
Scalable, Accurate and Secure
Privacy-Preserving Record

Linkage

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D i s s e r t a t i o n
zur Erlangung des akademischen Grades

Doctor Rerum Naturalium
(Dr. rer. nat.)

im Fachgebiet
Informatik

Vorgelegt

von M. Sc. Informatik Martin Franke
geboren am 18. März 1992 in Sömmerda

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Erhard Rahm, Universität Leipzig
2. Prof. Dr. Rainer Schnell, Universität Duisburg-Essen

Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 16.04.2024 mit dem Gesamtprädikat summa cum laude.

Abstract

The digital revolution has led to rapid growth in the amount of data that is collected
by organizations. Analyzing large data collections through the use of data mining and
predictive analytics allows organizations to make data-driven decisions to improve
efficiency, effectiveness, or profitability.

Much of the data collected by organizations, such as government agencies, healthcare
providers, or insurance companies, is related to individuals. However, each organization
typically maintains an independent database containing specific data for a concrete
purpose. Therefore, different databases typically store different data (variables) about
a certain group of individuals. Complex research questions often cannot be answered
solely based on one database because either certain data (co-variables) are missing, or
the sample size is too small. Comprehensive data analysis therefore often requires the
integration (combination) of data from multiple autonomous and thus heterogeneous
databases. For holistic medical research, for instance, medical care data could be
combined with clinical trial data, data from disease registries, or social data to uncover
hidden correlations and improve prevention, therapy, and care.

A crucial part of data integration is to identify records from different databases that
refer to the same real-world entity, such as a patient. This task is known as record
linkage and relies on comparing available quasi-identifiers, such as names, addresses,
and dates of birth of patients. However, exchanging such personal data between different
organizations conflicts with privacy and is often not permitted, since personal data is
protected by strict legal regulations. Privacy-preserving record linkage (PPRL) addresses
this problem by providing techniques for linking records while preserving the privacy of
represented entities (individuals). PPRL approaches have to ensure that no private or
confidential information is revealed during the linkage that would allow to (re-)identify
an individual. Therefore, quasi-identifying attribute values are encoded (masked) and
the linkage is conducted on encoded records.

PPRL techniques pose three key challenges that need to be addressed, namely (1)
reaching high efficiency with scalability to large and potentially many databases; (2)
achieving high linkage quality by avoiding false and missing matches; and (3) ensuring
a high degree of privacy by providing secure encodings and linkage protocols. In this
thesis, we present extensive research that addresses all three key challenges of PPRL by

III

providing solutions to several problems and shortcomings identified in existing PPRL
approaches.

First, we focus on improving the scalability and overall performance of PPRL by
investigating locality-sensitive hashing (LSH) as a private blocking method to reduce the
number of record pair comparisons. Furthermore, we develop parallel PPRL approaches
that build on the modern distributed processing framework Apache Flink. We show
that our approaches achieve high efficiency and effectiveness, scaling up to linking tens
of millions of records.

Second, we address the challenge of achieving high linkage quality in privacy-constrained
linkage scenarios. Most existing PPRL approaches rely on a simple threshold-based
classification, and thus likely fail to achieve accurate linkage results when dealing
with dirty data containing errors and inconsistencies. Therefore, we examine post-
processing methods for removing match candidates that are unlikely to match. We show
that post-processing raises the overall linkage quality by limiting the number of false
matches.

Another problem is that measures to evaluate the quality of record linkage approaches
require ground truth data that specifies known matches and non-matches. In many
record linkage applications, however, ground truth data is not available. Additionally,
in privacy-preserving linkage scenarios, a manual classification (clerical review) is
generally not possible since inspecting actual attribute values of classified record pairs
can reveal the identity of an individual. Therefore, we propose unsupervised approaches
for estimating the quality of linkage results. The estimates can be used in practice, in
particular, to optimize linkage configurations, such as the classification threshold.

Third, we focus on the privacy aspect and review hardening techniques that aim to
improve the privacy (security) of encoding schemes based on Bloom filters. Bloom filter
encodings are frequently used in both research and practical applications. However,
several attacks have been proposed showing that Bloom filter encodings are susceptible
to cryptanalysis. We comprehensively evaluate the proposed hardening techniques in
terms of privacy and linkage quality to assess their practicability and their effectiveness
in counteracting attacks.

Finally, we present Primat, an open-source toolbox for the definition and execution of
tailored PPRL workflows. Primat offers several components for the different linkage
participants that provide state-of-the-art PPRL methods, including various encoding
and hardening techniques, LSH-based blocking, and post-processing methods.

IV

Acknowledgments

The completion of this work would not have been viable without the support of
numerous people. First, I would like to express my special thanks to my supervisor
Prof. Dr. Erhard Rahm, who gave me the opportunity to do my doctorate. In numerous
meetings, he supported me in developing my ideas and bringing them to paper. His
suggestions always helped me to improve and finally publish my drafts. Thank you for
your support, feedback, and guidance during my doctoral time.

I would also like to thank all my colleagues in the database group for their support
and the very family-like working atmosphere. First and foremost, I would like to give
special thanks to Dr. Victor Christen, with whom I was fortunate to work throughout
my doctoral years. Victor’s door was always open for an exchange of ideas, some
encouragement, or a short off-topic conversation. I thank Victor very much for all his
good advice and our excellent collaboration in both research and teaching. I would
also like to thank Ziad Sehili and Florens Rohde for the many fruitful discussions
about PPRL and for their mutual support. I thank Prof. Dr. Peter Christen from the
Australian National University for our successful joint research and the great time we
had in Australia. Furthermore, I would like to thank Andrea Hesse for her kind support
in numerous organizational and administrative tasks and for reminding us that there
are other topics besides computer science.

I owe special thanks to my parents Silke and Peter, my sister Lina, and my aunts who
always lovingly supported me throughout my whole life. Last but not least, I would
like to thank my dearest wife Sina for her love, patience, and efforts to support and
encourage me. Thank you for being my best friend and soulmate in life.

Leipzig, 25.10.2023 Martin Franke

V

Dissertation-related Publications

• Martin Franke, Ziad Sehili, and Erhard Rahm. “Parallel Privacy-preserving
Record Linkage using LSH-based Blocking.” In: Proceedings of the 3rd Inter-
national Conference on Internet of Things, Big Data and Security (IoTBDS).
SCITEPRESS - Science and Technology Publications, 2018, pp. 195–203. doi:
10.5220/0006682701950203

• Martin Franke, Ziad Sehili, Marcel Gladbach, and Erhard Rahm. “Post-Processing
Methods for High Quality Privacy-Preserving Record Linkage.” In: Data Pri-
vacy Management, Cryptocurrencies and Blockchain Technology (DPM, CBT).
Springer, 2018, pp. 263–278. doi: 10.1007/978-3-030-00305-0_19

• Martin Franke, Marcel Gladbach, Ziad Sehili, Florens Rohde, and Erhard
Rahm. “ScaDS Research on Scalable Privacy-preserving Record Linkage.” In:
Datenbank-Spektrum 19.1 (2019), pp. 31–40. doi: 10.1007/s13222-019-00305-y

• Martin Franke, Ziad Sehili, and Erhard Rahm. “PRIMAT: A Toolbox for Fast
Privacy-Preserving Matching.” In: Proceedings of the VLDB Endowment. Vol. 12.
12. 2019, pp. 1826–1829. doi: 10.14778/3352063.3352076

• Florens Rohde, Martin Franke, Ziad Sehili, Martin Lablans, and Erhard Rahm.
“Optimization of the Mainzelliste software for fast privacy-preserving record
linkage.” In: Journal of Translational Medicine 19.33 (2021). doi: 10.1186/
s12967-020-02678-1

• Martin Franke, Ziad Sehili, Florens Rohde, and Erhard Rahm. “Evaluation of
Hardening Techniques for Privacy-Preserving Record Linkage.” In: Proceedings of
the 24th International Conference on Extending Database Technology (EDBT).
OpenProceedings.org, 2021. doi: 10.5441/002/EDBT.2021.26

• Ziad Sehili, Florens Rohde, Martin Franke, and Erhard Rahm. “Multi-Party
Privacy Preserving Record Linkage in Dynamic Metric Space.” In: Proceedings
Datenbanksysteme für Business, Technologie und Web (BTW). Vol. P-311. LNI.
Gesellschaft für Informatik, 2021, pp. 257–278. doi: 10.18420/btw2021-13

• Florens Rohde, Martin Franke, Victor Christen, and Erhard Rahm. “Value-
specific Weighting for Record-level Encodings in Privacy-Preserving Record Link-

VII

https://doi.org/10.5220/0006682701950203
https://doi.org/10.1007/978-3-030-00305-0_19
https://doi.org/10.1007/s13222-019-00305-y
https://doi.org/10.14778/3352063.3352076
https://doi.org/10.1186/s12967-020-02678-1
https://doi.org/10.1186/s12967-020-02678-1
https://doi.org/10.5441/002/EDBT.2021.26
https://doi.org/10.18420/btw2021-13

age.” In: Proceedings Datenbanksysteme für Business, Technologie und Web (BTW).
Gesellschaft für Informatik, 2023. doi: 10.18420/BTW2023-21

• Martin Franke, Victor Christen, Peter Christen, Florens Rohde, and Erhard
Rahm. “(Privately) Estimating Linkage Quality for Record Linkage.” In: Pro-
ceedings of the 27th International Conference on Extending Database Technology
(EDBT). OpenProceedings.org, 2024

VIII

https://doi.org/10.18420/BTW2023-21

Contents

Abstract III

Acknowledgments V

Dissertation-related Publications VII

Contents IX

1 Introduction 1
1.1 Motivation . 1
1.2 Scientific Contributions . 6
1.3 Structure of Thesis . 9

2 Background and Related Work 11
2.1 Historic Overview of Record Linkage 11
2.2 Legal Background . 12
2.3 PPRL Problem Definition . 13
2.4 PPRL Computation Complexity . 15
2.5 Keys and Identifiers . 15
2.6 PPRL Process . 20
2.7 Linkage Protocols . 39
2.8 Bloom Filter Encodings . 40

3 Parallel Privacy-Preserving Record Linkage using LSH-based Blocking 49
3.1 Motivation . 49
3.2 Related Work . 50
3.3 Locality-sensitive Hashing . 51
3.4 Parallel PPRL (P3RL) . 53
3.5 Evaluation . 58
3.6 Conclusion . 65

4 LSH-based Blocking on Attribute-level Bloom Filters 67
4.1 Motivation . 67
4.2 Background . 68
4.3 Approaches for LSH Blocking on Attribute-level Bloom Filters 69

IX

CONTENTS

4.4 Evaluation . 71
4.5 Conclusion . 77

5 Post-processing Methods for High Quality PPRL 79
5.1 Motivation . 79
5.2 Background . 81
5.3 Related Work . 81
5.4 Problem Definition . 82
5.5 Post-processing Strategies for PPRL 84
5.6 Evaluation . 87
5.7 Conclusion . 92

6 (Privately) Estimating Linkage Quality for Record Linkage 93
6.1 Motivation . 93
6.2 Problem Definition . 95
6.3 Related Work . 95
6.4 Estimating Linkage Quality using Similarity Graphs 98
6.5 Discussion of Privacy Aspects . 106
6.6 Experimental Evaluation . 107
6.7 Conclusion . 115

7 Evaluation of Hardening Techniques for PPRL 117
7.1 Motivation . 117
7.2 Bloom Filter Variants and Hardening Methods 119
7.3 Bloom Filter Privacy Measures . 129
7.4 Evaluation Setup . 132
7.5 Results and Discussion . 135
7.6 Conclusion . 149

8 PRIMAT: A Toolbox for Fast Privacy-preserving Matching 151
8.1 Motivation . 151
8.2 Requirements for PPRL Tools . 152
8.3 Related Work . 156
8.4 Description of Toolbox Implementation 157
8.5 Conclusion . 172

9 Conclusion and Outlook 175
9.1 Conclusion . 175
9.2 Outlook . 177

List of Figures 181

List of Tables 183

X

CONTENTS

References 185

Selbständigkeitserklärung 213

XI

1
Introduction

1.1 Motivation

Every person produces data. This data can be produced consciously and actively,
for example, by writing e-mails, purchasing products in online shops, or using social
networks and exchanging messages, images, or video clips. This data can, however,
also be produced more passively, for example, through mere birth and thus being
registered at the residents’ registration office, but also due to hospitalization or by
getting employed. All these activities and events produce data that is associated with
the person who triggered them. Even if not all data might be of interest at first glance,
a wide variety of insights can be gained from analyzing them. For example, important
insights into a country’s demographics or current epidemiological trends can be derived
from the aforementioned examples. However, for a comprehensive analysis of such data,
it is often necessary to consider and combine data from different organizations and
sources to capture more information and improve data quality [Chr12b; EIV07].

Let us assume that a study on road safety is to be conducted with the research question
‘Do people with a mobile phone flat rate cause more traffic accidents with personal
injury?’. Different organizations store specific data related to a traffic accident, including
the police, fire department, emergency medical services, as well as insurance companies,
such as the health and vehicle insurance of those involved in the accident. Data is also
recorded by hospitals or physicians who monitor or provide treatment for injuries. On
the other hand, details about the mobile phone contracts of the persons involved are
stored by their respective mobile network operators.

Combining the data from different organizations is challenging, especially for person-
related data. Records from different databases referring to the same person have to be
identified. A record within a particular database can typically be uniquely identified by
its primary key. However, the primary key is often not valid as a global identifier across

1

Chapter 1 – Introduction

different databases. Additionally, the data stored by the different organizations might be
sensitive. Especially, person-related data is subject to strict data protection regulations
and laws. In the European Union, privacy and data protection are considered funda-
mental rights, enshrined in the Charter of Fundamental Rights of the European Union
(CFREU) [Eur12]. The right to data protection is implemented within the General Data
Protection Regulation (GDPR) [Eur16b], which is one of the strictest data protection
and security laws in the world [God17; Gre18]. In Germany, data protection is mainly
regulated by the General Right of Personality (Allgemeines Persönlichkeitsrecht, APR)
and the Federal Data Protection Act (Bundesdatenschutzgesetz, BDSG), but can also
be found in other laws such as the Telecommunications Act (Telekommunikationsgesetz,
TKG) or the Telemedia Act (Telemediengesetz, TMG) [Buc12]. Protecting personal
data is required, as the disclosure of sensitive or personal data represents an invasion in
the person’s privacy, and revealed information can lead to disadvantages for the person.
For example, a person may be socially or professionally excluded due to the disclosure
of a certain illness, or a revealed (e-mail) address may result in the receipt of unsolicited
advertising or spam messages.

Techniques that are known as privacy-preserving record linkage (PPRL) have been
developed in the last two decades [VCV13; Vat+17; Gko+21] in order to address the
challenges of combining (linking) data without revealing any sensitive information about
the entities being linked. The general aim of PPRL is to identify records that correspond
to the same real-world entity, such as a patient or customer. In addition, the linkage
process must preserve the entities’ privacy. Thus, the linkage process must not reveal
any private or sensitive information or other information that could be used to identify
an entity. The general approach of PPRL techniques is to encode or encrypt sensitive
identifying information and conduct the linkage using these encoded or encrypted values.
The organizations involved in the linkage process only learn which of their records
are matches. However, no organization learns any sensitive information about records
contained in the databases of other organizations.

Linking sensitive data from different independent databases that are owned by different
autonomous organizations (parties) is an essential task in research, administration, and
business to improve data quality or facilitate advanced data analysis. An important
application area is the medicine and healthcare domain, in which PPRL techniques are
increasingly deployed [Kue+12; Kho+15; Gib+16; Luo+17; Lee+18; YW20; Xu+20].
Various medical care facilities, such as hospitals, medical offices, pharmacies, as well
as health insurances hold patient data. Merging data from these different sources can
improve the quality of patient care by making all health-related data available. Ideally,
this can improve treatments or uncover previously unknown correlations, for example
by revealing interactions between different drugs a patient is taking. In addition, costs

2

1.1 Motivation

can be saved because examinations do not have to be initiated again, for example, if
medical evidence is missing. Often medical data is also combined with administrative
databases or registers from municipal or federal authorities containing information about
births, marriages, deaths, crimes, imprisonments, employments and so on [CRS20]. The
combination of these data sources allows for a variety of social studies, for example,
to analyze the consequences of childhood cancer on mortality or somatic, cognitive,
psychological, and socio-economic outcomes [Kue+12].

PPRL techniques are also required by national security agencies and crime investigators
to detect fraud or criminal suspects such as terrorists or black market traders [WCA04;
JH06; Phu+12; HR15; Can+18; Arp+18; Kas+20]. In such scenarios, sensitive data
from law enforcement agencies, financial institutions, internet service providers and
businesses, such as airlines or railway companies, need to be combined and analyzed.

However, the task of linking sensitive data is challenging. Basically, the key challenges
concern privacy (security), scalability, and quality as illustrated in Figure 1.1. In addition,
PPRL is confronted with the characteristics of Big Data that are typically described
by the five V’s, namely volume, velocity, variety, veracity, and value. Together, these
properties represent, on the one hand, enormous amounts of data (volume) that need
to be processed and analyzed in (near) real-time, often in the form of dynamic data
streams (velocity). On the other hand, the data often originates from various databases
and shows heterogeneous formats, structures, and data types (variety). In addition, the
data is of varying quality and possibly contains errors, inconsistencies, bias, and noise
(veracity). Finally, the analysis of the data should lead to new insights that enable
predictions or process optimizations (value).

The three key challenges of PPRL are characterized as follows:

Privacy: Sensitive data must be protected against unauthorized access to avoid misuse
and negative consequences for the individual. Sharing or exchanging sensitive (personal)
data between different organizations is subject to privacy concerns and corresponding
laws, regulations, and policies. Therefore, databases containing sensitive data need
to be linked in such ways that no sensitive or confidential data is revealed during
the linkage process. The protection of privacy is crucial for the entire linkage process,
making the linkage task even more challenging. To fulfill this requirement, it is necessary
to encode (mask) the records and to conduct the linkage only on the encoded data.
However, the encoding has to preserve specific properties and relationships of the records
that are needed for accurate linkage. Typically, this requires encoding techniques that
preserve the similarities between records. At the same time, the encoding should make
it infeasible to re-identify sensitive values or individual from the encoded (masked)
records. Furthermore, the linkage must be performed according to specific protocols that

3

Chapter 1 – Introduction

Scalability Quality

Privacy

Volume

Velocity

Variety

Veracity

PPRL
Challenges

Privacy-Q
uality Trade-off

Pr
iva

cy
-S

ca
la

bi
lit

y T
ra

de
-o

ff

Scalability-Quality Trade-off

Figure 1.1: The three key challenges of PPRL.

regulate how parameters and data are exchanged between organizations participating
in the linkage.

Quality: Identifying records referring to the same entity is complicated by heterogeneous,
erroneous, outdated, and missing data [HS98; Chr12b; CRS20]. Thus, the exact matching
of values will likely lead to low-quality linkage results, as already small differences
between matching records, for instance, typos or different formats, would cause them
to be missed. Therefore, PPRL techniques must be able to handle such real-world dirty
data by supporting approximate matching techniques.

Scalability: As can be seen from the application scenarios described before, potentially
many different organizations (data owners) are involved in a linkage process. In addition,
each database can capture a large part of the population of a country or worldwide and
thus contain tens of millions of records. For instance, the German telecommunications
company Deutsche Telekom AG manages over 53 million mobile phone customers in
Germany and over 248 million worldwide [Deu23]. Germany’s largest public health
insurance organization AOK (Allgemeine Ortskrankenkassen) also manages over 27
million customers, or roughly one-third of the German population [Bun23]. As a
consequence, PPRL techniques should scale to millions of records from two or more
data owners (organizations). The trivial approach to perform the linkage is to compare
every possible pair of records from the input databases. Considering only two databases,
this approach would result in a number of comparisons equal to the product of the

4

1.1 Motivation

sizes of the two databases. For example, if both databases contain 100 000 records,
this would result in 100 000 · 100 000 = 1010 comparisons. Even if 100 000 comparisons
are performed in one second, it would take over one day (27.78 h) to conduct the
linkage. Consequently, the trivial comparison of all possible record pairs is not feasible
in real-world applications. For this reason, the search space must be restricted by
excluding dissimilar records from further comparisons at an early stage. To further
improve scalability for large datasets, another option is to perform the linkage in parallel
or distributed environments.

Given these key challenges, PPRL approaches should be capable of:

(1) preserving the privacy of individuals by protecting sensitive data from being
revealed,

(2) correctly identify matching records to achieve high linkage quality, and

(3) efficiently processing large numbers of records from potentially many databases.

However, these three key challenges mutually influence each other, resulting in trade-offs
that must be carefully balanced. To achieve a high linkage quality, encoding techniques
need to enable approximate matching on encoded values in order to obtain approximate
similarities between records, which is important to handle dirty data. However, the
more properties of the original (plaintext) values are preserved by the encoding, the
more vulnerable the encoding is to attacks as there are more properties to analyze and
exploit. In contrast, encodings with high security (privacy) guarantees tend to incur
high computational or communication costs, which limits their usability for linking
large or many databases. Finally, if too many record pairs are excluded from a detailed
comparison in order to achieve scalability, then this likely will reduce the linkage quality
as matches with variations or inconsistencies might not be identified.

Current research does not thoroughly address the challenges identified. The scalability
of existing PPRL approaches is still limited, even when using methods that efficiently
reduce the number of record pair comparisons. In fact, large datasets containing millions
of records will still lead to unacceptably long runtimes for real-world applications.
Moreover, achieving high linkage quality is even more challenging on encoded data, in
particular in the presence of errors or inconsistencies. At the same time, databases that
cover a large part of a population will likely include structures such as families and
households. It is also very likely that multiple individuals share common names, such
as the surnames ‘Müller’ and ‘Meier’ in German-speaking countries, or ‘Smith’ and
‘Johnson’ in English-speaking countries. Both effects are hard to deal with in common
PPRL approaches that rely on a simple threshold-based classification approach to decide
whether two records are considered to match.

5

Chapter 1 – Introduction

In terms of privacy, common PPRL techniques are known to disclose pieces of informa-
tion that can be exploited through cryptanalysis or attack methods to gather sensitive
information or even enable the re-identification of individuals. Finally, despite the large
number of proposed PPRL methods, their practical use in real-world applications is
limited due to the absence of convenient and powerful tools that allow easy implemen-
tation and configuration of appropriate PPRL approaches. This thesis addresses the
identified problems and challenges through the contributions described in the following
sections.

1.2 Scientific Contributions

In the following, we describe the scientific contributions made in this dissertation.

Speedup PPRL by Blocking and Distributed Processing

In order to improve the scalability of PPRL, we propose parallel PPRL (P3RL) ap-
proaches that are realized using a modern distributed processing framework to enable
the utilization of large shared-nothing computer clusters. Ideally, this will speed up
PPRL workflows in proportion to the number of CPUs in the cluster. In addition, we
utilize blocking techniques that are able to efficiently reduce the number of record
pair comparisons. In particular, we investigate blocking based on locality-sensitive
hashing (LSH), a probabilistic blocking method that is applied solely on encoded data
and thus reveals no additional information. Furthermore, we include optimizations
for the LSH-based blocking, such as to avoid redundant record pair comparisons. We
comprehensively evaluate the quality, efficiency, and scalability of our P3RL approaches
for different parameter settings and large datasets with up to 16 million records in
a cluster environment with up to 16 worker nodes. The P3RL approaches and the
evaluation results were presented at the IoTBDS 2018 and published in the conference
proceedings [FSR18].

LSH-based Blocking on Attribute-level Encodings

By default, LSH-based blocking requires that each record is transformed into a single
encoding (record-level encoding). In contrast, real-world use cases may require generating
multiple encodings per record - typically one encoding for each attribute of the record
(attribute-level encoding). Such approaches tend to be more susceptible to cryptanalysis,
but also often result in a higher linkage quality. In some use cases, this compromise must
be made, especially in bio-medical application scenarios when achieving a very high

6

1.2 Scientific Contributions

linkage quality is of primary importance. Therefore, we investigate LSH-blocking schemes
that can be applied on attribute-level encodings. We implement these approaches within
the Mainzelliste, a web-based pseudonymization service that is used in various medical
joint research projects. This work was published in 2021 in the Journal of Translational
Medicine [Roh+21].

Post-processing Methods for Resolving Multiple Match Candidates

Obtaining a high linkage quality is one of the key challenges of PPRL. Ideally, a record
linkage approach should find all matches (pairs of records referring to the same entity),
despite possible data quality problems, like erroneous, outdated, or incomplete data,
in the source databases. At the same time, false matches (two records referring to
two different entities) should be avoided as much as possible, as otherwise conclusions
based on incorrect assumptions may be drawn. Besides data quality issues, there are
many factors that significantly influence the linkage quality, for instance, the encoding
method or the blocking approach as well as their respective parametrization. Databases
that contain many non-matching record pairs with a high similarity are particularly
difficult to link. However, assuming that the source databases do not contain duplicates
(there are no two records within a database that refer to the same real-world entity),
then one record of a database can only match at maximum one record of another
database. Therefore, we propose to add a post-processing step to the linkage process
that aims to satisfy this property by selecting the record pairs that most likely match.
We investigate different post-processing strategies and comparatively evaluate them on
different datasets. The evaluation shows that applying post-processing can significantly
increase the linkage quality. The approach was presented at the Workshop on Data
Management and Privacy (DPM) held in conjunction with the ESORICS 2018 conference
and published in the workshop proceedings [FSR18].

(Privately) Estimating Linkage Quality for Record Linkage

In practical linkage projects, assessing the quality of linkage results is a challenging
endeavor. Commonly used performance measures, such as precision and recall, require
a ground truth dataset containing true matching and true non-matching record pairs.
Such ground truth data is often not available or incomplete and must be prepared
manually, which is time- and resource-consuming. A manual inspection of (sampled)
record pairs by domain exports during a clerical review process is also often not feasible,
in particular when linking sensitive (personal) data or very large databases. In privacy-
preserving linkage scenarios, a manual inspection of actual attribute values of matching
or non-matching record pairs would violate the privacy of individuals since they can

7

Chapter 1 – Introduction

be identified in the databases to be linked. To overcome these problems, unsupervised
techniques for assessing the linkage quality are needed that do not require ground truth
data. Therefore, we review existing and propose improved unsupervised approaches for
estimating the quality of linkage results. An evaluation using datasets from different
domains shows that our novel approaches outperform existing methods and lead to
accurate estimates. This work will be presented at the EDBT 2024 conference and
published in the conference proceedings [Fra+24].

Analysis of the Privacy Properties of PPRL Encoding Techniques

Evaluating the privacy protection achieved by a PPRL method is of high importance.
However, in contrast to linkage quality and scalability, privacy is a concept that is
difficult to define, measure, and evaluate [WE18]. A widely used encoding technique for
PPRL is based on Bloom filters [SBR09; SBR11]. Bloom filter encodings have been used
in a variety of PPRL approaches in both research [VCV13; Gko+21] and real-world
linkage applications [Ran+14; BRF15; Pow+17; Pit+18]. Several variants of such Bloom
filter encodings have been proposed, in particular, to improve their resilience against
cryptanalysis attacks [Sch15; Chr+18a]. We explore and categorize different Bloom
filter encoding schemes and evaluate them in terms of privacy protection and linkage
quality outcome. For this purpose, we propose measures that allow quantifying the
privacy properties of different Bloom filter encoding variants. This work was presented
at the EDBT 2021 and published in the conference proceedings [Fra+21].

A Toolbox for Fast Privacy-preserving Matching

There is a need for freely available software tools that support the implementation and
configuration of PPRL workflows. For both, researchers and practitioners, such tools are
important to better understand different linkage algorithms and to allow to experiment
with different methods and their parameters. Ideally, this allows a comparative evaluation
of different methods and thus the identification of suitable approaches for a specific
application scenario. Therefore, we develop an open-source PPRL toolbox, the Private
Matching Toolbox (Primat). It includes various state-of-the-art encoding and linking
techniques covering the entire PPRL process, thus reducing the effort to deploy PPRL
in academic or practical projects. Primat also offers an evaluation framework to
consistently compare PPRL methods in terms of linkage quality, privacy, and scalability.
The toolbox was demonstrated at the VLDB 2019 and a description of its architecture
and core features was published in the conference proceedings [FSR19].

8

1.3 Structure of Thesis

1.3 Structure of Thesis

The remainder of this dissertation is structured as follows. We begin by discussing the
preliminaries of privacy-preserving record linkage and relevant techniques in Chapter 2.
In Chapter 3, we propose parallel PPRL approaches utilizing locality-sensitive hashing
(LSH) for blocking and Apache Flink as a distributed execution engine to address the
scalability challenge. In Chapter 4, we present approaches for LSH-based blocking on
attribute-level encodings and their integration into a well-known pseudonymization
software for bio-medical projects. Then, in Chapter 5, we investigate post-processing
methods for resolving multiple match candidates to achieve high linkage quality in
scenarios where the databases to be linked do not contain intra-source duplicates.
Furthermore, we examine heuristics for estimating linkage quality in the absence of
ground truth data in Chapter 6. Then, Chapter 7 deals with the assessment of the privacy
properties of recently used encoding techniques for PPRL. In Chapter 8, we present
our open-source toolbox Primat, which contains various state-of-the-art encoding and
linkage techniques to support the implementation of PPRL in academic and practical
projects. Finally, we summarize our contributions and discuss future research directions
in Chapter 9.

9

2
Background and Related Work

This chapter provides background knowledge that relates to our research problems and
is useful for understanding the following chapters of this dissertation. We start with a
short historical overview of record linkage in Section 2.1. In Section 2.2, we outline the
legal background showing the need for privacy-preserving linkage techniques. Then, we
provide a formal problem definition of privacy-preserving record linkage in Section 2.3,
and an analysis of its complexity in Section 2.4. In Section 2.5, we discuss properties
of attributes and recall the definitions for different types of identifiers. Afterward, we
describe the general PPRL process in Section 2.6. In Section 2.7, we discuss protocols
for conducting the linkage. Finally, in Section 2.8, we discuss encoding techniques based
on Bloom filters which are currently most commonly used for PPRL.

2.1 Historic Overview of Record Linkage

The first scientific considerations of record linkage can be traced back to about the
second half of the 1940s [Dun46]. At that time, record linkage was mainly used in the
context of census data and demographics, for instance, for the registration of life events
such as birth, marriage, and death [NK62; New67]. But also medical studies, such as
the investigation of genetic defects or hereditary diseases, have already been considered
as an area of application for record linkage [New+59].

The mathematical foundations of record linkage were given in the seminal work of
Fellegi and Sunter when they introduced the probabilistic record linkage model [FS69].
Over time, numerous approaches for record linking have been developed, mainly focused
on achieving high linkage quality and scalability to large datasets [Chr12b].

When linking personal data, data protection regulations and the privacy of individuals
must be taken into account. Starting in the mid-1990s, this has led to the development
of techniques, known as privacy-preserving record linkage (PPRL), which allow linkage

11

Chapter 2 – Background and Related Work

without the need to exchange sensitive (plaintext) data between the linkage participants
[DQB95; Qua+98].

2.2 Legal Background

Privacy is considered a universal human right, enshrined in Article 12 of the United
Nations Universal Declaration of Human Rights [Uni48] that states:

“ No one shall be subjected to arbitrary interference with his privacy, family, home
or correspondence, nor to attacks upon his honour and reputation. Everyone has
the right to the protection of the law against such interference or attacks. ”

Many national constitutions recognize the right to privacy that aims to restrict govern-
mental and private actions that threaten the privacy of an individual. In the European
Union, the right to privacy is enshrined in Article 8 of the European Convention of Hu-
man Rights (ECHR) [Cou50] and in Article 7 of the European Charter of Fundamental
Rights (CFREU) [Eur12]. For instance, Article 8 of the ECHR states:

“ 1. Everyone has the right to respect for his private and family life, his home and
his correspondence.

2. There shall be no interference by a public authority with the exercise of this
right except such as is in accordance with the law and is necessary in a democratic
society in the interests of national security, public safety or the economic well-
being of the country, for the prevention of disorder or crime, for the protection of
health or morals, or for the protection of the rights and freedoms of others. ”

From the right to privacy arises the right to data protection that is enshrined in Article
8 of the CFREU:

“ 1. Everyone has the right to the protection of personal data concerning him or
her.

2. Such data must be processed fairly for specified purposes and on the basis of
the consent of the person concerned or some other legitimate basis laid down by
law. Everyone has the right of access to data which has been collected concerning
him or her, and the right to have it rectified.

3. Compliance with these rules shall be subject to control by an independent
authority. ”

The right to data protection (also known as data privacy) is implemented by the
General Data Protection Regulation (GDPR) [Eur16b] of the European Union. Any
organization that processes or stores the personal data of individuals must comply with
the data protection and security requirements of the GDPR. According to Article 4 of
the GDPR, personal data is “any information relating to an identified or identifiable

12

2.3 PPRL Problem Definition

natural person” [Eur16b]. An identifiable natural person is defined as “one who can
be identified, directly or indirectly, in particular by reference to an identifier such as a
name, an identification number, location data, an online identifier or to one or more
factors specific to the physical, physiological, genetic, mental, economic, cultural or
social identity of that natural person” [Eur16b].

The rights to privacy and data protection need to be carefully balanced against other
human rights or interests such as freedom of information, freedom of research (academic
freedom), national security, and crime prevention [Cou50; Eur12]. For instance, airlines
and travel agencies collect passenger name records (PNRs) that consist of the personal
information of a passenger (e. g., full name, address, date of birth, and place of birth),
the itinerary and other travel-related information (e. g., ticketing details, payment
details, meal requirements). PNRs are routinely shared with government agencies,
so-called Passenger Information Units, on the legal basis of directive 2016/681 of the
EU parliament for the prevention, detection, investigation, and prosecution of terrorist
offenses and serious crimes [Eur16a]. Basically, PNRs are matched to records from
databases of wanted persons to identify persons that are linked to terrorist offenses
or serious crimes. An example of such a database is the Schengen Information System
(SIS) which stores data about persons who are legally not allowed to enter the Schengen
area, are wanted for criminal activities, or are missing.

2.3 PPRL Problem Definition

Let DO1, . . . , DOp, with p ≥ 2, be p database owners with their respective databases
D1, . . . , Dp. Let each database Di be a single relation over sets Ai

1, . . . , Ai
νi

, that is
Di ⊆ Ai

1 × . . .× Ai
νi

, where × denotes the Cartesian product. Each set Ai
j represents

an attribute and consists of all valid attribute values. We term the set of all attributes
Ai = {Ai

1, . . . , Ai
νi
} the schema of database Di. Each database Di consists of records

ri
1, . . . , ri

ni
, where ni = |Di| denotes the number of records in database Di (database

size). Each record ri
j = (ai,j

1 , . . . , ai,j
νi

) ∈ Di is a νi-tuple consisting of attribute values
ai,j

k ∈ Ai
k for j ∈ {1, . . . , ni}, k ∈ {1, . . . , νi}. To access the k-th attribute value of record

ri
j we use the notation πk(ri

j) (projection on k-th component). Similarly, to restrict a
record to the values of the attributes in X ⊂ Ai we write πX(ri

j) or simply ri
j[X]. This

projection operation will discard (exclude) the attribute values that correspond to the
other attributes not contained in X.

We assume that each record represents a real-world entity [Bey04; Che76] defined as
a distinctly identifiable individual of the real world, such as a patient or a customer.
As a consequence, the set of attributes Ai contains person-related attributes, such as
first name, last name, date of birth, place of birth, gender, or address, as well as other

13

Chapter 2 – Background and Related Work

context-dependent attributes containing content or payload data, for instance, medical
data of patients (e. g., disease, medication, or body mass index).

Privacy-preserving record linkage takes as input the databases D1, . . . , Dp and deter-
mines which of their records match. Therefore, a decision model (classifier) DM is used
that assigns all possible candidate record pairs to the sets (classes) M of matches and N
of non-matches. The set of all possible candidate record pairs C, the set of matches M
and the set of non-matches N are defined as follows:

C =
⋃

i,j∈{1,...,p}
i ̸=j

Di ×Dj =
⋃

i,j∈{1,...,p}
i ̸=j

{(a, b) | a ∈ Di, b ∈ Dj} (2.1)

M =
⋃

i,j∈{1,...,p}
i ̸=j

{(a, b) | a DM≡ b, a ∈ Di, b ∈ Dj} (2.2)

N =
⋃

i,j∈{1,...,p}
i ̸=j

{(a, b) | a
DM
̸≡ b, a ∈ Di, b ∈ Dj}. (2.3)

With DM≡ we denote the equivalence relation under decision model DM. Thus, a
DM≡ b

means that under decision model DM records a and b are considered to correspond to
the same real-world entity. In contrast, two records r1 ∈ Di and r2 ∈ Dj are considered
equal (r1 = r2), if they have the same number of attributes and each attribute has the
same value, i. e.,

r1 = r2 ⇐⇒ νi = νj ∧ ∀k ∈ {1, . . . , νi} : [πk(r1) = πk(r2)] (2.4)

In most scenarios, it is safe to assume that if two records are equal they also correspond
to the same real-world entity, i. e.,

r1 = r2 ⇒ r1 ≡ r2 (2.5)

Any decision model must be able to correctly classify record pairs of this trivial case
(exact matches). However, since attribute values can be erroneous, missing, or out of
date (dirty data), the opposite does not apply: if two records are not equal (r1 ̸= r2),
then this does not imply that the two records do not correspond to the same real-world
entity. Accordingly, instead of conducting an equality check between attribute values, the
decision model must conduct an approximate comparison that yields a similarity value
(score). By using these similarity values, the decision model determines the probability
that two records (approximately) match.

In contrast to traditional record linkage, the aim of PPRL is to ensure that the actual
(plaintext) attribute values of the records contained in databases D1, . . . , Dp are not

14

2.4 PPRL Computation Complexity

disclosed during the linkage process. This means that no database owner DOi nor
any external party learns the actual attribute values of any record rj

k ∈ Dj with
i, j ∈ {1, . . . , p}, i ̸= j, k ∈ {1, . . . , nj}.

In fact, no information should be disclosed that can be used to identify an individual
(represented by a database record). At the end of the linkage process, the database
owners only learn the set of matching record pairs in M. This typically means that only
the record identifiers of the matched pairs in M and some selected attribute values of
these records are shared between the database owners or with an external party, such
as a research institute.

2.4 PPRL Computation Complexity

The complexity of PPRL depends on the number of record pairs to be compared. For
simplicity, let each database Di of database owner DOi with i ∈ {1, . . . , p} contain
|Di| = n records. The naive approach for conducting the linkage is to compare all
possible pairs of records. Let p = 2, which corresponds to the linkage of the two
databases D1 and D2. As can be seen from Equation 2.1, the number of all possible
pairs of records is equal to the cardinality of the Cartesian product between databases
D1 and D2. Consequently,

|D1 ×D2| = |D1| · |D2| = n · n = n2 (2.6)

record pairs must be compared with each other, which leads to a quadratic complexity
of O(n2). Similarly, for p > 2,

∑
i,j∈{1,...,p}

i ̸=j

|Di ×Dj| =
∑

i,j∈{1,...,p}
i ̸=j

|Di| · |Dj| =
∑

i,j∈{1,...,p}
i ̸=j

n2 (2.7)

record pairs must be compared leading to a complexity of

O
((

p

2

)
· n2

)
= O

(
p · (p− 1)

2 · n2
)

= O
((

p2

2 −
p

2

)
· n2

)
= O

(
p2 · n2

)
. (2.8)

2.5 Keys and Identifiers

Keys and identifiers are used to uniquely identify a record (tuple) in a database
(relation). In the following, different types of keys and identifiers are described, and
their formal definitions are given. Before, we need to recall the definition of a functional
dependency.

