models: from half-hourly to monthly subscriptions. If
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a vehicle is returned, the app calculates the total price of the rental based on the duration
and the existing subscription.

Each rental station is connected to RideAnywhere’s headquarters through a 4G connec-
tion. Rental and return events are transmitted to a central Kafka event queue, and these
transmissions occur every 5 minutes for energy and traffic preservation. A collective
event logs all of the rentals and returns of the preceding 5 minutes and includes the vehicle
ID, the station ID, and user information. We appropriately model the relationship within
the event as a property graph, composed of station and vehicle nodes and relationships
that represent rentals and returns. Additionally, we provide properties indicating rental
time, return time, duration, and unique identifiers for vehicles, users, and stations.
The timeline reported in Figure 7.1 illustrates the events arriving in the Kafka queue

of the RideAnywhere headquarter from 14:45h to 15:40h on a day in August 2022. Each
event represents a property graph that contains rentals of a 5 minute period. Let us
discuss the events of this example in detail.

14:45h An E-bike with id 5 was rented at station with id 1. The rental was done at 14:40h
from a user with id 1234, which is stored in the edge properties. No further
rentals or returns happened in the period [14:40,14:45).

15:00h The E-bike with id 5 was returned at station 2 at 14:55h. At the same station, two
other bikes were rented. One of them from the same user, the other of user with
id 5678.

15:15h The bike with id 6 was returned at station 3 at 15:13h.
15:20h Again at station 3, bike 8 was returned by user with id 5678 at 15:15h and an

e-bike with id 7 was rented again by the same user 3 minutes later.
15:40h The E-bike with id 7 was returned at station 4 at 15:35h. No further rentals or

returns happened in the period [15:35, 15:40).

Using the Neo4j Kafka Connector [141], all incoming events are merged and persisted
in a Neo4j graph database. Vertices sharing the same identifier (e.g., for stations and
bikes) will be merged to a single vertex. For the example graph stream of Figure 7.1,
the resulting merged property graph of the interval from 14:45h to 15:40h is visualized
in Figure 7.2. The graph consists of four station and four bike nodes as well as four rentals
of two users represented by eight timestamped relationships. A closer look reveals a
pattern for both users, which will be discussed in more detail shortly.

To make the service attractive and affordable for students, an additional pricing model
was developed with the local student union a few months ago. It provides that the first 20
minutes of e-bike or bicycle rental are free for valid students. If a vehicle is returned by a
student and the 20-minute rental period has not been exceeded, no fee will be charged.
If the time period is exceeded, the regular rate will be charged. RideAnywhere’s goal is
to increase the number of younger customers, achieve broader use of the service and
generate more revenue by exceeding free times.
Shortly after its introduction, the student offer was widely used. The number of

rentals increased by 35% compared to the average monthly usage before the student offer.
However, after the first 3 months with this model, an analysis on the rental-graph found
that students rarely made rentals longer than 20 minutes: only 5% of all student rentals
per month. The RideAnywhere analytics team suspects that longer distances are covered
by renting a vehicle again shortly thereafter (at a 5 minute interval), which is prohibited

119



CHAPTER 7. SERAPH: CONTINUOUS QUERIES ON PROPERTY GRAPH STREAMS

Figure 7.2: Graph resulting from loading the events from 14:45h to 15:45h into a Neo4j graph database.

by company policy. This trick allows students to cover any length of distance using the
free period multiple times.
The data analytics team is now expected to find a way to continuously detect users

who use this trick so that they can be immediately alerted that this will lead to expulsion
from the student offer by repeated violation. We present two solutions to this problem:
one with Cypher including its drawbacks in Section 7.3.3, and one using Seraph that
shows its strength in Section 7.5.4. It should be noted that the selected example with only
minute-by-minute data does not do justice to the real-time character of the possibilities
of continuous querying on a graph stream, but is suitable for demonstration.

7.3 Background: the Cypher language

In the following, we provide as the necessary background the formal specification of a
core subset of Cypher [71] for static property graphs. It consists of a data model including
values, graphs, and tables (Section 7.3.1) and the query language along with its evaluation
semantics including expressions, patterns, clauses, and queries (Section 7.3.2). Finally, we
discuss the drawbacks of Cypher-only solution to the running example from Section 7.2
(Section 7.3.3).

7.3.1 Data model

Although a property graph has already been defined in Section 2.1, a property graph is
defined below according to Francis et al. [71], as Seraph is based on Cypher and this is
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formally defined on this definition.
Cypher’s data model is based on three first class objects, namely values, property

graphs, and relations, the latter being referred to as tables in Cypher’s terminology.
From [71], we consider three disjoint sets K of property keys, N of node identifiers, and
R of relationship identifiers. These sets are all assumed to be countably infinite. The set
V of values contains multiple inductively defined elements. We assume two base types:
the integers Z, and the type of finite strings over a finite alphabet Σ.

Definition 25 (Property graph [71]). Let L and Y be countable sets of node labels and

relationship types, respectively. A property graph is a tuple G = (N,R, src, trg, ι, λ, κ)
where:

• N is a finite subset of N , whose elements are referred to as the nodes (also denoted as

vertices) of G.

• R is a finite subset ofR, whose elements are referred to as the relationships (or edges)

of G.

• src and trg are functions R → N that map a relationship to its source and target

node, respectively.

• ι : (N ∪R )×K→V is a finite partial function thatmaps a pair (node|relationship,property

key) to a value.

• λ : N → 2L is a function that maps each node id to a finite (possibly empty) set of

labels.

• κ: R → Y is a function that maps each relationship identifier to a relationship type.

For example, the graph of Figure 7.2 is formally represented in this model as a graph
G = (N,R, src, trg, ι, λ, κ):

• N = {n1, . . . , n8}; R = {r1, . . . , r8};
• src = {r1 ↦ n5, r2 ↦ n5, r3 ↦ n6, r4 ↦ n8, . . .};
• trg = {r1 ↦ n1, r2 ↦ n2, r3 ↦ n2, r4 ↦ n2, . . .};
• ι(r1,user_id) = 1234, ι(r1,val_time) = 14:40, . . . ;
• λ(n1) = λ(n2) = λ(n3) = λ(n4) = {Station},
λ(n5) = λ(n7) = {E-Bike}, λ(n6) = λ(n8) = {Bike};

• κ(r) =
⎧⎪⎪⎨⎪⎪⎩

rentedAt for r ∈ {r1, r3, r4, r7},
returnedAt for r ∈ {r2, r5, r6, r8}.

The flexibility of the property graph model also allows the modelling of hierarchies, e.g.
by using multiple type labels per node (see λ ), e.g., :superclass:subclass or dedicated
relationship types, e.g., (a)-[:isSubclassOf]->(b).

Definition 26 (Tables [71]). Let A be a countable set of names. A record is a partial

function from names to values, conventionally denoted as a tuple with named fields u =
(a1 ∶ v1, . . . , an ∶ vn) where a1, . . . , an are distinct names, and v1, . . . , vn are values. The

order in which the fields appear is only for notation purposes. We refer to dom(u), i.e., the
domain of u , as the set {a1, . . . , an} of names used in u . We use () to denote the empty

record, i.e., the partial function from names to values whose domain is empty.

If A is a set of names, then a table with fields A is a bag, or multiset, of records u such

that dom(u) = A. A table with no fields is just a bag of copies of the empty record. Lastly,

we define the bag difference of two tables T and T
′

as their bag difference, i.e., T ∖ T ′ .
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7.3.2 Query language

The Cypher query language, whose syntax is presented in Figure 7.3, includes ex-
pressions, patterns, clauses, and queries. Due to the limited space, like in [71] we only
focus on the latter two. A query is either a sequence of clauses ending with the RETURN
statement, or a union of two queries. The semantics of queries associates a query Q and
a graph G with a function [[Q]]G that takes a table and returns a table. Notably, the
semantics of a query Q is a function and should not be confused with the output of Q.
The evaluation of a query starts with the table containing one empty tuple, which is then
progressively changed by applying functions that provide the semantics of Q’s clauses.
The composition of such functions, i.e., the semantics of Q, is a function again, which
defines the output as:

output(Q,G) = [[Q]]G(T ())

where T () is the table containing the single empty tuple ().
Let us have a look at the semantics of a pattern. The MATCH clause extends the set of

field names of T by adding field names that correspond to names occurring in the pattern
but not in u (the value to field assignments). It also adds tuples to T , based on found
matches of the pattern in graphs. We show how to compute JMATCH πKG(T ), where π is
the path pattern [71] to search for.