15

Chapter 2 – Background and Related Work

Functional dependency: Given a database Di (single relation) with schema Ai and
sets of attributes X, Y ⊆ Ai, then X is said to functionally determine Y , denoted as
X → Y , if

∀r1, r2 ∈ Di : [r1[X] = r2[X] ⇒ r1[Y] = r2[Y]] . (2.9)

That is, all records (tuples) r1, r2 ∈ Di with equal values for the X-attributes also have
equal values for the Y-attributes. Thus, the values of the attributes from attribute set
X uniquely determine the values of the attributes from attribute set Y.

Superkey: A set of attributes K := {Ai
1, . . . , Ai

k} ⊆ Ai is called superkey for schema
Ai of database Di if it uniquely identifies each record (tuple) contained in database Di,
that is,

∀r1, r2 ∈ Di : [r1 ̸= r2 ⇒ ∃A′ ∈ K : r1[A′] ̸= r2[A′]] (2.10)

which is equivalent to K → A. According to the definition of a relation as a set of
records (tuples), the set of all attributes is always a superkey. Otherwise, there could be
two identical records in a relation, which would violate the definition of a set (collection
of distinct values).

Candidate key: A set of attributes K := {Ai
1, . . . , Ai

k} ⊆ Ai is called candidate key for
schema Ai of database Di, if

K → A ∧ ∀A′ ∈ K : [K − {A′} ̸→ A] (2.11)

Thus, a candidate key is a minimal superkey. Therefore, if an attribute is removed from
the candidate key, it is no longer a super key. On the other hand, if an attribute is
added, then it is no longer minimal, but still a superkey.

Primary key: A primary key is a selected candidate key that is used as the main
reference key. The decision is typically made by the designer of the database. Often,
surrogate keys are used as primary keys in many real-world databases [Dat04]. Unlike a
natural primary key, a surrogate key has no descriptive value and does not consist of
real-world observations related to the real-world individual. Typically, surrogate keys
are generated internally by the database system.

Prime attribute: An attribute that is present in any of the candidate keys is called a
prime attribute.

Direct identifier: A prime attribute that is the only member of a candidate key is
called a direct identifier.

Indirect identifier: A prime attribute that is not the only member of any candidate
key is called an indirect identifier or quasi-identifier.

Example: Let A = {α, β, γ, δ} be the database schema with the functional dependencies
{α, β, γ} → {δ}, {α, β} → {γ, δ} and {δ} → {α, β, γ}. Then, {α, β, γ}, {α, β} and {δ}

16

2.5 Keys and Identifiers

are superkeys but only {α, β} and {δ} are candidate keys. α, β and δ are prime attributes.
δ is the only direct identifier while α, β and γ are indirect identifiers.

2.5.1 Lack of Global Identifiers

In many (research) projects it is desired to analyze data about individuals that is scat-
tered across different independent databases. While each particular database (relation)
typically has a primary key (and possibly other candidate keys) to uniquely identify
records about individuals, these are generally only valid locally. This is due to the fact
that the databases are maintained by different independent organizations that store
different data depending on their operative business.

If a global identifier (also known as global candidate key or entity identifier), such as
a unique personal identification number, is available in the databases to be matched,
then the linkage becomes trivial and can be performed as a database join. However,
not every country has issued a national identification number that could be used as
a global identifier. A reason for this are privacy concerns regarding such national
identification numbers, as they allow easy consolidation of data from different areas of
life, facilitating the construction of person profiles. Such national identification numbers
can also be exploited and misused by criminals, for instance, to steal the identity of a
person. Besides, even national identification numbers can contain errors or might not
be consistent over time. There also might be persons without or with several national
identification numbers.

In Germany, for instance, there is no general-purpose national identification number.
While there are sector-specific identifiers, their usage is legally and practically restricted
to certain areas and purposes. Examples include the taxpayer identification number
(where persons that are both employees and self-employed at the same time can
have two identifiers), the social security number (issuance upon commencement of
first employment), retirement insurance number, health insurance number, or the
personal identification number for members of the German Armed Forces. In addition,
organizations and authorities (government agencies) often operate on a decentralized
basis. For example, due to the federal structure in Germany, administrative databases are
usually not maintained on a nationwide basis, but at the level of a specific administrative
unit (state, district, municipality). Also, the data of the health care system is scattered
over around 1900 hospitals [Sta23b] and 170 health care insurance companies [Bun23].

Since global identifiers are often missing, the linkage needs to be conducted on indirect
identifiers (quasi-identifying attributes) which are common in the databases to be linked.
Even if global identifiers are present, a linkage is still required for individuals with
inaccurate or missing global identifiers.

17

Chapter 2 – Background and Related Work

2.5.2 Indirect Identifiers and Data Quality Problems

The task of linkage relies on comparing common indirect identifiers (quasi-identifying
attributes) in order to classify record pairs as matches and non-matches. In general,
these are person-related attributes, such as name, date of birth, place of birth, gender,
or address. Since indirect identifiers can reveal the identity of a person, these identifiers
have to be protected against unauthorized access and should not be disclosed during the
linkage process. Indirect identifiers are considered as ‘dirty’ containing inconsistencies
and errors [HS98; Chr12b; CRS20] and thus hampering the linkage process.

The reasons for inconsistencies and errors in indirect identifiers are manifold [RD00;
Chr12b]. Data that is collected by different organizations will likely be inconsistent
as the data is recorded and processed at different points in time by different systems
using different input modes and data representations. Moreover, each organization
processes different data depending on its area of business. However, what data is
relevant and useful for an organization can also change over time, e. g., to comply with
new regulations or due to business reorganizations.

As a consequence, the database schemes A1, . . . ,Ap of the databases D1, . . . , Dp to be
linked will likely be different. In this respect, a distinction is typically made between
naming and structural conflicts [RD00]. Naming conflicts include cases where the same
name is used for different attributes (homonyms), as well as cases where different
names are used for the same attribute (synonyms). Structural conflicts, in contrast,
refer to a different representation of the same attribute(s), e. g., different formats,
data types, or component structures. However, even attributes with the same name
and type can use different representations for a value. For instance, the gender of a
person could be represented with the string values ‘F’, ‘M’, ‘O’ or ‘FEMALE’, ‘MALE’,
‘OTHER’. Therefore, the database owners likely need to conduct a (privacy-preserving)
schema matching before linkage [Sca+07]. Schema matching aims at identifying semantic
correspondences between the schema elements of different databases [BBR11]. Typically,
each database schema Ai is mapped into a global database scheme AG which is then
used for the linkage. Often, the schema matching results in a limited number of indirect
identifiers that are available among all databases and thus usable for linkage.

The causes of data quality problems are also very diverse and include, for example,
bad database design (e. g., missing integrity constraints), poor recording processes
(e. g., phone calls, handwritten forms, scanned documents), as well as changing data
needs (e. g., new formats, additional attributes, removed attributes) [Chr12b]. Some
typical data quality problems are described in the following [RD00; LR96; Sna07].

Missing values: Attribute values that are missing are typically represented by a
null value or with an empty string. There are different reasons for missing attribute

18

2.5 Keys and Identifiers

values [CRS20]. In some cases, the value is missing because it simply does not exist
for each entity, e. g., not every person has a middle name. In other cases, the value is
missing because it is not (exactly) known. A common practice is to insert default or
dummy values if an attribute value is missing. For instance, if the day and month of
birth are not exactly known for a person, then it might be set to the 1st of January.

Spelling variations: In general, spelling variations result from the fact that in many
languages there is no one-to-one correspondence (bijection) between phonemes (units
of sound) and graphemes (written symbols or letters). In English, for instance, the
phoneme /f/ can correspond to the graphemes ‘f’ (as in fast), ‘ff’ (as in off), ‘ph’ (as
in graph), and ‘gh’ (as in rough). In German, the phoneme /k/ can correspond to the
graphemes ‘c’, ‘k’, ‘q(u)’. A typical source of error is the dictation of information on the
telephone, where, for example, certain spellings are assumed and no spelling clarification
is requested.

Phonetic errors: In contrast to spelling variations, phonetic errors change the phonetic
structure of a word. These errors are often caused by typos or by mishearing, e. g., ‘Merlin’
instead of ‘Martin’, or by mixing up similar sounding phonemes, such as /t/ and /d/,
or /p/ and /b/.

Name variations: While most normal words have only one correct spelling, names often
have several valid variations. For example, the frequent German last names ‘Müller’
and ‘Schmidt’ have several variants, such as ‘Mueller’, ‘Mühler’, ‘Möller’, ‘Miller’, or
‘Schmitt’, ‘Schmied’, ‘Schmitz’, ‘Schmiedel’, ‘Schmidtke’, respectively.

Embedded values: One or multiple attribute values are embedded in one attribute,
for example, both the first name and the middle name are entered in one field. This
problem typically occurs due to free-form fields.

Attribute transposition: An attribute value is associated with the wrong attribute,
or the values of two attributes are interchanged. This problem often occurs due to
unintuitive, ambiguous, or unclear forms, for example, the values for first name and
last name are interchanged.

Outdated values: Information can change over time and is likely to be recorded (or
updated) in different databases at different points in time. Especially person-related
attributes can change over time as persons can change their name, for instance, due to
marriage or divorce. Also, address attributes, such as city, zip code, or street, are not
stable over time and therefore often not up-to-date in each database.

OCR errors: Optical character recognition (OCR) errors occur when documents or
forms are scanned and similar-looking characters are wrongly recognized, e. g., 1/i, 2/Z,
3/B, 4/A, 5/S, 6/G, l/I, or q/g.

19

Chapter 2 – Background and Related Work

Abbreviations: Abbreviations are often used out of convenience or due to a limitation
in the maximum number of characters allowed in an input field. Again, names are
particularly affected as only initials can be used instead of (given) names, or components
of compound names, such as ‘Hans-Peter’ or ‘Müller-Wohlfahrt’, can be omitted.
Moreover, nicknames, such as ‘Vic’ for ‘Victor’ or ‘Chris’ for ‘Christopher’, as well as
alias (pen, stages) names could be used.

2.6 PPRL Process

The general linkage process consists of multiple steps as shown in Figure 2.1. Without
loss of generality, we describe the linkage process for two database owners (parties) A

and B with their corresponding databases DA and DB. However, the general process
can easily be extended to the linkage of multiple (more than two) databases. The aim
of the PPRL process is to identify which records in the database DA of party A refer to
the same real-world entity as records in the database DB of party B. The individual
steps of the linkage process are considered more closely in the following subsections.

Matches Non-
Matches

Potential
Matches

Pre-processing

Encoding

Blocking/Filtering Blocking/
Filtering Comparison Classification

Database Party A

Pre-processing

Encoding

Blocking/Filtering

Database Party B

Post-
processing

Evaluation

Linkage Environment

Figure 2.1: PPRL process for two database owners (parties). Dotted line boxes indicate
optional steps.

The linkage process can be conducted under different protocols depending on the
specific use case and its privacy requirements [CRS20]. The different linkage protocols
are described in Section 2.7.

Before performing the linkage, the database owners must agree on the methods to be
used, as well as on various parameters. This includes, in particular, the attributes to be
used for linkage, i. e., for deciding whether two records refer to the same real-world entity
or not. For this purpose, the database owners have to identify attributes within their
database schemes that contain the same type of information (semantic correspondences).

20

2.6 PPRL Process

As described in Section 2.5.2, this process is known as schema matching [Sca+07;
BBR11] and is complicated by naming conflicts, such as synonyms (e. g., surname vs.
last name), and structural conflicts, for instance, different representations for names or
addresses (e. g., individual attributes vs. compound attribute).

The difference between the PPRL process in contrast to the traditional record linkage
process is that privacy protection must be taken into account in each step. Therefore,
the database owners encode (encrypt) their records locally and only exchange encoded
records. Thus, the actual linkage is performed on encoded records only.

Database D1 – Mobile Phone Provider

ID First
Name

Last
Name

Date of
Birth Number Rate

Plan

1 Anna Schmitt 20.04.1991 0172-
5119238

Flat
rate

2 Bernd Meier 12.01.1965 0173-
3664301

Flat
rate

3 Christian Schulze 27.10.1995 0162-
9877520

Regular
rate

4 Klaus Becker 25.07.1982 0162-
9877520

Regular
rate

Database D2 – Vehicle Insurance Company

ID Full Name Date of
Birth

License
Plate Coverage

1001 Dr. Bernd Meier 1965-12-01 L–MB 47 TPO

1002 Leoni Schulze 1995-10-27 EF–ER 33 TPTF

1003 Eva Wagner 1974-08-19 B–XA 96 FULL

1004 Anna Schmidt 1991-04-20 DD–Q 54 TPTF

1005 Klaus-Peter Becker 1989-02-19 M–TS 71 TPO

Database D4 – Hospital

ID Person Age Sex Disease Diagnose
Date

a1ec Hafner, Leoni 28 W Asthma 06.03.2018

4b1f Meier, Bernd 58 M Brain Injury 17.09.2019

03c7 Klaus, Becker 41 M Encephalitis 28.10.2021

614d Brand, Luca 29 D Alopecia 14.07.2022

3i8b Schmidt, Anna 32 W PTSD 09.08.2022

Database D3 – Police

ID Given
Name Surname Year of

Birth Case CaseDate

5252 Klaus Bäcker 1982 Vandalism 11.04.2017

2942 Eva Wagner 1974 Theft 08.11.2020

1957 Anna Schmitt 1991 Car
Accident 25.07.2022

2210 Bernd Meier 1965 Car
Accident 16.09.2019

Privacy-preserving
Record Linkage

(PPRL)

Match Mapping

GID ID(D1) ID(D2) ID(D3) ID(D4)

G1 1 1004 1957 3i8b

G2 2 1001 2210 4b1f

G3 4 TPO 5252 03c7

G4 – 1002 – a1ec

G5 – 1003 2942 –

Linked Database

GID
Mobile
Phone
Rate

Vehicle
Insurance
Coverage

Police
Case

Police
Case
Date

Disease Disease
Date

G1 Flat rate TPTF Car Accident 25.07.2022 PTSD 09.08.2022

G2 Flat rate TPO Car Accident 16.09.2019 Brain Injury 17.09.2019

G3 Regular rate – Vandalism 11.04.2017 Encephalitis 28.10.2021

G4 – TPTF – – Asthma 06.03.2018

G5 – FULL Theft 08.11.2020 – –

?

Figure 2.2: An example PPRL application scenario aiming at investigating correlations
between mobile phone usage and traffic accidents.

Throughout the following subsection, we will illustrate the steps of the PPRL process
based on the example linkage scenario shown in Figure 2.2. Again, we assume that a
study on road safety is to be conducted with the research question ‘Do people with a
mobile phone flat rate cause more traffic accidents with personal injury?’ (see Section 1.1).
In this example, data from mobile phone providers (database D1), vehicle insurance
companies (database D2), the police (database D3), and hospitals (database D4) is
required. The linkage is conducted on personal quasi-identifying attributes (colored
yellow) only. The result of the linkage is a match mapping that indicates which of the
databases’ records refer to the same real-world entity.

Based on the match mapping a linked database can be created for researchers or
data analysts. The linked database generally contains only payload or aggregated data
of matching records (green-colored attributes) and some form of identifiers, such as

21

Chapter 2 – Background and Related Work

project-specific IDs. The linked database does not contain any personal quasi-identifying
attributes that can be used to identify an individual. However, if there is a unique
combination of attribute values of the payload data, re-identification of individuals
may still be possible. In such a case, the payload data must be anonymized, e.g. using
techniques such as k-anonymity or differential privacy [Dwo06].

2.6.1 Pre-processing

At first, the databases to be linked need to be pre-processed by the database owners.
Pre-processing includes deduplication, data cleaning, and standardization. In each
individual database, duplicate records may occur due to inconsistent or repetitive
recording processes. Therefore, the database owners may internally link and deduplicate
their databases to ensure that a record from one data source can only be linked to at
maximum one record from another data source. Data cleaning and standardization are
required since real-world data often contain erroneous, missing, incomplete, inconsistent,
or outdated data (see Section 2.5.2). Data cleaning techniques aim at eliminating or
weakening such errors. Typical data cleaning tasks are [Chr12b]:

• Filling in missing data, in particular, by utilizing functional dependencies between
sets of attributes (see Section 2.5). For example, the name of a suburb or city can
be inferred from a postcode or street address, or the gender of a person may be
inferred from the first name attribute.

• Removing or transforming unwanted characters or words, e. g., umlauts, punc-
tuation, special characters, whitespaces, variations of missing values (e. g., null,
unknown, n/a).

• Smoothing of noisy data, such as outliers in numerical or date attributes (e. g., age,
date of birth).

• Correcting inconsistencies, such as contradicting attribute values, e. g., zip code
and city or first name and gender contradict each other.

• Extension or unification of abbreviations.

Moreover, different databases often use different formats and structures to represent
data. Hence, standardization techniques are used to overcome heterogeneity by trans-
forming data into well-defined and consistent forms [RD00]. This typically includes the
segmentation of compound attributes, unification of different formats and attribute
representations, and converting all letters into either upper or lower case.

Data cleaning and standardization techniques typically require look-up tables (e. g., name
and address databases) and manually defined rule sets. All database owners should
conduct the same pre-processing steps to reduce heterogeneity and facilitate high-quality

22

2.6 PPRL Process

linkage results. However, even extensive pre-processing may not resolve all data quality
issues. In particular, inconsistencies, like contradicting or outdated values, are hard to
detect in each individual database.

Example: In the running example from Figure 2.2, the databases to be linked show
several differences in the data representation. Databases D2 and D4 use a single name
attribute (‘Full Name’, ‘Person’), while databases D1 and D2 use two separate name
attributes (‘First Name’/‘Given Name’ and ‘Last Name’/‘Surname’). Databases D1 and
D2 also store the date of birth, while databases D3 and D4 contain only a year of birth
and an age attribute, respectively. However, databases D1 and D2 use different date
formats that need to be unified. Table 2.1 - Table 2.4 show the databases to be linked
after resolving these issues by applying pre-processing. Only the attributes that are
present in all databases are shown.

ID First
Name

Last
Name DoB MoB YoB

1 Anna Schmitt 20 04 1991
2 Bernd Meier 12 01 1965
3 Christian Schulze 27 10 1995
4 Klaus Becker 25 07 1982

Table 2.1: Database D1 after pre-
processing.

ID First
Name

Last
Name DoB MoB YoB

1001 Bernd Meier 01 12 1965
1002 Leoni Schulze 27 10 1995
1003 Eva Wagner 19 08 1974
1004 Anna Schmidt 20 04 1991

1005 Klaus-
Peter Becker 19 02 1989

Table 2.2: Database D2 after pre-
processing.

ID First
Name

Last
Name DoB MoB YoB

5252 Klaus Bäcker – – 1982
2942 Eva Wagner – – 1974
1957 Anna Schmitt – – 1991
2210 Bernd Meier – – 1965

Table 2.3: Database D3 after pre-
processing.

ID First
Name

Last
Name DoB MoB YoB

a1ec Leoni Hafner – – 1995
4b1f Bernd Meier – – 1965
03c7 Becker Klaus – – 1982
614d Luca Brand – – 1994
3i8b Anna Schmidt – – 1991

Table 2.4: Database D4 after pre-
processing.

2.6.2 Encoding

Linking sensitive databases requires that no private or confidential information is
revealed during the linkage [CRS20]. Therefore, the database owners have to perform an
encoding step, where records are encoded or encrypted in such a way that sensitive data
is secured from re-identification. Ideally, each plaintext record (i. e., its set of attribute
values that are relevant for linkage) is transformed into an encoded representation that
cannot (computationally infeasible) be reverted to its original form. This includes that
the encoding should not disclose any encoded features, such as (parts) of the records’

23

Chapter 2 – Background and Related Work

attribute values. Moreover, the number and the frequencies of encoded features should
be obfuscated. At the same time, an ideal encoding function for PPRL needs to preserve
the similarity of the plaintext attribute values to allow approximate linkage in the
presence of errors and inconsistencies.

Encoding techniques for PPRL are typically divided into two main categories: (1) secure
multi-party computation (SMC), and (2) perturbation-based approaches [Vid+23].
Secure multi-party computation approaches aim to enable multiple parties to jointly
compute a (public) function over their (private) sensitive input data [Yao82; GMW87;
LP09]. In the end, all parties learn the result (output) of the function, but nothing
about the input values of the other parties. While encoding techniques based on SMC
are provably secure, they generally are expensive in terms of communication and
computation costs making them often not scalable and thus impractical for many real-
world PPRL scenarios [Vat+14; CRS20]. Perturbation-based approaches, in contrast,
transform (modify, generalize, or encode) the input data to prevent disclosure of the
actual value [VCV13]. In general, perturbation-based approaches have a trade-off
between privacy, scalability, and linkage quality they can provide. In this thesis, we will
focus on perturbation-based approaches.

A straightforward approach that appears as a solution is the use of (keyed) cryptographic
hash functions [Sta11; CZ18]. Hashing is routinely used to validate data integrity and
to identify known content [Rou10]. A hash function takes as input an arbitrary string
of binary data and produces a fixed-sized output, called digest or hash value, in a
predefined range [Rou10]. Hash functions need to be deterministic, i. e., the same input
value must always result in the same hash value. Moreover, the hash values should be
uniformly distributed over the predefined output range, i. e., each hash value should be
generated with (nearly) the same probability. If two different input values are mapped
to the same hash value, this is called a (hash) collision [CZ18].

Cryptographic hash functions, such as MD5 or SHA-1, are designed as collision resistant
one-way functions [Rou09; Rou10]. On the one hand, finding two different input values
x, y with the same hash value, i. e., hash(x) = hash(y) should be computationally
infeasible (collision resistance). On the other hand, given a hash value z, finding any
input value x with the same hash value, i. e., hash(x) = z (one-way property), should
be computationally infeasible (or at least very expensive) too. Another basic property
of cryptographic hash functions is the avalanche effect that causes significantly different
hash values if the input value is only changed slightly [CZ18].

The avalanche effect is required for security, but it is obstructive for cryptographic hash
functions to be directly utilized for the linkage of sensitive data. Even small differences
in the input will result in distinct hash values, and therefore such hash functions are only
suitable for exact matching of values. That is, only a binary decision is possible, whether

24

2.6 PPRL Process

two values are equal or not. However, as discussed in Section 2.5.2, real-world database
records contain errors and inconsistencies, and therefore a binary match decision would
generally lead to many false negative results. By using encrypted cryptographic hash
functions, such as keyed-hash message authentication codes (HMACs), dictionary attacks
(see Section 2.6.7.3) are infeasible for an external adversary. However, frequency attacks
are still possible because the frequency distribution of the hash values corresponds to
the frequencies of the plaintext values.

Nevertheless, hash functions are used as an essential building block in most similarity-
preserving encoding techniques for PPRL that enable approximate matching of records
[CRS20]. The first PPRL approach that used hashing was proposed by Quantin et
al. [Qua+98]. Hashing is also used in several variants of anonymous linkage codes
(ALCs) [Ran+19]. The basis for many such codes was the so-called statistical linkage
key (SLK) that was proposed and used by the Australian Institute of Health and
Welfare [Kar05; Cou+21]. The main idea of this technique is to encode a record by
concatenating specific characters drawn from the values of the first name, last name,
date of birth, and gender attributes. Several anonymous variants have been proposed
that finally hash the resulting code to improve privacy protection [BAQ01; Web+12].

The weakness of using only a single anonymous linkage code lies in the error tolerance
regarding the attributes selected for constructing the code [BG02; Ran+16]. In particular,
a single ALC cannot adequately handle missing attribute values. As a consequence, only
a low linkage quality is achievable in the presence of real-world data errors [Ran+16;
SRB17]. In [Ran+19], the authors therefore proposed an approach for creating multiple
ALCs by using different combinations of attributes. However, Vidanage et al. [Vid+20b]
showed that this approach is vulnerable to frequency attacks and therefore presented
several modifications to prevent such attacks.

A widely used approach that has become the quasi-standard in recent research and
practical applications of PPRL are encoding techniques based on Bloom filters [VCV13;
Vat+17; CRS20; Gko+21]. We will describe these types of encodings in Section 2.8.
Over the years, several studies have shown that Bloom filters can be susceptible to
frequency-based cryptanalysis [Kuz+11; Nie+14; KS14; Mit+16; Chr+18a; Chr+18b;
Vid+20a; Vid+22; Vid+23]. To avoid privacy attacks, several alternative encoding
schemes have been proposed in the literature, but these have not yet been used in real-
world applications. An encoding method based on tabulation min-hash (TMH) has been
proposed by Smith [Smi17]. Ranbaduge et al. [RCS20] proposed a two-step hash (2SH)
encoding that strives to outperform Bloom filter encodings in terms of security/privacy,
and TMH encodings in terms of computational cost. Recently, Christen et al. [Chr+22]
proposed a novel encoding technique based on autoencoders that transform Bloom
filters into vectors of real numbers. An autoencoder [Kra91; Kra92] is a type of artificial

25

Chapter 2 – Background and Related Work

neural network that is typically used to learn an efficient representation (encoding) of a
set of data and thus to extract substantial features.

The data owners that want to conduct the linkage need to know the encoding method
and the parameters used. To prevent data owners from re-identifying each other’s
records, for example, by mounting a dictionary attack, the linkage process must follow
specific protocols that define how data is exchanged between database owners and
other linkage participants. The different types of linkage protocols are described in
Section 2.7.

2.6.3 Blocking/Filtering

As discussed in Section 2.4, the trivial approach to link two databases is to compare
all possible pairs of records, which leads to a quadratic complexity. As a consequence,
blocking and filtering techniques are used to reduce the number of record comparisons
[Chr12b]. This is achieved by pruning record pairs not fulfilling defined blocking or
filter criteria and are hence unlikely considered as matches.

The output of this step is a set of candidate record pairs that need to be further
compared. The set of candidate record pairs after blocking or filtering is denoted as CB

where CB ⊊ C and |CB| ≪ |C|. The effort required for blocking must be significantly
smaller than the effort that would be required to compare all possible record pairs C.

Both, blocking and filtering can be executed on encoded or plaintext data. Most
privacy-preserving approaches perform blocking or filtering on encoded data [Vat+17].
State-of-the-art blocking techniques can significantly reduce the search space by applying
blocking based on locality-sensitive hashing (LSH) [Dur12; KV13; KV16] or performing
filtering based on multibit-trees [Bro+17; Sch15] or pivot-based filtering for metric
distance functions [SR16]. Although these two methods have the same objective, they
operate differently and could even be used in combination.

2.6.3.1 Blocking

The basic idea of blocking is to partition (group) records into blocks, and then compare
only records within the same block with each other. Therefore, one or multiple blocking
key values (BKV) are generated for each record. Records with the same blocking key
value are assigned to the same block. Each corresponding blocking key represents a
specific (potentially complex) criterion that records must satisfy in order to be considered
as match candidates. A blocking key is defined by a function that takes as input one or
more record attributes and outputs the blocking key value. The record attributes used
for blocking may be different from the attributes used in the comparison step. If only

26

2.6 PPRL Process

one blocking key is used, the resulting blocks are disjoint. However, a single blocking
criterion might be too restrictive and can consequently lead to many false negatives.
As a consequence, multiple blocking keys are often used to increase the probability for
records to share at least one blocking key. The drawback of using multiple blocking
keys is that it leads to overlapping (non-disjoint) blocks and consequently to duplicate
candidate record pairs.

Typically, blocking shows a trade-off between linkage quality and performance (scal-
ability) depending on the type and number of blocking keys used. In general, using
restrictive blocking criteria will lead to many small blocks and thus fewer candidate
record pairs. At the same time, however, the chance of missing true matches increases.
On the other hand, if less restrictive blocking criteria are selected, the number of blocks
decreases while the block sizes and thus the number of candidates increases. As a
consequence, more candidates need to be compared, leading to fewer false negatives
but also less efficiency. Generally, the higher the number of blocking keys, the higher
the number of resulting blocks and consequently the number of (duplicate) candidate
record pairs.

Example: Considering database D2 and D4 from the running example, without blocking
|D2| · |D4| = 5 · 5 = 25 record pairs need to be compared. Let bkf (·) be a blocking
key function that outputs the first character of the last name attribute. Applied on
the records in both databases, this will generate the blocking key values shown in
Table 2.5 and Table 2.6. This will lead to the partitions (blocks) shown in Table 2.7.
For each partition, each record from database D2 needs to be compared with every
record of database D4. The block corresponding to blocking key value ‘B’ will lead to
the candidate records pairs (1005, 4b1f), (1005, 03c7), and (1005, 614d). The block
corresponding to blocking key value ‘S’ leads to the candidate record pairs (1002, 3i9b)
and (1004, 3i9b). The block corresponding to the blocking key values ‘H’, ‘M’ and ‘W’
will lead to no candidate record pairs. Thus, only 5 record pairs need to be compared
using blocking, in contrast to 25 pairs for the trivial approach. However, the pair (1002,
a1ec) (being a match) is not compared, since the last name attribute differs, e. g., due
to marriage.

2.6.3.2 Filtering

Filtering techniques use a distance (or similarity) metric and a corresponding distance
(or similarity) threshold t (see Section 2.6.4) to efficiently remove dissimilar record pairs
that cannot reach this threshold [SR16]. In contrast to blocking, filtering techniques
generally do not involve any false negatives [Jia+14].

27

Chapter 2 – Background and Related Work

ID BKV
1001 M
1002 S
1003 W
1004 S
1005 B

Table 2.5: Blocking key val-
ues (BKV) for database D2.

ID BKV
a1ec H
4b1f B
03c7 B
614d B
3i9b S

Table 2.6: Blocking key val-
ues (BKV) for database D4.

Records
BKV

DB ID

B

D2 1005

D4

4b1f
03c7
614d

H D4 a1ec
M D2 1001

S
D2

1002
1004

D4 3i9b
W D2 1003

Table 2.7: Partitions re-
sulting from blocking.

Filtering techniques employ one or more filters to substantially reduce the search space.
Each filter evaluates a certain condition that must be fulfilled by a pair of records in
order to reach the similarity threshold. Typical approaches are length, prefix, suffix,
and position filters that utilize characteristics of the used similarity function [Chr12b;
Vat+17]. Considering length filtering, for example, the basic idea is that if two objects
(e. g., strings) are similar, their length can only differ by a certain factor (i. e., their
length difference cannot be large). In this context, the meaning of length is ambiguous
and varies depending on the objects of interest. For example, the number of elements
(cardinality) is considered as the ‘length’ of a set. Properties of metric spaces are also
utilized as filtering techniques to reduce the search space [CRS20; SR16; Seh+21].

Definition 2.6.3.1: Metric Space, (Distance) Metric

A metric space M(U, d) consists of a set of data objects U and a distance metric
d : U × U → R to compute the distance between the objects. For any objects
x, y, z ∈ U it satisfies the following axioms:

d(x, x) = 0 (2.12)
x ̸= y ⇒ d(x, y) > 0 (positivity) (2.13)
d(x, y) = d(y, x) (symmetry) (2.14)
d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality). (2.15)

From this, the reverse triangle inequality can be derived as:

|d(x, z)− d(z, y)| ≤ d(x, y) (2.16)

28

2.6 PPRL Process

The triangle inequality property is used to avoid computing the distance between every
pair of objects. Instead, reference points (pivot elements) are used. When knowing the
distance of a point x to a reference point z as well as the distance from a point y to z,
then the distance from x to y can be approximated. The lower bound of the distance
from x to y can be approximated by calculating the difference d(x, z)− d(z, y). If this
difference is larger than the threshold t, also d(x, y) must be larger than t and the pair
(x, y) can be pruned before calculating the actual similarity. More formally:

d(x, z)− d(z, y) > t⇒ d(x, y) > t. (2.17)

Example: Let d(x, z) = 0.2 and d(z, y) = 0.3. Then, d(x, y) ≤ d(x, z) + d(z, y) =
0.2 + 0.3 = 0.5. Moreover, d(x, y) ≥ |d(x, z) − d(z, y)| = |0.2 − 0.3| = 0.1 and thus
0.1 ≤ d(x, y) ≤ 0.5.

2.6.4 Comparison

Each candidate record pair is compared using similarity functions that are applied on
the records’ attributes. A similarity function is defined as follows.

Definition 2.6.4.1: Similarity Function

For a set of data objects U , a similarity function sim : U × U → [0, 1] calculates
a value (called similarity) that quantifies how similar two objects are. For objects
x, y ∈ U , it satisfies the following axioms:

sim(x, y) = sim(y, x) (2.18)
sim(x, y) = 1 ⇒ x = y. (2.19)

The concept of a similarity function is strongly related to a distance metric. While a
metric defines the distance between two objects, a similarity function measures the
closeness. The larger the value sim(x, y) is, the closer (the more similar) the two objects
are. A similarity of 1 means that the objects are equal. A value of 0, on the other hand,
means that the objects are completely different.

In contrast to a distance metric, a similarity function is not required to satisfy the
triangle inequality. However, a semi-metric d [MC16] can be constructed from the
similarity function:

d(x, y) = 1− sim(x, y). (2.20)

29

Chapter 2 – Background and Related Work

If the triangle inequality holds for d then it is in fact a metric. Similarly, a distance
metric can be converted into a similarity function by using either

sim(x, y) = 1/d if 0 < d (2.21)

or
sim(x, y) = 1− d if 0 ≤ d ≤ 1. (2.22)

A variety of similarity functions for different data types, such as strings, numbers, or
dates, have been proposed, for instance, the Jaro-Winkler similarity or the Cosine
similarity [Chr12b]. Set-based similarity measures are most commonly used because
they can be applied to various domains. The two most important measures are the
Jaccard [Jac12] and the Dice [Dic45] similarity, which are defined as follows.

Definition 2.6.4.2: Jaccard Similarity (Sets)

Let X and Y be two arbitrary sets. Then, their Jaccard similarity is defined by

simJaccard(X, Y) = |X ∩ Y |
|X ∪ Y |

= |X ∩ Y |
|X|+ |Y | − |X ∩ Y |

(2.23)

Definition 2.6.4.3: Dice Similarity (Sets)

Let X and Y be two arbitrary sets. Then, their Dice similarity is defined by

simDice(X, Y) = 2 · |X ∩ Y |
|X|+ |Y | (2.24)

The Dice similarity can also be calculated based on the Jaccard similarity as

simDice(X, Y) = 2 · simJaccard(X, Y)
1 + simJaccard(X, Y) (2.25)

In general, each record comparison results in a similarity vector (or more generally a
similarity matrix), where each vector entry represents the result of a specific similarity
function evaluated on a specific pair of attributes.

The output of the comparison step is a set of candidate record pairs together with their
similarity vector. This result can be considered as a similarity graph.

30

2.6 PPRL Process

Definition 2.6.4.4: Graph, Similarity Graph

A graph is a pair G = (V, E) of sets V (vertices) and E (edges) such that E ⊆ [V]2,
i. e., elements of E are 2-element subsets of V .

A similarity graph SG = (V, E) is a graph in which vertices of V represent records
and edges of E are the calculated similarities between records that have been
compared. Thus, each edge connects two compared records and holds the resulting
similarity vector.

2.6.5 Classification

In this step a decision model is used to assign each candidate record pair (based on its
similarity vector) to one of the classes: matches (M), non-matches (N), and optionally
potential matches (PM) [Chr12b]. The class of potential matches contains those candidate
record pairs where the model was not able to make a clear decision.

2.6.5.1 Threshold-based Classification

While different classification techniques have been developed [Chr12b; BS22; Pap+21],
many PPRL approaches rely on a simple threshold-based classification. Therefore, the
similarity vector for a pair of records is aggregated into a single similarity or confidence
score sim∆(·, ·), mostly by calculating a weighted sum over the vector entries [Chr12b;
CRS20].

The idea of assigning weights to attributes is part of the probabilistic record linkage
model proposed by Fellegi and Sunter in [FS69]. This model is the basis for many record
linkage approaches and is still frequently used and adapted [HSW07; Chr12b; CRS20;
Roh+23].

The weighting of attributes addresses the fact that attributes have different importance
and discriminatory power to distinguish matches and non-matches. On the one hand,
each attribute has a different number of (possible) values, and these values follow a
certain distribution. For example, an equal date of birth is a stronger indicator for a
match than an equal gender as there are far more values (and thus each value occurs
less often) for date of birth than for gender. On the other hand, attributes can also be
erroneous or inconsistent (see Section 2.5.2), with some attributes being affected more
often than others.

31

Chapter 2 – Background and Related Work

Consequently, for each attribute i two probabilities, namely the match probability (µ)
and non-match probability (u), are defined as:

µi = P [πi(a) = πi(b), a ∈ DA, b ∈ DB | a ≡ b] (2.26)
ui = P [πi(a) = πi(b), a ∈ DA, b ∈ DB | a ̸≡ b] (2.27)

The µ-probability specifies the probability that the two records a and b have the same
value for attribute i, given the records refer to the same entity. Ideally, mi = 1, if all
true matches agree on attribute i. However, this is only the case if attribute i does
not contain any errors. If, for example, 10% of the duplicates have a non-equal value,
e. g., due to typographical errors, then mi = 0.9.

In contrast, the u-probability specifies the probability that two records have the same
value for attribute i, given the records refer to different entities. The u-probability is
low if the attribute has a high number of possible values. However, if, for example, an
attribute i has only two possible and equally likely values, then ui = 0.5 as the chance
that two records agree only by chance on this attribute is 50%.

Using the µ- and u-probabilities, the weight wi for attribute i is calculated as

wi =

wµ = log2

(
µi

ui

)
if πi(a) = πi(b)

wu = log2

(
1−µi

1−ui

)
if πi(a) ̸= πi(b)

(2.28)

The match and non-match probabilities are typically frequency-dependent as a random
agreement is more likely for frequent than for rare attribute values. Therefore, a value-
specific weight can be incorporated to adjust the match and non-match weights based
on the frequency of individual attribute values [HSW07; Roh+23].

Finally, using two threshold values t↑ and t↓ each record pair (a, b) ∈ DA × DB is
classified as follows:

sim∆(a, b) ≥ t↑ ⇒ (a, b) ∈ M (2.29)
t↑ > sim∆(a, b) ≥ t↓ ⇒ (a, b) ∈ PM (2.30)

sim∆(a, b) < t↓ ⇒ (a, b) ∈ N (2.31)

If t↑ = t↓, then records are classified into two classes only (matches and non-matches). For
the remainder of this thesis, we consider that both thresholds are the same (t↑ = t↓).

Considering the linkage result as a similarity graph, each edge in the graph is weighted
using sim∆ and labeled by the class the connected record pair belongs to (match,
non-match, or potential match). Vertices without edges are implicitly considered non-
matches.

32

2.6 PPRL Process

In record linkage applications, the sizes of the match and non-match classes are generally
very imbalanced (M≪ N). This is known as the class imbalance problem [Chr12b] because,
from all possible pairs of records, only a small fraction refers to the same entity, while
the vast majority of record pairs are non-matches.

In Figure 2.3 a typical distribution of the similarities of matching and non-matching
record pairs is shown (note the logarithmic scale on the y-axis). As can be seen, there
are two peaks: (1) a large peak on the left side which is created by non-matching
records and their similarity distribution; (2) a small peak on the right side which
consists of matching records and their similarity distribution. Often, these distributions
are overlapping and the aim of the linkage algorithm is to separate them as much as
possible.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

1

10

100

1000

10000

100000
TM
TNM

Similarity

#
 R

ec
o

rd
 P

ai
rs

Figure 2.3: Example similarity distribution of true matching (TM) and true non-
matching records (TNM) on an encoded dataset drawn from the North Carolina Voter
Registration (NCVR) database [Nor23] using blocking.