JMATCH πKG(T ) = ⊎
u∈T

{u ⋅ u′∣u′ ∈match(π,G,u)}

The pattern π is evaluated on the graph G and extending T by adding field names and
tuples based on the matches found in G. Each existing assignment u ∈ T is extended
by the assignments u′ that are part of the finite set match(π,G,u), which gives the
semantics of the pattern matching of Cypher. Note that a pattern with variable length
can be subsumed by a (possibly infinite) set of fixed length patterns, so-called rigid
patterns [71]. Let π be a path pattern, free(π) the union of all free variables of each node
and relationship pattern occurring in π, rigid(π) the set of all rigid patterns subsumed
by π, G the graph, u an assignment, dom(u) the domain of u (set of names) and p a path
with node ids from N and relationship ids from R, the set is defined as:

match(π,G,u) = ⊎
p∈G

π′∈rigid(π)

⎧⎪⎪⎨⎪⎪⎩
u′
RRRRRRRRRRR

dom(u′)=free(π)−dom(u)

∧(p,G,u⋅u′)⊧π′

⎫⎪⎪⎬⎪⎪⎭

Note that ⊎ is a bag-union, i.e., a new occurrence u′ is added tomatch(π,G,u) if a new
combination of π′ and p is found that the patternmatching relation holds: (p,G,u⋅u′) ⊧ π′,

1 query ::= query○ | query UNION query | query UNION ALL
2 query○ ::= RETURN ret | clause query○

3 ret ::= ∗ | expr [AS a] | | ret , expr [AS a]
4 clause ::= [OPTIONAL] MATCH pattern_tuple [WHERE expr] | WITH ret [WHERE expr

] | UNWIND expr AS a
5 pattern_tuple ::= pattern | pattern , pattern_tuple

Figure 7.3: Syntax of queries and clauses of Cypher [71].
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r.user_id s.id r.val_time hops
1234 1 14:40 [2,3]
5678 2 14:58 [3,4]

Table 7.2: Results of the Cypher query in Listing 7.1 at 15:40h.

i.e., a path p in a graph G satisfies a pattern π under the assignments u ⋅ u′ of values to
the free variables of the pattern. Additional details of the Cypher semantics can be found
in Francis et al. [71].

7.3.3 Running Example vs Cypher

Following up on the Section 7.2 example to detect subsequent rentals of the same user in
the last hour, we designed the Cypher query shown in Listing 7.1 that implements one
possible but limited solution representing this pattern. The drawbacks of this solution
are evaluated at the end of this section.
The first part from line 1 to line 2 defines two timestamps as bounds of a 1h window

from the moment of the query execution. Lines 3-4 define the patterns: A bike was rented
at a station s from which a path with at least a length of 3 relationships ends at a station
o. The dynamic recursive pattern is assigned to a path variable q for later use. Lines 7-8
define a condition that the timestamp of all relationships of the path q have to be in the
1h window. The selection at lines 9-10 ensure the same user for all rentals and returns,
guarantee that the first rental ended chronologically before the second starts (line 9) and
both rentals do not exceed the free period of 20 minutes (line 10). The user id, time of the
first rental and ids of all involved stations (derived in line 6) are returned, as stated in
line 11.
Table 7.2 reports the result of the query evaluation at 15:40, showing that in the last

hour, the users with ids 1234 and 5678 illegally extended their free rental time each by a
second subsequent rental.
However, this one-time Cypher query computes the information need for the graph

changes of one specific hourly interval, but has several drawbacks. First, the PG data
model on which Cypher is based is static, i.e., there is no support of a continuous stream

1 WITH datetime() - duration('PT60M') AS win_start,
2 datetime() AS win_end,
3 MATCH (:Bike)-[r:rentedAt]->(s:Station),
4 q = (b)-[:returnedAt|rentedAt*3..]-(o:Station)
5 WITH r, s, q, relationships(q) AS rels,
6 [n IN nodes(q) WHERE 'Station' IN labels(n) | n.id] AS hops
7 WHERE ALL(e IN rels WHERE
8 win_start <= e.val_time <= win_end AND
9 e.user_id = r.user_id AND e.val_time > r.val_time AND

10 (e.duration IS NULL OR e.duration < 20) )
11 RETURN r.user_id, s.id, r.val_time, hops

Listing 7.1: Cypher query to retrieve users using the free period for two subsequent rentals in the last

hour.
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of graph elements. Further, the query has to be continuously evaluated on the most
recent events and the results need to be computed every 5 minutes from a defined time
instant, which results in the continuous evaluation requirement R2. Moreover, they want
to get user 1234 returned at 15:15 and user 5678 at 15:40, thus, only new results as soon
as the last event arrived in the last hourly period, which results in the result emitting
requirement R3.
With Cypher, this could be realized only by external code that executes this query

every 5 minutes. However, such a workaround would break the declarative paradigm
(violating R1). Moreover, the underlying system would be unaware of the continuous
semantics, which would almost certainly lead to suboptimal query evaluation and pos-
sibly incorrect execution. In fact, each query will run isolated from the other, possibly
considering caching mechanism design for the static case. Thus, a language like Cypher
lacks a query mechanism that natively controls the continuous evaluation of the query
and the result emission while at the same time preserving the expressive power of the
non-streaming language, which leads to the expressiveness requirement R4.

7.4 Seraph By Examples

Before we get into the technical definitions, we pick up the two industrial use cases from
Section 7.1 to justify the design (w.r.t. the requirements) and formalization of Seraph. The
goal is to give high-level intuition of how a Seraph query looks and clarify what queries
we target in this work. To simplify understanding of the syntax extensions, the original
Cypher keywords are shown in blue and those introduced by Seraph are shown in green.

7.4.1 Network Monitoring

Computer networks span all levels of the stack, from physical connections up to mo-
bile and microservices constituting a company’s cloud. Graphs offer a natural way of
modelling such scenarios and performing network optimization, asset management and
inventory mapping. Network management is thus intrinsically a graph problem. While
graph query languages like Cypher play a key role in investigating dependencies and in
running diagnostic analyses (e.g., the root cause of a past network fault), Seraph offers
the possibility to execute network impact analysis continuously.

1 REGISTER QUERY anomalous_routes STARTING AT datetime() {
2 MATCH path = allShortestPaths(
3 (rack:Rack)-[:HOLDS|ROUTES|CONNECTS*]-(r:Router:Egress))
4 WITHIN PT10M
5 WITH rack, avg(length(path)) as 10minAvg, path
6 WHERE (10minAvg - 5 / 0.5) >= 3
7 EMIT path
8 SNAPSHOT
9 EVERY PT1M
10 }

Listing 7.2: Monitoring computer networks using Seraph.
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Let’s assume that we model the network endpoints (e.g., servers, routers, switches
and racks) of the data center as nodes and the "cables" between them as relationships.
For instance, a rack HOLDS a switch that ROUTES an interface that CONNECTS a router in
a network. We consider connections redundant if one of the cables gets loose or cut,
i.e., the ROUTES relationship between a switch’s interface and the network breaks, the
number of hops can increase, but no rack can become unreachable. We know from the
configuration of the network that the shortest routes from all racks to the egress router
require on average 5 hops, but network events may cause this path to be longer, and we
observed a standard deviation of 0.3 hops. We can identify anomalous routes using the
z-score, i.e., the number of standard deviations σ by which an individual x is above or
below the mean value δ of the population with (x − δ)/σ. Our patterns are routes whose
length has a z-score larger than 3, i.e., it is longer than 99,9% of the paths.

Listing 7.2 illustrates how to encode this need in a Seraph query. At each time instant,
an arriving property graph represents the configuration of the entire network. The query
uses the WITHIN (line 4) and the reporting EVERY (line 9) clauses to define a 10 minutes
wide sliding window that reports every minute (i.e., PT1M) starting from the current
system time (line 1), which meets requirement R2. The query finds the shortest paths
from each rack to the egress router (line 2 and 3) and computes the average length of
those paths in the last 10 minutes (line 5).

If the z-score of those paths related to each rack is greater than 3 (line 6), all paths are
emitted for every evaluation, which meets requirement R3. Two extensions achieve this:
First, using the EMIT clause (line 7) to specify the projections for the result stream (here
all shortest paths by the path variable) and second by the SNAPSHOT streaming operator
(line 8), which specifies that for each evaluation all result tuples will be emitted regardless
of whether they have already been emitted in the previous evaluation. The result of
this continuous query is a stream of so-called time-varying tables containing possibly
anomalous routes.