2.6.5.2 Clustering

Another approach for deciding which candidate record pairs correspond to matches and
which to non-matches is clustering. Clustering is the process of separating (partitioning,
grouping) a set of elements (objects, entities) into a set of clusters (groups, subsets,
categories) [XW05]. Given a measure of similarity, the objective of most clustering
approaches is to generate clusters in such a way that elements within the same cluster
are similar to each other (high intra-cluster similarity), while elements in different
clusters are dissimilar to each other (low inter-cluster similarity) [XW05; HKP12]. Thus,
elements within the same cluster should be more similar to each other than to elements
of other clusters.

33

Chapter 2 – Background and Related Work

In the context of record linkage, ideally, each entity is represented by exactly one cluster.
Thus, clustering will typically generate a large number of clusters where each cluster is
very small and consists of only a few records. Clustering can be used for classification
by classifying all elements within the same cluster as matches and elements of different
clusters as non-matches. However, clustering can also be applied as a post-processing
step after a pair-wise classification of record pairs has been conducted [Chr12b]. In that
case, clustering techniques are used to refine and improve the classification results.

2.6.6 Post-processing

The output of the classification step is generally not the final outcome of a record
linkage process. After the classification step, the similarity graph contains edges (links)
of different types based on their vertex degree.

Definition 2.6.6.1: Vertex Degree, Edge Degree

The degree deg(a) of a graph vertex a is defined as the number of edges that are
incident to that vertex [Die17]. If each vertex of the graph has the same degree
δ, the graph is called a δ-regular graph [Die17]. Similarly, the degree deg(e) of a
graph edge e = (a, b) is given as the maximum degree of its endpoints (vertices) a

and b, i. e., deg(e) = max (deg(a), deg(b)), where (a, b) ∈ E.

Edges (links) in the similarity graph can be categorized based on the degree of the
vertices they are connecting:

• One-to-one link: A one-to-one link is an edge e = (a, b) between two vertices
a, b ∈ V with deg(e) = 1.

• Multi-link: A multi link is an edge e = (a, b) between two vertices a, b ∈ V with
deg(e) > 1.

• One-to-many link: A one-to-many link is an edge e = (a, b) between two vertices
a, b ∈ V where deg(a) = 1 and deg(b) > 1.

• Many-to-one link: A many-to-one link is an edge e = (a, b) between two vertices
a, b ∈ V where deg(a) > 1 and deg(b) = 1.

• Many-to-many link: A many-to-many link is an edge e = (a, b) between two
vertices a, b ∈ V where deg(a) > 1 and deg(b) > 1.

Depending on the characteristics of the databases and the application that uses the
linked database, certain link constraints must be satisfied [CRS20]. Therefore, each
database is considered as clean or dirty depending on the absence/presence of duplicates.

34

2.6 PPRL Process

Definition 2.6.6.2: Clean Database, Dirty Database

A database D is called clean, if

∄a, b ∈ D : a ≡ b ∧ a ̸= b. (2.32)

In contrast, a database D is called dirty, if

∃a, b ∈ D : a ≡ b ∧ a ̸= b. (2.33)

In clean databases, there are thus no two records that refer to the same entity. A dirty
database, however, contains at least two records that refer to the same entity. For in-
stance, let x = [Victor, Christen, 1988, Leipzig] and y = [Viktor, Christen, 1988, Leipzig],
then a ̸= b, while we can assume a ≡ b.

For simplicity, in the following, we assume without loss of generality the linkage of two
databases only. Depending on whether the individual databases contain duplicates, four
cases can be distinguished: clean-clean, clean-dirty, dirty-clean, and dirty-dirty.

If both databases are duplicate-free, then records from the same database are usually
not compared. As a consequence, the similarity graph resulting from the linkage forms
a bipartite graph [Die17]. Thus, V allows a division into two partitions, namely VA

and VB where V = VA ∪ VB, such that every edge has its ends in different partitions,
i. e., vertices in the same partition are not adjacent. The partition VA only consists
of records from database DA and partition VB only of records from database DB,
respectively. Since we assume duplicate-free databases, any record of DA can match
to at maximum one record of DB and vice versa. Thus, the similarity graph needs to
be 1-regular and consequently must only contain edges with a degree of 1 (one-to-one
links).

In this case, post-processing applies a one-to-one link restriction to the match result by
resolving all multi-links (see Chapter 5). This is equivalent to finding a matching over
the similarity graph [Die17]. Here, the term matching here refers to the graph-theoretic
terminology.

Definition 2.6.6.3: (Graph) Matching

Given a graph G = (V, E), a matching M ⊆ E is a set of edges without common
vertices, i. e., all edges are pairwise non-adjacent.

If one database is clean and the other is dirty (clean-dirty and dirty-clean cases), then
one-to-one links and one-to-many links are permitted. If both databases are dirty
(dirty-dirty case), then all types of links can potentially occur. In such a situation,
each database owner could first individually run an intra-source deduplication process

35

Chapter 2 – Background and Related Work

before performing the actual holistic (inter-source) linkage. While each database owner
can optimize the deduplication configuration locally and potentially perform a manual
assessment of the linking result, this approach has some drawbacks. At first, intra-
source duplicates may be fused into a single record (cluster representative), e. g., by
selecting attribute values that are more likely to be complete, accurate, and up-to-date.
Using this approach, the amount of available information is reduced, which potentially
leads to more false negatives. Secondly, errors in the deduplication process of a source
are possible, where two records are considered as match while they actually refer to
different entities (intra-source false positive). As a consequence, entities are wrongly
fused and this error is propagated through the whole process, which in turn can lead to
inter-source false positives [OSR19]. Therefore, it can be beneficial to retain intra-source
duplicates. This approach requires comparing records from the same database, resulting
in a similarity graph with intra-source links. By definition, this will make the similarity
graph no longer bipartite. However, by removing all intra-source links, a bipartite
subgraph can be obtained.

Besides enforcing link cardinality constraints as discussed before, post-processing can
also ensure that the linkage result fulfills the transitive closure [Chr12b]. For records
a, b, c ∈ V , this property guarantees that if both the pair (a, b) and (a, c) are classified
as a match, then the pair (b, c) must also be a match. The transitive closure may be
violated due to missed true matches, for example, during blocking, or because candidate
pairs are classified independently of other candidate pairs [Chr12b].

2.6.7 Evaluation

The linkage process and the linkage result are evaluated under three main aspects
[CRS20]: (1) linkage quality; (2) linkage complexity and scalability; and (3) privacy
protection and security against attacks. In the following, we discuss how these aspects
can be assessed.

2.6.7.1 Quality

Given a ground-truth (gold standard) dataset containing the true match status of a set
of record pairs, four classification outcomes are possible for each pair of records:

• True positive: A true positive is a record pair that has been classified as a match
and the pair is a true match. The two records refer to the same entity.

• False positive: A false positive is a record pair that has been classified as a match,
but it is not a true match. The two records refer to different entities.

36

2.6 PPRL Process

• True negative: A true negative is a record pair that has been classified as a
non-match and it is a true non-match. The two records refer to different entities.

• False negative: A false negative is a record pair that has been classified as a
non-match, but it is a true match. The two records refer to the same entity.

For a specific classification configuration, e. g., certain classification threshold t, this
results in a confusion matrix [HKP12] reporting the total number of true positives (tp),
true negatives (tn), false positives (fp) and false negatives (fn). Based on the confusion
matrix, different quality measures can be calculated [HC18]. The most common measures
are recall (R) and precision (P), which are defined as

R = tp
tp + fn (2.34)

P = tp
tp + fp (2.35)

Consequently, recall measures the proportion of true matches that have been correctly
classified as matches after the linkage process. Precision is defined as the fraction
of classified matches that are true matches. It is often desirable to combine recall
and precision into a single number. For this purpose, frequently the F-measure (F) is
calculated that is equal to the harmonic mean between both measures:

F = 2 · P ·R
P + R

(2.36)

However, this way of aggregating recall and precision has several problematic aspects
as discussed in [HC18; CHK23]. In [HCK21], therefore, a transformed version, called
F-star (F ∗), has been proposed:

F ∗ = F

2− F
= P ·R

P + R− P ·R
(2.37)

F ∗ is a monotonic transformation of the F-measure and therefore all results on the
F-measure also hold for F∗.

2.6.7.2 Scalability

The number of record pair comparisons mainly determines the complexity of the linkage.
As described in Section 2.6.3, blocking or filtering techniques are used to reduce the
number of record pair comparisons and thus have a great influence on the performance

37

Chapter 2 – Background and Related Work

and scalability of PPRL approaches. The efficiency of blocking/filtering can be measured
with the reduction ratio (RR) [EVE02; Chr12a] that is defined as:

RR = 1− |CB|
C

(2.38)

Consequently, the reduction ratio measures the ratio between the number of candidate
record pairs after blocking/filtering and the number of all possible candidate pairs. A high
reduction ratio means that the blocking/filtering technique was able to efficiently reduce
the number of record pair comparisons. The reduction ratio for the blocking example in
Section 2.6.3.1, where |C| = 25 and |CB| = 5, is calculated as RR = 1− 5

25 = 0.8.

2.6.7.3 Privacy

The privacy (security) properties of PPRL approaches are typically evaluated under
specific attack models [VCV13; Vat+17]. For measuring privacy, there currently is no
single accepted mathematical framework [CRS20]. However, privacy can be measured
by the amount of information an adversary can gain under the attack model. Besides,
privacy can be measured based on the risk of disclosure [Vat+14]. In general, the
disclosure risk is assessed based on the likelihood that an individual can be associated
with a record or an attribute (in the released/disclosed dataset) containing sensitive or
confidential information [Lam93].

An attack model that is often assumed is the honest-but-curious model [HF10; Vat+14].
In this model, the parties follow the protocol and compute valid results (honest),
but try to obtain as much information about the original data (plaintext records of
other database owners) as possible. This includes that two or more database owners
could collude to obtain sensitive information of the other database owners. Such a
collaboration between database owners or between a database owner and a third party
(see Section 2.7) is called a collusion.

Another attack model assumes that the parties participating in the linkage behave
maliciously [Vat+14; Vat+17]. In this model, the parties can behave arbitrarily, i. e., the
parties might not follow the protocol, abort the protocol at an arbitrary point, or send
arbitrary input data. This model has, however, rarely been considered because the
unpredictable behavior of the parties makes analysis difficult [Vat+14; Vat+17].

Different types of attacks have been considered in the PPRL context [VCV13; Vat+17].
The two most common types of attacks are described in the following [Vat+17].

Dictionary attacks: It is assumed that an attacker knows the used encoding (encryp-
tion/masking) method as well as the corresponding parameters so that the attacker
can encode a publicly available dataset accordingly. Then, the attacker tries to find

38

2.7 Linkage Protocols

correspondences between plaintext and encoded values. To prevent such attacks, the
available information must be separated between the parties (see Section 2.7), and
keyed hash message authentication codes (HMACs) should be used in the encoding
step.

Frequency attacks: In such attacks, the distribution of encoded values is analyzed.
Using the distribution of known plaintext values, such as name or address frequencies,
an attacker tries to align plaintext to encoded values. If, for instance, ‘Müller’ is the most
frequent last name, then the most frequent encoded value will likely correspond to that
last name. If an attacker can identify one or more encoded values, a known-plaintext
attack can be mounted in order to identify the encoding method and its parameters.
The use of HMACs does not change the frequency distribution of encoded values and
thus does not provide any protection. To complicate frequency attacks, the frequency
distribution needs to be artificially altered. One approach is to introduce dummy (fake)
attribute values or records that contain values with lower frequencies. The drawback of
this approach is that the fake values/records can have a negative impact on both, the
linkage quality and scalability. On the one hand, the probability of wrongly classified
records increases. On the other hand, more records might need to be matched and
potentially sorted out after the linkage.

2.7 Linkage Protocols

Database owners need to know the encoding technique and the related parameters to
encode their records in order to protect sensitive information. Therefore, the database
owners cannot simply exchange all encoded records and individually perform the linkage
because otherwise each database owner could mount a dictionary attack and try to
re-identify the encoded records. As a consequence, the linkage must be performed under
a specific protocol that regulates the exchange of information between the linkage
participants. The most important participants (parties) of a linkage can be categorized
as follows [CRS20]:

• Database owners: The database owners are the providers of the databases to be
linked. Depending on the linkage protocol, the database owners may be involved
in all linkage steps, or alternatively only pre-process, encode, and optionally
block/filter their databases.

• Linkage unit: The linkage unit is a trusted third party, that typically provides
no data to be linked.

39

Chapter 2 – Background and Related Work

• Data consumer: Data consumers process or analyze the linkage result, i. e., the
linked database containing values from selected attributes. Database owners can
be data consumers themselves, but also external researchers or data analysts.

In a linkage, each participant should only have access to the data it requires to perform
its role in the specific protocol [CRS20]. This mechanism is known as separation principle.
It includes that the participants involved in the actual linkage have access only to
the quasi-identifying attributes that are necessary to perform the linkage. Participants
that are involved in an analysis of the linked database (such as researchers or data
analysts) have, in contrast, only access to payload or aggregated data of the matching
records [CRS20]. The separation principle is also shown in the running example of
Figure 2.2 where the personal quasi-identifying attributes are colored yellow and the
payload data is colored green.

Basically, there are two types of linkage protocols, those with and those without using
a linkage unit. In protocols without a linkage unit, the database owners communicate
directly with each other to perform the linkage [Vat+17]. These protocols are, in general,
more complex and expensive in terms of computation and communication because
the database owners know the details of the used encoding technique, and thus it is
harder to ensure that the database owners do not learn any sensitive information other
than the set of matching record pairs. Typically, secure (multi-party) computation
approaches [Yao82; LT05] are used as the basis for such protocols [Vat+17]. Protocols
that use a linkage unit, in contrast, are generally more efficient as the actual linkage is
performed by the linkage unit. After the database owners have pre-processed, encoded,
and optionally blocked/filtered their databases, they send their encoded records to the
linkage unit [Vat+17]. The linkage unit performs the actual linkage and sends back
the match mapping (identifiers of matching record pairs) to the database owners. The
database owners can then exchange selected attribute values (payload data) of the
matched record pairs with each other, or with external data consumers.

2.8 Bloom Filter Encodings

Privacy-preserving record linkage requires that no private or confidential information is
revealed during the linkage. Consequently, each record needs to be encoded (encrypted)
to protect sensitive data. While different encoding techniques have been proposed in
the literature, approaches utilizing Bloom filters as encoding technique have become
the quasi-standard for recent PPRL approaches in both research and practical applica-
tions [VCV13; Vat+17; Gko+21]. In this thesis, we therefore also focus on encodings
based on Bloom filters.

40

2.8 Bloom Filter Encodings

Bloom filters were originally proposed in 1970 by Burton H. Bloom as a space-efficient
data structure for checking set membership [Blo70]. Bloom filters are frequently used in
different domains, such as database applications or network protocols [BM04]. The use
of Bloom filters for PPRL has been first proposed by Schnell and colleagues in [SBR09].
Since then, several encoding methods based on Bloom filters have been proposed
for PPRL to improve the linkage quality [KGV18; VC14; VC16] or to reduce the
re-identification risk [Dur12; Nie+14; Sch15; SBR11; SB16a]. In the following, we first
describe the basics of Bloom filters and then explain how they can be used for PPRL
to encode records containing sensitive data.

2.8.1 Bloom Filter Basics

A Bloom filter (BF) is a space-efficient probabilistic data structure for representing a
set E = {e1, . . . , en} of n elements or features and testing set membership. Therefore, a
bit vector v of fixed size m is allocated, and initially, all bits are set to zero.

Definition 2.8.1.1: Bit Vector

Let B = {0, 1} be the boolean domain. A bit vector (also known as bit array)
v ∈ Bm = [b0, ..., bm−1](∀i, 0 ≤ i < m : bi ∈ B) is a m-dimensional vector (or array)
of bits, where m = ||v|| is called the size or length of the bit vector. An overview of
the most important operations on bit vectors is given in Table 2.8.

A bit vector can be represented as a set containing the indices of all 1-bits, i. e., v =
{i | 0 ≤ i < m, bi = 1}. This representation is called a bit set.

A set H of k independent (cryptographic) hash functions is selected, where each function
h1, . . . , hk outputs a value in [0, m− 1], i. e., hi ∈ H : E→ {0, . . . , m− 1}. To represent
the set E in the Bloom filter, each element is (hash) mapped to the bit vector v by
using each of the k hash functions and setting the bits at the resulting positions to one,
i. e., ∀e ∈ E,∀h ∈ H : v[h(e)] = 1.

To check the membership of an element, the k hash functions are calculated and the
bits at the resulting positions are checked. If all bits are set to one, the element probably
is in the set. On the other hand, if at least one bit is zero, the element is definitively not
in the set. Due to collisions, i. e., two or more elements may set the same bit position
for the same or different hash functions, Bloom filters have a false positive probability
(fpp) for an element to be not in the set (not represented by the Bloom filter). The false
positive probability is defined as [BM04; MU17]:

fpp =
(

1−
(

1− 1
m

)k·n)k

≈ (1− e− k·n
m)k (2.39)

41

Chapter 2 – Background and Related Work

Operation Symbol Description
#0-bits || · ||0 Number of bits equal to 0.
#1-bits || · ||1 Number of bits equal to 1 (cardinality/Hamming weight).
not ¬ Flips all bits of the bit vector (complement).
and ∧ Bit-wise logical and operation between two bit vectors.
or ∨ Bit-wise logical or operation between two bit vectors.
xor ⊕ Bit-wise logical exclusive or operation between two bit vectors.
Concatenation ⊙ Appends one bit vector to the other.
Permutation Π Rearranges bits in the bit vector.

Projection/Slicing πj
i

Extracts a sub bit vector composed of the bits from position i
(inclusive) to j (exclusive).

Bit Shift ≪,≫ Shifts bits to left or right, with or without discarding or adding
bits.

Circular Shift ⟲,⟳
Special type of permutation by moving the last (first) bit to the
first (last) position, while shifting all other entries to the next
(previous) position.

Table 2.8: Operations on bit vectors.

Figure 2.4 provides an example of a Bloom filter. The elements e1 and e2 are hashed
k = 3 times. Each hash outputs a bit position and these bits are set to 1. For elements
e3 and e4 it is checked if they are included in the Bloom filter. Therefore, the elements
are also hashed and the corresponding bits are checked. The element e3 is not in the set
since at least one of the bits is 0. Element e4 is considered to be in the set, although it
was not added to the Bloom filter.

Test
Membership

Insert
Elements

e1 e2

0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0

h1 h2 h3

e3 e4

h1 h2 h3

true
negative

false
positive

e1

true
positive

Figure 2.4: An example of a Bloom filter yielding a false positive.

As a consequence, an appropriate choice of the Bloom filter length m and the number
of hash functions k is essential. Trivially, it must hold that m > k · n. By using a fixed
Bloom filter length, the optimal number of hash functions can be calculated as:

kopt =
⌈
ln(2) · m

n

⌉
(2.40)

42

2.8 Bloom Filter Encodings

The optimal Bloom filter length mopt depends on k and the number of elements n to
be mapped into the Bloom filter:

mopt =
⌈

k · n
ln(2)

⌉
(2.41)

The false positive probability can also be bounded to a certain value ϵ assuming that
the optimal value for k is used [BM04]:

fpp ≤ ϵ ⇔ m ≥ n ·
log2(1

ϵ
)

ln 2 (2.42)

Assuming Bloom filters with the same size and set of hash functions, their union and
intersection can be implemented with the bit-wise or and and operations, respectively.

While the union operation is lossless, i. e., the resulting Bloom filter will be equal to a
Bloom filter that was built using the union of the two sets, the intersection operation
produces a Bloom filter that may have a larger false positive rate [BM04]. Consider two
Bloom filters representing sets E1 and E2 using the same bit vector length m and the
same hash functions. A certain bit will be set in both Bloom filters, if the bit is either
set by some element in E1 ∩ E2, or simultaneously by an element in E1 − (E1 ∩ E2) and
by another element in E2 − (E1 ∩ E2).

By using union and intersection on Bloom filters, set-based similarity measures can
be used to calculate the similarity of two Bloom filters. The Bloom filter similarity is
then an approximation of the similarity of the underlying (represented) sets. The most
important similarity measures for Bloom filters are defined in Definition 2.8.1.2.

Example

Let R = {‘a’, ‘b’, ‘c’, ‘d’} and S = {‘a’, ‘b’, ‘c’, ‘e’} be two sets of elements. Let
h1(x) := ASCII(x) · 3 mod 16 and h2(x) := ASCII(x)− 3 mod 16. To represent the sets
R and S in Bloom filters r and s of size m = 16, each element is hash mapped in the
bit vector by using hash functions h1 and h2.

The hash values are h1(‘a’) = 97 · 3 mod 16 = 3, h1(‘b’) = 6, h1(‘c’) = 9, h1(‘d’) =
12, h1(‘e’) = 15 and h2(‘a’) = 14, h2(‘b’) = 15, h2(‘c’) = 0, h2(‘d’) = 1, h2(‘e’) = 2. This
will lead to the Bloom filters r = [1101 0010 0100 1011] and s = [1011 0010 0100 0011]
with ||r||1 = 8, ||s||1 = 7, ||x ∧ y||1 = ||[1001 0010 0100 0011]||1 = 6, and ||x ∨ y||1 =
||[1111 0010 0100 1011]||1 = 9.

As a consequence, simJaccard(r, s) = 2/3, simDice(r, s) = 4/5, and simSimpson(r, s) = 6/7,
while simJaccard(R, S) = 3/5, simDice(R, S) = 3/4, and simSimpson(R, S) = 3/4.

43

Chapter 2 – Background and Related Work

Definition 2.8.1.2: Similarity Measures for Bloom Filters / Bit Vectors

Let x, y ∈ Bm be two bit vectors. Then, their similarity can be computed in different
ways [CCT10]:

• Jaccard similarity:

simJaccard(x, y) = ||x ∧ y||1
||x ∨ y||1

= ||x ∧ y||1
||x||1 + ||y||1 − ||x ∧ y||1

(2.43)

• Dice similarity:
simDice(x, y) = 2 · ||x ∧ y||1

||x||1 + ||y||1
(2.44)

• Overlap (Simpson) similarity:

simSimpson(x, y) = ||x ∧ y||1
min(||x||1, ||y||1)

(2.45)

• Braun-Blanquet similarity:

simBraunBlanquet(x, y) = ||x ∧ y||1
max(||x||1, ||y||1)

(2.46)

2.8.2 Utilization in PPRL

The main idea for utilizing Bloom filters in PPRL scenarios is to use a Bloom filter to
represent the records attribute values, i. e., all quasi-identifying attributes of a person
that are relevant for linkage, e. g., first name, last name, date of birth, and place of birth.
The Bloom filters hash functions need to be cryptographic (one-way) hash functions that
are keyed (seeded) with a secret key S, i. e., keyed-hash message authentication codes
(HMACs) like MD5 or SHA-1 [Nat08]. For approximate matching, the granularity of the
record attributes is increased by segmentation into features. A widely used approach is
to split the attribute values into small substrings of length q, called q-grams, typically
setting 1 ≤ q ≤ 4. Consequently, in PPRL, a Bloom filter represents a set of attribute
value segments, that we term record (attribute) features. Thus, the number of common
1-bits of two Bloom filters approximates the number of common (overlapping) features
between two records. In the following, we will describe the different types of Bloom
filters and their privacy properties.

44

2.8 Bloom Filter Encodings

2.8.2.1 Types

There are two ways of encoding records into Bloom filters: either one Bloom filter is
built for each record attribute, which is known as field- or attribute-level Bloom filter,
or a single Bloom filter is built for all relevant attributes, which is known as record-level
Bloom filter. For constructing record-level Bloom filters, there are two approaches: The
first approach is called Cryptographic Longterm Key (CLK) [SBR11] and builds a single
Bloom filter in which all record attributes are hashed. The second approach [Dur+14]
first constructs attribute-level Bloom filters and then selects bits from these individual
Bloom filters according to the weight of the respective attribute. In this work, we will
focus on the first approach since it is heavily used in both research and practice [CRS20].
To support attribute weighting in the CLK approach as well, in [Vat+17] the authors
propose to select different numbers of hash functions k for different attributes depending
on their weight. Attributes with higher discriminatory power or lower error rates are
therefore assigned more hash functions and thus set more bits in the Bloom filter.

The basic Bloom filter building process for attribute-level and record-level (CLK) Bloom
filter is shown in Figure 2.5. In this example, the first name, last name, and year of
birth attributes are segmented into q-grams (with q = 2), which are then mapped to the
bit vector(s) using k = 2 hash functions. The hash functions for different attributes do
not necessarily have to be the same. Either different hash functions or different secret
keys can be used for each record attribute. Also, a different segmentation strategy can
be used for different attributes, e. g., a different value for q.

Hashing

Feature
Selection

ANNA

AN NN NA

SCHMITT 1991

SC CH HM MI IT TT

0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0

19 99 91

h1 h2 h2 h1
h1 h2

(a) Attribute-level Bloom Filter

Hashing

Feature
Selection

ANNA

AN NN NA

SCHMITT 1991

SC CH HM MI IT TT

0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0

19 99 91

h1 h2

(b) Record-level Bloom Filter

Figure 2.5: Types of Bloom Filters.

45

Chapter 2 – Background and Related Work

The advantage of using attribute-level Bloom filters is that individual Bloom filters are
produced allowing the use of sophisticated matching techniques known from traditional
record linkage, for instance, classification based on attribute weights and attribute error
rates (Fellegi-Sunter model), as well as approaches for handling null-valued attributes or
composite fields, for instance, name attributes with compounds (multiple given names).
However, as we discuss in the next section, attribute-level Bloom filters fulfill much
weaker privacy properties compared to record-level Bloom filters.

2.8.2.2 Privacy Properties

The privacy-preserving properties of Bloom filters rely on the following aspects:

• An adversary has no information on how the record features are obtained, for
instance, the selected attributes or length of substrings (q-grams).

• The selected hash functions, the secret key S, and thus the hash mapping of
record features to bit positions is unknown to an adversary. In particular, the use
of keyed hash functions is essential to prevent dictionary attacks.

• Due to collisions, multiple record features will map to a single bit position in
general. Keeping the Bloom filter size m fixed, the more hash functions are used,
and the more features are mapped to the Bloom filter, the higher the number of
collisions and thus the confusion.

• There is no coherence or positional information. Since a Bloom filter encodes a set
of record features, it is not obvious from where features were obtained, i. e., within
an attribute (which position) and for record-level Bloom filter even from which
attribute.

However, Bloom filters are susceptible to frequency attacks as the frequencies of set
bit positions correspond to the frequencies of record features [Vid+22; Vid+23]. Thus,
frequently (co-)occurring record features will lead to frequently set bit positions or
even to frequent Bloom filters in the case of attribute-level Bloom filters. By using
publicly available datasets containing person-related data, e. g., telephone books, voter
registration databases, social media profiles, or databases about persons of interest
like authors, actors, or politicians, an adversary can estimate the frequencies of record
features and then try to align those frequencies to the Bloom filters bit frequencies.

A successful re-identification of attribute values encoded in Bloom filters is a real
threat as shown by several attacks proposed in the literature. Earlier attacks, namely
[Kuz+11; KS14; Nie+14; Mit+16], often exploit the hashing method used in [SBR11],
the double-hashing scheme, that combines two hash functions to implement the k Bloom
filter hash functions. This hashing method can easily be replaced by using independent

46

2.8 Bloom Filter Encodings

hash functions or other techniques as discussed in Section 7.2.2.1. Furthermore, these
attacks rely on many unrealistic assumptions, for instance, that the encoded records are
a random sample of a resource known to the adversary [Kuz+11; Nie+14] or that all
parameters of the Bloom filter process, including used secret keys for the hash functions,
are known to the adversary [Mit+16].

However, recent frequency-based cryptanalysis attacks, namely [Chr+18a] and in par-
ticular [Chr+18b], are able to correctly re-identify attribute values without relying on
such assumptions. These attacks are more successful, the fewer attributes are encoded
in a Bloom filter, and the larger the number of encoded records. Furthermore, Vidanage
et al. [Vid+20a] proposed an attack on similarity graphs. Their attack is not limited
to any specific PPRL method and aims to determine a mapping between the encoded
records and plaintext records from a public database by using different graph features,
for instance, weighted node degree and centrality measures.

Overall, the attacks show the risk of re-identification when using Bloom filters, especially
attribute-level Bloom filters. Therefore, several techniques have been investigated to
reduce the weaknesses of Bloom filters. We will describe and evaluate these techniques
in Chapter 7.

47

3
Parallel Privacy-Preserving Record
Linkage using LSH-based Blocking

This chapter is based on [FSR18]. To achieve high scalability of PPRL to large datasets
with millions of records, we propose parallel PPRL (P3RL) approaches that build on
modern distributed dataflow frameworks. The proposed P3RL approaches also include
blocking for further performance improvements, in particular the use of LSH (locality-
sensitive hashing) that supports a flexible configuration and can be applied on encoded
records. We extensively evaluate the proposed LSH-based P3RL approaches on different
datasets and cluster sizes.

3.1 Motivation

Nowadays, large amounts of person-related data are stored and processed, e. g., about
patients or customers. For a comprehensive analysis of such data, it is often necessary
to link and combine data from different data sources, e. g., for data integration in health
care or business applications [Chr12b]. PPRL approaches aim at identifying records
from different data sources referring to the same person without revealing personal
identifiers or other sensitive information. PPRL is confronted with Big Data challenges,
particularly high data volumes and different data representations and qualities (variety,
veracity).

The aim of the work in this chapter is to improve the scalability and overall performance
of PPRL by supporting both parallel PPRL (P3RL) and blocking. Our P3RL approaches
enable the utilization of large shared nothing clusters running state-of-the-art distributed
processing frameworks, such as Apache Flink [The23a] or Apache Spark [The23b], to
reduce the execution time proportional to the number of processors in the cluster. Our
P3RL approaches utilize blocking to partition the database records so that only records

49

Chapter 3 – Parallel Privacy-Preserving Record Linkage using LSH-based Blocking

within the same block need to be compared. These comparisons are performed in parallel
by distributing the blocks among all worker nodes within the computer cluster.

In this work, we focus on blocking based on locality-sensitive hashing (LSH) [IM98;
Dur12] which can be applied on encoded data and is not domain-specific. To com-
paratively evaluate the efficiency of LSH in a parallel setting, we further developed a
modified phonetic blocking approach based on Soundex [OR18]. We parallelize both
approaches and compare them in terms of quality, efficiency, and scalability.

Following previous work, we realize our P3RL approach as a three-party protocol using
a trusted third party to conduct the linkage, the linkage unit [VCV13]. The use of
such a linkage unit is well-suited for P3RL because the linkage unit can maintain a
high-performance computer cluster. As a privacy technique, we use the widely-used
method by Schnell and colleagues [SBR11] to encode record attribute values in Bloom
filters (see Section 2.8).

Specifically, we make the following contributions:

• We develop parallel PPRL (P3RL) approaches with LSH-based and phonetic
blocking using a state-of-the-art distributed processing framework to efficiently
execute PPRL on large-scale clusters. For LSH blocking, we include optimizations
such as to avoid redundant match comparisons.

• We comprehensively evaluate the quality, efficiency, scalability, and speedup of
our P3RL approaches for different parameter settings and large datasets with up
to 16 million records in a cluster environment with up to 16 worker nodes.

After a discussion of related work in the next section, we describe the fundamentals
of LSH-based blocking in Section 3.3. Then, in Section 3.4, we present our P3RL
approaches using Apache Flink for both LSH and phonetic blocking. In Section 3.5, we
evaluate our approaches for different datasets and cluster sizes. Finally, we conclude
this chapter in Section 3.6.

3.2 Related Work

Record linkage approaches aim at achieving a high match quality and scalability to
large datasets [KR10]. To reduce the number of record comparisons, blocking techniques
are frequently used [Chr12a]. As discussed in Section 2.6.3.1, the standard blocking
method defines one or multiple blocking keys to group records into blocks such that
only records of the same block are compared. A blocking key is determined by applying
a function on one or more selected record attributes [Fis+15]. For example, one could
block persons based on the Soundex value of their last name (phonetic blocking) or on
the concatenation of the initial two letters of their first name and the city of birth.

50

3.3 Locality-sensitive Hashing

Analogous to traditional record linkage, blocking techniques are applied to make PPRL
scalable to large datasets. A common approach is to use phonetic codes to enable
blocking based on phonetic similarities of attribute values [KV09]. LSH-based blocking
has been shown to achieve high match quality as well as scalability to large datasets
[Dur12; KV15; KV16].

Parallel record linkage (PRL): For a further improvement of the scalability, several
parallelization techniques have been considered for traditional record linkage, as surveyed
in [CSS18]. On the one hand, graphics processing units (GPUs) have been used to
speed up similarity computations of candidate record pairs [For+13; Ngo+13]. Another
widely-used approach is to utilize parallel processing frameworks, such as Hadoop
MapReduce, to conduct the linkage in a parallel and distributed fashion [San+07;
Wan+10; BGH11; KTR12; Eft+17; Pap+17; GH21].

Parallel privacy-preserving record linkage (P3RL): We are aware of only a few studies
on parallel approaches for PPRL. In [Seh+15], graphics processors are utilized for
a parallel matching of Bloom filters (bit vectors). In [Gla+18], a distributed PPRL
approach is proposed using a pivot-based filtering method.

Furthermore, the authors of [KV13] and [KV14] proposed the use of MapReduce to
improve the scalability of PPRL based on Bloom filters using LSH-based blocking.
Like in the MapReduce approaches for record linkage [KTR12], the map function is
used to determine the blocking key values (LSH keys) in parallel. Then, the records
are grouped based on their LSH keys and compared block-wise in the reduce step. To
address the problem of duplicate candidate pairs in different blocks, two MapReduce
jobs are chained. While the first job only emits the IDs of candidate record pairs, the
second job groups equal candidate pairs in the reduce step to calculate the similarity of
each pair only once. Here the usage of MapReduce shows some limitations: In contrast
to modern distributed processing frameworks like Apache Flink, MapReduce does not
support complex user-defined functions and requires expensive job chaining and other
workarounds instead. Moreover, the evaluation is limited to two and four nodes and
small datasets of only about 300 000 records. As a result, the scalability of the approach
to larger datasets with millions of records and larger clusters remains open.

More recently, in [KK23], the authors investigated further parallel PPRL approaches
utilizing Apache Spark and blocking based on phonetic codes.

3.3 Locality-sensitive Hashing

Locality-sensitive hashing (LSH) was proposed to solve the nearest neighbor problem
in high-dimensional data spaces [IM98]. For LSH, a family of hash functions that is

51

Chapter 3 – Parallel Privacy-Preserving Record Linkage using LSH-based Blocking

sensitive to a distance measure d is used (see Definition 2.6.3.1). Such a family is defined
as follows:

Definition 3.3.0.1: LSH Family

Let d1, d2 with d1 < d2 be two distances according to a distance measure d over a
metric spaceM(U, d). Moreover, let pr1 and pr2 with pr1 > pr2 be two probabilities.
A family of hash functions F is called (d1, d2, pr1, pr2)-sensitive if for all f ∈ F and
for all elements x, y ∈ U the following conditions are met:

• d(x, y) ≤ d1 ⇒ P [f(x) = f(y)] ≥ pr1

• d(x, y) ≥ d2 ⇒ P [f(x) = f(y)] ≤ pr2

With that, the probability that a function f ∈ F returns the same output for two
elements with a distance smaller or equal to d1 is at least pr1. Otherwise, if the distance
is greater or equal to d2, then the probability that f returns the same output is at most
pr2.

For applying LSH as a blocking method for PPRL, the two hash families approximating
the Jaccard and the Hamming distance are most relevant [Dur12]. We focus on the
hash family FHFHFH that is sensitive to the Hamming distance (HLSH). Each function
fi ∈ FH with 0 ≤ i < m maps a Bloom filter Bfj representing a record rj to the bit
value on position i of Bfj. For LSH-based blocking, a set Θ = {fλ1 , . . . , fλΨ | fλι ∈ F}
of Ψ hash functions is used. To group similar records, a blocking key BK Θ(Bfj) is
generated by concatenating the output values of the hash functions fλ ∈ Θ, such that
BK Θ(Bfj) = fλ1(Bfj) ⊙ . . . ⊙ fλΨ(Bfj), where ⊙ denotes the concatenation of hash
values. As a blocking key consists of Ψ < m function values, Ψ defines the length of the
blocking (LSH) key. Based on the probabilistic assumption of LSH, the blocking keys of
two similar Bloom filters with a distance smaller or equal to d1 may be different. For
this reason, Λ blocking keys BK Θ1 , . . . , BK ΘΛ are used to increase the probability that
two similar Bloom filters have at least one common blocking key.

The parameters Ψ and Λ influence the efficiency and effectiveness of an LSH-based
blocking approach. The higher Ψ (LSH key length) the higher is the probability that
only records with a high similarity are assigned to the same block. Thus, the number
of records per block will be smaller. However, a higher Ψ also raises the probability
that matching records are missed due to erroneous data. Λ determines the number of
blocking keys. Hence, a higher value of Λ increases the probability that two similar
Bloom filters have at least one common blocking key. However, an increasing Λ leads
to more computations and can deteriorate scalability. Basically, Λ should be as low as
possible while Ψ is high enough to build as many blocks so that the search space is
greatly reduced. An optimal value for Λ can analytically be determined dependent on

52

3.4 Parallel PPRL (P3RL)

Ψ and on the similarity of true matching Bloom filter pairs [KV14]. This is difficult
to utilize in practice since the similarity of true matches is generally unknown. Using
HLSH, Ψ should be sufficiently large because each function f ∈ FH can only return 0 or
1 as output. Thus, at most 2Ψ blocking key values (blocks) exist for one HLSH key.

Example: Let Θ1 = {f7, f1}, Θ2 = {f0, f5} and Bf1 = 11011011, Bf2 = 10011011 two
Bloom filters. We get BK Θ1(Bf1) = f7(Bf1) ⊙ f1(Bf1) = 11, BK Θ2(Bf1) = f0(Bf1) ⊙
f15(Bf1) = 10 and BK Θ1(Bf2) = 10, BK Θ2(Bf2) = 10. Hence, Bf1 and Bf2 agree on
BK Θ2 and will be put into the same block for that LSH key, and finally be compared in
detail.

3.4 Parallel PPRL (P3RL)

We now explain our P3RL framework based on Apache Flink. At first, we give a brief
introduction to Flink and outline the basic concepts of our framework. We then describe
the implementation of the PPRL process using HLSH and phonetic blocking. For our
HLSH-based blocking approach, we propose two optimizations that aim at avoiding
duplicate match comparisons and restrict the choice of HLSH keys by avoiding the most
frequent 0/1-bit positions.

3.4.1 Apache Flink

We based our implementation on Apache Flink [Car+15] which is an open-source
framework for the in-memory processing of distributed dataflows. The use of distributed
dataflow systems, such as Apache Flink, simplifies the development of distributed
programs because these systems provide common data processing operations and
handle all the technical aspects of parallelization. Therefore, Flink programs can be
automatically executed in parallel on large-scale computer clusters.

A Flink program is defined through streams and transformations. Streams are collections
of arbitrary data objects. Since we have a fixed set of input records, we use bounded
streams of data, called DataSets, and the associated DataSet API. Transformations
produce new streams by modifying existing ones. Multiple transformations can be
combined to perform complex user-defined functions. Flink offers a wide range of
transformations, some of which are adopted from the MapReduce paradigm [DG08].
Basic transformations of the DataSet API include Map, FlatMap, Reduce, GroupReduce,
CoGroup, and Join.