7.4.2 Crime Investigations

From fraud detection to security, encompassing surveillance and contact tracing, investi-
gations often require connecting the dots. Data models like POLE (Person-Object-Location-
Events) underpin a number of analyses that require the identification of patterns [207].
POLE was originally intended for historical analyses that one can perform using graph
query languages like Cypher. However, POLE includes temporal metadata that Seraph
can exploit. Thus, it already unlocking a number of additional analyses, including, but
not limited to, real-time surveillance and contact tracing.
As we adopt the POLE model for surveillance, we model crimes and calls as Events,

which OCCURRED_AT a Location. Moreover, we assume that a number of smart cameras,
which can identify each Person passing by (NEAR_TO), are deployed in different Locations
within the city of London. We also consider suspects whoever has been convicted (PARTY_-
TO) for a crime of the same type as the one reported. Moreover, assuming that on average
a person walks about 5km in an hour, we restrict the scope of the monitoring to an area
of 3km from the crime scenes and a time range of 15 minutes.
Listing 7.3 illustrates how to encode the information-need above in a Seraph query.

The query focuses on the last 15 minutes, reporting every 5 minutes starting at the
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1 REGISTER QUERY watch_for_suspects STARTING AT datetime() {
2 MATCH (call:Event)-[:OCCURRED_AT]->(l:Location)
3 WITHIN PT15M
4 WITH call, point(l) AS crime_scene
5 MATCH (crime:Event)<-[:PARTY_TO]-(person:Suspect)-[:NEAR_TO]->(last_seen:

Location)
6 WITHIN PT15M
7 WITH call, crime, person, last_seen, distance(point(last_seen),

crime_scene) AS distance
8 WHERE distance < 3000 AND call.type=crime.type
9 EMIT person, last_seen, call.description
10 SNAPSHOT
11 EVERY PT5M
12 }

Listing 7.3: Looking for suspects in crime scenes using Seraph.

current system time. To this extent, it uses the WITHIN clause once per MATCH (line 3 and
line 6), and controls the results reporting using the EVERY clause (line 11) and STARTING
AT (line 1), which satisfies requirement R2. The query monitors the streams of crime
reports (Lines 2-4) and crosschecks if anyone, who is identified by a smart-camera, was
a convicted criminal (Lines 5-7). To restrict the search space, the query looks only for
cameras within 3km from the crime scenes and to those suspects that had taken part in a
crime of the same type before. The functions point() and distance() are user-defined
functions to perform geo-spatial comparisons. As an output, the query emits the last seen
location, the suspect description, and the crime references by EMIT (line 9) and SNAPSHOT
(line 10), satisfying requirement R3. With the queries for both use cases, one can see that
Seraph expands Cypher and thus does not reduce the expressiveness, which addresses
requirement R4.

7.5 Formalization of Seraph

This section presents how Seraph supports streaming computations while preserving
the expressiveness of the Cypher language. Throughout all following descriptions, we
use the notation summarised in Table 7.3. The three key elements of Seraph are aligned
with the requirements of Section 7.1: 1) a data model that extends the PG model used
by Cypher to model streams of property graphs; 2) a query model for continuous query
evaluation with full control of reporting (R2,R3); and 3) syntax and semantics of novel
time-aware operators over the aforementioned data model (R1,R2,R3,R4).

7.5.1 Data Model

We first explain how the data model of Cypher can be extended to deal with property
graph streams, where each graph maintains its evolution. The first component of Seraph’s
data model is a linearly ordered discrete time domain Ω like in [19, 139].
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Concept Notation Set notation

Time instant / time domain ω Ω
Time interval τ -
Table T -
Time-annotated Table T̃ T̃
Time-varying Table Ψ -
Mapping u -
Time-annotated Mapping µ -
Property Graph G -
Snapshot Graph G̃ -
Property Graph Stream S -
Property Graph Substream S̃ S̃
Window w W

Table 7.3: Summary of notation conventions.

Definition 27 (Time). Ω is a infinite sequence of time instants (ω1, ω2, . . . ) ∈ Ω. A time

unit is the difference between two consecutive time instants (ωi+1 − ωi) and it is constant. A
time interval τ = [ωo, ωc) is a left-close right-open interval which starts at ωo and ends at

ωc. Formally, it holds τ = {ωi∣ωi ∈ Ω ∧ ωo ≤ ωi < ωc}.

According to the definition above, we can define property graphs arriving in a sequence
of time instants as a property graph stream (see Figure 7.1 for an example).

Definition 28 (Property Graph Stream). A Property Graph Stream S is an unbounded

ordered sequence of pairs (G,ω), where:

• G is a property graph as per Definition 25, and

• ω is a non-decreasing timestamp.

S = ((G1, ω1), (G2, ω2), (G3, ω3), (G4, ω4), . . . )

Handling stream unboundedness is essential to Seraph’s semantics. Thus, we introduce
the notion of a snapshot graph that, in turns, builds on the concepts of property graph

substream and union of property graphs.

Definition 29 (Property Graph Substream). Given a property graph stream S and a

time interval τ = [ωo, ωc), we denote a finite subset of S in τ as a property graph substream:

S̃τ = S̃ωo
ωc
= {(G,ω)∣(G,ω) ∈ S ∧ ω ∈ τ,Ω ∧ ωo ≤ ω < ωc}

Definition 30 (Union of two Property Graphs). Assume thatG1 = (N1,R1, src1, trg1,
ι1, λ1, κ1) and G2 = (N2,R2, src2, trg2, ι2, λ2, κ2) are Property Graphs. Under unique

name assumption (UNA) [199], we define the union of two Property Graphs as:

G1 ∪G2 = (
N1 ∪N2,R1 ∪R2, src1 ∪ src2, trg1 ∪ trg2,
ι1 ∪ ι2, λ1 ∪ λ2, κ1 ∪ κ2

)

, if both graphs are consistent otherwise G1 ∪G2 = ∅.

127



CHAPTER 7. SERAPH: CONTINUOUS QUERIES ON PROPERTY GRAPH STREAMS

G1 and G2 are consistent iff ∀r ∈ R1 ∩R2, it holds that src1(r) = src2(r), trg1(r) =
trg2(r), κ1(r) = κ2(r) and ι1(r, k) = ι1(r, k)∀k ∈ K and ∀n ∈ N1 ∩ N2, it holds that

λ1(n) = λ2(n) and ι1(n, k) = ι1(n, k)∀k ∈ K.

Definition 31 (Snapshot Graph). Given a time interval τ = [ωo, ωc), a snapshot graph
G̃τ (also G̃

ωc
ωo) is the result of the union of all property graphs G ∈ S̃τ to a single property

graph using the union operation of Definition 30. It holds:

G̃τ = G̃ωc
ωo
= ⋃

Gi∈S̃
ωc
ωo

Gi

Figure 7.2 shows the snapshot graph G̃15∶45
14∶45 resulting from coalescing the substream

S̃15∶45
14∶45 highlighted with a red border in Figure 7.1.
In Section 7.3.2, we recall that clauses in a Cypher-query are functions that take a

tableand output a table, potentially expanding the number of fields and adding new
tuples. Similarly, in Seraph, we consider the time-based extensions of the notion above. In
particular, a time-varying table, which is inspired by the time-varying relations from [26],
generalizes the notion of the table into a function that maps the time Ω to a finite table.
Moreover, we introduce time-annotated tables to extend Cypher’s table with temporal
boundaries.

Definition 32 (Time-annotated Table). Given a time interval τ = [ωo, ωc), we define a
time-annotated table T̃τ ( also T̃

ωo
ωc ) as a bag or multiset of records µ̃, where each is a partial

function from names to values extended with names for the temporal annotations of the

interval bounds ωo and ωc. Extending the convention used for Cypher’s tables, we denote

them as a tuple:

µ̃ = (a1 ∶ v1, . . . , an ∶ vn,win_start ∶ ωo,win_end ∶ ωc)

where a1, . . . , an are distinct names, and v1, . . . , vn are values. The names win_start and

win_end are reserved Keywords in Seraph justified by their use as identifiers for the window

bounds, as per Definition 35. The order in which the fields appear is only for notation

purposes. We refer to dom(µ̃) = A as in Definition 26.

For instance, Table 7.4 extends Table 7.2 with the aforementioned temporal annotations
win_start and win_end with the values ωo and ωc, respectively.

Definition 33 (Time-varying Table). Let T̃ be the set of all possible T̃ in Ω. A time-

varying table Ψ is a function that maps every time instant ω ∈ Ω to a time-annotated Table

T̃ ∈ T̃ :
Ψ ∶ Ω→ T̃

Given a time-varying table Ψ, we use the term Ψ(ω) to refer to the time-annotated table

identified by the time-varying table at the given time instant ω. Moreover, we pose the

following constraints on the definition of Ψ:

r.user_id s.id r.val_time hops win_start win_end
1234 1 14:40 [2,3] 14:40 15:40
5678 2 14:58 [3,4] 14:40 15:40

Table 7.4: Time-annotated table as extension of Table 7.2.
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• Consistency, i.e., Ψ always identifies a time-annotated table.

Ψ(ωi) = T̃ ωo
ωc

s.t. ∀µ ∈ T̃ ∶ µ.ωo ≤ ωi < µ.ωc

• Chronologicality, i.e., Ψ always identifies the time-annotated table with the earliest

(minimal) opening timestamp.

/∃ T̃j s.t. µj ∈ T̃j, µj.ωo ≤ ωi < µj.ωc

∀µi ∈ Ψ(ωi), µj.ωo ≤ µi.ωo

• Monotonicity, i.e., Ψ always identifies subsequent time-annotated tables for subsequent

time instants.

∀ωi, ωj s.t. ωi < ωj,∀µi ∈ Ψ(ωi)

∀µj ∈ Ψ(ωj), µi.ωo < µj.ωo ≤ µi.ωc < µj.ωc

For instance, the time-annotated table shown in Table 7.4 would be identified by a
given Ψ(ωi) for any ωi such that 14:40 ≤ ωi < 15:40. Based on the presented Seraph’s data
model, we are ready to define the query model in the next section.

7.5.2 Query Model

This section presents the query model of Seraph that extends Cypher to enable continuous
queries over a property graph stream and thus satisfies the requirements R2 and R3.
Indeed, Cypher supports only one-time queries, which are evaluated once by the Cypher
engine and whose result is a finite table. Seraph queries, on the other hand, are intended
to be continuously evaluated until explicitly halted on a potential infinite input stream.

This paradigm-shift in the query execution model is named Continuous Semantics, i.e.,
processing an infinite input produces an infinite output [201]. Continuous semantics
poses the challenge of formalizing a non-terminating evaluation. In practice, it implies
that the result of a continuous query is the set of results that would be returned if the
query would be executed at every time instant. Intuitively, if the objective computation is
assumed to be stateless, continuous semantics can be achieved simply operating on each
individual element in the input stream. In Seraph, this is the case for what concerns data
ingestion. In fact, Cypher supports graph-based data ingestion by mapping elements of an
input source, e.g., CSV, into property graphs. Similarly, Seraph ingestion operates on one
event at time as shown in Listing 7.4, which is based on the Neo4j Kafka Connector [141].
On the other hand, the most common way to accomplish continuous semantics for

stateful computations is via snapshot reducibility. In particular, we adapt the definition
from [155], which in turn was adapted from [118], as follow:

1 LOAD STREAM FROM 'kafka:///bikes.stream' AS event
2 MERGE (b:Bike {id: event.bike_id})
3 MERGE (s:Station {id: event.location_id})
4 CREATE (b)-[:rentedAt {val_time: event.time, user_id: event.uid}]->(s)

Listing 7.4: Example of graph-based ingestion in Seraph.
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Definition 34 (Snapshot Reducibility). Let S be a Property Graph Stream, CQ a con-

tinuous query, and Q its non-streaming counterpart. Snapshot reducibility states that each

snapshot of the result of evaluating CQ over S is equivalent to applying Q over a snapshot

of S, i.e.,

∀ωi ∈ Ω,w = [ωo, ωc) s.t. ωo ≤ ωi < ωc,CQ(S)w == Q(Sw)

Snapshot reducibility induces the definition of operators, named Windows, that chunk
the stream into finite snapshots for defining the evaluation scope. Several alternative
window semantics exist [211]. In Seraph, we focus on time-based windows which operate
according to the temporal annotation of the stream elements to define intervals that help
select finite portions of the input stream. A time-based window is deterministic, iff the
set of intervals it subsumes is independent of the timestamps of stream elements.

Definition 35 (Time-based window). A time-based window w = [ωo, ωc) is a time

interval between a start time instant ωo and an end time instant ωc (exclusive). Let the triple

(ω0, α, β) be a window configuration, where

• ω0 is the earliest timestamp defining the start of the first window instance,

• α is the window size (in time units), and

• β is the slide size (in time units), such that two consecutive windows overlap of at

most α - β.

A window operatorW(ω0, α, β) identifies a infinite set of windows:

W(ω0, α, β) =
⎧⎪⎪⎨⎪⎪⎩
wi = [ωoi

, ωci
)∣ i ∈ N0 ∧ ωoi

= ω0 + iβ∧
ωci
= ω0 + iβ + α

⎫⎪⎪⎬⎪⎪⎭

If further holds that ∣ωoi
− ωci

∣ = α and ∃wi+1s.t.∣ωoi
− ωoi+1 ∣ = β, i.e., the distance of the

lower bounds of two succeeding windows wi and wi+1 is the sliding size β.

Applying a time-based window operatorW to a Property Graph Stream S determin-
istically identifies an infinite set of substreams S̃ , which lays the ground of continuous
query execution.

S̃ = W(ω0, α, β)(S) = {S̃w∣∀w ∈ W(ω0, α, β)}

As per their characterisation [25], continuous queries yield their results as if the
queries were evaluated for every time instant. Since such an approach is impractical,
stream processing engines typically control the execution by customising the reporting
of results [57]. However, delegating the definition of the reporting to the internals of the
engines has caused idiosyncrasies in the operational semantics [2] in the past that may
lead equivalent queries to produce different results on different engines [53]. Moreover,
declarative control of the query results reporting is a well-known stream processing
desideratum [198]. To this extent, we define the sequence of evaluation time instants as
follows.

Definition 36 (Evaluation time instants). We define the sequence of time instants

at which an evaluation of the query occurs as evaluation time instants. Such a sequence,

namely ET , is potentially infinite. Notably, the sequence depends on the initial time instant
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Active substream

ωi ∈ ETwi wi+1
wi+2 wi+3

wi+4
wi+5
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Ωωo ωc β

ɑ

Figure 7.4: Selecting the active substream.

ω0 and the slide size β, as defined in Definition 35. In particular, we define the ET sequence

as follows:

ET = {ω ∣ (ω − ω0)/β = 0}

For every ωi ∈ ET , a query evaluation is triggered. It is now necessary to identify the
property graph substream S̃τ with ωi ∈ τ, from which a snapshot graph G̃τ is constructed
that is the input of the query evaluation. We refer to S̃τ as the active substream.

Definition 37 (Active Substream). Given a time instant ωi and the infinite set of all

substreams S̃ , the active substream S̃w is the earliest property graph substream of all

substreams that are valid at ωi. I.e., it exists one window w = [ωo, ωc) ∈ W(ω0, α, β) such
that ωi ∈ w and ∀w = [ωo, ωc) ∈ W(ω0, α, β) ∶ ωo =min(ωo).

For hopping time-based window operators (also denoted as tumbling), the identification
is intuitive, since there is just one substream per time instant: S̃w = S̃τ with w = τ =
[ωo, ωc) = [ωo, ωc). For overlapping time-based window operators (also denoted as
sliding), i.e.,W(ω0, α, β) s.t. β < α, multiple substreams could be identified at each ωi. In
such scenario, we consider the one with earliest opening timestamp as defined above.