At runtime, Apache Flink deploys two types of processes, called JobManager and
TaskManager [Car+15]. A JobManager coordinates the distributed execution of a Flink

53

Chapter 3 – Parallel Privacy-Preserving Record Linkage using LSH-based Blocking

program by scheduling tasks and managing resources. A TaskManager, in contrast,
corresponds to a worker node and executes parts of the parallel program, the tasks of a
dataflow. To control how many tasks a TaskManager accepts, the number of its task
slots is defined. Each task slot represents a fixed subset of resources (e. g., managed
memory) of the TaskManager. One or more subtasks of the Flink program are assigned
to the task slots and executed there in separate threads. Each TaskManager is a Java
virtual machine (JVM) that processes these threads.

3.4.2 General Approach

The general approach of our distributed framework using Flink is illustrated in Figure 3.1.
At first, each party individually performs a pre-processing step where records are encoded,
and static blocking keys can be defined [VCV13]. Then, the parties send their encoded
records as Bloom filters to the linkage unit. The linkage unit utilizes an HDFS cluster
and stores the encoded records distributed and replicated among the cluster nodes. To
conduct the linkage, the data is read in parallel by the nodes. If the encoded records do
not contain blocking keys, the linkage unit generates them. Afterward, the blocking step
is conducted to group together similar records for search space reduction. Hence, the
records are distributed and redirected among the cluster nodes based on their blocking
keys. Thereby, all records with the same blocking key value are sent to the same worker
node. Finally, the workers build candidate pairs, optionally remove duplicates and
perform the similarity calculations in parallel. The IDs of the matching pairs are then
sent back to the data owners.

Encoding

BK Generation

Blocking
GroupBy+GroupReduce

BK Generation
(Flat)Map

Classification
FlatMap

Encoding

BK Generation

Agreement on
Parameters

Party A

Party B

Linkage Unit

Encoded Records
Matches

Pairs of IDs

Duplicate Candidate
Removal
Filter

Pairs of IDs

Figure 3.1: General approach of the P3RL using Apache Flink. A dotted box indicates
an optional step.

54

3.4 Parallel PPRL (P3RL)

3.4.3 Hamming LSH

The first step of our HLSH blocking approach is to calculate the blocking keys BK Θ1 ,

BK Θ2 , . . . , BK ΘΛ for every input Bloom filter Bfi within a FlatMap function. Such a
function applies a user-defined Map function to each record and returns an arbitrary
number of result elements.

We choose fλ1 , . . . , fλΨ randomly from FH for each blocking key, but using each function
fλι ∈ FH only once so that each HLSH key uses different bit positions. More formally, we
set Θx ∩Θy = ∅, ∀x, y ∈ {1, . . . , Λ}. The output of the FlatMap function are tuples of
the form (keyID, keyValue, record). Each Bfi is replicated Λ times since it produces
a tuple T i

j =
(
j, BK Θj

(Bfi), Bfi
)

for every j ∈ {1, . . . , Λ}. The first two fields of T

correspond to the HLSH key with its ID and the third field consists of the input Bloom
filter.

Then, on the first two fields of each tuple T i
j a GroupBy function is applied. By that,

the tuples are redistributed so that tuples with the same HLSH key value are assigned
to the same block and worker node. By using a GroupReduce function, every pair of
tuples within a block builds a candidate pair Ci′,i′′

j = (Bfi′ , Bfi′′) if the Bloom filters
originate from different parties. A GroupReduce function is similar to a Reduce function,
but it gets the whole group (block) at once and returns an arbitrary number of result
elements.

Finally, the similarity of all candidate pairs is computed within a FlatMap function to
output only candidates with a sufficient similarity value. Afterward, the matches are
written into the Hadoop distributed file system (HDFS).

3.4.3.1 Removal of Duplicate Candidate Pairs

By using multiple blocking keys, LSH generates overlapping blocks. Consequently, pairs
of encoded records may occur in multiple blocks so that they are compared several
times. To avoid these redundant similarity calculations, we adapted the approach
from [KTR13], so that for every tuple T i

j additionally a list of all HLSH keys until
the (j − 1)-th key is emitted. We get tuples T̂ i

j = (j, BK Θj
(Bfi), Bfi, keysj(Bfi)) with

keysj(Bfi) = {BK Θ1(Bfi), . . . , BK Θj−1(Bfi)}.

For each candidate pair Ĉi′,i′′

j =
((

Bfi′ , keysj(Bfi′)
)

,
(
Bfi′′ , keysj(Bfi′′)

))
it is checked,

if the HLSH key lists are disjoint, i. e., if keysj(Bfi′) ∩ keysj(Bfi′′) = ∅. If they are
disjoint, then BK Θj

is the least common HLSH key and the candidate pair is compared.
Otherwise, a BK Θj′ with j′ < j exists so that the candidate pair is already considered
in another block and can be pruned for BK Θj

. We realized this overlap check with
a Filter function which is applied to each candidate pair. If the function evaluates

55

Chapter 3 – Parallel Privacy-Preserving Record Linkage using LSH-based Blocking

to true, i. e., the key lists do not overlap, the similarity of the candidate pair will be
calculated. Otherwise, the filter function evaluates to false and the candidate pair is
pruned.

The avoidance of redundant match comparisons leads to additional computational
effort. At maximum O(Λ− 1) HLSH keys need to be compared for each candidate pair.
Moreover, the tuple objects are larger leading to higher network traffic. As mentioned in
[KTR13] the removal of duplicate candidate pairs can also lead to load balancing issues.
By focusing on the least common HLSH keys, a Bloom filter pair will be only processed
for the HLSH key with the smallest index. Consequently, a pair with a higher index
(with respect to the HLSH key) is more likely to be considered a duplicate, potentially
introducing skew effects.

3.4.3.2 HLSH Key Restriction (HLSH-KR)

HLSH uses randomly selected bits from bit vectors (Bloom filters) to construct the
blocking key values. By that, HLSH applies probabilistic blocking on the presence or
absence of certain q-grams in the attribute values of a record.

With growing data volume some q-grams can occur in many records, because of lim-
ited real-world designations and namespaces that can be built by linguistic units
(e. g., morphemes, phonemes) of natural languages. For example, most residential ad-
dresses end with suffixes like ‘street’ or ‘road’. Even if such suffixes are abbreviated,
many records will produce q-grams like ‘st’ or ‘rd’ resulting in the same 1-bits in the
Bloom filters. Another example is the attribute gender, assuming only two possible
values (‘female’, ‘male’). If mapped into Bloom filters, every Bloom filter will contain
the same 1-bits corresponding to q-grams resulting from the substring ‘male’. If such
frequently occurring 1-bits are used to construct an HLSH key, many records will share
the same HLSH key and are assigned to the same block. This will lead to large blocks
with records only agreeing on q-grams having a low discriminatory power.

On the other hand, bit positions where the majority of bits are 0-bits can exist. For
example, some q-grams are very rare, because they are not common or are only existing
due to erroneous data (typographical errors). Again, using these bit positions for
constructing HLSH keys can lead to large blocks, because many records share the
property that they do not contain this information.

To overcome these issues, very frequent or infrequent q-grams could be treated as stop
words to avoid them being encoded into the Bloom filters. However, the identification
of such q-grams depends on the domain and on the used record attributes. Removing
q-grams also influences the linkage quality by changing the similarity values of Bloom
filter pairs.

56

3.4 Parallel PPRL (P3RL)

Based on these observations, we propose to consider only those bit positions for the
HLSH keys that are not frequently set to 0 or 1, respectively. For this purpose, we count
the number of 1-bits for each position and for all input Bloom filters. The resulting
list of bit positions is sorted with respect to the number of 1-bits at the corresponding
position in ascending order. Then, we remove 1

v
bit positions at the beginning (frequent

0-bits) and at the end of the list (frequent 1-bits) resulting in a bit position list P . Here
v denotes the pruning proportion for frequent bits. For the HLSH key generation, we
choose the hash functions randomly from F̃H = {fι ∈ FH | ι ∈ P}.

3.4.4 Phonetic Blocking

To comparatively evaluate our HLSH approach, we consider phonetic blocking (PB) as
a baseline for comparison. The idea of phonetic blocking is to use a phonetic encoding
function that produces the same output for input values with a similar pronunciation.
Usually, attributes like surname or given name are used to group persons with a similar
name while ignoring typographical variations. For phonetic blocking, the blocking key
is constructed during the pre-processing step. Each party individually builds for every
record a phonetic code for a selected attribute.

Phonetic codes inherently provide some degree of privacy by producing the same encod-
ing for multiple similar-sounding values (one-to-many mapping). However, providing
phonetic codes as plaintext reveals some information about the encoded records. For
example, Soundex reveals the first letter of an attribute value, thereby providing an
entrance point for cryptanalysis. Therefore, we encode the phonetic code for a record ri

into a separate Bloom filter that is used as a regular blocking key. Consequently, two
Bloom filters are sent to the linking unit for each record. As with the HLSH approach,
records are first grouped into blocks using a GroupBy function, and then all candidate
pairs for each block are generated by a GroupReduce function.

Since frequent/rare phonetic codes are potentially identifiable by analyzing the frequency
distribution of the blocking Bloom filter values, we consider a second variant denoted as
salted phonetic blocking (SPB). Similar to [Sch15], we select a record-specific key used
as salt for the Bloom filter hash functions to affect the hash values and corresponding
Bloom filter bit positions. If the salting keys of two records differ, it is very unlikely
that the same phonetic code will result in the same Bloom filter. Consequently, the
attribute(s) used as the salting key should be free of errors because otherwise, many
false negatives will occur.

Following this idea, for salted phonetic blocking, we use a second phonetic code as salt
such that each hash function gets as input both phonetic codes concatenated. Since only
records agreeing in both phonetic codes are assigned to the same block, the number

57

Chapter 3 – Parallel Privacy-Preserving Record Linkage using LSH-based Blocking

of blocks increases and the block sizes decrease. However, if only one attribute used
for blocking contains an error that cannot be compensated by the phonetic encoding
function, then even two similar records are assigned to different blocks, and thus
excluded from a detailed comparison.

3.5 Evaluation

In this section, we evaluate our P3RL approaches in terms of quality, scalability, and
speedup. Before presenting the evaluation results, we describe our experimental setup
and the datasets and metrics we used.

3.5.1 Experimental Setup

We conducted our experiments using a cluster with 16 worker nodes. Each worker is
equipped with an Intel Xeon E5-2430 CPU with 6×2.5 GHz, 48 GB RAM, and two
4 TB SATA disks running openSUSE 13.2. The nodes are connected via 1 Gbit Ethernet.
We use Hadoop 2.6.0 and Flink 1.3.1. Flink is executed standalone with 1 JobManager
and 16 TaskManagers, each with 6 TaskSlots and 40 GB JVM heap size.

3.5.2 Datasets

We generated synthetic datasets using the data generator and corruption tool GeCo
published in [CV13]. We replaced the lookup files for attribute values by German
names and address lists because the lookup files shipped with GeCo are very small,
which makes them not suitable for generating large datasets. We also added realistic
frequency values for these names and addresses, which are drawn from German census
data [Sta23a].

To consider different PPRL scenarios, we generated datasets DS and DR. With DS

a statewide linkage is simulated by using the complete look-up files. In contrast, we
restrict the addresses for records from DR to a certain region by only considering cities
whose zip code starts with ‘04’. With that, DR simulates a regional linkage scenario
which imitates a linkage of patient records from local health care providers.

For both datasets, we build subsets DSn and DRn of size n · 106 for all n ∈ {2b | b ∈
N : b ≤ 4}. Each obtained dataset consists of (4n/5) · 106 original and (n/5) · 106

randomly selected duplicate records. To simulate dirty data, each duplicate is corrupted
by choosing α attributes that are modified. A maximum of β modifications are then
introduced into each of these attributes. We get datasets D

(α,β)
Sn

and D
(α,β)
Rn

, respectively.

58

3.5 Evaluation

We consider two levels of corruptions (moderate and high) by generating DM
Sn

, DM
Rn

with
M = (2, 1) and DH

Sn
with H = (3, 2).

Moreover, the records are encoded into CLK Bloom filters by tokenizing the values of
the attributes A = {surname, first name, date of birth (dob), city, zip code} into a set
of trigrams. We set k = 20.

To determine mopt, we estimate the average number of trigrams ω(A) each attribute
A ∈ A produces. We obtain ω(A) = (ΓA − q) + 1, where ΓA is the average length
of values from attribute A. Our estimation using character padding [Sch15] to build
trigrams is shown in Table 3.1. To approximate the average total number of trigrams,
we calculate ∑A∈A ω(A) = 42 leading to mopt = 1212 (see Section 2.8). For the phonetic
blocking approaches PB and SPB, we choose the attribute surname and use the first
name attribute as salt. This leads to an optimal blocking Bloom filter length of 29 using
20 hash functions.

Name Surname Dob Zip + City
Avg. attribute length 6 7 8 5 + 10
q-grams (q = 3) 8 9 10 15

Table 3.1: Estimated average attribute length and the resulting number of q-grams.

3.5.3 Evaluation Metrics

To assess the match quality of our blocking schemes, we measure the pairs completeness
(PC) that is the ratio of true matches (PC ∈ [0, 1]) that can be identified within the
determined blocks [Chr12b]. To evaluate scalability, we measure the execution times for
several datasets of different sizes. We also calculate the reduction ratio (RR) which is
defined as the fraction of record pairs that are removed by a blocking method compared
to the evaluation of the Cartesian Product (see Section 2.6.7.2). The achievable speedup
is analyzed by utilizing different cluster sizes (Υ).

3.5.4 Experimental Results

In the following, we present the results of our experimental evaluation.

3.5.4.1 HLSH Parameter Evaluation

To analyze effectiveness and efficiency, we evaluate different HLSH parameter settings
by considering several HLSH key lengths with Ψ ∈ {10, 15, 20, 25} and varying the

59

Chapter 3 – Parallel Privacy-Preserving Record Linkage using LSH-based Blocking

0%25%50%75%100%
0

20

40

60

80

100

120

140

160

180
LSH(10,5) LSH(10,10)
LSH(10,15) LSH(10,20)
LSH(15,5) LSH(15,10)
LSH(15,15) LSH(15,20)
LSH(15,25) LSH(15,30)
LSH(20,5) LSH(20,10)
LSH(20,15) LSH(20,20)
LSH(20,25) LSH(20,30)
LSH(25,5) LSH(25,10)
LSH(25,15) LSH(25,20)
LSH(25,25) LSH(25,30)

Pairs Completeness

R
u

n
ti

m
e

[s
]

(a) DM
S1

0%25%50%75%100%
0

20

40

60

80

100

120

140

160

180
LSH(10,5) LSH(10,10) LSH(10,15) LSH(10,20)
LSH(15,5) LSH(15,10) LSH(15,15) LSH(15,20)
LSH(15,25) LSH(15,30) LSH(20,5) LSH(20,10)
LSH(20,15) LSH(20,20) LSH(20,25) LSH(20,30)
LSH(25,5) LSH(25,10) LSH(25,15) LSH(25,20)
LSH(25,25) LSH(25,30)

Pairs Completeness

R
u

n
ti

m
e

[s
]

(b) DH
S1

Figure 3.2: Pairs completeness against runtime of different HLSH parameter settings
for DM

S1 and DH
S1 and Υ = 4.

60

3.5 Evaluation

number of HLSH keys Λ ∈ {5, 10, 15, . . . , 30}. For this experiment we use DM
S1 and DH

S1

(1 million records) setting Υ = 4.

Figure 3.2 shows the PC values compared to the runtimes for the different HLSH
settings, denoted as LSH(Ψ, Λ), for both moderate and high degrees of corruption. For
a moderate degree of corruption (Figure 3.2a), several configurations achieve a good PC
of over 95%. A high PC result is favored by low key lengths Λ (e. g., 10 or 15) and thus
relatively large blocks. The best results for Ψ = 10 requires relatively high runtimes
due to the larger block sizes compared to configurations with larger key lengths (since
per key at most 210 blocks are generated for Ψ = 10). A near-optimal PC with better
runtimes is achieved with Ψ = 15 and Λ = 20. A large key length such as Ψ = 25 misses
many matches and achieves only relatively low PC values even with many blocking
keys, e. g., Λ = 30. This is even more apparent for the results with a high degree of
corruption (Figure 3.2b). Here, choosing Ψ ≥ 20 achieves unacceptably low PC values
of less than 65%. The best results are achieved for Ψ = 10 and Ψ = 15 where the latter
setting needs already a high number of blocking keys of at least 30. The best trade-off
between PC and runtime can be achieved by using Ψ = 15. However, facing very dirty
data as simulated with DH

S1 , Λ should be sufficiently large with Λ ≥ 30.

Dataset Method PC [%] RR [%] # Blocks # Candidates

DM
S1

LSH(10,10) 98.68 98.47 1024 2446.25
LSH(10,15) 99.76 97.69 1024 3702.66
LSH(15,15) 96.92 99.90 32 425 161.56
LSH(15,20) 98.85 99.87 32 448 213.11

PB 86.70 99.62 2347 610.77
SPB 73.11 99.99 79 864 19.19

DH
S1

LSH(10,10) 85.90 98.52 1,024 2375.22
LSH(10,15) 93.34 97.76 1024 3580.99
LSH(15,15) 68.68 99.91 32 489 151.01
LSH(15,20) 77.45 99.88 32 504 199.74

PB 75.50 99.66 2737 551.34
SPB 54.90 99.99 84 071 18.36

Table 3.2: Comparison of the different blocking schemes considering PC , RR, the number
of blocks (per HLSH key) and the number of candidates (in millions) for DM

S1 and DH
S1 .

3.5.4.2 Comparison of HLSH and Phonetic Blocking

In the following, we compare the best-performing HLSH settings to the phonetic blocking
approaches PB and SPB. The results using the same datasets as before are shown
in Table 3.2.

61

Chapter 3 – Parallel Privacy-Preserving Record Linkage using LSH-based Blocking

We observe that PB and SPB achieve quite low pair completeness even for DM
S1 . The

reason is that phonetic blocking is more sensitive with respect to data errors compared
to HLSH blocking. All approaches except those with Ψ = 10 achieve a high RR of
over 99% and are thus able to greatly reduce the search space. However, the number
of candidates varies significantly between the methods, even if the RR values are very
close. For instance, the number of candidates for PB is more than a factor of 3.5
higher compared to LSH(15,15). SPB instead generates 30 times fewer candidate pairs
compared to PB. This is due to the low number of blocks that are generated by PB.
While Soundex theoretically can produce 26 · 73 blocking key values (blocks), less than
8 · 73 blocks are actually built, making PB not feasible for large datasets.

3.5.4.3 HLSH Optimizations

We evaluate the HLSH optimizations described in Sections 3.4.3.1 and 3.4.3.2 for the
datasets DM

S and DM
R setting v = 1

8 and Υ = 4. Figure 3.3 shows the runtimes and the
number of candidates (logarithmic scale on the right-side y-axis) achieved by LSH(15,20)
while enabling our optimizations.

In general, the number of candidates for DM
R is about 2.4 times as high as for DM

S due
to a higher degree of similarity between the records and thus larger blocks. For both
datasets, the removal of duplicate candidates could reduce the number of candidates
very little by at most 1%. Hence, the overhead checking the lists of HLSH keys was
more significant, significantly increasing the overall run time.

By contrast, the key restriction approach HLSH-KR reduces the number of candidates
substantially by up to 20% for DM

S and even 40% for DM
R . While for DM

S the overhead
for calculating the bit frequencies neutralizes the savings, for DM

R8 and DM
R16 HLSH-

KR leads to significant runtime savings. HLSH-KR generally improves with growing
data volumes since the data space becomes denser such that more frequent 0/1-bits
occur, and thus avoiding overly large blocks becomes more beneficial. The overhead to
determine frequent 0/1-bits is linear and becomes negligible for large datasets because
the complexity of PPRL remains quadratic.

Using HLSH-KR also influences the linkage quality, since fewer bit positions are
considered. For both datasets, we measured a loss of PC of around 1% while enabling
HLSH-KR.

3.5.4.4 Scalability and Speedup

To evaluate the scalability, we execute our blocking approaches on the datasets DM
S1 ,

DM
S2 , . . . , DM

S16 setting Υ = 16. The runtime results depicted in Figure 3.4 show that

62

3.5 Evaluation

1 4 8 16
0

1000

2000

3000

4000

5000

6000

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

65,536

131,072

262,144

524,288
[Candidates] LSH(15,20)
[Candidates] LSH(15,20) + KR
[Candidates] LSH(15,20) + Filter
[Time] LSH(15,20)
[Time] LSH(15,20) + KR
[Time] LSH(15,20) + Filter

#Records [Millions]

T
im

e
[s

]

#
C

an
d

id
at

es
 [M

ill
io

n
s]

(a) DM
S

1 4 8 16
0

1000

2000

3000

4000

5000

6000

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

65,536

131,072

262,144

524,288
[Candidates] LSH(15,20)
[Candidates] LSH(15,20) + KR
[Candidates] LSH(15,20) + Filter
[Time] LSH(15,20)
[Time] LSH(15,20) + KR
[Time] LSH(15,20) + Filter

#Records [Millions]

T
im

e
[s

]

#
C

an
d

id
at

es
 [M

ill
io

n
s]

(b) DM
R

Figure 3.3: Evaluation of HLSH duplicate candidate filter and HLSH key restriction
(denoted as KR) for DM

S and DM
R setting v = 1

8 and Υ = 4.

63

Chapter 3 – Parallel Privacy-Preserving Record Linkage using LSH-based Blocking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200

400

600

800

1000

1200

1400

1600

1800
LSH(10,10)
LSH(10,15)
LSH(15,15)
LSH(15,20)
PB
SPB

#Records [Millions]

T
im

e
[s

]

Figure 3.4: Execution times for different blocking methods for DM
S with Υ = 16.

LSH(10,10), LSH(10,15), and PB do not scale with respect to the number of records,
which is due to the low number of blocks. Already for the dataset DM

S4 , these approaches
run more than 8 times slower than the other. For DM

S8 and DM
S16 the runtime increases

drastically, so that PB, for example, requires around 1650 s and 7120 s, respectively.
By contrast, SPB can achieve the lowest execution times, albeit for an unacceptably
low PC (Table 3.2). In general, even a slightly higher reduction ratio can lead to a
huge performance improvement. The LSH blocking approaches with Ψ = 15 are able
to efficiently link large datasets with a high match quality. For example, by using
LSH(15,20) the linkage of dataset DM

S16 is performed in around nine minutes. It is also
interesting that the runtime of LSH(15,20) is higher by a factor of 1.4 compared to
LSH(15,15). Hence, the increase of the runtime corresponds to the higher value for Λ
(4

3).

Finally, we evaluate the speedup by utilizing up to 16 worker nodes using DM
S1 and DM

S16 .
The results in Figure 3.5 show that for DM

S16 and up to eight worker nodes, the speedup
is nearly linear for both LSH methods, while degrades after this.

In contrast, PB achieves a much lower speedup that degrades already for more than
four workers. This is because of the low number of blocks (Table 3.2) and because of
data skew effects introduced by frequent names, leading to large blocks that need to
be processed on a single worker. This results in an uneven workload, causing some
workers to determine the overall runtime. Even if parallelism is increased by adding
more workers, each block is assigned to only one worker, resulting in the same workload
for that node.

The speedup results for DM
S1 are lower compared to DM

S16 indicating that the lower data
volume can be handled already by fewer workers. This is confirmed by the speedup of

64

3.6 Conclusion

the SPB approach, which already degrades for more than two worker nodes. PB achieves
a slightly higher speedup for DM

S1 compared to the DM
S16 dataset, which indicates that

the performance problems introduced by data skew effects become more severe with
increasing data volume.

1 2 4 8 16
1

2

4

8

16
Ideal
LSH(15,15)|1
LSH(15,20)|1
PB|1
SPB|1
LSH(15,15)|16
LSH(15,20)|16
PB|16
SPB|16

#Worker

Sp
ee

d
u
p

Figure 3.5: Speedup evaluation for the blocking methods.

3.6 Conclusion

We proposed and evaluated parallel PPRL approaches using LSH-based blocking
executed within Apache Flink as a state-of-the-art distributed processing framework.
Our evaluation using large datasets and different degrees of data quality showed the high
efficiency and effectiveness of our LSH-based P3RL approaches, which clearly outperform
approaches based on phonetic blocking. We also found that the overhead for finding
duplicate candidates cannot be outweighed by the achievable savings. By contrast,
avoiding the most frequent 0/1-bits for LSH blocking proved to be beneficial for very
large datasets. For future work, we want to explore how optimal LSH parameters can be
determined automatically. Moreover, we plan to investigate further P3RL approaches
utilizing blocking and filtering to reduce the number of candidate record pairs.

65

4
LSH-based Blocking on Attribute-level
Bloom Filters

This chapter is based on [Roh+21]. As shown in Chapter 3, utilizing locality-sensitive
hashing (LSH) as a blocking method can significantly improve the scalability of PPRL
by considerably reducing the number of candidate record pairs. At the same time,
LSH-based blocking can correctly identify the vast majority of true matches, so that
only a few matches are missed. Moreover, LSH-based blocking does not require plaintext
data but can be applied directly on encoded records (bit vectors). Therefore, LSH-
based blocking does not reveal (additional) information about the plaintext attribute
values. However, LSH-based blocking has so far only been applied to record-level
Bloom filter encodings where a single bit vector represents all identifying data of a
person. We therefore investigate approaches for LSH-based blocking using attribute-
level encodings. We implement these approaches in an identify management software,
called Mainzelliste [LBÜ15], which is widely used for (privacy-preserving) record linkage
applications in the medical domain in Germany.

4.1 Motivation

The advantage of attribute-level encodings is that they allow more sophisticated match-
ing techniques compared to record-level encodings (see Section 2.8.2.1). Especially in
the medical domain, Bloom filter encodings on attribute level are therefore preferred, as
they promise a higher linkage quality and thus more reliable linkage results [Ran+19].
In particular, the Mainzelliste [TMF21], a web-based open-source software for identity
management, focuses on attribute-level Bloom filters [LBÜ15] for privacy-preserving
record linkage by default. However, the Mainzelliste shows poor runtime and scalability
since it misses support for blocking. As a consequence, every new patient record has to

67

Chapter 4 – LSH-based Blocking on Attribute-level Bloom Filters

be compared with every already known (previously added) record. To improve runtimes,
we extend the Mainzelliste to support blocking based on locality-sensitive hashing
(LSH) that shows high efficiency and effectiveness (see Chapter 3). However, LSH-based
blocking has so far only been applied to record-level Bloom filter approaches, where all
attributes are mapped into a single Bloom filter (bit vector).

In this work, we therefore propose methods for LSH-based blocking on attribute-level
encodings that result in multiple bit vectors. Although we implement and evaluate
these methods within the Mainzelliste, their application is not limited to this particular
software, and they can be included in other PPRL tools as well.

Specifically, we make the following contributions:

• We propose two methods for LSH-based blocking on attribute-level Bloom filter
encodings.

• We implement our LSH-based methods within the Mainzelliste, an identity man-
agement software that is used in several medical research projects.

• We evaluate our blocking extensions to assess the runtime improvements and to
identify suitable default parameter settings to achieve high linkage quality.

The rest of this chapter is structured as follows. In Section 4.2, we give a brief description
of the Mainzelliste software and its use in medical research projects. We then present our
methods for LSH-based blocking on attribute-level Bloom filter encodings in Section 4.3.
In Section 4.4, we evaluate our approaches in terms of linkage quality and scalability.
Finally, in Section 4.5, we conclude.

4.2 Background

The core functionalities of the Mainzelliste are the pseudonymization and de-pseudonym-
ization of patients, accessible via a RESTful interface that enables self-explanatory
usage through widely used web technologies. The pseudonymization process includes
a configurable record linkage process, which by default uses an error-tolerant match-
ing algorithm [Con+05] to compute the similarity between pairs of records and find
duplicates even in the presence of typos, interchanged attributes, or missing values.

Since its first release in 2013, the Mainzelliste has been used by a constantly growing
number of national medical research networks [LSÜ18; Hav+14], centralized biobanks
[Ber+16], research platforms [Skr+16], commercial data capture and analysis suites
[Cau15], registry software solutions [Mus+14; Sto+17], and disease registries [BW15;
ChI15]. The software is under continuous development, incorporating community con-
tributions from various research institutions [LBÜ23].

68

4.3 Approaches for LSH Blocking on Attribute-level Bloom Filters

The Mainzelliste can be used for conventional record linkage on original (plaintext) as
well as for PPRL on encoded attribute values. A variety of other open-source record
linkage tools exists [Chr12b], but most of them are limited to one-time batch matching.
A comparison of the Mainzelliste with other tools for incremental matching on plaintext
data was carried out in [LBÜ15]. While PPRL has already been applied for several
medical use cases in different organizations [Kue+12; Gib+16; Luo+17], to the best of
our knowledge the Mainzelliste is the only publicly available PPRL tool with a RESTful
web interface that has been used in numerous real applications. In contrast to many
other PPRL tools, it is ready-to-use and easily deployable in medical applications,
rather than being a prototype or library adding functionality to other programs. A
detailed comparison of available PPRL tools is given in Section 8.3.

4.3 Approaches for LSH Blocking on Attribute-level
Bloom Filters

LSH has been used as a blocking method for PPRL in several approaches (see Section 3.2).
However, LSH-based blocking has so far only been applied to record-level Bloom filter
encodings where a single bit vector represents all attributes of a record. Therefore, in
the following, we propose two methods to apply LSH on a set of attribute-level Bloom
filters {bv1, . . . , bvp} where p denotes the number of Bloom filters (corresponding to
attributes/fields) used for blocking. Both methods are illustrated in Figure 4.1.

4.3.1 Attribute-level LSH

As a first approach, we consider an attribute-dependent selection strategy, where a
certain number Λi, i ∈ {1, . . . , p}, of LSH blocking keys is constructed for each attribute
separately. All bits of a single LSH key are drawn from the same attribute-level Bloom
filter, and hence each key is affected by exactly one attribute. For the example in
Figure 4.1, we have chosen a single key of length four for each of the three considered
attributes. The two sample records a and b have the same blocking key for two of the
three keys (BK 2 and BK 3).

The main benefit of this approach is that it is error-tolerant even if several attribute
values are different or missing. At least one matching attribute is sufficient to assign
two records to the same block. On the other hand, as each blocking key solely depends
on a single attribute-level Bloom filter, the resulting blocks can become large when
there are only a few different attribute values or frequent attribute values, e. g., popular
last or first names.

69

Chapter 4 – LSH-based Blocking on Attribute-level Bloom Filters

Record b

Record a

First Name
(FN)

0 1 0 1 1 0 0 1
Bernd

0 1 1 1 1 0 0 0
Bernt

Last Name
(LN)

1 0 1 0 1 1 0 0
Schmidt

1 0 1 0 1 1 0 0
Schmidt

Date of Birth
(DB)

1 0 1 0 1 1 0 0
21.07.1969

1 0 1 0 1 1 0 0
21.07.1969

b

a

BK1

First Name

4 2 5

1 0 0

1 1 0

D
e
f.

0

0

0 b

a

BK2

Last Name

7 1 0

0 0 1

0 0 1
D

e
f.

3

0

0 b

a

BK3

Date of Birth

3 4 6

0 1 0

0 1 0

D
e
f.

2

1

1b

a

BK1

First Name

4 2 5

1 0 0

1 1 0

D
e
f.

0

0

0 b

a

BK2

Last Name

7 1 0

0 0 1

0 0 1
D

e
f.

3

0

0 b

a

BK3

Date of Birth

3 4 6

0 1 0

0 1 0

D
e
f.

2

1

1b

a

BK1

First Name

4 2 5

1 0 0

1 1 0

D
e
f.

0

0

0 b

a

BK2

Last Name

7 1 0

0 0 1

0 0 1
D

e
f.

3

0

0 b

a

BK3

Date of Birth

3 4 6

0 1 0

0 1 0

D
e
f.

2

1

1A
tt

ri
b
u
te

-l
e
v
e
l

LS
H

R
e
co

rd
-l

e
v
e
l

LS
H

b

a

BK1

2 3 7

0 0 0

1 0 0

D
e
f.

2

1

1 b

a

BK2

7 2 2

1 1 1

0 1 1

D
e
f.

0

1

1 b

a

BK3

3 1 5

1 0 1

1 0 1

D
e
f.

1

0

0

FN LN DB DB FN LN DB DB FN LN DB DB

= 3Λ

= 4Ψ

= 3Λ

ΨFN = 1
ΨLN = 1
ΨDB = 2

Figure 4.1: LSH-blocking variants on attribute-level Bloom filters.

4.3.2 Record-level LSH

We also consider a multi-attribute selection strategy. For each LSH blocking key bki

with i ∈ {1, . . . , Λ} we select a certain number {Ψ1, . . . , Ψp} of positions from each
attribute-level Bloom filter. As a consequence, the Ψ = ∑p

i=1 Ψi bits of each LSH key
will be drawn from the different attribute-level Bloom filters.

For the example in Figure 4.1, we have again Λ = 3 blocking keys of length Ψ = 4, but
the bits are selected from all three attributes. Here, 1 bit is selected from the first name
attribute (ΨFN = 1), 1 bit from the last name attribute (ΨLN = 1), and 2 bits from the
date of birth attribute (ΨDB = 1). As a result, only the key BK 3 has the same value
for the two considered records.

In contrast to the attribute-level LSH approach, the record-level strategy can lead
to smaller blocks as each LSH blocking key depends on several Bloom filters and
thus attributes. Therefore, the record-level LSH strategy is assumed to produce fewer
candidates and consequently fewer record pair comparisons. However, the record-level
strategy may also be less error-tolerant compared to the attribute-level strategy. In
particular, if attributes are erroneous or contain missing values, then the probability

70

4.4 Evaluation

that these attributes will affect several or even all LSH blocking keys increases. As a
consequence, such cases can lead to missing matches (false negatives). Thus, more LSH
keys may be needed to avoid or limit this problem.

4.4 Evaluation

In this section, we evaluate the approaches for LSH-based blocking on attribute-
level Bloom filters in terms of their efficiency and effectiveness. Before presenting
the evaluation results, we describe our experimental setup and the datasets and metrics
we use.

4.4.1 Datasets

For the evaluation, we use one real-world and four synthetically generated, near-real
datasets each with the attributes first name, last name, and date of birth. Table 4.1
shows the main features of the five datasets, in particular their sizes and error rates.

Dataset R is based on a real-world dataset with approximately 50 000 person records
that were drawn from the civil register of a German city. This dataset is of high quality
and contains only 565 duplicate records. An analysis of the duplicates shows that
approximately 80% are equal in all of their attributes, but the remaining duplicates
contain missing values, diacritics, and multiple names in first and last name attributes.
All records of dataset R are sequentially inserted so that each additional record is
matched against the records already stored in the Mainzelliste database.

To systematically evaluate the impact of the dataset size and data quality, we syn-
thetically generated four additional datasets with near-real person names derived from
look-up files and frequency distributions from German census data. For this purpose,
we employ a customized version of the GeCo data generation and corruption tool used
in previous research on record linkage [TVC13]. The G datasets are generated in three
sizes to evaluate the scalability of the linkage: small, medium, and large with 10 000,
100 000, and 1 000 000 records in total. For these datasets, we assume that a subset
A of 70% of the records is already inserted in the Mainzelliste database and that the
records of the remaining subset B are added (matched and inserted) one by one. For
the large dataset GL the runtimes without blocking are already too high, so we only
evaluate it for a randomly selected subset of B encompassing 10% of its records. The
quality regarding the G datasets is lower than for the real dataset R since we assume a
relatively high share of duplicate records (50% of the records in subset B). Furthermore,
30% of the duplicates are assumed to contain one or two erroneous attribute values, as
indicated in the last column of Table 4.1.

71

Chapter 4 – LSH-based Blocking on Attribute-level Bloom Filters

For quality evaluation, we additionally consider the ‘dirty’ dataset DM. Dataset DM has
the same size as GM but more errors, e. g., phonetic variation, OCR errors, and typos,
that are introduced by GeCo’s corruption component. In DM 40% of the duplicate
records are erroneous, including 5% with errors in all three attributes, to provide a
pessimistic scenario for achieving high match quality.

DS |A| |B| |A ∩B| % records : errors

R 0 51 380 565
81% : 0
18% : 1
01% : 2

GS 7000 3000 1500
70 % : 0
27% : 1
03% : 2

GM 70 000 30 000 15 000
70% : 0
27% : 1
03% : 2

GL 700 000 300 000 150 000
70% : 0
27% : 1
03% : 2

DM 70 000 30 000 15 000

60% : 0
25% : 1
10% : 2
05% : 3

Table 4.1: Description of the datasets, each with the size of the initial patient list |A|,
the number of inserted patients |B|, the number of duplicate records |A ∩B| and the
proportion of records with a certain amount of erroneous fields.

4.4.2 Bloom Filter Encoding

Record linkage on encodings based on Bloom filters requires the pre-processing steps to
be done before the actual encoding and therefore by the data owners. Table 4.2 shows
the data cleaning methods used for each attribute. For dataset R an additional step was
performed to split compound attributes as described above. After pre-processing, all
attributes are split into bigrams (q-grams of length 2) that are mapped into the Bloom
filters. The three components of the birthday have been encoded in a joint Bloom filter.
An essential parameter for encoding is the ratio of the number of hash functions to the
length of the Bloom filter. The larger the ratio, the more bits are set on average in the
bit vector. The applied encoding parameters (shown in Table 4.2) result in an average
share of approximately 25% 1-bits.

72

4.4 Evaluation

Attribute Preprocessing Padding k m

First name
Trim whitespace

yes 20 384
Lower case conversion

Last name
Umlaut substitution

yes 20 512
Diacritics removal

Day of birth – yes 20
512Month of birth – no 40

Year of birth Only last two digits yes 20

Table 4.2: Bloom filter encoding used for the evaluation with k as the number of hash
functions and m as the length of the Bloom filter.

4.4.3 Evaluation Metrics

Runtime for inserting patients is measured within the Mainzelliste. Therefore, it does
not include the network latency (delay) of the HTTP requests. Please note that the
time for inserting a patient includes the retrieval of records from the database, the
actual matching, as well as the time needed for persistence. Furthermore, we determine
the average number of candidates for each record and calculate the reduction ratio (see
Section 2.6.7.2).

4.4.4 Benchmark Setup

All experiments are conducted on a desktop computer equipped with an Intel i7-6700,
32 GB main memory, and an SSD running Ubuntu 18.04, MySQL 5.7, and Tomcat 8.5.
We compare the LSH-based blocking to traditional blocking on plaintext attributes.
Therefore, we use the Soundex encoding function [OR18] on the first and last name
attributes. As a result, two records are compared if they share the same Soundex value
for either the first or the last name.

4.4.5 Results and Discussion

LSH blocking requires the configuration of the two parameters Λ and Ψ (number and
length of blocking keys). We therefore evaluated different settings on dataset GM to
determine suitable default parameters for each LSH method. Figure 4.2 shows the
obtained F1-score and runtime results for different values for Λ and Ψ.

For attribute-level LSH (Figure 4.2a) the F1-scores are very stable as at least one
of the three attributes per record is error-free for GM. We therefore choose Λ = 3,
corresponding to one key per attribute, and Ψ = 36 as it results in shorter runtimes.
However, for record-level LSH (Figure 4.2b) a higher number of blocking keys Λ = 9

73

Chapter 4 – LSH-based Blocking on Attribute-level Bloom Filters

92%93%94%95%96%97%98%99%100%
10

15

20

25

30

35

40

45

50
Λ=1·3=3, Ψ=12
Λ=2·3=6, Ψ=12
Λ=3·3=9, Ψ=12
Λ=1·3=3, Ψ=24
Λ=2·3=6, Ψ=24
Λ=3·3=9, Ψ=23
Λ=1·3=3, Ψ=36
Λ=2·3=6, Ψ=36
Λ=3·3=9, Ψ=36

F-Measure

R
u

n
ti

m
e

[s
]

(a) Attribute-level LSH

92%93%94%95%96%97%98%99%100%
10

15

20

25

30

35

40

45

50
Λ=3, Ψ=4·3=12
Λ=6, Ψ=4·3=12
Λ=9, Ψ=4·3=12
Λ=3, Ψ=8·3=24
Λ=6, Ψ=8·3=24
Λ=9, Ψ=8·3=24
Λ=3, Ψ=12·3=36
Λ=6, Ψ=12·3=36
Λ=9, Ψ=12·3=36

F-Measure

R
u

n
ti

m
e

[s
]

(b) Record-level LSH

Figure 4.2: F-Measure against runtime for different numbers of LSH keys (Λ) and LSH
key lengths (Ψ) determined for dataset GM.

and shorter keys with Ψ = 24, i. e., 8 hashes for each attribute (8 · 3 = 24), yield a good
compromise between linkage quality and runtime.

Additionally, we apply the key restriction approach proposed in Section 3.4.3.2 to
exclude bit positions that are frequently set to 0 or 1 as they can cause larger block
sizes. The bit frequencies are determined at runtime based on the first 1000 inserted
records, applying a prune ratio of 0.5.

Table 4.3 shows the results of all evaluations for the five datasets with and without
Bloom filters, as well as with and without (Soundex or LSH) blocking. Rows without
blocking correspond to the original implementation of the Mainzelliste whereas rows
with blocking represent the respective results with our improvements. For each of the
five configurations per dataset, the table shows the linkage quality results as well as

74

4.4 Evaluation

DS BF Blocking t [%]
Rec.

[%]
Prec.

[%]
F1

[ms]
Insert

Blocks
#

Cand.
#

[%]
RR

No 0.90 98.05 99.64 98.84 394 0 25 283 0.00
✗

Soundex 0.90 98.05 99.64 98.84 13 5753 185 99.27
No 0.95 98.05 99.64 98.84 352 0 25 283 0.00
F-LSH 0.95 98.05 99.64 98.84 14 45 436 69 99.73

R
✓

R-LSH 0.95 98.05 99.64 98.84 15 409 876 5 99.98

No 0.80 98.00 100.00 98.99 108 0 7400 0.00
✗

Soundex 0.80 98.00 100.00 98.99 12 1438 91 98.77
No 0.85 99.00 100.00 99.50 81 0 7387 0.00
F-LSH 0.85 99.00 100.00 99.50 10 9810 42 99.43

GS

✓

R-LSH 0.85 97.73 100.00 98.85 11 72 011 2 99.98

No 0.80 98.12 99.53 98.82 1018 0 73 966 0.00
✗

Soundex 0.80 98.09 99.53 98.80 22 1950 862 98.83
No 0.85 98.55 98.53 98.54 724 0 73 879 0.00
F-LSH 0.85 98.55 98.53 98.54 14 27427 406 99.45

GM

✓

R-LSH 0.85 97.20 98.93 98.06 15 554 785 14 99.98

No 0.80 98.18 96.77 97.47 9525 0 701 971 0.00
✗

Soundex 0.80 98.18 96.28 97.22 147 2260 8549 98.78
No 0.85 98.63 90.92 94.62 7151 0 701 767 0.00
F-LSH 0.85 98.62 90.47 94.37 55 36 100 3996 99.43

GL

✓

R-LSH 0.85 96.93 92.42 94.62 15 2 970 247 145 99.98

No 0.80 90.09 99.51 94.57 1059 0 74 970 0.00
✗

Soundex 0.80 89.45 99.51 94.21 22 2454 842 98.88
No 0.85 91.84 98.31 94.96 731 0 74 717 0.00
F-LSH 0.85 91.82 98.31 94.95 14 29 993 388 99.48

DM

✓

R-LSH 0.85 89.41 98.73 93.84 15 565 698 14 99.98

Table 4.3: Mainzelliste evaluation results using different blocking approaches.

the average (insert) runtime per record, the number of blocks, the number of match
candidates, and the achieved reduction ratios.

A detailed comparison between matching on plaintext and encoded data without
blocking can be found in [Roh+21].

The newly introduced blocking methods led to dramatic improvements in the runtime
of the Mainzelliste software by several orders of magnitude. Figure 4.3 illustrates the
average insert time per record vs. the dataset size. In the original implementation
without blocking (left part of Figure 4.3) these execution times rise linearly with the
number of records. This leads to an unacceptably long runtime per record for dataset
GL of up to 9.5 (7) seconds for plaintext (Bloom filter) matching and thus to execution
times of more than one month for 300 000 records. Applying blocking (right part of
Figure 4.3 with different scaling of the y-axis) leads to drastically improved execution
times, e. g., by a factor of almost 500 using record-level LSH on dataset GL.

75

Chapter 4 – LSH-based Blocking on Attribute-level Bloom Filters

10k
100k

1000k

0

1k

2k

3k

4k

5k

6k

7k

8k

9k

10k

No (Plain)

No (BF)

No blocking

Dataset size

In
se

rt
 t

im
e

[m
s]

10k
100k

1000k

0

25

50

75

100

125

150

175

200

Soundex

FieldLSH

RecordLSH

With blocking

Dataset size

In
se

rt
 t

im
e

[m
s]

Figure 4.3: Comparison of average insertion times per patient record on datasets GS,
GM and GL without (left) and with (right) blocking.

Moreover, runtimes are stable for record-level LSH on datasets of different sizes.
Attribute-level LSH and especially Soundex are more dependent on the data volume
and experience an increase in runtimes with more records. This is because their number
of blocks increases only modestly with more data so that the average size of blocks and
thus the number of comparisons per record increases with larger data volumes. Still,
for dataset GL, the execution time for blocking with attribute-level LSH (Soundex) is
a factor of 130 (65) faster than without blocking. The reduction ratios achieve even
better values of up to 99.98%, i. e., a factor 5000 in the number of comparisons.

These high runtime improvements are achieved without reduction in linkage quality,
as can be seen from the F1-score values in Table 4.3. There are some relatively small
differences between the two LSH variants. Attribute-level LSH leads to larger blocks
than record-level LSH, thereby enabling a slightly better recall. On the other hand, the
smaller blocks of record-level LSH favor better precision, especially for the large dataset
GL. Record-level LSH is much faster than attribute-level LSH for the large dataset
GL, but the runtimes are only slightly worse for the smaller datasets. This is because
the reported insert times are only partially determined by the match time but also
include the time to store new records and their blocking keys in the database. The latter
persistence step needs slightly more time for record-level LSH than for attribute-level
LSH because of the higher number of LSH blocking keys (9 vs. 3).

76

4.5 Conclusion

Given the comparable linkage quality and runtimes for both attribute-level LSH and
record-level LSH in most cases, we recommend attribute-level LSH as the default
blocking strategy except for very large datasets. This is because it is much easier to
configure than record-level LSH, and a simple approach with a single blocking key per
attribute proved to perform very well.

4.5 Conclusion

We proposed two methods for LSH-based blocking on attribute-level Bloom filters.
We implemented both methods within the Mainzelliste software and evaluated their
performance in terms of linkage quality and scalability. Our results using real-world
and near-real datasets showed drastically improved runtimes without compromising the
quality of the linkage.

77

5
Post-processing Methods for High
Quality PPRL

This chapter is based on [Fra+18]. The use of encoded data makes it challenging to
achieve high linkage quality in particular for dirty data containing errors or inconsis-
tencies. Moreover, person-related data is often dense, e. g., due to frequent names or
addresses, leading to high similarities for non-matches. Both effects are hard to deal
with in common PPRL approaches that rely on a simple threshold-based classification
to decide whether a record pair is considered to match. In particular, dirty or dense
data likely leads to many multi-links where persons are wrongly linked to more than one
other person. Therefore, we propose the use of post-processing methods for resolving
multi-links and outline three possible approaches. In our evaluation using large synthetic
and real datasets, we compare these approaches with each other and show that applying
post-processing is highly beneficial and can significantly increase linkage quality in
terms of both precision and F-measure.

5.1 Motivation

A high linkage quality is essential for the practical applicability of PPRL, especially in
the medical domain. Ideally, a PPRL approach should find all matches, despite possible
data quality problems, such as erroneous or inconsistent data, in the source databases.
On the other hand, false matches should be strictly avoided, as otherwise (medical)
conclusions based on incorrect assumptions could be made.

To decide whether a pair of records represents a match or a non-match, classification
models are used. For traditional record linkage, sophisticated classification models
based on supervised machine learning approaches, e. g., support vector machines or
decision trees, can be used to achieve highly accurate linkage results [Chr12b]. Moreover,

79

Chapter 5 – Post-processing Methods for High Quality PPRL

linkage results can be manually reviewed to increase final quality or to adjust parameter
configurations.

In contrast, currently most PPRL approaches only apply threshold-based classification
based on a single threshold, as supervised machine learning approaches require training
data which is usually not available in a privacy-preserving context [VCV13]. In general,
it is also not feasible to manually inspect actual quasi-identifier values of records
because this would be a violation of privacy. Moreover, recent encoding techniques often
aggregate all attribute values into a single binary encoding, making it hard to deploy
attribute-wise or rule-based classification [VCV13; Vat+17]. All these effects likely
reduce the linkage quality of PPRL, indicating the demand for refined classification
techniques [Dur12; Ran+19].

In the following, we study post-processing methods for improving the linkage quality of
PPRL in terms of precision. By using simple threshold-based classification approaches,
only low linkage accuracy is likely achieved in PPRL scenarios dealing with dirty or
dense data. Dirty data such as missing or erroneous attribute values can lead to a low
similarity between matching records that are thus easily missed with a higher similarity
threshold. Another problem case is dense data, where many non-matching records can
have a high similarity. For example, members of a family often share the same last
name and address, leading to a high similarity for different persons. Datasets focusing
on a specific city or region also tend to have many persons with similar addresses. For
such dense data, there can be many non-matching record pairs with a similarity above
a fixed threshold.

A key drawback of classification approaches based on a single threshold is that they often
produce multi-links, i. e., one record is linked (matched) to many records of another
source, and moreover, each record pair exceeds the similarity threshold. However,
assuming deduplicated source databases, each record can at most match one record of
another source. Hence, the linkage result should exclusively contain one-to-one links as
otherwise precision deteriorates. Therefore, we analyze methods that can be executed
after any (threshold-based) classification to clean multi-links, i. e., to transform the
linkage result such that only one-to-one links occur in the final result. In particular, we
make the following contributions:

• We study three post-processing strategies for the cleaning of multi-links, or
selection of match candidates respectively, to increase the overall linkage quality
of PPRL, especially when dealing with dense or dirty data.

• We evaluate the different post-processing approaches using large synthetic and
real datasets showing different data characteristics and difficulty levels.

80

5.2 Background

• In our evaluation, we consider both linkage quality in terms of recall, precision,
and F-measure, as well as efficiency in terms of runtime.

In the following, we outline the problems of simple threshold-based classification
techniques (Section 5.2) and discuss related work (Section 5.3). Then, we formalize
the problem of cleaning multi-links that we want to address with post-processing
(Section 5.4) and describe approaches for solving it (Section 5.5). In Section 5.6, we
evaluate selected approaches in terms of quality and performance. Finally, we conclude
our work in Section 5.7.

5.2 Background

As discussed in Section 2.6, a PPRL pipeline contains multiple steps. Following previous
work, we assume a three-party protocol, where a (trusted) third party, called linkage
unit, is required [VCV13]. The linkage unit conducts the actual linkage of encoded
records from two or more database owners. While we focus on only two database owners
(parties) A and B with their respective databases DA and DB, the PPRL process, and
the post-processing strategies can be extended to multiple database owners.

In this work, we focus on record linkage with the additional challenge to preserve
the privacy of referenced individuals. Consequently, each record needs to be encoded
to protect sensitive data. Most recent PPRL approaches use record-level encodings
because they generally provide better privacy protection than field-level encodings. The
drawback of such record-level encodings, however, is that their comparison typically
yields only a single similarity score (see Section 2.6.4). As a consequence, most PPRL
approaches use a single similarity threshold to classify candidate record pairs into
matches and non-matches.

However, by using simple threshold-based classification approaches, multi-links occur in
the final match result. Since commonly deduplicated databases are assumed, the desired
outcome should be a linkage result consisting of only one-to-one links between records.
We address this problem by introducing a post-processing step after classification to
clean multi-links in the linkage result. The main problem in the post-processing step
is to decide which candidates should be selected, leading to only one-to-one links and
high linkage quality.

5.3 Related Work

In order to achieve a high linkage quality, previous work mostly focuses on developing or
optimizing encoding techniques to support approximate matching, attribute weighting,

81

Chapter 5 – Post-processing Methods for High Quality PPRL

or different data types [KGV17; VCV13; VC16; Vat+14]. Besides, efficient blocking
and filtering techniques have been proposed that do not compromise the linkage quality
outcome [Vat+17].

The problem of post-processing corresponds to weighted bipartite graph matching
problems [Wes01]. In fact, applying a one-to-one matching restriction, i. e., to clean
multi-links, is highly related to problems in graph theory like the assignment problem
(AP) or the stable marriage problem (SMP). Various algorithms have been developed
to solve such kinds of problems [IM08; Wes01]. The most prominent approaches are
variants of the Hungarian algorithm (Kuhn-Munkres algorithm) [Mun57] for solving
assignment problems as well as variants of the Gale-Shapley algorithm [GS62; GI89;
Irv94; MW70] for solving the stable marriage problem.

For PPRL, post-processing methods have only been studied to a limited extent so far:
Though several approaches were considered for traditional record linkage, they were not
comparatively evaluated in a PPRL context [Böh+12; Chr12b; Dur12; EIV07; Len06].
As a consequence, it is unknown to which degree post-processing is useful and which
method is suited best for PPRL. In general, the matching on encoded data allows
only simple approaches for match classification so that the need for post-processing is
increased for PPRL.

Recently, Papadakis et al. [Pap+22] conducted an extensive empirical evaluation of
eight different bipartite graph matching algorithms for non-private clean-clean entity
resolution.

A similar post-processing problem, namely selecting the most probable correspondences
from a mapping, has been studied in the field of schema matching [DR02; MG07;
MGR02] and ontology matching [MS07]. In [MGR02] and [DR02] best match selection
strategies, called MaxN or Perfectionist Egalitarian Polygamy, are used to enforce a
one-to-one cardinality constraint by selecting only candidates offering the best similarity
scores. Additionally, algorithms for solving the maximum weighted bipartite graph
matching problem and the stable marriage problem have been considered as selection
strategies [MG07; MS07].

5.4 Problem Definition

After the classification step (see Section 2.6.5) all candidate record pairs resulting from
blocking/filtering CB are classified into matches M and non-matches N.

We assume, that a simple threshold-based approach is used for classification. Thus,
the class of matches M contain all candidate record pairs with a similarity score
sim∆(·, ·) above a single predefined similarity threshold t, i. e., M = {(a, b) | a ∈ DA, b ∈

82

5.4 Problem Definition

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

b7

1

0.8

0.9

0.85

0.8
0.7

0.75

0.7

0.9

Figure 5.1: Example linkage graph
containing several multi-links.

a1

a2

b1

b2
0.8

0.9

0.9

(a) No matching

a1

a2

b1

b2
0.8

0.9

0.9

(b) Trivial matching

a1

a2

b1

b2
0.8

0.9

0.9

(c) Maximal matching

a1

a2

b1

b2
0.8

0.9

0.9

(d) Perfect matching

Figure 5.2: Different types of matchings.

DB, sim∆(a, b) ≥ t}. We also assume that the databases to be linked are deduplicated
before linkage.

The set of matches M constitutes a weighted bipartite similarity graph SG = (VA ∪
VB, E) (see Section 2.6.6). Let VA and VB be two partitions consisting of vertices
representing records (entities) from database DA or database DB respectively, which
occur in the linkage result, i. e., are part of a record pair classified as a match. Thus,
VA = {a ∈ DA | ∃b ∈ DB : (a, b) ∈ M} and VB = {b ∈ DB | ∃a ∈ DA : (a, b) ∈ M}. E
denotes the set of edges representing links between records classified as matches. Each
edge (link) has a property for the similarity score of the record pair. Between records
of the same database, no direct link exists. An example linkage graph is depicted in
Figure 5.1.

After classification, it is still possible that the linkage graph contains multi-links,
i. e., one-to-many, many-to-one, or many-to-many links. Since deduplicated databases
are assumed, only one-to-one links should be present in the final linkage result. Hence,
the aim of post-processing is to find a matching over SG (see Section 2.6.6). A matching
M ⊆ E is a subset of links such that each record in V = VA ∪ VB appears in at
most one link, i. e., contributes to at most one matching record pair. As a consequence,
post-processing applies a one-to-one link (cardinality) restriction on the set of classified
matches M.

In general, several matchings over SG can be found. Thus, the challenge of post-
processing is to select the matching yielding the best linkage quality in terms of either
recall, precision, or F-measure. Ideally, no true match should be pruned (no loss of recall)
while resolving all multi-links to improve precision. Links providing high similarity scores
should be favored over those with low similarity, e. g., near t, as very high similarities

83

Chapter 5 – Post-processing Methods for High Quality PPRL

typically indicate definite matches. Also, other link features, like link degree, can be
used for link prioritization [SPR18].

A matching can be selected in such a way that it fulfills certain properties. Basic types of
matchings are trivial, maximal, maximum and perfect matchings [Wes01]. A matching
M is called maximal, if any link not in M is added to M , then M would be no longer a
matching. If a matching is not maximal, then it is a trivial matching. Furthermore, if a
matching contains the largest possible number of edges (links), then it is a maximum
matching. Each maximum matching is also maximal, but not vice versa. Finally, a
perfect matching is defined as a matching where every vertex of the graph is incident
to exactly one edge of the matching. Every perfect matching is maximum and hence
maximal. However, not for every linkage graph a perfect matching can be obtained.
The different types of matchings are illustrated in Figure 5.2.

Since PPRL is confronted with potentially large datasets containing millions of records
[Vat+17], post-processing approaches need to be scalable and efficient.

5.5 Post-processing Strategies for PPRL

We now present post-processing strategies for PPRL to enable a one-to-one link re-
striction on the linkage result. We chose three frequently used approaches known from
schema matching for obtaining matchings in bipartite graphs. The approaches are
described in detail below.

5.5.1 Symmetric Best Match

At first, we consider a symmetric best match strategy (SBM) as proposed in [MGR02]
and [DR02]. The basic idea is that for every record only the best matching record of
the other source is accepted. A record a ∈ VA may have links to several records b ∈ VB.
From these links, only the one with the highest similarity score called best link, is
selected. This approach is equivalent to a MaxN strategy, which extracts the maximum
N correspondences for each record setting N = 1 (Max1).

To obtain a matching M over a linkage graph SG for every record of both partitions VA

and VB the best link is extracted. Thus, two sets EMax1
A and EMax1

B are built containing
the best links for each record of the respective partition, e. g.,

EMax1
A = {(a, b) ∈ E | ∀b′ ∈ VB : (b ̸= b′ ∧ (a, b′) ∈ E)→ (sim∆(a, b′) ≤ sim∆(a, b))}.

84

5.5 Post-processing Strategies for PPRL

Then, the final matching is obtained by building the intersection of these two sets,
i. e., MSMB = MMax1-both = EMax1

A ∩ EMax1
B . Since the best links from both partitions

are considered, this strategy is also called Max1-both.

In Figure 5.3a Max1-both is applied on the linkage graph from Figure 5.1. It is important
to note that the obtained matching is not maximal. Since only record pairs with a
common best link are accepted, other record pairs are excluded from the matching
even if they do not violate the one-to-one link restriction and have a relatively high
similarity.

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

b7

1

0.8

0.9

0.85

0.8
0.7

0.75

0.7

0.9

(a) Max1-both (SBM)

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

b7

1

0.8

0.9

0.85

0.8
0.7

0.75

0.7

0.9

(b) SM

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

b7

1

0.8

0.9

0.85

0.8
0.7

0.75

0.7

0.9

(c) MWM

Figure 5.3: Illustration of the resulting linkage graph from Figure 5.1 after applying
different post-processing methods. For Max1-both (a) the link a4-b6 is removed since
the best link for a4 is to b5. In contrast, in the stable matching (b) the link a4-b6 is
included as it does not violate the one-to-one-link restriction nor the stable property.
For the maximum weight matching (c), the links a3-b4 and a4-b5 are included in the
matching as the sum of their similarities is higher than for a3-b5 and a4-b6. However,
the maximum weight matching is not stable due to the links a3-b4 and a4-b5, as a3 and
b5 prefer each other over their current matching records.

5.5.2 Stable Marriage and Stable Matchings

The stable marriage problem (SMP) [GS62] is the problem of finding a stable matching
(SM) between two sets of elements given a (strictly) ordered preference list for each
element. A matching is defined as stable if there are no two records of the different
partitions that both have a higher similarity to each other than to their current matching
record. Used as a post-processing method for PPRL, several extensions to the classic
stable marriage problem need to be considered [IM08; MW70]:

85

Chapter 5 – Post-processing Methods for High Quality PPRL

Unequal Sets: Usually, an SMP instance consists of two sets of elements having the
same cardinality. The partitions of the linkage graph are in general of different sizes,
i. e., |VA| ≠ |VB|, as not every record may have a duplicate in the other source.

Incomplete preference lists with ties: In the traditional stable marriage problem,
each element has a preference list that strictly orders all members of the other set.
Since blocking or filtering techniques are used for PPRL to reduce the number of
record pair comparisons, not every record a ∈ VA has a link to a record b ∈ VB and
vice versa. However, one simple approach is to add dummy links with a similarity
score of zero or −∞. Moreover, a record may have two links with the same similarity
score to two different records of the other source, called tie or indifference [Irv94],
e. g., sim∆(a, b1) = 0.9 and sim∆(a, b2) = 0.9 where a ∈ VA and b1, b2 ∈ VB. The
simplest way to handle indifference is to break ties arbitrarily [Irv94]. Also, secondary
link features can be used for resolving ties [SPR18].

Symmetry: For the stable marriage problem, it is not required that two elements prefer
each other the same (asymmetric preference). In our case, the stable marriage problem
is symmetric since the similarity of a record pair is symmetric (see Definition 2.6.4.1).

To obtain a stable matching the Gale-Shapley algorithm [GS62] or one of its variants
taking the described extensions into account [Irv94; IM08; MW70] can be used. A
simple approach is to order all links (or candidate pairs) based on their similarity
score and process them iteratively in descending order. The current link is added to
the final matching if it does not violate the one-to-one link restriction. The algorithm
stops if all links have been processed [MG07]. In Figure 5.3b a stable matching for the
linkage graph from Figure 5.1 is depicted. In contrast to matchings obtained by the
symmetric best match strategy, stable matchings are maximal. In general, multiple
stable matchings may exist for a linkage graph.

5.5.3 Maximum Weight Matchings

As a third method, we consider finding a maximum weight matching (MWM). A
maximum weight matching is a matching that has maximum weight, i. e., that maximizes
the sum of the overall similarities between records in the final linkage result. This problem
corresponds to the assignment problem which consists of finding a maximum weight
matching in a weighted bipartite graph. To solve the assignment problem on bipartite
graphs in polynomial time, the Hungarian algorithm (Kuhn-Munkres algorithm) can be
used [Mun57]. The Hungarian algorithm has a complexity of O(n4) but can be reduced
to O(n3) where n is the number of records. For the linkage graph from Figure 5.1 the
corresponding maximum weight matching is depicted in Figure 5.3c. Each maximum
weight matching is maximal but does not have to be stable.

86

5.6 Evaluation

5.6 Evaluation

In this section, we evaluate the introduced post-processing methods for the cleaning of
multi-links in terms of linkage quality and efficiency. Before presenting the evaluation
results, we describe our experimental setup as well as the datasets and metrics we use.

5.6.1 Experimental Setup

All experiments are conducted on a desktop machine equipped with an Intel Core
i7-6700 CPU with 8× 3.40 GHz, 32 GB main memory and running Ubuntu 16.04.4. and
Java 1.8.0_171.

5.6.2 PPRL Setup

Following previous work, we implement the PPRL process as a three-party protocol
utilizing Bloom filter as a privacy technique as proposed by Schnell [SBR11]. To overcome
the quadratic complexity, we utilize LSH-based blocking utilizing the family of hash
functions which is sensitive to the Hamming distance (HLSH) [Dur12]. The respective
hash functions are used to build overlapping blocks in which similar records are grouped.
For HLSH-based blocking mainly the two parameters Ψ, determining the number of
hash functions used for building a blocking key, and Λ, defining the number of blocking
keys, are important for high efficiency and linkage quality outcome [FSR18]. Based on
[FSR18] we empirically set Ψ and Λ individual for each dataset as outlined in Table 5.1
leading to high efficiency and effectiveness. Finally, we apply the Jaccard similarity to
determine the similarity of candidate record pairs [Jac12].

5.6.3 Datasets

For evaluation, we use synthetic and real datasets containing one million records with
person-related data. An overview of all relevant dataset characteristics and parameters
is given in Table 5.1.

The synthetic datasets G1 and G2 are generated using the data generator and corruption
tool GeCo [CV13]. We customize the tool by using lookup files containing German
names and addresses with realistic frequency values drawn from German census data
[Sta23a]. Moreover, we extend GeCo by a family and move rate used for G2. The family
rate determines how many records of a dataset belong to a family. All records of the
same family agree on their last name and address attributes. The size of each family is
chosen randomly between two and five. To simulate moves, we add a move rate that

87

Chapter 5 – Post-processing Methods for High Quality PPRL

Characteristic G1 G2 N

Type Synthetic (GeCo) Real (NCVR)

|DA| 800 000 700 000 500 000
|DB| 200 000 300 000 500 000
|DA|+ |DB| 1 000 000
|DA ∩DB| 200 000 (100%) 150 000 (50%) 250 000 (50%)

Attributes
First name, last name, city,

zip, date of birth
First name, middle name,

last name, city, year of birth
q-grams q = 2 (bigrams), no character padding
g 28 25

|Errors|/record 2

0 - 2 :
0 (40%)
1 (30%)
2 (10%)

|Errors|/attr 0 - 1 0 - 2
Moves 20%
Families 25%

m 1024
k 26 29
BF type CLK with random hashing [SBR11; SB16a]

HLSH key length Ψ 16
HLSH keys Λ 20 30

Table 5.1: Dataset characteristics and used parameters for the evaluation of different
post-processing methods.

defines in how many records the address attributes will be altered. The move rate does
not introduce data errors like typos, instead, it simulates inconsistencies between data
sources.

A generated dataset D consists of two subsets DA, DB to be linked with each other.
While the original tool requires all records of DB to be duplicates of records of DA, we
modify the tool to support arbitrary degrees of overlaps between DA and DB. As a
consequence, records in both DA and DB may have no duplicate record, which is more
realistic.

We also use a refined model to corrupt records by allowing a different number of errors
per record instead of a fixed maximum number of errors for all records. We may thus
generate duplicates such that 50% of the duplicates contain no error, 20% one error, and
10% two errors while the remaining 20% have an address change (move rate). For the
real dataset N, we use subsets of two snapshots of the North Carolina voter registration
database (NCVR) [Nor23] at different points in time.

88

5.6 Evaluation

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0%

20%

40%

60%

80%

100%

None

Max1-both

SM

MWM

Threshold

(a) Recall G1

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0%

20%

40%

60%

80%

100%

None

Max1-both

SM

MWM

Threshold

(b) Precision G1

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0%

20%

40%

60%

80%

100%

None

Max1-both

SM

MWM

Threshold

(c) F-measure G1

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0%

20%

40%

60%

80%

100%

None

Max1-both

SM

MWM

Threshold

(d) Recall G2

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0%

20%

40%

60%

80%

100%

None

Max1-both

SM

MWM

Threshold

(e) Precision G2

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0%

20%

40%

60%

80%

100%

None

Max1-both

SM

MWM

Threshold

(f) F-measure G2

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0%

20%

40%

60%

80%

100%

None

Max1-both

SM

MWM

Threshold

(g) Recall N

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0%

20%

40%

60%

80%

100%

None

Max1-both

SM

MWM

Threshold

(h) Precision N

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0%

20%

40%

60%

80%

100%

None

Max1-both

SM

MWM

Threshold

(i) F-measure N

Figure 5.4: Quality results for the datasets G1, G2 and N using different post-processing
methods.

89

Chapter 5 – Post-processing Methods for High Quality PPRL

5.6.4 Evaluation Metrics

To assess the linkage quality, we measure recall, precision, and F-measure (Section 2.6.7.1).
To evaluate efficiency, we measure the execution times of the post-processing methods
in seconds.

5.6.5 Evaluation Results

In order to analyze the impact of post-processing on the linkage quality, we compare the
three strategies described in Section 5.5 to the standard PPRL without post-processing.
The aim of post-processing is to optimize precision while recall is ideally preserved. The
results in Figure 5.4 show the obtained linkage quality for datasets G1, G2, and N .

Dataset G1 is based on settings of the original GeCo tool with 100% overlap and a fixed
error rate. We observe that a high linkage quality is achieved even if post-processing is
disabled, with near-perfect recall for t ≤ 0.8 and near-perfect precision for t ≥ 0.7. The
high degree of precision is made possible by the assumption of 100% overlap between
the data sources, which minimizes the likelihood of wrongly matching a record.

The three post-processing methods achieve very similar results for G1. While recall
remains stable, precision and consequently F-measure can be significantly improved
to almost 100% even for low thresholds t ≤ 0.7. This is due to the high overlap of
the two subsets, making false matches after post-processing only possible if a record
has a higher similarity to a record having no duplicate than to its actual true match.
Despite this best-case situation simulated with G1, only low precision is achieved for
low threshold values without post-processing.

For datasets G2 and N overall a lower linkage quality is obtained since the data is more
dense making it harder to separate matches and non-matches. Similar to G1, precision
significantly decreases for G2 using lower threshold values. All post-processing strategies
can again improve precision for lower threshold values. The best results are achieved
for the symmetric best match approach (Max1-both) outperforming obtaining a stable
matching (SM) or a maximum weight matching (MWM). The stable matching yields
slightly better results than the maximum weight matching. For the synthetic datasets
G1 and G2, post-processing does not increase the top F-measure score, but the best
linkage quality is reached with a wider range of threshold settings, thereby simplifying
the choice of a suitable threshold.

The post-processing methods are most effective for the real dataset N . Here a higher
recall can only be achieved for lower threshold values t ≤ 0.7 but precision drops
dramatically in this range without post-processing due to a high number of multi-links.
As a result, the best possible F-measure is limited to only 67%. In contrast, the use

90

5.6 Evaluation

of post-processing can maintain a high precision even for lower thresholds at only a
small decrease in recall compared to disabled post-processing. As a result, the top
F-measure is substantially increased to around 80% underlining the high effectiveness
and significance of the proposed post-processing. Again, the use of Max1-both is most
effective, followed by the stable matching approach.

Additionally, we comparatively evaluate the post-processing strategies in terms of
runtime. The results depicted in Figure 5.5 show that Max1-both achieves the lowest
execution times even for low thresholds. The extended Gale-Shapley algorithm that
we use for calculating the stable matching shows a significant performance decrease
for lower similarity thresholds, most notably for dataset N and t ≤ 0.7. For higher
thresholds t > 0.7, the runtimes are very similar to those of Max1-both. The computation
of the maximum weight matching by using the Hungarian algorithm incurs a high
computational complexity and massive memory consumption. As a consequence, we
are not able to obtain a maximum weight matching for low threshold values (compare
Figure 5.4). Hence, we consider the MWM approach as not scalable enough for large
datasets with millions of records.

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0

2

4

6

8

10

12
Max1-
both

SM

MWM

Threshold

T
im

e
[s

]

(a) G1

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0

2

4

6

8

10

12
Max1-
both

SM

MWM

Threshold

T
im

e
[s

]

(b) G2

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
0

2

4

6

8

10

12
Max1-
both

SM

MWM

Threshold

T
im

e
[s

]

(c) N

Figure 5.5: Runtime results for the datasets G1, G2 and N using different post-processing
methods.

In conclusion, both the symmetric best match (Max1-both) approach and the stable
matching approach are able to significantly improve the linkage quality of PPRL,
especially at low thresholds, while showing good performance. In our setup, the execution
of the entire PPRL process takes only a few minutes. Therefore, introducing post-
processing that takes only a few seconds for execution does not affect the overall
performance. In general, Max1-both can achieve the best linkage quality in terms of
precision and F-measure. For applications favoring recall over precision, the stable
matching approach should be applied.

91

Chapter 5 – Post-processing Methods for High Quality PPRL

5.7 Conclusion

We evaluated different post-processing methods for PPRL to restrict the linkage result to
only one-to-one links. Our evaluation for large synthetic and real datasets containing one
million records showed that without post-processing only low linkage quality is achieved,
especially when dealing with dense or dirty data. In contrast, using a symmetric best
match strategy for post-processing is a lightweight approach to improve the overall
linkage quality. As a side effect, by using post-processing, the similarity threshold used
for classification can be selected lower without compromising linkage quality. Since in
practical applications, an appropriate threshold is hard to define, this fact becomes
highly beneficial. In the future, we plan to investigate further post-processing strategies
using further link features and other heuristics. We also plan to analyze post-processing
methods for multi-party PPRL where more than two databases need to be linked.

92

6
(Privately) Estimating Linkage Quality
for Record Linkage

This chapter is based on [Fra+24]. To evaluate the quality of (privacy-preserving) record
linkage approaches, the performance measures of precision, recall, and F-measure are
commonly used. These measures require ground truth data that specifies known matches
and non-matches. However, in practical linkage applications, there typically is no such
ground truth data available. Although linkage quality can be assessed manually by
domain experts, such a clerical review process is time- and resource-consuming and
generally not feasible when linking databases that are very large or that contain sensitive
(personal) data. We review existing and propose improved unsupervised approaches
for estimating the quality of linkage results. We evaluate our approaches on multiple
datasets from three different domains. This evaluation shows that our approaches
outperform existing methods and lead to estimates that are close to the actual linkage
quality.

6.1 Motivation

Record linkage is a challenging task due to data quality, scalability, as well as privacy
and confidentiality issues [CRS20]. Most importantly, record linkage algorithms must
achieve high linkage quality, as this is essential for their practical applicability and
utility. In many record linkage applications, however, there is no ground truth (gold
standard) data available that specifies if two records refer to the same entity or not (true
match status) [Chr12b]. One possibility to acquire ground truth data is to manually
generate such data by (smartly) sampling record pairs and manually classifying them
as a match or a non-match [Chr12b]. Similarly, domain experts can manually assess
linkage results by (visually) inspecting classified record pairs in order to confirm or

93

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

reject match decisions [Kum+14]. However, such a manual classification (also known
as clerical review) is time- and resource-consuming as well as error-prone, especially
for datasets that are large and/or difficult to classify. It can therefore lead to many
potential matches, i. e., candidates for which it is unclear if they refer to the same entity
or not.

Evaluating linkage quality becomes even more challenging when personal or sensitive
data needs to be linked [CRS20]. This problem is addressed by privacy-preserving record
linkage (PPRL) techniques [Gko+21], where linkage is conducted on encoded data
using secure protocols such that no sensitive information is revealed during the linkage
process to protect the privacy of individuals [Vid+23].

In privacy-constrained scenarios, it is generally not possible to inspect actual (quasi-
identifying) attribute values of classified record pairs because these can be sensitive
and reveal the identity of an individual. Furthermore, the organizations conducting
the linkage are generally not allowed or willing to share ground truth or training data.
There is limited work [Cha+21; Kum+14] that investigates approaches for manual
clerical reviews working on partially (visually) masked quasi-identifying attribute values.
Such approaches, however, will again be time- and resource-consuming while making
the clerical review process likely to be less accurate than if complete attribute values
were available for manual assessment.

Unsupervised approaches for estimating linkage quality are therefore required to over-
come this lack of ground truth data. So far, however, only a few such approaches
have been proposed [HKN14; NL13]. As we show in our work, in many scenarios the
estimated measures do not correlate well with the actual linkage quality. We therefore
propose several extensions to existing approaches, as well as novel heuristics, to improve
estimates for linkage quality. In particular, we make the following contributions:

• We adapt existing and propose novel unsupervised methods for estimating linkage
quality based on a given similarity graph. Our methods address various data
quality issues such as heterogeneity of records and duplicates in the same database.
Our methods can be used in practice for both traditional and privacy-preserving
record linkage applications, in particular, to optimize linkage configurations, such
as the classification threshold, which is often a challenging task.

• To estimate the overlap between datasets, our methods require a set of attributes
where the values for true matching records are mostly the same, while the values
for non-matches mostly differ. To achieve this aim, we develop an apriori-like
strategy to automatically determine suitable attribute combinations, in particular
for heterogeneous datasets where a manual selection of attributes is hard.

94

6.2 Problem Definition

• We comprehensively evaluate our methods for estimating linkage quality against
two baseline methods proposed in the literature [NdM12; NL13] using real-world
datasets from three different domains (persons, music, and cameras).

The remainder of this chapter is structured as follows. We define the problem of
estimating linkage quality in Section 6.2 and discuss related work in Section 6.3.
In Section 6.4, we present our novel approaches for estimating the linkage quality
for both clean and dirty databases. In Section 6.5, we discuss the privacy aspects of
using similarity graphs and cryptosets. In Section 6.6, we evaluate our approaches
on different datasets to validate their practical applicability. Finally, we conclude the
chapter in Section 6.7.

6.2 Problem Definition

Let DA and DB be two databases from database owners A and B, respectively. Let
SG = (VA∪VB, E) be the similarity graph resulting from a record linkage process using
a certain linkage configuration. Based on an analysis of the two databases and the
given similarity graph SG, we aim to estimate the linkage quality in terms of the total
number of true positives (tp), false positives (fp) and false negatives (fn). From these
estimates precision and recall, as well as aggregated measures such as the F-measure,
can be calculated. We assume that no ground truth data is available that can be used,
for example, due to privacy or data protection concerns.

6.3 Related Work

Existing methods to estimate linkage quality in the context of record linkage can be
roughly divided into three categories, which we describe in the following.

6.3.1 Manual Assessment

The result of a linkage is manually inspected by domain experts in order to assess the
linkage quality outcome [Chr12b]. The disadvantage of such approaches is that they can
be very time- and resource-consuming. To limit this effort, often only a small sample of
record pairs is revised, in particular edge cases. These are pairs that are hard to classify
and thus have high uncertainty [Chr12b].

A simple sampling method is proposed by Boyd et al. [Boy+16] where record pairs at
different threshold values are sampled and clerically reviewed. The obtained results

95

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

are then applied to the entire dataset and provide estimates for the number of false
positives and false negatives.

Marchant and Rubinstein proposed OASIS [MR17], a tool that takes an unlabeled
dataset as input and intelligently selects items to be (manually) labeled to provide an
estimate of the linkage quality. To minimize the amount of labeling required, OASIS
uses an adaptive importance sampling method.

In privacy-preserving settings, however, such manual inspection is even harder to employ.
Initial work [Kum+14] addresses this problem by visual masking and partly hiding
actual attribute values, in order to allow manual link decisions without compromising
the privacy of individuals. However, manual decisions based on masked attribute values
might also be less accurate compared to reviews based on fully visible attribute values.

6.3.2 Supervised Approaches

Linkage quality can be estimated based on ground truth (training) data, where the
match status of a set of record pairs is known. Such training data need to be of high
quality and contain a large diversity of example pairs, especially those that are difficult
to classify. Heise et al. [HKN14] proposed a sampling-based approach for duplicity
assessment, which estimates the number and sizes of duplicate record clusters in a
dataset. The main benefit of their approach is that it can efficiently approximate the
number of duplicates while only performing a fraction of the candidate comparisons
compared to what an actual record linkage process would take.