Figure 7.4 illustrates the identification of the active substream. One can see the set of
windows wi,wi+1, . . . where each has the size α and a distance of β. The infinite property
graph stream S is represented as multiple circles◯. For a given evaluation time instant
ωi ∈ ET , marked with a red dashed line, two windows exist that include this time instant:
wi+2 and wi+3. Note that ωi ∉ wi+1, since a window is a close-open interval excluding
the upper interval bound. From both windows wi+2 and wi+3 we select the one with the
earliest (smallest) lower interval bound ωo as w = [ωo, ωc). The substream S̃w is thus the
active substream, whose property graphs are marked with green circles in the figure.
The union of all property graphs of S̃w results in a snapshot graph G̃w, which we

call active snapshot graph. On each evaluation time instant, the inner Cypher query is
evaluated on the respective active snapshot graph. Each query evaluation results in a
time-varying table Ψ that holds the tuples µ representing the time-annotated mappings
of found matches. Finally, the continuous semantics implies an infinite output stream
as result of a query evaluation. Streaming operators, as defined by Arasu et al. [19],
reintroduce the temporal dimension in the data to construct a stream. We adapt this
approach for creating a output stream of timestamped tuples (µ,ω) from the time-varying
table Ψ(ω).
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Definition 38 (Streaming Operators). A streaming operator is defined by the pair (Ψ,ω),
i.e., a time-varying table and a time instant, typically the current evaluation time instant

ωnow ∈ ET . We differentiate three streaming operators:

• The RStream outputs each tuple derived from Ψ timestamped with the evaluation

time.

RStream(Ψ, ω) = {(µ,ω)∣µ ∈ Ψ(ω)}

• The IStream outputs the results that are part of the current evaluation result but are

not in the previous one.

IStream(Ψ, ωj, ωj−1) = {(µ,ωj) ∣ µ ∈ Ψ(ωj) ∖Ψ(ωj−1)}

• The DStream outputs the results that are part of the previous evaluation result but are

not in the current one.

DStream(Ψ, ωj, ωj−1) = {(µ,ωj) ∣ µ ∈ Ψ(ωj−1) ∖Ψ(ωj)}

After a detailed formalization of the query model in this section, the syntax and
semantics of Seraph will be discussed in the following by bringing all the introduced
concepts together.

7.5.3 Formal Syntax and Semantics

Seraph’s key components are declarative (R1) clauses and queries that operate timely on
the presented data model (Section 7.5.1) and query model (Section 7.5.2). From now on
we will color Seraph syntax in green, leaving Cypher syntax in blue. We preserve the
expressiveness of Cypher by defining only extensions, which satisfies requirement R4. In
Figure 7.5, we illustrate the interactions and transitions from one component to another.
In the upper left corner, we can see the input property graph stream, formally defined as

Time-annotated TableTime-varying Table

Time-a. Table Time-a. Table

Property Graph Stream

Time-annotated Table Stream

Snapshot Graph

WITHIN

EMIT RETURN

MATCH

WHERE

WITH

(1)

(2)

(3)

(4) (5)

STARTING AT

EVERY

EVERY

Figure 7.5: Seraph’s data and query model Interaction.
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S in Definition 28. The combination of three clauses (marked (1)), namely STARTING AT,
WITHIN and EVERY, form the configuration of the window operatorW from Definition 35.
The window operator generates substreams S̃τ from the property graph stream S, each
of which is combined into a snapshot graph G̃τ .

The semantics of a MATCH clause is the pattern matching which takes as input a (initially
empty) time-varying table Ψ, evaluates a pattern π matching on the snapshot graph G̃τ ,
and in turn generates a time-varying table Ψ with extended set of field names and rows
as output. In the figure, this is shown as a semicircular arrow marked with (2). The set of
assignments that are the result of a MATCH clause as a time-varying table can be filtered
via a selection using the WHERE clause (marked (3)) and thus again has a time-varying
table as the result. Likewise, a projection of a time-varying table can be made via the
WITH clause (also marked with (3)), which serves as input for another MATCH clause. This
concept is taken from Cypher and allows the combination of several MATCH clauses.
In Seraph, the output of the evaluation result of one (or more) MATCH clauses can be

emitted in two ways: a) as a stream of time-annotated tables T̃ via the EMIT clause
(marked with (4)) or b) as a single time-annotated table T̃ via RETURN clause (marked
with (5)). The former a) converts each time-varying table into a time-annotated table at
each evaluation time ET using the projections specified by EMIT and the evaluation time
instants specified by EVERY. It thus creates a stream of time-annotated tables. Second b)
emits only one result. At the first evaluation time instant after the start time (defined by
STARTING AT), the query is evaluated and the resulting time-varying table is converted
into a time-annotated table using the projections specified by RETURN.
After this high-level overview, we can now present the formal syntax of a Seraph

query, which is given in Figure 7.6. The semantics of expressions of Cypher, like values,
variables, maps, lists etc., remain unchanged and can be derived from [71]. Furthermore,
we provide a Seraph query parser open-source on GitHub [44].

Queries. The REGISTER QUERY clause allows for registering a new query with name
a ∈ A into the system that implements Seraph. The name is used to identify the registered
query and allows editing and deleting a previously registered query. The STARTING AT
clause defines the first evaluation time instant, which is important for all window seman-

1 querySrph ::= REGISTER QUERY a STARTING AT time { a ∈ A
2 query∆

3 stream_op
4 EVERY range }
5 query∆ ::= RETURN ret | EMIT ret | clause∆ query∆

6 clause∆ ::= MATCH pattern_tuple WITHIN range
7 [WHERE expr]
8 | WITH ret [WHERE expr] | UNWIND expr AS a
9 stream_op ::= ON ENTERING | ON EXIT | SNAPSHOT

10 range ::= <ISO_8601_duration>
11 time ::= <ISO_8601_datetime>
12 ret ::= ∗ | expr [AS a] | | ret , expr [AS a]

Figure 7.6: Seraph’s syntax based on Cypher’s one in Figure 7.3.
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tics, since from this points all windows are defined. This time instant, given as ISO8601
datetime, is used as the configuration ω0 of the window operator from Definition 35, and
is constant for the registered query.
The following body of the Seraph query is encapsulated by curly braces {...} and

consists of three parts: the query, the stream operator and the evaluation interval. A query

is a sequence of clauses ending with the RETURN or EMIT statement. Both contain the
return list, which is either ∗, or a sequence of expressions, optionally followed by AS a,
to provide their names. They define what to include in the query result set. The stream
operator determines which streaming operator is used, which are defined in Definition 38.
In particular, the SNAPSHOT clause specifies that the RStream operator has to be used,
while the ON ENTERING and ON EXIT clauses allow for selecting IStream andDStream,
respectively. The evaluation interval, i.e., sequence of evaluation time instances, can be
specified using the EVERY clause, together with the STARTING AT clause. In particular,
the EVERY clause defines the frequency of the evaluation, which can be specified with an
ISO 8601 duration. The STARTING AT clause, instead, defines the first evaluation time
instant as an ISO 8601 datetime.

Clauses. Seraph clauses are functions that take time-varying tables and produce time-
varying tables. Analogous to Cypher, matching clauses are pattern matching statements
of the form MATCHpatternWITHINrangeWHEREexpr, where WHERE is optional. The width
parameter of windows is defined using the WITHIN clause, which is attached to every
MATCH and its pattern definition. Thus, every pattern can be matched in its own window
width. The MATCH clause extends the set of field names of Ψ(ω) by adding field names that
correspond to names occurring in the pattern but not in µ. It also adds tuples to Ψ(ω),
based on matches of the pattern that are found in the snapshot graph G̃τ . Analogous
to the Cypher definitions is UNWIND another clause that expands the set fields, and WITH
clauses that can change the set of fields. In addition, WITH allows query parts to be chained
together, piping the results from one to be used as starting points or criteria in the next.
Finally, we model the continuous evaluation process by including the evaluation

time in the Cypher evaluation semantics. The continuous query answering is done by
executing the query at each time instant of the sequence ET Given a fixed time instant,
the operators can work in a time-agnostic way composing the semantics of Cypher in the
one of Seraph. The semantics of queries associates a query SQ and a snapshot Property
Graph G̃ with a function JSQKG̃ that takes a time-varying table and a time instant and
returns a time-varying table. The evaluation of a query starts with the time-varying table
containing one empty tuple, which is then progressively changed by applying functions
that provide the semantics of SQ’s clauses. The composition of such functions, i.e., the
semantics of SQ, is also a function, which defines the output as:

output(SQ, G̃, ω) = [[SQ]]G̃(Ψ, ω)

This new concept requires a revision of the definitions of the existing Cypher evaluation
of queries, clauses and expressions. We show all continuous evaluation semantics of
redefined queries and clauses in Figure 7.7.

In particular, the semantics of the MATCH clause is described through the setmatch(π, G̃, µ),
which is a redesign of thematch(π̄,G, u) of Cypher (Section 7.3.2) with respect to the
continuous evaluation semantic and the concept of snapshot graphs. Let π a path pattern,
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JRETURN∗KG̃(Ψ, ω) = Ψ(ω) where ω ∈ [ωo, ωc),
and ωo, ωc are the time annotations of Ψ(ω)

JEMIT∗KG̃(Ψ, ω) = ∀ωe ∈ ET JRETURN∗KG̃(Ψ, ωe) a proposal
JEMIT ∗ ON ENTERINGKG̃(Ψ, ω) = JEMIT∗KG̃(Ψ, ω), Ψ = {µ ∣ µ ∈ Ψ(ω) ∖Ψ(ω − 1)}

JEMIT ∗ ON EXITKG̃(Ψ, ω) = JEMIT∗KG̃(Ψ, ω), Ψ = {µ ∣ µ ∈ Ψ(ω − 1) ∖Ψ(ω)}
JEMIT ∗ SNAPSHOTKG̃(Ψ, ω) = JEMIT∗KG̃(Ψ, ω), Ψ = {µ ∣ µ ∈ Ψ(ω)}

JWITH∗KG̃(Ψ, ω) = Ψ(ω) if Ψ(ω) has at least one field
JWITH ret WHERE exprKG̃(Ψ, ω) = Ψ(ω) if Ψ(ω) has at least one field

JSTARTING AT ω0 MATCH π

WITHIN α EVERY βKS = JMATCHπKW (ω0,α,β)
S (Ψ, ω)

=̂ JMATCHπKW (ω0,α,β)(S)(Ψ, ω)
=̂ JMATCHπKS̃ωo

ωc (ω)
(Ψ, ω)

=̂ JMATCHπKG̃w
(Ψ, ω)

= ⊎µ∈Ψ(ω){µ ⋅ µ′∣µ′ ∈match(π, G̃, µ)}

Figure 7.7: Formal semantics of Seraph query and clauses.

G̃ a snapshot graph, µ a time-annotated assignment, p a path in G̃, π′ a path pattern in
the set of all rigid paths rigid(π) and (p, G̃, µ ∗ µ′) ⊧ π′ as satisfaction of π′ in a path p in
G̃, the set of matches is defined as follows:

match(π, G̃, µ) = ⊎
p∈G̃

π′∈rigid(π)

⎧⎪⎪⎨⎪⎪⎩
µ′
RRRRRRRRRRR

dom(µ′)=free(π)−dom(µ)

∧(p,G̃,µ∗µ′)⊧π′

⎫⎪⎪⎬⎪⎪⎭

For space reasons, we did not include the semantics of non-essential language compo-
nents like UNWIND, OPTIONAL, renaming, and expressions. However, under the snapshot
reducibility assumption [155], the continuous extension of such an operation is trivial.
For a complete overview, we invite the interested reader to read the Cypher technical
report [71].

7.5.4 Running Example vs Seraph

In this section we define a continuous query for the micromobility example of Section 7.2.
With Seraph, the analytics team of RideAnywhere can register a continuous query that
checks the rentals for student users applying the described trick of subsequent rentals.
Lets discuss the Seraph query depicted in Listing 7.5, which continuously monitors the
rentals for the pattern.

The REGISTER QUERY clause (line 1) allows for naming and registering the query into
the system that manages Seraph queries. To define the time when the first evaluation
will start, the STARTING AT clause is used, with a time instant. The query itself (line 2
to 12) is the query body that defines the pattern, its conditions, the projections, and the
result emitting. Let us go through the query and compare it with the Cypher solution
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1 REGISTER QUERY student_trick STARTING AT 2022-10-14T14:45 {
2 MATCH (:Bike)-[r:rentedAt]->(s:Station),
3 q = (b)-[:returnedAt|rentedAt*3..]-(o:Station)
4 WITHIN PT1H
5 WITH r, s, q, relationships(q) AS rels,
6 [n IN nodes(q) WHERE 'Station' IN labels(n) | n.id] AS hops
7 WHERE ALL(e IN rels WHERE
8 e.user_id = r.user_id AND e.val_time > r.val_time AND
9 (e.duration IS NULL OR e.duration < 20) )
10 EMIT r.user_id, s.id, r.val_time, hops
11 ON ENTERING
12 EVERY PT5M
13 }

Listing 7.5: Continuously retrieve users that use the free period for two subsequent rentals in the last

hour using Seraph.

given in Listing 7.1. Since the desired window behavior is now natively supported by
Seraph, we directly start by defining the desired pattern.
The MATCH clause defines the pattern π we are looking for (line 2 to 3). Note that

compared to the previous Cypher query, the predicate applying the edge filtering for
the window is obsolete. By WITHIN we define the width of the window for this pattern,
which is 1 hour (PT1H). The predicates of the WHERE clause are equal to the ones of the
Cypher query. Instead of the RETURN clause we use the EMIT clause to get a continuous
stream of time-annotated tables and define the projected attributes for the resulting tuples
enhanced with bounds of the current window that is built by Seraph (win_start and
win_end). At line 11 the ON ENTERING operator allows for emitting only new matches
entering the window, which satisfies requirement R3. The EVERY operator specifies the
frequency of the evaluation process. Here, we define it as 5 minutes specified by PT5M.
The operators STARTING AT, WITHIN and EVERY build the continuous evaluation and thus
satisfy requirement R2. As Seraph only expands Cypher, we preserve the expressiveness
and hence meet requirement R4.

To summarize, every 5 minutes starting from 14:45h, the system evaluates a pattern on
the active snapshot graph defined by a 1h window and emits a stream of time-annotated
tables, including the users that extend their rental time by using subsequent free rentals.

Let us analyze the output of the query at different time instants.

14:45h The 1h window covers only the outer left graph depicted in Figure 7.1. Just a
bike was rented, which needs no notification.

14:46h - 14:59h The query emits no event.
15:00h The two left graphs in Figure 7.1 are merged. User 1234 returned a bike and

rented one again. User 5678 rented a bike, too. However, the resulting snapshot
graph is queried without any match.

15:01h - 15:14h The query emits no event.
15:15h The three left graphs in Figure 7.1 are in the active substream and thus merged

to a snapshot graph, which leads to a match: user 1234 applying the trick. Since
15:15h is an evaluation time, the time-annotated table (Table 7.5) is emitted.
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r.user_id s.id r.val_time hops win_start win_end
1234 1 14:40 [2,3] 14:15 15:15

Table 7.5: Outputs of Seraph continuous query at 15:15h.

r.user_id s.id r.val_time hops win_start win_end
5678 2 14:58 [3,4] 14:40 15:40

Table 7.6: Outputs of Seraph continuous query at 15:40h.

15:20h The fourth graph arrived with the information that user 5678 returned and rented
again a bike.

15:21h - 15:39h The query emits no event.
15:40h All graphs of Figure 7.1 are in the active substream and thus unified to a snapshot

graph (cf. Figure 7.2). Another match is found: user 5678 is applying the trick, too.
The query’s output at 15:40h is depicted in Table 7.6. Since we used ON ENTERING,
just the new match, i.e., user 5678, is part of the resulting time-annotated table.

7.6 Implementation

Since this work provides the formal description of Seraph for paving the road to future
implementations, we briefly discuss our plans in such a direction.
Graph Stream Processing (GSP) Engine. We built an proof of concept implementa-
tion [167] of a GSP engine with Seraph language support. It is open-source available under
Apache-2.0 license and based on Neo4j and RSP4J [208], a library for fast-prototyping
stream processing engines. A query parser [44] based on ANTLR is also available to
validate the syntax design. Notably, this first POC has the goal of empirically proving
Seraph’s feasibility and enabling various tests and evaluations. In the short term, we
also plan to test other Cypher-compatible embedded graph engines like Kuzu [104] or
Memgraph [136].
We plan a first round of optimization focusing on query planning at different levels,

including native operators and efficient window maintenance. We also plan to explore
the adoption of advanced windowing as described in the recent survey [213], as well as
optimizations regarding concurrent queries and avoidable re-executions on equal window
contents.
Distributed GSP. In the medium term, we plan to explore a distributed implementation
of Seraph based on a stream processing framework such as Apache Flink [37] or Apache
Spark [225]. Here we can benefit from our work on Gradoop, which has integrated
Cypher-based pattern matching based on Apache Flink.