Binette et al. [Bin+22] estimate linkage quality from samples by using (partial) ground
truth data. Similarly, in [DH19; HDG20] partial ground truth data is submitted to the
linkage process in the form of positive/negative controls. Positive controls are records
that are known to be a match. In contrast, negative controls are records that should
definitely not match any other record. In [Moo+14], such controls are used for the
linkage of prisoner records and a register of deaths. In that specific scenario, for a subset
of prisoners, it is known that they died in prison (positive controls) while for another
subset of prisoners, it is known that they were alive at the time of the linkage (negative
controls). By counting the number of correctly classified control records, the linkage
quality can be calculated. In general, the control records can also be artificially created
jointly by the database owners and then employed in the linkage process.

Again, in privacy-preserving record linkage scenarios, database owners might not be able
or willing to prepare and exchange training data due to privacy constraints [CRS20].

96

6.3 Related Work

6.3.3 Unsupervised Approaches

These approaches do not have access to the characteristics of true matching and non-
matching record pairs. Lamiroy and Sun [LS11] propose an approach to measure recall
and precision in the absence of ground truth data. Their method requires access to
different competing approaches, such as different classifiers, in order to establish a
ranking and find an overall consensus between these approaches. The drawback of this
approach is that it is sensitive to collective bias, namely if the competing approaches
are consistent in their errors. Similarly, Platanios et al. [PBM14] propose methods for
estimating the accuracy of different competing classifiers based on their agreement
rates over unlabeled data. The authors show that their approach is able to estimate
accuracy if the competing classifiers do not make independent errors. Other unsupervised
approaches rely on dataset characteristics and the similarities between pairs or groups
of records. Such approaches are closely related to clustering approaches that can be used
for classification, as well as for post-processing [Chr12b]. Clustering is the process of
partitioning data objects into subsets (called clusters), such that intra-cluster similarity
is maximized while inter-cluster similarity is minimized. This means that objects in
the same cluster have a high similarity, while objects in different clusters have a low
similarity to each other [HKP12]. Clustering techniques utilize different heuristics but
are generally executed in an unsupervised fashion. In [NdM12], Nikolov et al. propose an
unsupervised approach that aims to estimate linkage quality in the absence of labeled
data. Therefore, pseudo-precision (PP) and pseudo-recall (PR) measures are used which
are defined as follows:

PP = |{a ∈ VA|∃b ∈ VB : (a, b) ∈ E}|∑
a∈VA
|{b ∈ VB|(a, b) ∈ E}|

(6.1)

PR = |E|
min(|VA|, |VB|)

(6.2)

Assuming the databases to be linked are clean, the pseudo-precision measure is based on
the following fact: If there are multiple links originating from the same record, at most
one can be correct. The other links are necessarily errors. The pseudo-recall measure
considers the number of records in the smaller partition (database) as the maximum
number of possible matches. However, this is only the case if one database is a subset of
the other database. This, in turn, will be rarely the case in most record linkage scenarios
[Chr12b]. As a consequence, pseudo-recall tends to (strongly) underestimate the actual
recall, if the overlap between the two databases is low. Besides, pseudo-recall can result
in values greater than 1, namely if |E| > min(|VA|, |VB|). To overcome this issue, Ngomo

97

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

and Lyko [NL13] refined the approach by specifying an alternative pseudo-recall variant,
which is defined as:

PRAlt = |{a∈VA|∃b∈VB : (a, b)∈E}|+ |{b∈VB|∃a∈VA : (a, b)∈E}|
|VA|+ |VB|

(6.3)

This pseudo-recall measure indicates how well the records in both databases are covered
by the linkage result. A pseudo-recall value of 1 means that every record of database
DA is linked to at least one record of database DB and vice versa. While the results
in [NdM12] are promising, the authors in [NL13] achieved varying results, with both
positive and negative correlations between the estimated and the actual linkage quality.
However, the results are hard to interpret as only F-measure values were reported
and compared (a weakness of the F-measure reported by others [CHK23]). It is thus
difficult to assess if the ambiguous correlations reported are due to the recall or precision
estimates.

6.4 Estimating Linkage Quality using Similarity Graphs

The key idea of our methods for estimating linkage quality in the absence of ground
truth data is to analyze both the input data and the similarity graph generated by a
record linkage algorithm. For assessing the quality in terms of recall and precision, the
number of true positives (tp), false positives (fp), and false negatives (fn) need to be
approximately determined. In the following, we discuss different strategies considering
the degree of vertices, similarity of edges, and cryptosets, to determine the relevant
counts required for calculating precision and recall.

Because of possibly different data quality levels regarding duplicates in a database,
we distinguish our methods as being suitable for deduplicated databases (clean) and
databases containing (intra-source) duplicates (dirty). Assuming that the databases to
be linked are duplicate-free, the number of possible matches for each record is limited to
one (see Section 2.6.6), and therefore our heuristics need to be more strict. In general,
we assume that the similarity graph was generated without applying a one-to-one
cardinality restriction as part of a post-processing step. By applying a one-to-one
cardinality restriction, the most likely matching record out of a set of candidates would
be selected (see Chapter 5). This would lead to a loss of information about the ambiguity
of possible match candidates.

98

6.4 Estimating Linkage Quality using Similarity Graphs

6.4.1 Deduplicated Databases

The main difference between clean and dirty databases is that with the former a record
a ∈ DA can correspond to at maximum one record b ∈ DB. Otherwise, the database
DB is not duplicate-free if a record b′ ∈ DB exists where b′ = a. Due to the transitive
closure of a regarding equality [Chr12b], record b would be equal to b′, which contradicts
the assumption of duplicate-free databases.

We utilize this constraint and the degree of nodes in the similarity graph as indicators
for true positives. A one-to-one link implies that there is exactly one match candidate
for a record. In contrast, a multi-link implies that there are several match candidates for
a record, leading to uncertainty regarding the decision of which records to match. While
for clean databases each additional match candidate will be a false positive (without
a post-processing step), for dirty databases multiple match candidates may form an
intra-source duplicate (as we will discuss in Section 6.4.2). In addition to the edge
degree, the edge weight (the aggregated similarity sim∆ or a confidence value) is also
an important criterion. The higher the edge weight and the greater the difference to
the similarity threshold value is, the more certain a match decision will be.

In the following, we describe the different strategies using the vertex degree and the
edge similarity to estimate the number of true positives and false positives, as well as
cryptosets to determine the number of false negatives.

6.4.1.1 Vertex Degree

Due to the constraint for duplicate-free databases, we can approximate the set of true
positives by the records of a database DA that have been linked to at most one record
from the other database DB. We can formalize the set of estimated true positives TPA

regarding database A as follows:

TPA = {a ∈ VA | ∃b ∈ VB : (a, b) ∈ E} (6.4)

Using the estimation of the set of true positives, we can approximately determine
precision with Equation 6.5 where |E| represents the number of edges. In this approxi-
mation, the number of true positives is limited by the minimum number of expected
true positives regarding the set of records from TPA and TPB being linked. To relax
the assumption of one-to-one links, Equations 6.6 and 6.7 considers the average of the
number of records from TPA and TPB. Equation 6.7 limits the number of links by the
minimum of |VA| and |VB| motivated by the duplicate-free assumption.

PP1 :1 = min(|TPA|, |TPB|)
|E|

(6.5)

99

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

PP1 :n = |TPA| + |TPB|
2 · |E| (6.6)

PRAltMin = |TPA|+ |TPB|
2 ·min(|VA|, |VB|)

(6.7)

6.4.1.2 Similarity Scores

In addition to the graph structure, similarity graphs provide information for each edge
representing how likely a match between the linked records is. Therefore, we utilize
the similarities to calculate for each edge a probability to be a true positive depending
on its adjacent edges. As we discuss below, the intuition is that we can select for each
record only one edge, and therefore we utilize the similarities of adjacent edges as a
probability to select one edge per record. The calculated probability for each edge
and the restriction of edges based on the duplicate-free assumption can then be used
to calculate the expectation of the number of true positives for the given similarity
graph.

For calculating the probability of a true positive given an edge e = (a, b) ∈ E, we
determine two probabilities, pA

tp(e) and pB
tp(e) representing how likely e is a true positive

considering records a ∈ VA and b ∈ VB. The probability pA
tp(e) defined in Equation 6.8

(with pB
tp(e) calculated in a similar way) is based on the similarity of edge e and

normalized by the sum of the similarities of its adjacent edges associated with a record a.
Here, N(v) denotes the neighborhood of a vertex v, which is the set of vertices adjacent
to v [Die17].

pA
tp(e) = P[e = (a, b) ∈ TP | a ∈ VA] = sim∆(e)∑

b′∈N(a) sim∆(a, b′) (6.8)

The probabilities pA
tp(e) and pB

tp(e) are used to determine a joint probability indicating
how likely it is that e is a true positive. To estimate the number of true positives, we
then calculate the expected value of true positives based on the joint probability of e

where e ∈ ESel . The set ESel defined in Equation 6.9 consists of edges maximizing the
similarity for at least one incident vertex a or b regarding the edges being adjacent with
the vertices of the neighborhood of a respectively of b. Due to our assumption that the
databases are deduplicated, we assume that for each record the edge with the largest
similarity is most likely a true link.

Esel =
{
(a, b) ∈ E

∣∣∣ max
b′∈N(A)

(sim∆(a, b′)) = sim∆(a, b) ∨ (6.9)

max
a′∈N(B)

(sim∆(a′, b)) = sim∆(a, b)
}

100

6.4 Estimating Linkage Quality using Similarity Graphs

0.45

0.63
0.43

0.79
0.43

0.41

0.68
0.46

0.73

0.81

11

0

1

2

4

5

6

3

7

8

9

10

A B

Figure 6.1: Example similarity graph of records from databases A and B. True positive
links are shown with thick green lines.

To calculate the expected value of true positives considering the edges of Esel , we
determine the sum of the joint probability over all edges e ∈ Esel that is formally
defined as follows:

E(TP) =
∑

e=(a,b)∈Esel

pA
tp(e) · pB

tp(e) (6.10)

We can then define our new precision estimate PPprob as:

PPprob = E(TP)
|E|

(6.11)

Example: Using the various methods, we can estimate the number of true positives
for our example shown in Figure 6.1. In this example, |E| = 10, |VA| = |VB| = 6
as well as |TPA| = 6 and |TPB| = 5. The determined sets are used to calculate
PP1:1 = min(5,6)/10 = 0.5, PP1:n = (5+6)/2·10 = 0.55 and PP = 6/10 = 0.6. For calcu-
lating PPprob, we need to calculate the probabilities pA

tp(e) and pB
tp(e) for each edge

e ∈ Esel := {(0, 8), (1, 6), (2, 10), (3, 9), (4, 7), (5, 9)} being aggregated by E(TP). For
instance, the probabilities pA

tp((3, 9)) and pB
tp((3, 9)) for the edge (3, 9) are pA

tp((3, 9)) =
0.68/(0.68+0.41+0.43) ≈ 0.45 and pB

tp ((3, 9)) = 0.68/(0.68+0.73) ≈ 0.48, respectively. Overall,
the expected number of true positives is E(TP) = 2.662 resulting in PPprob = 0.266.

6.4.1.3 Cryptosets

To approximate recall, we need to determine the number of overlapping records. In order
to guarantee the privacy of sensitive personal information, we utilize cryptosets [SMR15].
The main idea of using cryptosets is the analysis of histograms consisting of record-
depending information from both databases. An example of how cryptosets are generated
is illustrated in Figure 6.2.

For each record, a private identifier is constructed by applying specific functions on a
set of attributes. These private identifiers do not need to be unique, but the number of

101

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

Database Owner A Database Owner B

Private ID Public ID Record Private ID Public ID Record

Victor
Christen

1988

Christopher
Rost
1990

… … … …… … …

Hanna
Köpcke

1978

Victor
Christen

1988

vicchr88

chrros90

hanköp78

vicchr88

Andrea
Hesse
1969

andhes69
Kristopher

Rost
1990

kriros90

4

6

2

6

11

2

0 1 2 3 4 5 6 7 8 9 101112131415 0 1 2 3 4 5 6 7 8 9 101112131415

Figure 6.2: Illustration of the cryptoset approach to estimate the overlap of two (private)
datasets (adapted from [SMR15]).

records with the same private identifier should be kept small. On the one hand, the
more unique the private identifiers are, the more accurate the cryptoset estimate of
the overlap between the two databases will be. On the other hand, the construction of
the private identifiers should be error-tolerant. Records that refer to the same entity
but contain errors or inconsistencies, such as typos or missing values, should ideally
produce the same private identifier otherwise the overlap will be underestimated. In
our example shown in Figure 6.2, the private identifiers are generated by concatenating
the first three characters of the first name and last name and the last two digits of the
year of birth.

The resulting private identifier idpriv is transformed to a public identifier idpub in the range
[0, L− 1] using a one-way cryptographic hash function h, i. e., idpub = h(idpriv) [CRS20].
Then, each database owner initializes a histogram of length L and increments for each
record the count at the position idpub mod L corresponding to the public ID of the
record (bottom of Figure 6.2).

Cryptosets have a trade-off between estimation error and security risk [SMR15]. This
trade-off is controlled by the cryptoset length L. Longer cryptosets result in fewer
collisions because fewer public identifiers (records) are mapped to the same position.
While this makes the estimates more accurate, the cryptosets become less secure.

102

6.4 Estimating Linkage Quality using Similarity Graphs

Overlap Estimation

Assuming two (sensitive) databases DA and DB for which cryptosets CA and CB have
been constructed using the same protocol, then the overlap of records CE(CA, CB)
(crypotset estimation) in these two databases, |DA ∩DB|, can be estimated as follows:

CE(CA, CB) = pc(CA, CB) ·

√√√√max(|DA|, |DB|)
min(|DA|, |DB|)

(6.12)

where pc(·, ·) is the Pearson correlation coefficient. Note that |DA| = ∑L−1
i=0 CA

i and
|DB| =

∑L−1
i=0 CB

i . The Pearson correlation coefficient is defined in Equation 6.13 based
on the covariance between the cryptosets of CA and CB normalized by the product of
the standard deviations of CA and CB, where CA and CB are the means of frequencies
of the idpub distribution of CA and CB, respectively.

pc(CA, CB) =
∑L−1

i=0 (CA[i]− CA)(CB[i]− CB)√∑L−1
i=0 (CA[i]− CA)2 ·

√∑L−1
i=0 (CB[i]− CB)2

(6.13)

We can now determine recall by utilizing the cryptoset-based approximation of the
overlap from Equation 6.12 and the approximation of the number of true positives
based on |TPA| and |TPB|, or E(TP) as calculated in Equation 6.4 and Equation 6.10
for the databases DA and DB.

PRCE1 :1 = min(|TPA|, |TPB|)
CE (6.14)

PRCE1 :n = |TPA|+ |TPB|
2 · CE (6.15)

PRCEprob = E(TP)
CE (6.16)

Generation of Private Identifiers

Due to the importance of private identifiers for estimating the overlap, automatic
approaches are required if the databases consist of heterogeneous or sensitive data, which
makes manual selection infeasible. We propose a method, as outlined in Algorithm 1,
that automatically selects a subset of attributes to generate the identifiers based on the
attribute characteristics such as uniqueness as well as value distribution. The selected
attributes representing the private identifier influence the estimated overlap. A high
number of records with the same identifier results in an overestimated overlap, whereas
a small number leads probably to an underestimated overlap since the private identifiers
are too unique and thus the intersection of the resulting histograms is small.

103

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

ALGORITHM 1: Apriori-like approach to determine attributes for generating mean-
ingful private identifiers.

Input: D: dataset from a certain party, A: set of attributes
mr : threshold for the ratio of missing attribute values
tinfo: threshold to filter uninformative attribute combinations

Output: AC set of attribute combinations to generate private IDs
1 AC← ∅
2 Avalid ← filterAttributes(D, A, mr)
3 tempAttCombs ← apriori(Avalid)
4 do
5 filteredCombs ← ∅
6 for ac ∈ tempAttCombs do
7 u← computeUniqueness(D, ac)
8 s← computeWeightedUniformitySim(D, ac, u)
9 info ← 2 · (s·u)/(s+u)

10 if info ≥ tinfo then
11 filteredCombs ← filteredCombs ∪ {ac}
12 AC← AC ∪ {ac}
13 tempAttCombs ← apriori(filteredCombs)
14 while tempAttCombs ̸= ∅
15 return AC

Therefore, we propose an automatic approach for selecting a subset of attributes
satisfying different criteria so that the resulting identifiers enable an effective estima-
tion [RCS21]. The approach follows an apriori-like strategy [AS94], where we start with
attribute sets of size one and combine them. An attribute combination is added to the
final result set AC if the harmonic mean based on the uniqueness (u) and the weighted
similarity (s) regarding a uniform distribution is above a threshold tinfo (Algorithm 1
line 5-13). The attribute combination is also added to the candidate set filteredCombs
to generate larger attribute combinations tempAttCombs being validated in the next
iteration. The generation process stops if we cannot derive larger attribute sets satisfying
the defined criteria in terms of uniqueness and similarity to a uniform distribution.

We define uniqueness (u) as the ratio of distinct values regarding an attribute combina-
tion and the number of records. Moreover, the similarity s is determined by computing
the histogram intersection between the value distribution regarding a certain attribute
combination and a uniform distribution. To avoid a high impact of combinations lead-
ing to a high uniqueness, we weigh the similarity by the uniqueness of an attribute
combination with u·(1−u)/0.25 mitigating the impact of combinations with a high (u ≈ 1)
or small uniqueness (u ≈ 0). To reduce the number of attribute combinations, we filter
the possible attributes based on the number of existing values at first (line 2). Our
assumption here is that attributes or combinations with a high number of missing values
result in ineffective identifiers for representing the underlying records.

104

6.4 Estimating Linkage Quality using Similarity Graphs

6.4.2 Dirty Databases

The proposed methods in the previous section assume one-to-one links between the two
databases. Consequently, if we use these methods for databases with duplicates, we
would underestimate the number of true positives since multi-links are possible.

For estimating the number of true positives, we rely on the assumption that records
being the same entity are similar to each other, which is also reflected in the similarity
graph. As a result of the linkage process, records representing the same entity are
elements of one connected component. A connected component CC is a maximal-
connected subgraph, i. e., CC is not part of any larger connected subgraph [Die17]. The
records of a connected component should be similar to each other which is explicitly
represented by the computed similarities. Nevertheless, the similarities can be different
due to quality issues or edges missing due to the specified threshold. In this case, we
cannot utilize the similarities directly to quantify the number of true positives.

We reformulate the assumption that each record is similar to the other records using
the personalized PageRank [Pag+99]. In the context of the personalized PageRank
considering a certain record, each record of a connected component should be reachable
with roughly the same probability. Otherwise, a record is more (dis)similar to a subset
of records, indicating that not all records refer to the same entity.

To quantify the number of true positives, we introduce a true positive score tpscore(a, b)
for each edge e = (a, b) based on the personalized PageRank pp(a, b) of the adjacent
records a and b as well as the similarity sim∆. Ideally, the probability of reaching a
record b starting from a is equal to the probability by randomly selecting a record b′

from the connected component CC of a since each record should be similar to the other
records. The probability of randomly selecting a record of a connected component is
puni = 1

|CC | . Using the probabilities, we define the true positive score of an edge as:

tpscore (e = (a, b)) = (1− |pp(a, b)− puni|) · (1− |pp(b, a)− puni|) · simnorm(a, b) (6.17)

The first factor and the second factor represent the probability difference reaching
node b starting from a and reaching node a starting from b, respectively. The third
factor weighs the two differences using the min-max normalized similarity simnorm(a, b)
between a and b. The smaller the differences and higher the similarity, the higher the
tpscore for the edge e = (a, b). The total number of true positives TPscore is estimated by
the sum of tpscore(e) overall identified matches e ∈ E. The resulting estimation is used
to compute the precision PPdup as follows:

PPdup = TPscore

|E|
(6.18)

105

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

Dataset Attributes #Records #Matches Blocking
Key Similarity Function

Music
Brainz

Artist, title,
album, year,
length, lan-
guage, num-
ber

20 000 16 250 preLen1(
album) Trigram(title)

Dexter
Heterog.
key-value
pairs

21 023 185 839
mfr. name,
model num-
ber

Trigram(model names,
product code, sensor
type),
Euclid(opt./digital
zoom, camera dim.,
price, weight, resolu-
tion)

Table 6.1: Characteristics and linking configuration of MusicBrainz and Dexter datasets.

To measure recall, we use the estimated number of true positives TPscore compared to
the estimated overlap CE by using cryptosets.

6.5 Discussion of Privacy Aspects

Our methods for estimating linkage quality rely on analyzing similarity graphs as well
as cryptosets of the databases to be linked. In the context of PPRL, there are only a
few works that propose attacks on similarity graphs [Vid+20a]. Such attacks aim to
determine a mapping between the encoded data and publicly available plaintext data by
using graph features (such as weighted node degrees). Our estimation methods, however,
utilize existing similarity graphs which are typically generated by the linkage unit in
PPRL scenarios. Therefore, our approaches do not add any privacy flaws but rather
rely on the security of the method that was used to generate the similarity graph.

Cryptosets can be seen as a summary of the databases’ contents that can be shared in
public, untrustworthy environments to measure the overlap between private databases.
In the literature, cryptosets are considered as information-theoretic secure [SMR15]
as it is not possible to determine which records are in a private database based on its
cryptoset. For the overlap estimation, the cryptosets of the databases to be linked need
to be shared with the linkage unit or between the database owners. Each cryptoset is a
vector of length L containing the counts of public identifiers. Those public identifiers
are determined by mapping the private identifiers of records representing (parts of)
attribute values to an integer value in the range [0, L− 1] using a cryptographic one-
way hash function. Setting L≪ min(|DA|, |DB|) results in a many-to-one relationship
between private and public identifiers where the number of records being mapped to
the same public identifier is typically large and thus impeding the alignment of specific

106

6.6 Experimental Evaluation

records [SMR15]. Consequently, even if an adversary knows the encoding function,
dictionary-based attacks are not feasible.

In addition to this theoretical argument, information gain [CRS20] can be used as a
measure to quantify how much information is exposed by a cryptoset CA compared to
a theoretically optimal cryptoset CU consisting of all possible values in the domain of
private identifiers. Due to the large number of possible values in a domain, the public
identifiers in CU are approximately uniformly distributed so that each position in CU is
set with a probability of 1/L. We can calculate the information gain I

(
CA

∣∣∣∣∣∣ CU

)
using

both entropies of CA and CU as shown in Equation 6.19, where smaller information gain
values represent higher privacy. If information gain is high, the frequency distribution
of a cryptoset can potentially be used in a cryptanalysis attack to align it to a public
value distribution, such as telephone books or census data for names. However, no such
attack has so far been developed.

I
(
CA

∣∣∣∣∣∣ CU

)
= −

L−1∑
i=0

1
L
· log2

1
L
−
(
−

L−1∑
i=0

CA[i]
|DA|

· log2
CA[i]
|DA|

)
(6.19)

Securely computing the intersection of private databases is an intensively studied
problem with various approaches showing different security and complexity proper-
ties [Kum+21]. In general, two parties want to compute the intersection of their private
sets without revealing anything to the other party other than the (number of) elements
in the intersection. For a detailed discussion of different private set intersection protocols,
we refer to [Pin+19]. Many approaches focus only on two parties, compute only the
exact overlap (not considering errors or inconsistencies between matching records), or
do not account for duplicate elements (multiset intersection) [AES03; FNP04; Ege+15].
Therefore, we employ cryptosets as a specific solution to the private set intersection car-
dinality problem that meets our requirements. However, our approaches for estimating
linkage quality are not strictly limited to cryptosets.

6.6 Experimental Evaluation

In this section, we evaluate the proposed approaches for linkage quality assessment using
datasets from three distinct domains with different characteristics. In the following,
we describe the datasets we used as well as the methods and parameter settings for
generating the similarity graphs.

107

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

6.6.1 Datasets

We use datasets from three different domains: voter records (personal information),
records about music albums, and records about consumer products (cameras). In
contrast to the voter datasets, the music and camera datasets are more heterogeneous
(have different attribute structures) and show diverse types of errors. The voter and
music datasets are clean (duplicate-free), while the product dataset is dirty and contains
intra-source duplicates. We use the voter dataset to estimate the linkage quality in a
PPRL scenario. The music and product datasets, in contrast, are used for estimating
the quality in a non-privacy-oriented linkage context.

6.6.1.1 NCVR

We first consider a dataset provided by Panse et al. [Pan+21] that is based on the
North Carolina Voter Registration (NCVR) database (https://www.ncsbe.gov/). This
dataset contains over 120 million historic voter records with person-related attributes
such as first name (FN), middle name (MN), last name (LN), year of birth (YOB),
place of birth (POB), city, ZIP code, and sex. Compared to the other two datasets,
MusicBrainz and Dexter as described next, it represents a homogeneous dataset in
terms of the number of attributes and the characteristics of attribute values such as
length distribution and amount of missing values. From this dataset, we extracted
subsets A and B with |A| = |B| = 200 000 and varying degrees of overlap (number of
matches):

• NCVRH (high overlap) where |A ∩B| = 160 000.

• NCVRMH (medium-high overlap) where |A ∩B| = 120 000.

• NCVRM (medium overlap) where |A ∩B| = 100 000.

• NCVRLM (low-medium overlap) where |A ∩B| = 80 000.

• NCVRL (low overlap) where |A ∩B| = 40 000.

Each singleton record is drawn from the NCVR snapshot of ‘2021-01-01’. Each duplicate
pair (a, b) consists of records a ∈ A and b ∈ B where record a is drawn from a
snapshot between ‘2008-01-01’ (inclusive) and ‘2021-01-01’ (exclusive), while record
b is from snapshot ‘2021-01-01’. Moreover, there is a difference or error in at least
one attribute that is not the year of birth: ∀a, b : (YOB(a) = YOB(b)) ∧ ∃attr ∈
{FN , MN , LN , POB, SEX} : attr(a) ̸= attr(b).

As we use this dataset to estimate the linkage quality in a PPRL scenario, we utilize
Bloom filters as proposed by Schnell et al. [SBR11] as an encoding technique. Bloom-
filter-based encodings have become the quasi-standard for recent PPRL approaches

108

https://www.ncsbe.gov/

6.6 Experimental Evaluation

in both research and real applications [CRS20; Vat+17]. We use record-level Bloom
filters with a length of m = 1024, trigrams, and attribute weighting. To overcome the
quadratic complexity of linkage, we use LSH-based blocking based on the Hamming
distance like in previous work (see Chapter 3). To determine the similarity of candidate
record pairs, we use the Jaccard coefficient [CRS20].

6.6.1.2 MusicBrainz

The MusicBrainz dataset is a synthetically generated dataset from the MusicBrainz
(https://musicbrainz.org/) database. The dataset is corrupted by [Hil+20] con-
sisting of five sources with duplicates for 50% of the original records. While each
database is duplicate-free, the records are heterogeneous regarding the characteristics
of attribute values such as the number of missing values, length of values, and ratio of
errors. The similarity graphs we used in our evaluation have been utilized in several
previous studies [SPR18; SPR20; LSR21; SDR21]. The linkage configuration is shown
in Table 6.1.

6.6.1.3 Dexter

This dataset is derived from the camera dataset of the ACM SIGMOD 2020 Programming
Contest (http://www.inf.uniroma3.it/db/sigmod2020contest/index.html). The
dataset consists of 23 sources with approximately 21 000 records and intra-source
duplicates. Each database consists of source-specific attributes. We used the same
linkage configuration as in previous studies [SDR21; SPR20] (see Table 6.1).

6.6.2 Results

In the following, we evaluate our proposed methods for estimating the linkage quality
on both clean (deduplicated) and heterogeneous/dirty databases. For each dataset, we
analyze the recall, precision, and the resulting F-measure estimates and compare them
with the actual results as calculated from ground truth data.

6.6.2.1 Clean Databases

An essential part of estimating the linkage quality is the estimation of the overlap of two
databases utilizing the cryptoset method we described in Section 6.4.1.3. Due to indepen-
dence regarding various similarity graphs, we evaluate the approach considering different
manual-defined private identifiers on the NCVR datasets representing a homogeneous
dataset. We consider three different private identifier configurations: [2FN,2LN,YOB],

109

https://musicbrainz.org/
http://www.inf.uniroma3.it/db/sigmod2020contest/index.html

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

[3FN,3LN,YOB], and [SD_FN,SD_LN,YOB], where 2A/3A extract the first 2/3 letters
from the value of attribute A. Similarly, SD_A computes the Soundex [HM02] from the
value of attribute A. We empirically set the cryptoset length to L = 8192 as this results
in more accurate estimates with a lower standard deviation.

NCVR_H NCVR_MH NCVR_M NCVR_LM NCVR_L
0

20 k

40 k

60 k

80 k

100 k

120 k

140 k

160 k

180 k

#
 M

at
ch

es

Real
[2FN,2LN,YOB] CS [3FN,3LN,YOB] CS [SD_FN,SD_LN,YOB] CS
[2FN,2LN,YOB] [3FN,3LN,YOB] [SD_FN,SD_LN,YOB]

AVG CS
AVG

Figure 6.3: Evaluation of cryptoset approach to measure recall. Results based on ground
truth are shown as horizontal lines.

The results, as depicted in Figure 6.3 (green bars), show that the cryptoset approach is
able to estimate the overlap for different private identifier generation configurations.
The estimates for NCVRH (with 160 000 matches) range from roughly 117 000 (73.1%)
to 153 000 (95.6%), for NCVRM (100 000 matches) from 76 000 to 124 000 and for
NCVRL (40 000 matches) from 35 000 (87.5%) to 94 000 (235%). The configuration
[3FN,3LN,YOB] provides the best estimate with an average absolute difference of around
19 660 matches between the estimate and the actual number of matches over all datasets.
To reduce the impact of different configurations to construct the private identifiers, we
calculate the average estimated overlap over a set of configurations. Using this average
leads to the best estimate with an average difference of only around 13,400 matches to
the actual number of matches. We therefore use the average over the estimated overlaps
as default in the following experiments.

We also compared the cryptoset approach against estimating the overlap using the
private identifiers directly. The results (red bars) show that only the configuration
[2FN,2LN,YOB] leads to similar results compared to the cryptoset estimate. Therefore,
the non-private overlap estimation is more sensitive regarding the used configuration.
The overhead of the encryption is negligibly small, with an average runtime of 1.9s
compared to 0.9s using the non-private estimation considering all configurations and
datasets.

The results of the different quality estimation approaches for the NCVR dataset are
shown in Figure 6.4. The precision estimates for NCVRH (high overlap) are very close
to each other and also to the real precision. With decreasing overlap, the estimates
PP, PP1:1, and PP1:n are increasingly overestimating the actual precision. In such cases,

110

6.6 Experimental Evaluation

PPprob is providing better estimates. In terms of recall, PR, PRAlt and PRAltMin are
underestimating the actual recall, in particular for the datasets with medium and low
overlap. Due to the same size of both databases PRAlt and PRAltMin are equal.

NCVRH

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

Threshold

P
re
ci
si
o
n

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

Threshold
P
re
ci
si
o
n

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

Threshold

P
re
ci
si
o
n

Precision

PP

PP_1:1

PP_1:n

PP_prob

NCVRM NCVRL

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

Threshold

R
ec

al
l

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

Threshold

R
ec

al
l

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

Threshold

R
ec

al
l

Recall

PR

PR_Alt

PR_AltMin

PR_CE1:1

PR_CE1:n

PR_CEprob

NCVRH NCVRM NCVRL

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

Threshold

F-
M
ea

su
re

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

Threshold

F-
M
ea

su
re

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

Threshold

F-
M
ea

su
re

F-Measure

PF

PF_Alt

PF_AltMin

PF_1:1

PF_1:n

PF_prob

NCVRH NCVRM NCVRL

Figure 6.4: Results on NCVR datasets with different overlaps considering different
thresholds to generate the similarity graph.

The cryptoset approach, in contrast, provides estimates that are much closer to the
actual recall, especially for NCVRM and NCVRL. The recall estimates for PRCEprob are
dropping below a certain threshold which is caused by the small number of expected
true positives for small thresholds using the probability-based estimation method. Using
low thresholds results in graphs with low similarities and a high number of edges for
each record. Thus, the number of true positives is underestimated if the threshold is
too low and the difference to the optimal threshold is too high because of the high
ambiguity in terms of the similarities of correct and incorrect matches. To avoid the
effect of dropping recall estimates considering thresholds t1 < t2, the estimated recall
for threshold t1 can be bounded to the recall value obtained by threshold t2 assuming
that lower thresholds will not result in fewer true positives.

For dataset NCVRH , all approaches provide estimates that are relatively close to the
actual F-measure. Here, the approaches PF, PFAlt and PFAltMin (slightly) underestimate
the actual F-measure, while the other approaches (slightly to moderately) overestimate
the actual F-measure. The highest F-measure of 0.823 is reached for t = 0.75, followed
closely by an F-measure of 0.811 for t = 0.7 and 0.766 for t = 0.8. Using the estimations

111

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

for the threshold selection, the estimation methods PF1 :1 , PF1 :n, and PFprob lead to the
optimal threshold configuration. In contrast, the approaches PF, PFAlt and PFAltMin

reach their maximum estimated F-measure at t = 0.7.

For NCVRM , the estimates of PF, PFAlt and PFAltMin begin to diverge more from the
actual F-measure. The F-measure is heavily underestimated for thresholds t > 0.65,
with a maximum at t = 0.7, while the optimal threshold is at t = 0.75. This trend
continues for dataset NCVRL where the estimates of PF, PFAlt and PFAltMin are even
worse. For NCVRM , PFprob achieves the best estimates where the predicted F-measure
slightly differs from the actual F-measure by at most 0.06. Considering the threshold
selection, the estimation results in selecting the optimal threshold of t = 0.75.

In addition to the quality estimation, we analyzed the privacy of the cryptosets for the
person datasets NCVRL, NCVRM and NCVRH . Each entry of a cryptoset is set by on
average 24 elements (with a standard deviation ranging from 4.98 to 6.55). We also
calculated information gain as described in Section 6.5 using the proposed identifier
configurations and L = 8192. The information gain values are small, similar to the
original work [SMR15], and range from around 0.03 to 0.052 as shown in Table 6.2.
Moreover, the more specific the private identifier is, the more evenly the public identifiers
are distributed in the cryptoset resulting in a smaller information gain. We also observe
that the information gain increases with a higher overlap, which is because the private
identifiers are generated from a finite set of values (such as first/last names). Therefore,
the number of identifiers mapped to one public identifier increases with the number
of records in the overlap, while the number of identifiers of non-overlapping records
remains constant.

Configuration private ID NCVRL NCVRM NCVRH

[2FN, 2LN, YOB] 0.0497 0.0506 0.0522
[3FN, 3LN, YOB] 0.0317 0.0320 0.0316
[SD_FN, SD_LN, YOB] 0.0302 0.0314 0.0317

Table 6.2: Averaged information gain I(CA||CU) and I(CB||CU).

6.6.2.2 Heterogeneous and Dirty Databases

In contrast to the voter datasets, MusicBrainz and Dexter contain heterogeneous records
regarding the characteristics of values. Therefore, we utilize our proposed automatic
selection method to determine the private identifiers being utilized to estimate the
overlap. To generate the private identifiers, we extract the first three characters from
the value of an attribute. For the MusicBrainz dataset, we use all available attributes as
candidates. For the Dexter dataset, we utilize a subset of the available attributes, such

112

6.6 Experimental Evaluation

0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

Threshold

R
ec

al
l

Recall
PR
PR_Alt
PR_AltMin
avg(PR_CE1:1)

avg(PR_CE1:n)

avg(PR_CEprob)

avg(PR_CEa1:1) 0.1
avg(PR_CEa1:1) 0.2
avg(PR_CEa1:1) 0.3

avg(PR_CEa1:n) 0.1
avg(PR_CEa1:n) 0.2
avg(PR_CEa1:n) 0.3

avg(PR_CEaprob) 0.1
avg(PR_CEaprob) 0.2
avg(PR_CEaprob) 0.3

0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

Precision

PP

PP_1:1

PP_1:n

PP_prob

Threshold

P
re
ci
si
o
n

0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1 F-Measure
PF
PF_Alt
PF_AltMin
PF_1:1
PF_1:n
PF_prob
PF_a1:1 0.1
PF_a1:1 0.2
PF_a1:n 0.1
PF_a1:n 0.2
PF_aprob 0.1
PF_aprob 0.2

Threshold

F-
M

ea
su

re

Figure 6.5: Results on MusicBrainz dataset. Results based on ground truth are shown
as horizontal lines.

as product name, brand, and model. Both datasets consist of more than two databases,
we therefore calculate the macro precision and recall (the average of pairwise precision
and recall values) [SCF10].

The results for the MusicBrainz dataset are shown in Figure 6.5. The recall estimates
based on cryptosets in combination with the automatic generation of private identifiers
are abbreviated with ‘..a..’. To determine the estimated overlap, we follow the same
aggregation strategy as for the NCVR dataset, where we averaged the estimations
regarding the generated private identifiers. Moreover, we compare the automatic selection
method of the private identifiers with manually selected identifiers.

The cryptoset method in combination with the private identifier generation approach
results in recall estimates where the average difference between the true and estimated
recall values over all thresholds is below 0.03 for tinfo = 0.1. In contrast to the cryptoset
estimation, the baseline estimations PR, PRAlt and PRAltMin lead to an average difference

113

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

0.3 0.5 0.7
0

0.2

0.4

0.6

0.8

1

Threshold

R
ec

al
l

Recall
PR
PR_Alt
PR_AltMin
avg(PR_CE1:1)

avg(PR_CE1:n)

avg(PR_CEdup)

avg(PR_CEa1:1) 0.1
avg(PR_CEa1:1) 0.2
avg(PR_CEa1:1) 0.3

avg(PR_CEa1:n) 0.1
avg(PR_CEa1:n) 0.2
avg(PR_CEa1:n) 0.3

avg(PR_CEadup) 0.1
avg(PR_CEadup) 0.2
avg(PR_CEadup) 0.3

0.3 0.5 0.7
0

0.2

0.4

0.6

0.8

1

Threshold

P
re
ci
si
o
n

Precision

PP

PP_1:1

PP_1:n

PP_dup

0.3 0.5 0.7
0

0.2

0.4

0.6

0.8

1

Threshold

F-
M

ea
su

re

F-Measure
PF
PF_Alt
PF_AltMin
PF_1:1
PF_1:n
PF_dup
PF_a1:1 0.1
PF_a1:1 0.2
PF_a1:n 0.1
PF_a1:n 0.2
PF_adup 0.1
PF_adup 0.2

Figure 6.6: Results on Dexter dataset. Results based on ground truth are shown as
horizontal lines.

ranging from around 0.33 (PR) up to around 0.4 (PRAlt , PRAltMin). tinfo highly influences
the quality of the cryptoset estimation, resulting in different overlaps so that the recall
differs up to 0.2 using tinfo = 0.3 compared to tinfo = 0.1. Comparing the automatic
approach with the manually defined private identifiers, the method achieves comparable
results using tinfo = 0.1. However, due to the manual effort of selecting appropriate
attribute combinations, we suggest using an automatic method.

Considering the estimates of precision, the probabilistic method PPprob achieves the
best results for the applied thresholds with differences below 0.018. In contrast to the
probabilistic method, the baseline approach PP as well as the adapted PP1 :1 and PP1 :n

lead to similar estimates being far away from the real precision, with a difference ranging
from around 0.04 to around 0.09.

The combination of PPprob and PRCEaprob to estimate precision and recall leads to the
best F-measure approximation PFaprob with an average difference of around 0.01 to the

114

6.7 Conclusion

actual value. However, due to the harmonic mean, PP1 :1 and PRCEa1 :1 with tinfo = 0.2
achieve similar results regarding the F-measure with a difference of 0.011 because of
the neutralization effect of an overestimated precision and an underestimated recall.