A second round of optimization will focus on system-level investigation as in [86]. In
particular, we will explore operator placement and fusions, graph stream partitioning,
and distributed join algorithms.
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7.7 Conclusion

In this section, we introduced Seraph, a declarative graph query language that composi-
tionally enriches Cypher for handling streams of property graphs and for continuous
query answering. In particular, it shows that Seraph is designed to overcome the limita-
tions of Cypher for continuous processing: 1) Seraph’s data model can represent streams
of property graphs; 2) Seraph’s query model allows continuous evaluation over Cypher
semantics by creating snapshot graphs from the graph stream using windowing and
evaluating the query under snapshot reducibility. In addition, 3) we demonstrated the
capabilities of Seraph in three industrial use cases: network monitoring, real-time tracing,
and bike sharing (our running example). The formal foundations we lay in this work
will pave the way for future continuous graph query languages, such as a continuous
extension to GQL, the ISO standard graph query language, whose first version is expected
to appear in 2024.
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8
Lessons Learned from Gradoop

One of the main contributions of this dissertation is the Gradoop project, which aims to
develop a comprehensive open-source framework for distributed processing and analysis
of large temporal property graphs. We combined positive features of graph database
systems and distributed graph processing systems and extended them in several ways,
e.g., with support for logical graphs, graph collections, bitemporal maintenance, and
built-in analysis capabilities, including structural graph transformations and temporal
graph analysis operators. Given that this project has been running for over 8 years, we
will now reflect on some of our design decisions regarding technology selection, data
model, and operator concept, as well as a discussion on the usage and system acceptance.

8.1 Apache Flink

One of the first and most important design decisions was the selection of a suitable
processing framework to enable the development of a comprehensive, extensible, and
horizontally scalable graph analysis framework. At that time, Apache Flink was short-
listed and finally chosen because of its rich set of composable (Flink) transformations
and support for automatic program optimization without needing more profound system
knowledge.

In recent years, however, Apache Flink has focused on becoming a pure stream process-
ing engine so that the DataSet API (used by Gradoop) is soft deprecated since version
1.12 [202]. We have, therefore, begun to evaluate alternate processing frameworks such as
the DataStream and Table API of Apache Flink. Although a re-implementation of a large
part of Gradoop and its operators would be necessary, the reorientation can also provide
advantages for improving Gradoop’s performance and feature set: The streaming model
of Apache Flink already supports two different notions of time (processing- and event
time, similar to the bitemporal model of the TPGM), watermarks for out-of-order streams,
several window processing features and state backends to materialize intermediate results.
Apache Flink has introduced a BATCH execution mode for the DataStream API, which
optimizes the stream processing engine for finite data sets. Such a significant change
could thus allow better support for processing, analysis, and continuous queries on graph
streams [29] that we plan to address in the future.
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8.2 Logical graphs and collections

A unique selling point of Gradoop’s original EPGM and the temporal TPGM models
is the introduction of logical graphs as an abstraction of a subgraph that can be easily
semantically enhanced without changing the graph’s structure by adding new vertex or
edge types or adding redundant properties. Graph collections, i.e., sets of logical graphs,
are a hugely valuable data structure for modeling (possibly overlapping) logical graphs.
Graph collections also facilitate the use of binary graph operations [116], like intersection
and union, an essential part of graph theory, for property graphs. In addition, they are
used as a result of analytical operators that produce multiple graphs, for example, graph
pattern matching, where each match represents a logical graph.

8.3 Operator concept

Another core design decision was the methodology to introduce operators that can be
flexibly combined to define analytical workflows. Similar to the transformations between
datasets in distributed processing engines, we developed single analytical operators that
are closed over the model. The internal logic of an operator is a composition of (Flink)
transformations hidden from the analyst, thus providing a top-level abstraction of the
respective function.

The large number of operators offered, which contain both simple analyses and graph
algorithms, can, therefore, be used as a toolkit for composing complex analysis pipelines.
An analyst with programming experience can write new or modify existing operators
(which requires knowledge of the implementation details) to extend the functional scope
of Gradoop. This is possible through public Java interfaces for all types of operators.

Further, a typical feature of distributed in-memory systems is a scheduler that translates
and optimizes the dataset transformations used in the program to a directed acyclic graph
(DAG). Such transformations, represented by vertices in the DAG, are combined and
chained to optimize the overall data flow. This, however, results in a disadvantage of
the operator concept since the relation between transformations and operators often
gets diluted. Consequently, performance issues with specific operators and their dataset
transformations are complex to identify.

8.4 Temporal extensions

The evolution of entities and relationships is a natural characteristic of many graph
datasets that represent a real-world scenario [187]. A static graph model like the PGM
or the initial EPGM of Gradoop is, in most cases, unsuitable for performing analyses
that specifically examine the development of the graph over time. We found that an
extension of the data model and the respective operators (including new operators
for solely temporal analysis) covered many requirements of frequently used temporal
analysis, for example, the retrieval of a snapshot, without building a completely new
model and prototypical implementation of a new framework.
One weakness identified was the insufficient support for frequent property value

changes. To overcome this weakness of the data model, we have shown in Section 6.2 the
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TPGM+, a TPGM extension to lift the temporality also on the property level. In addition,
through the operator concept, it is possible to combine static and temporal operators,
for example, to first filter for entities and relationships of interest and then analyze their
evolution with the grouping operator and its temporal aggregations.

In future work, we plan to develop alternatives to the GVE data layout (see Section 3.4)
without separating vertices and edges so that TPGM integrity conditions can be checked
more efficiently. We will also investigate separating the newest graph state from its
history for increased performance.

8.5 Scalability

So far, evaluations have shown that Gradoop generally scales very well with increasing
dataset sizes. On the other hand, when increasing the number of machines on a fixed
dataset, the speedup reaches its limit relatively fast (for the considered workloads and
datasets, the speedup mainly was lower than 10 with the default hash-based data parti-
tioning). The main reason for this behavior can be seen in the strong dependency on the
underlying Flink system and its optimizer and scheduler, which are not tailored to graph
data processing.

Data distribution is by default based on a hash partitioning, particularly for intermediate
results in an analytical pipeline, that prevents the utilization of data locality for our graph
operators but can result in significant communication overhead even for traversing edges.
Therefore, we prepared a possibility to partition a graph by label to reduce execution
complexity for large-scale graphs. However, experience shows that a single partition
strategy is not suited for all analytical operators Gradoop provides. Part of our future
research will thus be to develop improved data distribution and load balancing techniques
to achieve a better speedup behavior for single operators and analysis pipelines.

8.6 Usage and acceptance

Gradoop is an open-source (Apache License 2.0) research framework that has been
co-developed by developers from industrial partners and many students within their
bachelor, master, and Ph.D. theses, which led to a good number of publications. It has been
used by us and others within different industrial collaborations [181] and applications
and serves as the basis for other research projects, e.g. on knowledge graphs [185].
Furthermore, concepts of Gradoop operators have been adopted by companies. For

example, the graph grouping operator from Neo4j’s APOC library was inspired by
Gradoop’s grouping operator [143]. The implementation of Gradoop’s pattern matching
operator [109] as a proof of concept for the distributed execution of Cypher(-like) queries,
directly influenced the development of Neo4j’s Morpheus [140] project, which provides
the OpenCypher grammar for Apache Spark by using its SQL DataFrame API.

To make it easier to start using Gradoop, we deploy the system weekly to the Maven
Central Repository. Thus it can be used in own projects by solely adding a dependency
without any additional installation effort. We provide further a “getting started” guideline
and many example programs in the GitHub repository of Gradoop and its GitHub
wiki [172] to support the usage.
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The provided analytical language GrALa can be used in two ways, via Java API or
KNIME extensions, to define an analytical program. Consequently, analysts with and
without programming skills can use the system for graph analysis. Operators can be
configured in many ways, and it can be challenging to find out which particular configu-
ration should be used for the desired analysis result. Further, many possible combinations
of the operators may also represent a challenge for the analyst. We, therefore, provide
example operator configurations and detailed documentation in the GitHub wiki [172] to
assist in finding the right combination and configuration.
The open-source Temporal Graph Explorer, introduced in Section 4.2, provides a

web-based user interface to run three selected TPGM operators with all configuration
possibilities. This allows a user to test how each configuration of an operator, such as
temporal grouping, affects the result. Currently, the Temporal Graph Explorer is used for
demonstration purposes in the Living Lab of ScaDS.AI Dresden/Leipzig. There, visitors
of the lab can test temporal graph analyses via preconfigured operators. A temporal
micromobility graph containing bicycle rentals from Leipzig is provided as a data set.
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Conclusion and Outlook

This dissertation gives a comprehensive overview of the research on the scalable manage-
ment and analysis of temporal property graphs and query languages for graph streams.
We now summarize the contributions of this dissertation in Section 9.1 and give an
outlook on follow-up work in Section 9.2.

9.1 Conclusion

Graph databases, graph processing, and graph data science help provide insight into
complex networks by providing data models in which entities and their relationships
can be effectively modeled and analyzed. Gartner predicts that graph technology will be
used in 80 percent of data and analytics developments by 2025, up from 10 percent in
2021 [21]. However, graph modeling, querying, and analysis often neglect one significant
dimension: time.

Almost every real-world graph evolves over time, and information about this evolution
is typically available but not natively maintained by graph systems. However, this has
changed somewhat in recent years, at least in research. There is an increasing focus on
dynamic graphs, especially temporal graphs and graph streams.

This dissertation joins the current research on temporal graphs and graph streams and
addresses most challenges of this research field discussed in Section 1.1. The contribution
of this work can be summed up in the following.

One framework to analyze them all. True to this motto, the graph analysis
system Gradoop, which previously only supported static property graphs, has been
comprehensively extended to process temporal property graphs from arbitrary domains.
Existing systems specializing in the analysis of temporal graphs usually pursue only a
specific analysis goal, e.g., querying using an extended language, developing a temporal
graph algorithm, or the computation of temporal vertex metrics, or are specialized for a
concrete use case. Gradoop, in contrast, is a general-purpose tool, not focused on any
specific analysis or use case. The unique selling point of Gradoop is its flexible operator
concept, which allows one to define arbitrary simple or complex processing and analysis
pipelines and execute them in a distributed fashion. The graph model, called TPGM,
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which includes the data model, operators, algorithms, and a declarative query language
called GrALa, supports bitemporal versioning of nodes and edges, as well as abstractions
of subgraphs, called logical graphs, which are also bitemporally managed and therefore
called temporal graphs. Nodes and edges can be part of any number of temporal graphs,
and temporal graphs can be part of graph collections. An operator of the TPGM is closed
over the model, i.e., it consumes one or two temporal graphs or graph collections and
outputs a temporal graph, a graph collection, or a generic dataset. This allows the flexible
construction of analysis pipelines by concatenating operators.
In this work, new and extended operators that are specifically tailored to temporal

graphs are proposed. For example, the snapshot operator extracts a graph from the
graph history at a given time. The temporal grouping operator summarizes a complex
temporal graph in an arbitrarily simple way, revealing hidden patterns in the temporal
evolution of the graph. The temporal pattern matching operator has been provided with
a query language called TemporalGDL, which allows, e.g., to order patterns and paths
within the query chronologically or to compare intervals with an established algebra.
Using real and artificial temporal graphs, Gradoop was evaluated to see how it reacts
to increasing dataset size, cluster size, or changes in operator configurations. Although
there is potential for optimization in the data representation and in the implementation
of the operators, a good horizontal scalability of the system was demonstrated. Critical
design decisions, such as the choice of framework, the operator concept, or the temporal
extension, were evaluated in a lessons learned chapter at the end of the dissertation.
The usability of Gradoop and its data model was further demonstrated in two ap-

plications. First, the ability to combine the operators was demonstrated using a call
center use case, where subgraph, snapshot, and grouping with roll-up functionality were
intelligently combined to answer a complex analytical question. Second, a demonstration
application called Temporal Graph Explorer (TGE) was presented. The web-based applica-
tion allows the user to try out 3 operators of the TPGM. The resulting graph is visualized
in the TGE after selecting an operator, its configuration, and a temporal input graph. The
output is displayed on an interactive map if geographic information is available at the
nodes. This allows the user to explore the graph and its evolution over time.

The focus then turned to nodes and graph metrics. It was shown that the static view of
a metric is insufficient for temporal graphs since the graph evolves, and thus, the metrics
also change. We show that a metric representing a scalar value for static graphs is a
time series for temporal graphs. For various metrics based on vertex degree, temporal
and evolutionary versions are formally defined and demonstrated with examples. After
presenting a baseline algorithm for computing the degree evolution of all nodes of a
temporal graph, a reference implementation in Gradoop was presented, and its runtime
and scalability were evaluated using different temporal graph datasets. We showed that
the implementation scales well even for graphs with more than 460 million nodes.

Gradoop is thus an open-source system that can be used to process temporal graphs
in a distributed manner, combining modular operators as needed to create analysis
workflows focused on the evolution of the graph.

Continuous qerying and streams of graphs. The second central part of
this work focuses on the continuous evaluation of temporal graphs and graph streams.
A cooperation project with Oracle Labs showed that temporal graphs are suitable for
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organizing time series data in the IoT domain, i.e., for modeling relationships between
entities that produce time series like sensors. Since the TPGM does not support frequent
changes in property values, it was necessary to extend it to an extended version, namely
TPGM+.

A temporal graph query language, called TPGQL, was also developed for the resulting
TPGM+. Based on Oracle’s PGQL language, several temporal extensions were developed
to allow, for example, finding temporal patterns in the graph at different points in time.
To perform this type of evaluation continuously, a draft notification mechanism called
Continuous Graph Notification (CGN) was also presented, which informs a recipient
that a change in the graph may lead to a change in the query result. This contribution
was a first step towards 1) combining temporal graphs and time series, which leads to a
new research project called HyGraph, and 2) continuous query capabilities on changing
graphs.
Continuing this research direction, a declarative graph query language for querying

streams of property graphs was developed. The language, called Seraph, is based on
the well-known Cypher graph query language - a base of the upcoming GQL standard.
It was shown how an existing language like Cypher can be extended syntactically and
semantically to allow for window-based evaluation of paths and patterns.
The formal definition of Seraph includes a data model that combines the property

graph model with data streams, a query model with complete control over reporting, and
the syntax and semantics of time-based operators that operate on the data model. The
use of Seraph was demonstrated using a bike-sharing example and two other real-world
use cases. As the new property graph query language GQL is being standardized, the
work we contributed with Seraph is a foundation for extensions to this standard in the
context of graph streams and continuous query evaluation.

9.2 Outlook

In the future, wewill investigate how the TPGMand its operator concept can be realized by
alternate technologies, e.g., using a distributed streaming model or Actor-like abstractions
such as Stateful Functions [7], to process temporal graphs. Another area that we will
work more on is to extend Gradoop to realize temporal knowledge graphs integrating
data from different sources and continuously evolving the integrated data [88]. A further
extension is the addition of layout algorithms to visualize temporal graphs and graph
collections to offload the expensive calculation from front-end applications. Through
our work on temporal degree metrics, we have also laid the foundation for the temporal
extension of other static metrics, such as a temporal variant of betweenness centrality or
clustering coefficient. Finally, we will investigate the overall performance optimization
of Gradoop and add temporal graph algorithms as further operators to the framework.
The continuous analysis of graph streams is an emerging research area [36] and will

continue to be considered in our future research. We already working on adaptations of
TPGM operators for property graph streams, e.g., the so-called Graph Stream Zoomer [42],
a window-based graph stream grouping system based on Apache Flink, offers the same
grouping functionalities as the time-dependent grouping operator of the TPGM, only
using graph streams as data model. With the work on Seraph (Chapter 7), we have
already defined the semantics of a corresponding continuous query language. Our formal
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definitions can be used to sketch a continuous extension to GQL, the upcoming ISO
standard graph query language. In addition to the implementation plans of Seraph, we
will explore i) how to query multiple streams simultaneously, ii) how to partition a
property graph stream into logical substreams, and iii) how to incorporate static graph
data into the continuous computation. Finally, we plan to vi) focus on graph-to-graph
transformations as in GQL. Besides, we will integrate machine learning (ML) methods on
temporal and streaming graphs, e.g., to identify diminishing and recurring patterns or
predict further evolution steps.
Our research also continues in a project called HyGraph [43] funded by the German

Research Foundation (DFG) and the French National Research Agency (ANR). The project
already started (2023) and aims to design a hybrid data model that combines temporal
graphs, time series, and graph streams. Among other things, the project will apply the
operator concept of the TPGM to the hybrid data model to achieve the construction of
analytical workflows.
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