The Dexter dataset consists of heterogeneous databases containing intra-source dupli-
cates. Consequently, the previous methods for estimating the true positives will lead to
inaccurate estimates since the number of true positives for each record is limited to one.
Therefore, we apply our method based on the personalized PageRank (described in Sec-
tion 6.4.2) to determine the precision estimate (PPdup) that incorporates intra-source
similarities as well. Due to the heterogeneity regarding various attributes and different
types of quality issues, the manual selection of attributes for computing the private
identifiers is a challenging task. Nevertheless, we use the brand and name attribute
to determine the private identifiers, resulting in reasonable results regarding a small
manual effort. The results for the Dexter dataset are shown in Figure 6.6.

Considering the estimations of recall using the cryptoset method in combination with
the automatic private identifier generation, recall values are highly overestimated due
to the underestimation of the overlap between the databases. In contrast, the manually
defined cryptoset methods highly underestimate recall values due to an overestimated
overlap. The overestimation indicates that the private identifiers are not specific enough
to represent records in this dataset.

As expected, the baseline and the modified precision estimations utilizing the one-
to-one assumption result in poor estimates being almost half of the actual precision.
The precision estimate PPdup achieves values that differ only slightly by at most 0.03
compared to the real precision for thresholds from 0.3 and 0.5. The accuracy of PPdup

is also reflected by the achieved F-measure estimates differing by at most 0.06.

Overall, our results show that the probabilistic and the personalized PageRank-based
methods accurately estimate the number of true positives for clean and dirty databases.
Moreover, the cryptoset-based approach improves the recall estimations significantly
compared to the baseline approaches.

The automatic generation of private identifiers for the cryptoset-based estimation leads
to comparable results as the application of manually defined rules. However, for very
heterogeneous datasets such as the Dexter dataset, our method does not always lead to
accurate results, showing the need for further work.

6.7 Conclusion

Typically, quality measures for record linkage results, such as precision and recall, are
calculated based on ground truth data. However, in most real-world linkage scenarios,

115

Chapter 6 – (Privately) Estimating Linkage Quality for Record Linkage

such ground truth data is not available. A manual inspection of linkage results is also
often not feasible, in particular, due to privacy constraints when linking sensitive data.

In this chapter, we presented different approaches for estimating the quality of a
linkage result given in the form of a similarity graph. We showed that our methods
outperform existing approaches and lead to accurate estimates on different datasets.
These estimates can be used in practical applications to identify suitable linkage methods
and to optimize their parameters, such as the classification threshold. In future work,
we plan to investigate clustering-based approaches for estimating the linkage quality in
deduplication scenarios.

116

7
Evaluation of Hardening Techniques for
PPRL

This chapter is based on [Fra+21]. Privacy-preserving record linkage aims at integrating
person-related data from different sources while protecting the privacy of individuals
by securely encoding and matching quasi-identifying attributes. For this purpose,
Bloom-filter-based encodings have been frequently used in both research and practical
applications. Simultaneously, however, weaknesses and attack scenarios were identified,
emphasizing that Bloom filters are in principle susceptible to cryptanalysis.

To counteract such attacks, various encoding variants and tweaks, also known as
hardening techniques, have been proposed. Usually, these techniques bear a trade-off
between privacy (security) and the linkage quality outcome. Currently, a comprehensive
evaluation of the suggested hardening methods is not available. In this chapter, we
will therefore review and categorize available Bloom-filter-based encoding schemes and
hardening techniques. We also comprehensively evaluate the approaches in terms of
privacy (security) and linkage quality to assess their practicability and their effectiveness
in counteracting attacks.

7.1 Motivation

Over the last years, numerous PPRL approaches have been published [Vat+17]. However,
many approaches are not suited for real-world applications as they either are not able
to sufficiently handle dirty data, i. e., erroneous, outdated, or missing values, or do
not scale to larger datasets. More recent work mainly focuses on encoding techniques
utilizing Bloom filters [Blo70] as an error-tolerant and privacy-preserving method to
encode records containing sensitive information.

117

Chapter 7 – Evaluation of Hardening Techniques for PPRL

While Bloom-filter-based encodings have become the quasi-standard in PPRL ap-
proaches, several studies analyzed weaknesses and implemented successful attacks
on Bloom filters [Kuz+11; Nie+14; KS14; Mit+16; Chr+18a; Chr+18b; Vid+20a;
Vid+22; Vid+23]. In general, it was observed that Bloom filters carry a non-negligible
re-identification risk because they are vulnerable to frequency-based cryptanalysis. In
order to prevent such attacks, various Bloom filter hardening techniques were proposed
[Sch15; Chr+18a]. Such techniques aim at reducing patterns and frequency informa-
tion that can be obtained by analyzing the frequency of individual Bloom filters or
(co-occurring) 1-bits.

Previous studies on Bloom filter hardening techniques only consider individual methods
and do not analyze the effects of combining different approaches. Moreover, many of the
proposed hardening techniques have received only limited evaluation on small synthetic
datasets, making it hard to assess the possible effects on the linkage quality.

The aim of this work is to review hardening techniques proposed in the literature and
to evaluate their effectiveness in terms of achieving high privacy (security) and linkage
quality. In particular, we make the following contributions:

• We survey Bloom filter variants and hardening techniques that have been proposed
for use in PPRL scenarios to allow secure encoding and matching of sensitive
person-related data.

• We categorize existing hardening techniques to generalize the Bloom filter encoding
process, and thus highlight the different possibilities for building tailored Bloom
filter encodings that meet the privacy requirements of individual application
scenarios.

• We explore additional variants of hardening techniques, in particular, salting
utilizing blocking approaches and attribute-specific salting on groups of attributes.

• We propose and analyze measures that allow us to quantify the privacy properties
of different Bloom filter variants.

• We comprehensively evaluate different Bloom filter variants and hardening tech-
niques in terms of privacy (security) and linkage quality using two real-world
datasets containing typical errors and inconsistencies.

The rest of this chapter is structured as follows. In Section 7.2, we describe differ-
ent Bloom filter variants and hardening techniques. Then, we discuss and introduce
new measures to assess the privacy/security properties of Bloom filter encodings in
Section 7.3. In Section 7.4, we describe our experimental setup and then present a
comprehensive evaluation of different hardening techniques in terms of linkage quality
and privacy/security properties. Finally, we conclude in Section 7.6

118

7.2 Bloom Filter Variants and Hardening Methods

7.2 Bloom Filter Variants and Hardening Methods

The use of Bloom filters [Blo70] for PPRL has been proposed by Schnell and colleagues
[SBR09] and has become the quasi-standard for recent PPRL approaches in both
research and real applications [Vat+17]. We discussed Bloom filters and their utilization
in PPRL applications in Section 2.8.

In the following, we review different variations within the Bloom filter encoding process.
In general, these variations will affect both the Bloom filter’s privacy and similarity-
preserving (matching) properties. Approaches that try to achieve a more uniform
frequency distribution of individual Bloom filters or set bit positions are also known as
hardening techniques as they are intended to make Bloom filter encodings more robust
against cryptanalysis. An overview of these techniques is given in Table 7.1. We divide
the approaches into three categories, namely into approaches that

(1) alter the way of selecting features from the records attributes values,

(2) modify the Bloom filter hashing process, and

(3) modify already existing Bloom filters by changing or aggregating bits.

In the following subsections, we will describe the approaches of each category.

7.2.1 Record Feature Selection

We will first focus on how features are selected from the record’s attributes. In the
encoding process, at first, all attribute values are pre-processed to bring them into the
same format and to reduce data quality issues. After that, all linkage-relevant attributes,
i. e., the quasi-identifiers of a person, are transformed into their respective feature sets.
Such features are pieces of information that are usually obtained by segmenting the
attribute values into chunks or tokens. This is necessary because instead of a binary
decision for equality (true or false), approximate linkage is desired, resulting in similarity
scores ranging from zero (completely different) to one (equal).

7.2.1.1 Standardization of Attribute Lengths

Quasi-identifiers, such as names and addresses, show high variation and skewness,
leading to significant differences in the length of attribute values [FL83]. For instance,
multiple given names, middle names, or compound surnames (e. g., ‘Hans-Wilhelm
Müller-Wohlfahrt’) will lead to exceptionally long attribute values and consequently a
comparatively large amount of 1-bits in the resulting Bloom filter. The same applies to
very short names (e. g., ‘Ed Lee’) resulting in very few 1-bits in the Bloom filter.

119

C
hapter

7
–

Evaluation
ofH

ardening
Techniques

for
PPR

L

Subject of
modification Technique Reference Description

Bloom filter
input

Avoidance of padding [Nie+14; Sch15] No use of padded q-grams as BF input due to their higher frequency.
Standardization of at-
tribute lengths [Nie+14; Sch15] The length of attribute values is unified to avoid exceptionally short or long

values.

Feature Expansion [SB18] Expand actual q-gram set by randomly adding q-grams based on frequent
co-occurrences.

Hashing
mechanism

Increasing the number of
hash functions (k) [SBR09; SBR11]

Using more hash functions (k) while keeping the Bloom filter size (m) fixed will
lead to more collisions and thus a higher number of features that are mapped
to each position.

Random hashing [Nie+14] Replacement for the double-hashing scheme [SBR09] which can be exploited in
attacks [Nie+14].

Attribute weighting [Dur+14; Vat+14] Record features are hashed with a different number of hash functions (k)
depending on the weight of the attribute from which they were obtained.

Salting [SBR11; Nie+14] Record features are hashed together with an additional attribute-specific and/or
record-specific value.

Output
Bloom filter

Balancing [SB16a] Each Bloom filter is concatenated with a negative copy of itself and then the
underlying bits are permuted.

xor-folding [SB16b] Each Bloom filter is split into halves which are then combined using the bit-wise
xor-operation.

Rule90 [SB18] Each Bloom filter bit is replaced by the xor-sum of its two neighboring bits.

Windowing-based xoring [RS20] Sliding window approach where the Bloom filter bits in each window are xored
to obtain the hardened Bloom filter.

Re-sampling [RS20] Two Bloom filter bits are selected randomly and xored to set bits in the
hardened Bloom filter.

Linear Diffusion Layer [AHS23] Each bit in the hardened Bloom filter is a linear combination (xor-sum) of
secretly chosen bits from the original Bloom filter.

Re-hashing [Sch15] Sliding window approach where the Bloom filter bits in each window are used
to generate a new set of bits.

Random noise [SBR09; AGK12; Nie+14;
Sch15; SB16a; VRC19] Bloom filter bits are changed randomly.

Autoencoders [Chr+22] Bloom filters are transformed into vectors of real numbers by using autoencoders.
Fake injections [KVC12] Addition of artificial records and thus Bloom filters.

Table 7.1: Overview of Bloom filter hardening techniques.

120

7.2 Bloom Filter Variants and Hardening Methods

By analyzing the number of 1-bits in a set of Bloom filters, an adversary can gain
information on the length of encoded attribute values. To address this problem, the
length of the quasi-identifiers should be standardized by sampling, deletion, or stretching
of the attribute values [Sch15]. Stretching can be implemented by concatenating short
attribute values with (rarely occurring) character sequences.

7.2.1.2 Segmentation Strategy

The standard segmentation strategy adopted from traditional record linkage is to
transform all quasi-identifiers into their respective q-gram set. A q-gram set is a set of
all consecutive character sequences of length q that can be built from the attribute’s
string value by using a sliding window approach. For instance, setting q = 3 the value
‘Smith’ will produce the q-gram set {‘Smi’, ‘mit’, ‘ith’}. The idea behind building
these q-gram sets is that they allow approximate string comparisons by calculating the
number of q-grams two sets have in common. To directly obtain a similarity value, any
set-based similarity measure, e. g., Jaccard coefficient, can be used.

The choice of q is important since it can affect the linkage quality. Usually, q is selected
in the range [1, 4] while most approaches set q = 2. In general, larger values for q are
more sensitive to single character differences, e. g., the values ‘Smith’ and ‘Smyth’ will
have two bigrams (q = 2), i. e., ‘Sm’ and ‘th’, but zero trigrams (q = 3) in common.
However, choosing a larger q also increases the number of possible q-grams, e. g., for
q = 2 at maximum 262 = 676 while for q = 3 at maximum 263 = 17 576 are possible.
Overall, larger values for q tend to be less error-tolerant and thus possibly lead to
missing matches. On the other hand, larger q’s are more distinctive and thus tend to
reduce false positives.

As can be seen from the example above, for q > 1 each character will contribute to
multiple q-grams except the first and last character. Thus, a common extension is
to construct padded q-grams by surrounding each attribute value with q − 1 special
characters at the beginning and the end. For our example, the padded q-gram set will
be { ‘++S’, ‘+Sm’, ‘Smi’, ‘mit’, ‘ith’, ‘th-’, ‘h- -’ }.

By using padded q-grams, strings with the same beginning and end but variations in
the middle will reach larger similarity values, while strings with different beginning and
end will produce lower similarity values compared to standard q-grams [Chr12b]. It is
important to note, that padded q-grams are among the most frequent q-grams and thus
can ease any frequency alignment attacks.

There are several other extensions for generating q-grams, two of which have been
used in traditional record linkage, but so far not for PPRL: positional q-grams and
skip-grams [Chr12b]. Positional q-grams add the information from which position the

121

Chapter 7 – Evaluation of Hardening Techniques for PPRL

q-gram was obtained. For our running example, the positional q-gram set for q = 3 is {
(‘Smi’,0), (‘mit’,1), (‘ith’,2) }. When determining the overlap between two positional
q-gram sets, only the q-grams at the same position or within a specific range are
considered. Positional q-grams will be more distinctive and thus tend to reduce false
positives and even the frequency distribution. The idea of skip-grams is to not only
consider consecutive characters but to skip one or multiple characters. Depending on
the defined skip length, multiple skip-gram sets can be created and used in addition to
the regular q-gram set.

So far, only a few alternatives to q-grams have been investigated. In [KGV18] and
[VC16] the authors explore methods for handling numerical attribute values. Besides,
arbitrary substrings of individual length or phonetic codes, such as Soundex [Chr12b],
are possible approaches that can be used for feature extraction.

7.2.1.3 Feature Expansion

To obfuscate the actual encoded features, the generated feature (q-gram) set can be
extended with other features (q-grams) according to a probabilistic language model.
This approach was proposed by Schnell and Borgs in [SB18] where they use Markov
chaining [Ros10] as a hardening technique for Bloom filters. The key idea is to encode
each q-gram q with c additional q-grams that are randomly selected based on their
probability to occur after q (co-occurrence). The parameter c is called the chain length,
where larger values provide more privacy.

7.2.2 Modification of the Hashing Mechanism

After transforming all quasi-identifiers in their respective feature set, the features of
each set are hashed into one record-level Bloom filter. As discussed in Section 2.8.2.2,
we do not further consider field-level Bloom filters due to their vulnerabilities. For
PPRL several modifications of the standard hashing process of Bloom filters have been
proposed which we will discuss below.

7.2.2.1 Hash Functions

As described in Section 2.8.2.2, by default k independent (cryptographic) hash functions
are used in conjunction with a private key S to prevent dictionary attacks. However,
the authors of [SBR11] proposed the usage of the so-called double-hashing scheme. This
scheme only uses two independent hash functions G1, G2 to implement the Bloom filters
k hash functions. Each hash function is then defined as Hi(x) = (G1(x) + (i− 1) ·G2(x))
mod m,∀i ∈ {1, . . . , k}.

122

7.2 Bloom Filter Variants and Hardening Methods

The attacks described in [KS14; Nie+14] showed that this specific scheme can be
successfully exploited. As a consequence, an alternative method, called random hashing,
was proposed [Nie+14] that utilizes a pseudo-random number generator to calculate
the hash values. Therefore, the random number generator is seeded with the private key
S and the actual input of the hash function, i. e., a certain record feature. No attacks
against this method are known at present.

7.2.2.2 Salting

Salting is a well-known technique in cryptography that is often used to safeguard
passwords in databases [MT79]. The idea is to use an additional input, called salt, for
the hash functions to flatten the frequency distribution.

Already in [SBR11] it is mentioned that a different cryptographic secret key Sa can be
used for each record attribute a. We term such kind of key as attribute salt. By using
this approach, the same feature will be mapped to different positions if it originates
from different attributes. For instance, given the first name ‘thomas’ and the last name
‘smith’ the bigram ‘th’ will produce different positions.

This approach will smoothen the overall frequency distribution and also reduce false
negatives since features from different attributes will not produce common 1-bits (except
due to collision). However, the Bloom filter’s ability to match exchanged attributes,
e. g., transposed first and middle name, is lost. If such errors occur repeatedly, this will
lead to missing matches. As a compromise, we propose to define groups of attributes,
where transpositions are expected. Then, the same key is used for each attribute from
the same group. For instance, all name-related attributes (first name, middle name, last
name) could form a group.

Another salting variant is proposed in [Nie+14], where for each record a specific salt is
selected and then used as a key for the Bloom filters k hash functions. Therefore, we
term such keys as record salt, since they depend on a specific record.

Records salts can also be combined with the aforementioned attribute salts. Only if
the record salt is identical for two records, the same feature (q-gram) will set the
same bit positions in the corresponding Bloom filters. However, if the record salts are
different, then the probability that the same bit positions are set in the corresponding
Bloom filters is very low. Thus, if the attributes (from which the record salts are
extracted) contain errors, this will lead to many false negatives. For this reason, only
commonly available, stable, and small segments of quasi-identifiers, such as year of
birth, are suitable as salting keys. Consequently, this technique is only an option in
PPRL scenarios where the attributes used for salting are guaranteed to be of very high
quality, which might rarely be the case in practice.

123

Chapter 7 – Evaluation of Hardening Techniques for PPRL

To reduce the aforementioned problem of salting with record-specific keys, we propose
to generate the salt by utilizing blocking approaches. Blocking [Chr12b] is an essential
technique in (privacy-preserving) record linkage to overcome the quadratic complexity
of the linkage process since in general each record must be compared to each record of
another source.

The idea of blocking is to partition records into small blocks and then to compare only
records within the same block to reduce the number of record pair comparisons (see
Section 2.6.3). For this purpose, one or more blocking keys are defined, where each
blocking key represents a specific, potentially complex criterion that records must meet
to be considered as potential matches. For example, the combination of the first letter
of the first and last name and the year of birth might be used as a blocking key.

If the attributes used for blocking contain errors, then the blocking key will also be
affected, leading to many false negatives, in particular if the blocking key is very
restrictive. Hence, often multiple blocking keys are used to increase the probability
for records to share at least one blocking key. However, this will lead to duplicate
candidates since very similar records will share most blocking keys.

The challenge of both, salting and blocking, is to select a key that is as specific as
possible (to increase privacy, or to reduce the number of record pair comparisons) and at
the same time not prone to errors. For record-dependent salting, only the use of attribute
segments was suggested. In contrast, for blocking more sophisticated approaches have
been considered, in particular using phonetic codes, e. g., Soundex, or locality-sensitive
hashing schemes, e. g., MinHash [Bro97].

7.2.2.3 Dependency-based Hashing

In traditional record linkage, sophisticated classification models are used to decide
whether a record pair represents a match or a non-match. Often, these models deploy
an attribute-wise or rule-based classification, considering the discriminatory power and
expected error rate of the attributes [Chr12b].

In contrast, PPRL approaches based on record-level Bloom filters only apply classifi-
cation based on a single similarity threshold since all attribute values are aggregated
(encoded) in a single Bloom filter. However, as discussed in Section 2.8.2.1, the record-
level Bloom filter variant proposed in [Dur+14] also considers the weight of attributes
by selecting more bits from the field-level Bloom filters of attributes with higher weights.
In [Vat+14] the authors proposed an extension to the approach of [SBR11] to allow
attribute weighting. While still only a single Bloom filter is constructed, a different
number of hash functions is selected for different attributes according to their weights.

124

7.2 Bloom Filter Variants and Hardening Methods

Consequently, the higher the weight of an attribute, the more hash functions will be
used and thus the more bits the attribute will set in the Bloom filter.

The idea of varying the number of hash functions can be generalized to dependency-
based hashing. For instance, not only the weights of attributes can be considered but also
the frequency of input features or their position within the attribute value (positional
q-grams).

7.2.3 Bloom Filter Modifications

While the methods described so far modify the way Bloom filters are created, the
following approaches are applied directly on the obtained Bloom filters (bit vectors).

7.2.3.1 Balanced Bloom Filters

Balanced Bloom filters were proposed in [SB16a] for achieving a constant Hamming
weight among all Bloom filters. A constant Hamming weight should make the elimi-
nation of infrequent patterns more difficult. Balanced Bloom filters are constructed
by concatenating a Bloom filter with a negative copy of itself and then permuting the
underlying bits. Since the size of the Bloom filters is doubled, balanced Bloom filters
will increase computing time and required memory for Bloom filter comparisons.

Example: Using balancing on Bloom filter [10011001] will give [10011001]⊙[01100110] =
[1001100101100110] as output before applying the permutation.

7.2.3.2 XOR-Folding

Xor-folding of bit vectors is a method originating from chemo-informatics to speed up
database queries [Che+05]. In [SB16b] the authors adopted this idea for Bloom-filter-
based PPRL for preventing bit pattern attacks. To apply the xor-folding a Bloom
filter is split into halves and then the two halves are combined by the xor-operation.
The folding process may be repeated several times. Since the size of the Bloom filters
is halved, xor-folding will decrease computing time and required memory for Bloom
filter comparisons. The initial evaluation in [SB16b] using unrealistic datasets with full
overlap and low error rates shows that one-time folding does not significantly affect
linkage quality. However, folding multiple times drastically increases the number of
false positives.

Example: Applying xor-folding on Bloom filter [11000101] will give [1100]⊕ [0101] =
[1001] as output.

125

Chapter 7 – Evaluation of Hardening Techniques for PPRL

7.2.3.3 Rule90

In [SB18] the use of the so-called Rule90 was suggested to increase the resistance
of Bloom filters against bit-pattern-based attacks. The Rule90 is also based on the
xor-operation which is applied on the two neighboring values of each Bloom filter bit.
Consequently, there are 8 possible combinations (patterns), which are listed in Table 7.2.
So each bit bi (0 ≤ i ≤ m− 1) is replaced by the result of xor-ing the two adjacent
bits at positions (i− 1) mod m and (i + 1) mod m. By using the modulo function, the
first and the last bit are treated as if they were adjacent.

Pattern 111 110 101 100 011 010 001 000
New Bit Value 0 1 0 1 1 0 1 0

Table 7.2: Transformation rules for Rule90.

Example: Applying Rule90 to the Bloom filter [11000101] will lead to the following
patterns 111, 110, 100, 000, 001, 010, 101, 011 where the middle bit corresponds to
the bit at position i ∈ {0, m− 1} of the Bloom filter. After applying the transformation
rules (Table 7.2) we obtain [01101001].

7.2.3.4 Windowing based XORing (WXOR)

This hardening technique was proposed in [RS20] and applies a sliding window approach
to select bits from the original Bloom filter, which are then combined using the bit-wise
xor-operation to obtain the hardened Bloom filter. This approach uses two windows w1

and w2, both of size w, that are iteratively moved over the original Bloom filter Bf of
length m. In each iteration, window w1 is positioned at bit position i (0 ≤ i < m− w),
and window w2 is positioned at bit position (i+1) mod m. Then, the bits that are covered
from each window are extracted, i. e., w1 = πi+w

i (Bf) and w2 = π
(i+1+w) mod m
(i+1) mod m (Bf), and

combined using the bit-wise xor-operation, i. e., w1 ⊕ w2. Finally, the resulting xored
bit pattern is used to update the Bloom filter bits according to window w1. Then, both
windows are moved forward one bit and these steps are repeated until the complete
Bloom filter is processed. In [RS20], the authors argue that a larger window size w will
make the hardening process more efficient, but will also yield less accurate similarity
calculations.

Example: Applying the WXOR approach on Bloom filter [11000101] setting w = 4 will
lead to windows w1 = [1100] and w2 = [1000] in the first iteration. Since w1⊕w2 = [0100],
the hardened Bloom filter after the first iteration is [01000101]. In the second iteration
we obtain windows w1 = [1000] and w2 = [0001] with w1⊕w2 = [1001] leading to Bloom
filter [01001101]. After the third iteration we get Bloom filter [01010101] and after the
fourth iteration Bloom filter [01011111]. Finally, we obtain Bloom filter [01010001].

126

7.2 Bloom Filter Variants and Hardening Methods

7.2.3.5 Re-Sampling based XORing

Another hardening technique that is based on the xor-operation is the re-sampling
approach proposed by Ranbaduge and Schnell in [RS20]. This approach randomly
samples bits from the original Bloom filter Bf and applies the xor-operation on these
bits. To obtain a hardened Bloom filter BfH of length m, the approach applies m

sampling steps. In each sampling step ι, with 0 ≤ ι < m, two bits bi and bj are randomly
selected (with replacement) from the original Bloom filter, with 0 ≤ i, j < m. Then,
the two bits are xored and the resulting bit value is used to set the bit at position ι in
the hardened Bloom filter, i. e., BfH [ι] = bi ⊕ bj.

7.2.3.6 Linear Diffusion Layer

Recently, Armknecht et al. proposed in [AHS23] to extend Bloom filters by a linear
diffusion layer. The core idea is that each output bit of the encoding is a linear
combination (xor-sum) of secretly chosen Bloom filter bits. In a theoretical and
experimental analysis, their approach showed improved security and similar linkage
quality compared to standard Bloom filters. This approach is very similar to the re-
sampling based xoring proposed in [RS20]. In the re-sampling approach, each bit in
the hardened Bloom filter is built by combining (xoring) two randomly selected bits
of the original Bloom filter. In this approach, in contrast, the number of bits to be
combined can be chosen arbitrarily. Besides, the approach by Armknecht et al. uses a
greedy approach to ensure that each bit of the original Bloom filter is used on average
in the same number of linear combinations.

7.2.3.7 Re-Hashing

The idea of re-hashing [Sch15] is to use consecutive bits of a Bloom filter to generate a
new bit vector. Therefore, a window of width w bits is moved over the Bloom filter,
where in each step the window slides forward s positions (step size). At first, a new
bit vector v of size m′ is allocated. Then, the w bits, which are currently covered by
the window, are represented as an integer value. The integer value is then used in
combination with a secret key as input for a random number generator. With that, r

new integer values are generated with replacement, each in the range [0, m′ − 1]. Finally,
the bits at these r positions are set to one in the bit vector v. The evaluation in [SB16a]
uses unrealistic datasets (full overlap, no errors) and shows no clear trend. However,
this technique is highly dependent on the choice of the parameters m′, w, s and r as
well as on the original Bloom filters, in particular the average fill factor (amount of
1-bits).

127

Chapter 7 – Evaluation of Hardening Techniques for PPRL

Example: Given the Bloom filter [11000101] and setting w = 4, s = 2 will lead to three
windows, namely w1 = [1100], w2 = [0001], w3 = [0101]. By transforming the bits in
each window into an integer value, we obtain the seeds 12, 1, and 5. Setting r = 2
the random number generator might generate the positions (4, 2), (2, 5), (8, 6) for the
respective seeds which finally results in the bit vector [001011101].

7.2.3.8 Random Noise

In order to make the frequency distribution of Bloom filters more uniform, random noise
can be added to the Bloom filters [Sch15; SB16a]. Trivial options are to randomly set
bits to one/zero or to flip bits (complement). Additionally, the amount of random noise
can depend on the frequency of mapped record features. For instance, for Bloom filters
containing frequent q-grams, more noise can be added. In [AGK12], an ϵ-differential
private Bloom filter variant, called BLoom-and-flIP (BLIP), based on permanent
randomized response is proposed. Each bit position bi,∀i ∈ {0, . . . , m− 1} is assigned a
new value b′

i based on a flip probability f . In the original approach the new value for
each bit position bi is defined as:

b′
i =


1 if bi = 0 with probability f

0 if bi = 1 with probability f

bi with probability 1− f.

(7.1)

Schnell and Borgs [SB16a] first applied BLIP in the context of PPRL, but using a
slightly different approach:

b′
i =


1 with probability 1

2f

0 with probability 1
2f

bi with probability 1− f.

(7.2)

The difference between the two approaches is that in the second approach (Equation 7.2)
the bits are flipped independently of their original state. Suppose, for example, for
a Bloom filter length of m = 1024 the flip probability is set to f = 0.125. Using
Equation 7.1, 128 randomly selected bits are flipped, while 896 bits remain unchanged.
By using Equation 7.2 instead, 128 randomly selected bits are set to 0 or 1, both with
equal probability. It is therefore very likely that less than 128 bits will be changed.
As a consequence, if a Bloom filter has less than 50% 1-bits, then it will have more
than 50% 1-bits after applying Equation 7.1. A higher number of 1-bits increases the
similarities between hardened Bloom filters, and therefore can potentially lead to more
false positive matches.

128

7.3 Bloom Filter Privacy Measures

Using BLIP as a hardening technique is expected to reduce the linkage quality as Bloom
filter bits are flipped randomly. To overcome this weakness, Vaiwsri et al. [VRC19]
proposed a hardening technique based on reference values as an extension of the BLIP
approach. Their approach uses reference values from a publicly available database to
determine specific bit positions to be flipped. The idea is that similar plaintext values
will likely have similar sets of reference values. Therefore, Bloom filters encoding similar
plaintext values will be randomized similarly. Their evaluation shows that their approach
yields improved linkage quality compared to the original BLIP approaches, but requires
more computational effort.

7.2.3.9 Autoencoder

To overcome the vulnerability of Bloom filters to frequency attacks, Christen et al.
[Chr+22] proposed to use a second layer of encryption that applies a continuous
transformation φ from Bloom filters (bit vectors) into vectors of real numbers, i. e., φ :
Bm −→ Rm′ where m < m′. The transformation is based on autoencoders [Kra91;
Kra92] which are neural networks that can generate lower-dimensional representations
with a small information loss for high-dimensional inputs. The reduction of dimensions
results in information loss, which is intended to hide potentially vulnerable bit patterns
in the Bloom filters. Moreover, existing attacks on frequent 1-bit patterns are not
applicable on vectors of real numbers.

7.2.3.10 Fake Injections

Another option to modify the frequency distribution of Bloom filters is to add artificial
records or attribute values [KVC12]. By inserting random strings containing rarely
occurring q-grams, the overall frequency distribution will become more uniform, making
any frequency alignment less accurate. The drawback of fake records is that they produce
computational overhead in the matching process. Moreover, it is possible that a fake
record will match with another record by chance. Thus, after the linkage, fake records
need to be winnowed.

7.3 Bloom Filter Privacy Measures

Several attacks on Bloom filters have been described in the literature (see Section 2.8.2.2),
which show that Bloom filters carry the risk of re-identification of attribute values and
even complete records. Currently, the privacy of encoding schemes based on Bloom
filters is mainly evaluated by simulating attacks and inspecting their results, i. e., the

129

Chapter 7 – Evaluation of Hardening Techniques for PPRL

more attribute values and records can be correctly re-identified by an attack, the
lower the assumed degree of privacy of the encoding scheme. However, this way of
measuring privacy strongly depends on the used attacks, their assumptions, and the
used reference dataset. Besides, only a few studies investigated evaluation measures for
privacy [Vat+17]. These measures either calculate the probability of suspicion [Vat+14]
or are based on entropy and information gain between masked and unmasked data
[SB16a]. The disadvantage of these measures is that they strongly depend on the
reference dataset used. In the following, we therefore propose privacy measures that
solely depend on a Bloom filter dataset.

To evaluate the disclosure risk of Bloom filter encoding schemes, we propose to analyze
the frequency distribution of the Bloom filter 1-bits. As described in Section 2.8.2.2,
attacks on Bloom filters mostly try to align the frequencies of frequent (co-occurring) bit
patterns to frequent (co-occurring) record features (q-grams). Thus, the more uniform
the frequency distribution of 1-bits is, the less likely an attack will be successful.

To measure the uniformity of the bit frequency distribution of a Bloom filter dataset B,
we calculate for each Bloom filter bit position (column) 0 ≤ i < m the number of 1-bits,
given as ci = ∑

Bf∈B Bf[i], where Bf[i] returns the Bloom filter’s bit value at position i.
The total number of 1-bits is then b = ∑m−1

i=0 ci = ∑
Bf∈B ||Bf||1 where ||Bf||1 denotes the

cardinality of a Bloom filter (see Section 2.8). We can then calculate for each column
its share of the total number of 1-bits, i. e., pi = ci/b. Ideally, for a perfect uniform bit
distribution, ci will be close to b/m for all i ∈ {0, m− 1}.

In mathematics and economics, there are several measures that allow assessment of
the (non-) uniformity of a certain distribution. Consequently, we are adapting the most
promising of these measures to our problem. At first, we consider the Shannon entropy
since uniform probability will yield maximum entropy. The Shannon entropy is defined
as

H(B) = −
m−1∑
i=0

pi · log2(pi) (7.3)

where the maximum entropy is given as

Hmax(B) = log2(m) (7.4)

We define the normalized Shannon entropy ranging from 0 (high entropy - close to
uniform) to 1 (low entropy) as

H̃(B) = 1− H(B)
Hmax(B) (7.5)

Next, we consider the Gini coefficient [CV12; Gas72], which is well-known in economics
as a measure of income inequality. The Gini coefficient can range from 0 (perfect equality

130

7.3 Bloom Filter Privacy Measures

– all values are the same) to 1 (maximal inequality – one column has all 1-bits and all
others have only 0-bits) and is defined as

G(B) =
∑m−1

i=0
∑m−1

j=0 |ci − cj|
2m · b

(7.6)

Moreover, we calculate the Jensen-Shannon divergence (JSD) [FT04] which is a measure
of similarity between two probability distributions. The Jensen-Shannon divergence is
based on the Kullback-Leibler divergence (KLD) [KL51], but has better properties for
our application: In contrast to the Kullback-Leibler divergence, the Jensen-Shannon
divergence is a symmetric measure. In fact, the square root of the Jensen-Shannon
divergence is a metric known as Jensen-Shannon distance (DJS) [ES03]. For discrete
probability distributions P and Q defined on the same probability space, the Jensen-
Shannon divergence is defined as

JSD(P ||Q) = 1
2 KLD(P ||M) + 1

2 KLD(Q ||M) (7.7)

where
KLD(P ||Q) =

∑
s∈S

P (s) · log2

(
P (s)
Q(s)

)
(7.8)

and
M = 1

2(P + Q). (7.9)

The Jensen-Shannon divergence also provides scores between 0 (identical) to 1 (maximal
distance). Since we want to measure the uniformity of the bit frequency distribution of
a Bloom filter dataset B, we calculate the Jensen-Shannon distance as

DJS(B) =
√

JSD(B) (7.10)

where

JSD(B) = 1
2

(
m−1∑
i=0

1
m
· log2

(1
m

1
2 · (pi + 1

m
)

))
+ 1

2

(
m−1∑
i=0

pi · log2

(
pi

1
2 · (pi + 1

m
)

))

Finally, we measure how many different record features (q-grams) are mapped to each
bit position, which we denote as feature ratio (fr). The more features are mapped to
each position, the harder becomes a one-to-one assignment between bit positions and
record features, which will limit the accuracy of an attack.

131

Chapter 7 – Evaluation of Hardening Techniques for PPRL

7.4 Evaluation Setup

Before presenting the evaluation results, we describe our experimental setup as well as
the datasets and metrics we use.

7.4.1 PPRL Setup

We implement the PPRL process as a three-party protocol that requires a trusted
linkage unit [VC16]. Furthermore, we set the Bloom filter length m = 1024. To overcome
the quadratic complexity of linkage, we use LSH-based blocking based on the Hamming
distance [FSR18]. We empirically determined the necessary parameters leading to
high efficiency and effectiveness. As a result, we set Ψ = 16 (LSH key length) and
Λ = 30 (number of LSH keys) as default. Finally, we calculate the Jaccard coefficient
to determine the similarity of candidate record pairs. We classify every record pair
with a similarity equal to or greater than t as a match. Finally, we apply a one-to-one
matching constraint, i. e., a record of one source can match to at maximum one record
of another source, utilizing a symmetric best match approach (see Section 5.5.1).

7.4.2 Datasets

For evaluation, we use two real datasets that are obtained from the North Carolina
voter registration database (NCVR) (https://www.ncsbe.gov/) and the Ohio voter
files (OHVF) (https://www.ohiosos.gov/). For both datasets, we select subsets of
two snapshots at different points in time. Due to the time difference, records contain
errors and inconsistencies, e. g., due to marriages/divorces or moves.

Please note that we do not insert artificial errors or otherwise modify the records. We
only determine how many attributes of a record have changed and use this information
to construct subsets with a specific amount of records containing errors.

An overview of all relevant dataset characteristics is given in Table 7.3. Each dataset
consists of two subsets, SA and SB, to be linked with each other. The two subsets are
associated with two data owners (or sources) A and B, respectively.

7.4.3 Metrics

To assess the linkage quality we determine recall, precision, and F-measure (Sec-
tion 2.6.7.1). To assess the privacy (security) of the different Bloom-filter-based encoding
schemes, we analyze the frequency distribution of the Bloom filter’s 1-bits in order

132

https://www.ncsbe.gov/
https://www.ohiosos.gov/

7.4 Evaluation Setup

Dataset
Characteristic

N O

Type Real (NCVR) Real (OHVF)

|SA| 50 000 120 000
|SB| 50 000 80 000
|SA ∩ SB| 10 000 40 000

Attributes

First name
Middle name
Last name

Year of birth (YOB)
City

First name
Middle name
Last name

Date of birth (BD)
City

|Errors|/record

0 (40%)
1 (30%)
2 (20%)
3 (10%)

0 (37.5%)
1 (55%)

2 (6.875%)
3 (0.625%)

Table 7.3: Characteristics of datasets N and O used for the evaluation of hardening
techniques.

to determine the normalized Shannon entropy, the Gini coefficient, and the Jensen-
Shannon distance (see Section 7.3). Furthermore, we calculate the feature ratio (fr) that
determines how many record features are mapped on average to each bit position.

7.4.4 Q-Gram Frequencies

Before we begin our evaluation on Bloom filters, we analyze the plaintext frequencies of
our datasets N and O as well as the complete NCVR and OHVF datasets. At first, we
measure the relative bigram frequencies as shown in Figure 7.1. What can be seen in
this figure is the high dispersion of bigrams. For the complete NCVR and OHVF the
non-uniformity is a bit higher than in our datasets, which is mainly due to the larger
number of infrequent bigrams. Since our datasets are only subsets from the respective
voter registrations (NCVR/OHVF), some of these rare bigrams do simply not occur in
our dataset subsets.

In Figure 7.2, we plot the Lorenz curves [Gas72] for the plaintext datasets as well as
Bloom filters (see Section 7.5). These diagrams again illustrate the high dispersion
for the plaintext values. Comparing bigrams and trigrams, it can be seen that the
non-uniformity for trigrams is even higher than for bigrams.

Our observations are confirmed by our uniformity (privacy) measures (see Section 7.3)
which we calculate for the datasets as listed in Table 7.4. We use these values as a
baseline for the Bloom filter privacy analysis. The closer the values for a set of Bloom

133

Chapter 7 – Evaluation of Hardening Techniques for PPRL

1E-09

1E-07

1E-05

0.001

0.1

Bigrams (NCVR)

R
el

. F
re

q
u

en
cy

Bigrams (N)

1E-09

1E-07

1E-05

0.001

0.1

Bigrams (OHVF)

R
el

. F
re

q
u

en
cy

Bigrams (O)

Figure 7.1: Relative bigram frequencies for datasets N and O.

Datasets
Bigrams TrigramsMeasure

N NCVR O OHVF N NCVR O OHVF
H̃ 0.1848 0.2497 0.1670 0.2027 0.2151 0.2781 0.2142 0.2491
G 0.7709 0.8728 0.7466 0.8047 0.8705 0.9425 0.8729 0.9189

DJS 0.6315 0.7516 0.6107 0.6724 0.7340 0.8392 0.7362 0.8007

Table 7.4: Analysis of q-gram frequency distribution.

filters are to these values, the more likely a frequency alignment will be successful. On
the other hand, the larger the difference between the values for plaintext and Bloom
filters, the better the Bloom filters can hide the plaintext frequencies and thus the less
likely a successful frequency alignment becomes.

Comparing our three measures, it can be seen that the values for the normalized
Shannon entropy (H̃) are much lower than the values for the Gini coefficient (G)
and the Jensen-Shannon distance (DJS). However, all measures clearly indicate the
differences in the frequency distribution of bigrams and trigrams. Comparing both
datasets, it can be seen that the non-uniformity of bi- and trigrams is slightly higher
for the NCVR than for the OHVF dataset.

134

7.5 Results and Discussion

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Cum. share of q-grams/1-bits (ranked by #occurences)

C
u

m
. s

h
ar

e
o

f
o

cc
u

re
n

ce
s Perf. Uniform

NCVR|q=2
NCVR|q=3
N|q=2
N|q=3
BF(N)|q=2,k=25

BF(N)|q=3,k=20

(a) NCVR

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Cum. share of q-grams/1-bits (ranked by #occurences)

C
u

m
. s

h
ar

e
o

f
o

cc
u

re
n

ce
s Perf. Uniform

OHVF|q=2
OHVF|q=3
O|q=2
O|q=3
BF(O)|q=2,k=25

BF(O)|q=3,k=20

(b) OHVF

Figure 7.2: Comparison of Lorenz curves for plaintext and encoded records (Bloom
filters).

7.5 Results and Discussion

In this section, we evaluate various Bloom filter variants and hardening techniques in
terms of linkage quality and privacy (security).

7.5.1 Hash Functions and Fill Factor

In the following, we evaluate the linkage quality outcome and the privacy properties of
basic Bloom filters by inspecting the frequency distribution of the Bloom filter’s 1-bits
compared to the q-gram frequencies. At first, we vary the number of hash functions (k),
selecting k ∈ {15, 20, . . . , 40} and bigrams (q = 2), to adjust the fill factor (amount of
1-bits) of the Bloom filters. The results for dataset N are depicted in Figure 7.3a.

The results show, that for the high similarity thresholds of t = 0.8, all configurations
achieve high precision ≥96.58%, but low recall ≤60.19%, leading to a max. F-measure of
74.16%. For lower similarity thresholds (t = {0.7, 0.6}), precision is reduced drastically
the more hash functions are used. For instance, setting t = 0.6 and k = 15, the highest
precision of 75.93% is achieved, while for k = 40 the precision is only 45.74%. In
contrast, the higher the number of hash functions, the higher the recall. For instance,
setting t = 0.6 and k = 15, the recall is 73.28%, while for k = 40 it increases to 78.51%.
However, the impact on precision is much higher (difference of around 34%) than on
recall (difference of around 5%). Overall, the configuration with t = 0.7 and k = 25
achieves the best F-measure of 76.89%. However, the other configurations except those
with a fill factor over 50% (k ∈ {35, 40}) achieve only slightly less F-measure. When
averaging precision and recall for each k over all thresholds, the configurations with

135

Chapter 7 – Evaluation of Hardening Techniques for PPRL

t=0.6 t=0.7 t=0.8 t=0.6 t=0.7 t=0.8 t=0.6 t=0.7 t=0.8 t=0.6 t=0.7 t=0.8 t=0.6 t=0.7 t=0.8 t=0.6 t=0.7 t=0.8
k=15 k=20 k=25 k=30 k=35 k=40

20%

30%

40%

50%

60%

70%

80%

90%

100%

F-Measure Precision Recall Fill Factor

(a) Quality

15 20 25 30 35 40
0%

10%

20%

30%

40%

50%

0
5
10
15
20
25
30
35
40
45
50

Num. hash functions (k)

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n

 fr
 G
 D JS

~
H

(b) Privacy

Figure 7.3: Evaluation of standard Bloom filters using bigrams without padding for
varying number of hash functions (k) on dataset N .

k≤25 achieve a mean F-measure of over 75%, while for larger k it declines from around
74% for k = 30 to around 71% for k = 40.

Next, we analyze our privacy measures, which are depicted in Figure 7.3b. The figure
shows that the more hash functions are used (and thus the higher the fill factor of
the Bloom filters) the higher the average number of features that are mapped to each
bit position. Even for the lowest number of hash functions, on average around 10
different bigrams are mapped to each individual bit position. Compared to the plaintext
frequencies (see Table 7.4), we see that basic Bloom filters have a significantly more
uniform frequency distribution than the original plaintext dataset. For instance, using
k = 25 hash functions, we obtain a Gini coefficient of 0.2443 and a Jensen-Shannon
distance of 0.1891 compared to 0.7709 and 0.6315 for the non-encoded dataset. Although
for the Shannon entropy also a difference is visible, i. e., from 0.1848 for plaintext to
0.0137 for Bloom filters setting k = 25, the values are in general much closer to zero

136

7.5 Results and Discussion

and thus less intuitive to compare. As a consequence, in the following, we will focus on
the other two privacy measures. Finally, the privacy measures indicate, that the more
hash functions are used, the closer the 1-bit distribution will get to uniform. However,
the effect is not linear, such that the privacy gain is continuously getting lower, in
particular for k ≥ 30.

7.5.2 Choice of q and the Impact of Padding

In Table 7.5 we compare the linkage quality of Bloom filters using different configurations
for q ∈ {2, 3} and padding for dataset N .

Without the use of padding the best configuration for bigrams, i. e., k = 25 and
t = 0.7, achieves a slightly less F-measure of 76.89% than the best configuration for
trigrams, i. e., k = 20 and t = 0.6, of 77.45%. However, considering the mean over all
configurations, using bigrams achieves a slightly higher F-measure of 75.07% compared
to 74.69% for trigrams. Surprisingly, using trigrams results in an overall higher recall
but lower precision if we average the results over all configurations.

Moreover, the use of padding leads to a higher linkage quality, i. e., the best configura-
tions for bigrams achieve an F-measure of 82.75% while for trigrams even 85.10% is
attained. Averaged over all configurations, by using padding, recall is increased about
5% for bigrams and around 2.8% for trigrams. Interestingly, also precision is increased
by around 2.11% for bigrams and around 4.02% for trigrams. Thus, for both bigrams
and trigrams, the mean F-measure can be increased by padding by more than 3%.

We repeat the experiments on dataset O and report the best configurations in Table 7.6.
The results confirm our previous observation that trigrams with padding lead to
the highest linkage quality. Here, the best configuration using trigrams and padding
outperforms that with bigrams and padding even slightly more than for dataset N ,
i. e., F-measure increases 2.35% for N and 4.49% for O.

Figure 7.4 shows our privacy measures for the best configuration in each group. In
general, the use of bigrams leads to a less uniform distribution of 1-bits and thus lower
privacy. Also, the use of padding leads to a higher dispersion of the Bloom filters
1-bits. However, even the worst configuration, namely bigrams using padding, leads
to a significantly lower Gini coefficient compared to the plaintext datasets. For N ,
for instance, the Gini coefficient is reduced from 0.7709 to 0.3801 (see Table 7.4 and
Figure 7.2). Also, the Jensen-Shannon distance reduces drastically, e. g., for dataset
N from 0.6315 for the plaintext dataset to 0.3045 for the Bloom filter dataset using
bigrams with padding. In contrast, the use of trigrams leads to a more even distribution
of 1-bits, so that despite using padding, a slightly more uniform frequency distribution
is achieved than with bigrams and without using padding.

137

Chapter 7 – Evaluation of Hardening Techniques for PPRL

q Pad. k t Recall
[%]

Precision
[%]

F-Measure
[%]

Mean
Recall

[%]

Mean
Precision

[%]

Mean
F-Measure

[%]

2

No

15
0.6 77.34 74.58 75.93

85.21 67.09 75.07

0.7 63.27 94.12 75.67
0.8 54.96 99.36 70.77

20
0.6 78.71 69.54 73.84
0.7 65.21 91.75 76.24
0.8 55.64 99.19 71.29

25
0.6 79.51 64.58 71.27
0.7 67.71 88.95 76.89
0.8 56.50 98.81 71.89

30
0.6 78.68 58.51 67.11
0.7 70.14 84.80 76.78
0.8 57.43 98.37 72.52

Yes

10
0.6 81.48 84.06 82.75

90.21 69.20 78.32

0.7 64.56 97.71 77.75
0.8 55.08 99.67 70.95

15
0.6 83.77 76.18 79.79
0.7 68.46 96.17 79.98
0.8 56.02 99.53 71.69

20
0.6 83.66 66.15 73.88
0.7 72.33 93.07 81.40
0.8 57.42 99.37 72.78

3

No

15
0.6 69.83 86.85 77.42

91.12 63.28 74.69

0.7 59.49 96.99 73.75
0.8 53.71 99.57 69.78

20
0.6 72.30 83.38 77.45
0.7 60.71 96.19 74.44
0.8 54.30 99.54 70.27

25
0.6 73.53 79.83 76.55
0.7 62.08 94.93 75.07
0.8 54.76 99.41 70.62

30
0.6 74.18 75.71 74.94
0.7 63.64 93.34 75.68
0.8 55.30 99.15 71.00

35
0.6 74.25 71.66 72.93
0.7 65.22 91.43 76.13
0.8 55.96 98.86 71.47

Yes

10
0.6 79.17 91.99 85.10

93.93 67.30 78.42

0.7 61.77 98.91 76.05
0.8 53.87 99.70 69.95

15
0.6 80.87 86.61 83.64
0.7 66.74 98.00 79.40
0.8 54.82 99.63 70.72

20
0.6 80.31 75.42 77.79
0.7 71.96 95.60 82.11
0.8 56.20 99.48 71.82

Table 7.5: Comparison of Bloom filter encodings using bi- and trigrams with and without
padding for dataset N .

138

7.5 Results and Discussion

q Padding k t Recall [%] Precision [%] F-Measure [%]

2
No 25 0.7 68.17 88.32 76.95
Yes 10 0.6 93.99 83.17 88.25

3
No 15 0.6 72.68 82.76 77.39
Yes 10 0.6 95.49 90.14 92.74

Table 7.6: Comparison of Bloom filter encodings using bi- and trigrams with and without
padding for dataset O.

G DJS G DJS
N O

0%

10%

20%

30%

40%

50%

60%
Bigram
Bigram+Padding
Trigram
Trigram+Padding

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJSDJS

Figure 7.4: Comparison of Bloom filter privacy for bigrams and trigrams with and
without using padding for datasets N and O.

To summarize, the highest linkage quality is achieved by using padding which indeed
leads to less uniform 1-bit distribution making frequency-based cryptanalysis more
likely to be successful. However, this can be compensated by using trigrams leading even
to a slightly better linkage quality than for bigrams. Consequently, for our following
evaluation, we select the best configuration using trigrams and padding with k = 10 as
a baseline for our experiments.

7.5.3 Salting and Weighting

In this section, we evaluate the impact of methods that alter the Bloom filter’s hashing
process by varying the number of hash functions and using salting keys to modify the
hash mapping.

7.5.3.1 Attribute Salts

Figure 7.5 depicts the results for Bloom filters where the used hash functions are keyed
(seeded) with a salt depending on the attribute a feature belongs to.

139

Chapter 7 – Evaluation of Hardening Techniques for PPRL

No Yes

Gro
up

(FN
,LN

)

Gro
up

(FN
,MN)

Gro
up

(FN
,MN,L

N)
50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(a) Quality – N dataset

0%

5%

10%

15%

20%

25%

0

25

50

75

100

125

150

175

200

G
DJS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n

 frDJS

No Yes

Group(FN,LN)

Group(FN,MN)

Group(FN,MN,LN)

(b) Privacy – N dataset

No Yes

Group(FN,LN)

Group(FN,MN)

Group(FN,MN,LN)

Group(DOB, M
OB)

80%

85%

90%

95%

100%

F-Measure
Precision
Recall

(c) Quality – O dataset

0%

5%

10%

15%

20%

25%

0

50

100

150

200

250

G

DJS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n

 frDJS

No Yes

Group(FN,LN)

Group(FN,MN)

Group(FN,MN,LN)

Group(DOB, M
OB)

(d) Privacy – O dataset

Figure 7.5: Impact of attribute salting.

For dataset N , we observe that using an individual salt for each attribute increases
precision from 91.99% to 94.69% but also decreases recall from 79.17% to 75.26% leading
to an F-measure loss of around 1.2%. Surprisingly, for dataset O, precision increases
from 90.14% to 93.93% while recall remains stable. Simultaneously, the average number
of features that are mapped to each bit position increases by more than a factor of two
for both datasets (Figures 7.5b and 7.5d). Furthermore, also the Gini coefficient and
the Jensen-Shannon distance are significantly decreased, thus indicating an additional
smoothing of the 1-bit distribution.

To be tolerant of swapped attributes, we build groups containing name-related attributes,
i. e., one group for first name (FN) and last name (LN), one for first name and middle
name (MN), and one for all three name components. Additionally, for dataset O, we
build a group containing the day and month of birth (DOB, MOB). For all attributes
within one group, the same attribute salt is used.

For dataset N , we observe that all groups can slightly increase F-measure, while the
group (FN,MN,LN) performs best and can increase F-measure to 84.48%. Compared
to the variant without using attribute salts, the F-measure is therefore only decreased

140

7.5 Results and Discussion

by 0.6%. On dataset O, all groups achieve similar results, whereby precision and thus
F-measure is always slightly lower than without using groups. Accordingly, swapped
attributes seem to occur only rarely in dataset O. Using attribute salt groups also
reduces the feature ratio and is less effective in flattening the 1-bit distribution.

Overall, however, the use of attribute salts can significantly reduce the dispersion of
1-bits while maintaining a high linkage quality. Building attribute salt groups can be
beneficial for linkage quality, namely for applications where attribute transpositions
are likely to occur. In the following, we include attribute salting as a baseline for our
experiments, where for dataset N the group (FN,MN,LN) is used.

(10
,10

,10
,10

,10
)

(14
,6,
10
,15

,5)

(14
,10

,12
,8,
4)

(15
,5,
10
,10

,5)

(15
,8,
10
,12

,4)

(15
,10

,12
,12

,4)

(15
,10

,10
,10

,5)

(15
,10

,15
,15

,5)
60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(a) Quality – N dataset

0%

5%

10%

15%

20%

25%

0

20

40

60

80

100

120

140

G
DJ

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n

 frDJS

(10,10,10,10,10)

(14,6,10,15,5)

(14,10,12,8,4)

(15,5,10,10,5)

(15,8,10,12,4)

(15,10,12,12,4)

(15,10,10,10,5)

(15,10,15,15,5)

(b) Privacy – N dataset

(10
,10

,10
,10

,10
)

(14
,6,1

0,1
5,5

)

(14
,10

,12
,8,4

)

(15
,5,1

0,1
0,5

)

(15
,8,1

0,1
2,4

)

(15
,10

,12
,12

,4)

(15
,10

,10
,10

,5)

(15
,10

,15
,15

,5)
80%

85%

90%

95%

100%

F-Measure
Precision
Recall

(c) Quality – O dataset

0%

5%

10%

15%

20%

25%

0

50

100

150

200

250

300

G
DJS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n
 frDJS

(10,10,10,10,10)

(14,6,10,15,5)

(14,10,12,8,4)

(15,5,10,10,5)

(15,8,10,12,4)

(15,10,12,12,4)

(15,10,10,10,5)

(15,10,15,15,5)

(d) Privacy – O dataset

Figure 7.6: Evaluation of varying number of hash functions based on attribute weights.

7.5.3.2 Impact of Attribute Weighting

In the following, we evaluate the impact of attribute weighting. Therefore, the number
of hash functions is varied for each attribute depending on attribute weight. We tested
several configurations and report the results in Figure 7.6. The number of hash functions
for each attribute is denoted in the order (FN,MN,LN,YOB/BD,City). We observe that

141

Chapter 7 – Evaluation of Hardening Techniques for PPRL

using attribute weighting strongly affects the linkage quality. All configurations that use
a lower number of hash functions to map the attribute city can significantly increase
both recall and precision. As a consequence, the F-measure is improved by more than
6% to over 91% for dataset N and by around 2% to over 96% for dataset O.

Analyzing the privacy results depicted in Figures 7.6b and 7.6d, we observe that most
weighting configurations can slightly increase the feature ratio and also slightly decrease
the non-uniformity of 1-bits. By comparatively analyzing linkage quality and privacy, we
select the configuration (15,10,15,15,5) as a new baseline since it achieves the highest
privacy while F-measure is only minimally less than for (14,10,12,8,4) (dataset N)
and (15,10,12,12,4) (dataset O).

7.5.3.3 Record Salts

We now evaluate the approach of using a hash function salt that is individually selected
for each record. The record salt is used in addition to the attribute salt we selected
in the previous experiment. We tested several configurations using different attributes
(year of birth, first name, last name).

As Figures 7.7a and 7.7c illustrate, record salts highly affect the linkage quality outcome.
If we use the person’s year of birth (YOB) as a record-specific salt for the Bloom
filter’s hash functions, recall drops drastically from 89.20% (baseline) to only 63.58%
for dataset N . Apparently, in this dataset, this attribute is often erroneous and thus
not suitable as record salt. In contrast, applying this configuration on dataset O, recall
is only slightly reduced while precision is slightly increased, resulting in nearly the same
F-measure.

In order to compensate for erroneous attributes, we test two techniques that are often
utilized as blocking approaches, namely Soundex and MinHashing that we apply on the
first and/or last name attribute. All tested approaches can slightly increase precision as
they make the hash-mapping of the record features more unique. However, the Soundex
and MinHash-based approaches also decrease recall, depending on the attribute(s)
used. For instance, using Soundex on last name leads to relatively low recall in both
datasets indicating many errors, e. g., due to marriages or divorces. Nevertheless, with
the approaches using the first name, a similar high F-measure (loss ≤ 1%) can be
achieved as with the baseline.

Inspecting the privacy results depicted in Figures 7.7b and 7.7d, we observe that the
number of features that are mapped to each individual bit position is greatly increased
by at least a factor of 10. At the same time, using record salts leads to a much more
uniform 1-bit distribution. For instance, the Gini coefficient can be reduced from 0.1772
(baseline dataset N) and 0.1549 (baseline dataset O) to less than 0.04 for all tested

142

7.5 Results and Discussion

No YO
B

Sou
nd

ex(
FN

)

Sou
nd

ex(
LN

)

MinH
ash

(FN
,LN

)

MinH
ash

(FN
)

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(a) Quality – N dataset

0%

5%

10%

15%

20%

25%

30%

0

500

1000

1500

2000

2500

3000

3500

4000
G
DJS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n fr
DJS

No
YOB

Soundex(FN)

Soundex(LN)

MinHash(FN,LN)

MinHash(FN)

(b) Privacy – N dataset

No YO
B

Sou
nd

ex(
FN

)

Sou
nd

ex(
LN

)

MinH
ash

(FN
,LN

)

MinH
ash

(FN
)

80%

85%

90%

95%

100%

F-Measure
Precision
Recall

(c) Quality – O dataset

0%

5%

10%

15%

20%

25%

0

1000

2000

3000

4000

5000
G
DJS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

Fe
at

u
re

s
p

er
 p

o
si

ti
o

n fr
DJS

No
YOB

Soundex(FN)

Soundex(LN)

MinHash(FN,LN)

MinHash(FN)

(d) Privacy – O dataset

Figure 7.7: Impact of record salting.

approaches. The most uniform 1-bit distribution is achieved by using Soundex applied
on the last name attribute, which leads to a Gini coefficient of less than 0.02. This
implies that the 1-bit distribution is almost perfectly uniform, which will make any
frequency-based attack very unlikely to be successful.

By analyzing privacy in relation to quality, we conclude that Soundex, applied to the
first name, performs the best for both datasets and is able to achieve high linkage
quality while effectively flattening the 1-bit distribution.

7.5.4 Modifications

In the following, we evaluate hardening techniques that are applied directly on Bloom
filters (bit vectors).

143

Chapter 7 – Evaluation of Hardening Techniques for PPRL

No

Rn
dR
sp
(0.
01
)

Rn
dR
sp
(0.
05
)

Rn
dR
sp
(0.
1)

Bit
Fli
p(0

.01
)

Bit
Fli
p(0

.05
)

Bit
Fli
p(0

.1)

Rn
dS
et(

0.0
1)

Rn
dS
et(

0.0
5)

Rn
dS
et(

0.1
)

0%

20%

40%

60%

80%

100%

F-Measure
Precision
Recall

(a) Quality – N dataset

No

RndRsp(0.01)

RndRsp(0.05)

RndRsp(0.1)

BitF
lip

(0.01)

BitF
lip

(0.05)

BitF
lip

(0.1)

RndSet(0
.01)

RndSet(0
.05)

RndSet(0
.1)

0%

5%

10%

15%

20%

G
DJ

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(b) Privacy – N dataset

No

Rn
dR
sp
(0.
01
)

Rn
dR
sp
(0.
05
)

Rn
dR
sp
(0.
1)

Bit
Fli
p(0

.01
)

Bit
Fli
p(0

.05
)

Bit
Fli
p(0

.1)

Rn
dS
et(

0.0
1)

Rn
dS
et(

0.0
5)

Rn
dS
et(

0.1
)

20%

40%

60%

80%

100%

F-Measure
Precision
Recall

(c) Quality – O dataset

No

RndRsp(0.01)

RndRsp(0.05)

RndRsp(0.1)

BitF
lip

(0.01)

BitF
lip

(0.05)

BitF
lip

(0.1)

RndSet(0
.01)

RndSet(0
.05)

RndSet(0
.1)

0%

5%

10%

15%

20%

G
DJ

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(d) Privacy – O dataset

Figure 7.8: Evaluation of random noise approaches.

7.5.4.1 Adding Random Noise

There are several ways of adding random noise to a Bloom filter (see Section 7.2.3.8).
We compare the randomized response technique (RndRsp), random bit flipping (BitFlip)
and randomly setting bits to one (RndSet) with each other. We vary the probability of
changing an individual bit by setting ρ = {0.01, 0.05, 0.1}. The results are depicted in
Figure 7.8.

As expected, recall and F-measure decrease with increasing ρ. While for ρ = 0.01 the
loss is relatively small, it becomes significantly large for ρ = 0.1, in particular for the
bit flip approach where recall drastically drops below 20% for N and below 40% for
O. Interestingly, precision can be raised for all approaches and configurations up to
4.7% (for ρ = 0.1). Overall, the bit-flipping approach leads to the highest loss in linkage
quality.

By analyzing the privacy results shown in Figures 7.8b and 7.8d, it is evident that
all random noise approaches can flatten the frequency distribution only a little. Only

144

7.5 Results and Discussion

No
(5,
3,2

)
(6,
4,2

)
(6,
4,3

)
(6,
6,3

)
(8,
4,2

)
(8,
8,4

)
40%

50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(a) Quality – N dataset

No
(5,3,2)

(6,4,2)
(6,4,3)

(6,6,3)
(8,4,2)

(8,8,4)
0%

5%

10%

15%

20%

25%
G
DJ

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(b) Privacy – N dataset

No
(5,
3,2

)
(6,
4,2

)
(6,
4,3

)
(6,
6,3

)
(8,
4,2

)
(8,
8,4

)
40%

50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(c) Quality – O dataset

No
(5,3,2)

(6,4,2)
(6,4,3)

(6,6,3)
(8,4,2)

(8,8,4)
0%

5%

10%

15%

20%

25%
G
DJ

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(d) Privacy – O dataset

Figure 7.9: Evaluation of re-hashing.

at a high ρ-value of 0.1 the Gini coefficient can be reduced by up to 4.81% and the
Jensen-Shannon distance up to 3.65%.

Analyzing the trade-off between linkage quality and privacy, we observe that a high value
for ρ leads to an unacceptable loss in linkage quality. For lower ρ-values both techniques,
randomized response and randomly setting bits to one, lead to relatively small losses in
linkage quality. However, they are not able to significantly flatten the 1-bit distribution.
Nevertheless, hardening techniques based on random noise may impede deterministic
attacks by increasing the number of unique bit patterns.

7.5.4.2 Re-Hashing

To evaluate re-hashing, we test several configurations regarding window size w, step size
s, and the number of re-hashed values r. In Figure 7.9 we report the best configurations
which are denoted in the order (w,s,r) setting m′ = m.

The results regarding linkage quality show that re-hashing increases precision but, in
contrast, drastically decreases recall. In general, the larger the window size w, the lower
the recall that can be achieved. This effect is due to the fact that with larger windows,
there is a higher probability that a bit in the window is different for two similar Bloom

145

Chapter 7 – Evaluation of Hardening Techniques for PPRL

filters. This will result in another integer value (seed) on which the re-hashed 1-bit
positions are selected. Even for the configuration with the smallest window size w = 5,
recall decreases by more than 16% for both datasets. We could not further decrease the
window size, as with w = 4 only 16 different bit patterns are possible. Consequently,
the re-hashed values will be often the same.

This observation is confirmed by inspecting the privacy measures illustrated in Fig-
ures 7.9b and 7.9d. Surprisingly, several configurations, namely (5,3,2), (6,4,2) and
(6,6,3), will increase the non-uniformity of 1-bits. This is because the re-hashed values
will be mapped only to a small range and thus increase the frequencies of these bits.
In contrast, the configuration (6,4,3) and those with w = 8 can flatten the similarity
distribution moderately. At the same time, however, these configurations will lead to
an unacceptable low recall, e. g., for dataset N to only 61.66% for (6,4,3) or even less
than 50% for (8,8,4). As illustrated by the two configurations (8,8,4) and (8,4,4),
a reduction of the step size can increase recall since configurations with s < w will lead
to overlapping windows and thus a higher chance of finding overlapping bit patterns
between two Bloom filters. However, this again increases the unequal distribution of
1-bits.

To summarize, we observe that re-hashing will decrease linkage quality while being not
effective in increasing the uniformity of 1-bits. Therefore, we can not recommend this
method for practical applications.

7.5.4.3 Balancing, xor-folding, Rule90, Re-Sampling

Finally, we evaluate balanced Bloom filters, xor-folding and applying Rule90 in terms
of linkage quality and privacy. The results are depicted in Figure 7.10.

The evaluation shows that balancing reduces precision. While for dataset O precision
decreases moderately by 6.93%, for dataset N it drops drastically by 45.19%. In contrast,
recall remains stable for dataset O whereas it is slightly increased for dataset N . We
found that changing our basic similarity threshold from 0.6 to 0.7 can significantly
improve linkage quality using balanced Bloom filters. This might be due to the fact that
balancing doubles the size of the Bloom filters. Thus, we included the starred version
of balancing, indicating that a different threshold was used. With this configuration,
balancing reduces the F-measure only slightly for both datasets. For dataset N , this is
due to a little less precision and a little higher recall than for the baseline. For dataset
O, however, it is the other way around, i. e., less recall and higher precision.

xor-folding also causes a reduction in linkage quality for both datasets. Since xor-
folding halves the size of the Bloom filters, LSH-based blocking is affected in such a way
that the amount of bits selected for the LSH keys is comparatively large. We therefore

146

7.5 Results and Discussion

No

Ba
lan

cin
g

Ba
lan

cin
g* XO

R
XO

R†*
Ru

le9
0

Re
-Sa

mp
ling

40%

50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(a) Quality – N dataset

No

Balancing
XOR

Rule90

Re-Sampling
0%

5%

10%

15%

20%

25%
G
JS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(b) Privacy – N dataset

No

Ba
lan

cin
g

Ba
lan

cin
g* XO

R
XO

R†*
Ru

le9
0

Re
-Sa

mp
ling

40%

50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(c) Quality – O dataset

No

Balancing
XOR

Rule90

Re-Sampling
0%

5%

10%

15%

20%

25%
G
JS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(d) Privacy – O dataset

Figure 7.10: Evaluation of balanced Bloom filters, xor-folding, Rule90 and re-sampling.

reduced the LSH key length from Ψ = 16 to Ψ = 10 and indicated this configuration
with a dagger (†). By using this configuration and setting t = 0.7, for both datasets,
xor-folding results in a minor loss of F-measure of less than 1% compared to the
baseline. Primarily accountable for the high F-measure is the high precision, which is
slightly increased.

Furthermore, we observe that applying Rule90 also leads to a relatively high loss of
recall of around 12.5% for dataset N and 7.6% for dataset O. Again, Rule90 increases
precision slightly, thus leading to a moderate loss of F-measure of around 5.5% for
dataset N and 3.2% for dataset O.

The re-sampling approach produces similar results as Rule90 for both datasets. That
meets our expectations as both approaches rely on combining certain bits using the
xor-operation. While Rule90 considers the two neighboring bits, re-sampling randomly
samples two bits from the original Bloom filter.

Examining Figures 7.10b and 7.10d, we can see that balancing interestingly increases
the dispersion of 1-bits. For dataset N , for instance, the Gini coefficient is increased by
around 4.8% and the Jensen-Shannon distance by around 4%. In contrast, xor-folding,

147

Chapter 7 – Evaluation of Hardening Techniques for PPRL

Rule90, and re-sampling lead to a more uniform distribution of 1-bits. These three
approaches reduce the Gini coefficient by about 10% and the Jensen-Shannon distance
by more than 7.5%.

Considering both, linkage quality and privacy, we conclude that xor-folding performs
the best by maintaining high linkage quality while effectively flattening the 1-bit
distribution. From a practical point of view, however, xor-folding requires adjusting the
linkage configuration as it halves the length of the Bloom filters. Rule90 and re-sampling,
in contrast, do not require any additional parameters. Consequently, they allow an
easier configuration with similar results in terms of quality and privacy protection.

7.5.4.4 Window-based xor

To evaluate the window-based xor (WXOR) approach, we test different window sizes
1 ≤ w ≤ 20. The results are shown in Figure 7.11.

As expected, the overall quality of the linkage in terms of the F-measure decreases
with increasing window size, which is due to the substantially decreasing recall values.
However, larger windows increase precision up to almost 100%. Interestingly, the quality
results alternate according to the window size w, with odd window sizes leading to a
greater decrease than even window sizes. Using a window size of w = 2 yields almost
the same quality results as the baseline.

Also in terms of privacy, the WXOR approach shows alternating results depending on
the window size as plotted in Figures 7.11b and 7.11d. In general, larger windows result
in a more even distribution of 1-bits, with odd window sizes being more effective at
smoothing the 1-bit distribution. Again, a window size of w = 2 produces only slightly
different results than the baseline without hardening, keeping the 1-bit distribution
nearly the same. Compared to the other xor-based hardening techniques - xor-folding,
Rule90, and re-sampling - the WXOR approach actually achieves slightly better results
and leads to an almost uniform 1-bit distribution.

Overall, only a window size of w = 1 leads to results that provide a good balance
between linkage quality and privacy protection. Larger windows result in a more uniform
1-bit distribution but also reduce the linkage quality considerably. The high sensitivity
of the w parameter complicates its configuration, so we cannot recommend the WXOR
approach for practical applications.

The alternating quality and privacy results are likely due to the fact that even window
sizes lead to fewer bit changes. Since both windows are always moved forward by
only one bit, successive xor-operations may neutralize each other. This is because
of the properties of the xor-operation: (1) the xor-operation is commutative and
associative; (2) the xor-operation is self-inverse, i. e., applying xor on the same

148

7.6 Conclusion

No

WXO
R(1

)

WXO
R(2

)

WXO
R(3

)

WXO
R(4

)

WXO
R(9

)

WXO
R(1

0)

WXO
R(1

9)

WXO
R(2

0)
40%

50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(a) Quality – N dataset

No

WXOR(1)

WXOR(2)

WXOR(3)

WXOR(4)

WXOR(9)

WXOR(10)

WXOR(19)

WXOR(20)
0%

5%

10%

15%

20%

25%
G
JS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(b) Privacy – N dataset

No

WXO
R(1

)

WXO
R(2

)

WXO
R(3

)

WXO
R(4

)

WXO
R(9

)

WXO
R(1

0)

WXO
R(1

9)

WXO
R(2

0)
40%

50%

60%

70%

80%

90%

100%

F-Measure
Precision
Recall

(c) Quality – O dataset

No

WXOR(1)

WXOR(2)

WXOR(3)

WXOR(4)

WXOR(9)

WXOR(10)

WXOR(19)

WXOR(20)
0%

5%

10%

15%

20%

25%
G
JS

D
is

ta
n

ce
 t

o
 u

n
if

o
rm

 d
is

t.

DJS

(d) Privacy – O dataset

Figure 7.11: Evaluation of window-based xor using different windows sizes.

arguments will result in 0; and (3) 0 is the identity element, i. e., if one of the two
arguments is 0, then the remaining argument is left unchanged. Thus, in a sequence of
xor-operations, all pairs of duplicate values can be removed without affecting the result,
i. e., (bi ⊕ bj)⊕ bj = bi ⊕ (bj ⊕ bj) = bi ⊕ 0 = bi for bits bi and bj with 0 ≤ i, j < m.

7.6 Conclusion

Bloom filters are frequently used in both research and practice for PPRL applications.
In this chapter, we reviewed and classified various Bloom filter variants and hardening
techniques that aim at making Bloom filters more robust against cryptanalysis.

Currently, no privacy measure exists that allows comparison of different encoding
schemes in terms of privacy (security) and is independent of any reference dataset.
Therefore, we proposed three privacy measures that allow for assessing the privacy
properties of Bloom filter encodings. These measures are based solely on a set of Bloom
filters and do not need any reference dataset or other information.

149

Chapter 7 – Evaluation of Hardening Techniques for PPRL

Moreover, we comprehensively evaluated the Bloom filter variants and hardening
techniques in terms of both linkage quality and privacy. The evaluation showed that
multiple hardening techniques drastically reduce linkage quality and are thus not
applicable in real-world scenarios. However, in particular two techniques, namely salting
and xor-folding, drastically reduce any frequency information while maintaining high
linkage quality. Carefully selected Bloom filter parameters in combination with these
techniques will make any frequency-based cryptanalysis very unlikely to be successful.
For future work, we aim to evaluate these approaches against modern Bloom filter
attacks described in the literature to further verify our findings.

150

8
PRIMAT: A Toolbox for Fast
Privacy-preserving Matching

This chapter is based on [FSR19]. Privacy-preserving record linkage (PPRL) is increas-
ingly demanded in real-world applications, e. g., in the healthcare domain, to combine
person-related data for data analysis while preserving the privacy of individuals. How-
ever, the adoption of PPRL is hampered by the absence of easy-to-use and powerful
PPRL tools covering the entire PPRL process. Therefore, we demonstrate Primat, a
flexible and scalable tool that enables the definition and application of tailored PPRL
workflows as well as the comparative evaluation of different PPRL methods. We intro-
duce the main requirements for PPRL tools and discuss previous tool efforts that do
not fully meet the requirements and have not been applied in practice. By contrast,
Primat covers the whole PPRL life-cycle and improves applicability by providing
various components for data owners and the central linkage to be executed by a trusted
linkage unit.

8.1 Motivation

The integration of person-related data, e. g., for customers or patients, is needed in
many applications for improved data analysis. However, stricter legal data protection
requirements increasingly ask for privacy-preserving data integration that does not reveal
the identity of persons for whom data is combined and analyzed. These requirements
are met by privacy-preserving record linkage (PPRL) techniques that encode identifying
attributes, e. g., name and birthdate, and often perform the linkage of encoded records
in a separated, trusted environment. A large number of such PPRL methods have been
proposed in the last years, as surveyed in [VCV13; Vat+17]. Some of these approaches
have also been applied, primarily in medical research studies to combine patient-related

151

Chapter 8 – PRIMAT: A Toolbox for Fast Privacy-preserving Matching

data from different hospitals or medical offices, e. g., to analyze diseases or treatments
[Gib+16; LBÜ15; Ran+14]. Despite the large number of proposed PPRL schemes,
their practical use in real applications is still limited due to the absence of convenient
tools and the high complexity of properly selecting and configuring a suitable PPRL
approach. In fact, the relative strengths and weaknesses of different PPRL approaches
and configurations regarding privacy, effectiveness, and efficiency are largely unknown
and ask for more comparative evaluations. While there are some available PPRL
implementations and prototypes (see Section 8.3) they focus on research aspects and
do not provide enough functionality for use in practice. Previous PPRL applications in
medicine are based on tailored solutions that are not usable in different applications.
There is also proprietary PPRL software in use, e. g., in an Australian record linkage
center supporting medical research projects [Gib+16; Luo+17].

There is therefore a strong need for easy-to-use, powerful, and open-source tools to
facilitate the adoption of PPRL in real applications. We have thus started developing
an open-source [Fra23] PPRL toolbox, named Primat (Private Matching Toolbox).
It includes our previously developed methods for fast and scalable PPRL based on the
use of blocking and parallel matching of encoded records (see Chapter 3) as well as for
post-processing to select the best matches (see Chapter 5). Primat focuses on practical
usability and provides different linkage modes, protocols, and components that support
creating individual linkage workflows. Moreover, Primat offers an evaluation framework
to uniformly compare PPRL methods regarding their efficiency and effectiveness.

In the following, we first introduce the main requirements for PPRL tools such as
Primat (Section 8.2) and discuss related implementations (Section 8.3). Then, we
provide an overview of Primat and its components (Section 8.4) and finally conclude.

8.2 Requirements for PPRL Tools

To achieve broad acceptance and operability, the several requirements should be satisfied
by a PPRL toolbox. These requirements are described in detail in the following.

8.2.1 Tackle PPRL Key Challenges

PPRL has three key challenges that need to be carefully addressed. In particular, a high
degree of privacy has to be ensured by providing state-of-the-art encoding techniques
that reduce the risk of data breaches. Moreover, a high linkage quality must be achieved,
i. e., the number of false and missing matches should be minimized. Finally, PPRL
needs to be scalable to large data volumes and possibly many data owners where up to
millions of records need to be linked. Hence, blocking or filtering methods [Chr12b] as

152

8.2 Requirements for PPRL Tools

well as parallel and distributed processing are beneficial to reduce the complexity of
linkage and to speed up similarity computations.

8.2.2 Support of Entire PPRL Process

PPRL demands a multi-step process involving data owners and trusted third parties,
e. g., the linkage unit, to ensure high efficiency and effectiveness. Data owners need to
prepare their data to ensure comparability and encode their records to support privacy.
Data preparation includes unification to resolve schema differences as well as cleaning
procedures, e. g., to resolve data entry errors. The actual linkage also requires multiple
steps, in particular, blocking or filtering to avoid comparing every possible pair of
records, similarity calculation, and a classification step to decide whether a record pair
is considered a match. Consequently, supporting the entire linkage process is essential
to bring PPRL into applications. In order to support various use cases, all components
must be individually configurable to comply with the specific needs of each application
scenario. Moreover, additional or future techniques should be easy to integrate.

8.2.3 Enabling of Batch and Incremental Linkage

Typically, PPRL is executed in batch mode, where all records of a fixed number of
static databases are linked at once. This linkage mode is also known as offline matching
[Chr12b; AKM13] and is illustrated in Figure 8.1a. All database owners provide their
complete encoded databases (Figure 8.1a step 1). The offline batch processing results
in a match mapping, e. g., in the form of a similarity graph, when the entire linkage
process has been completed (Figure 8.1a step 2).

Neither the input records nor the match result are stored permanently. As a consequence,
a complete re-computation is needed for new records or new databases to be linked.
Due to the high complexity of the linkage (see Section 2.4) this leads to a high overhead
even if performance optimizations, such as blocking or parallel/distributed processing,
are used. As a consequence, the timeliness of results is likely limited, especially for a
higher number of databases that are of large size. Batch linkage, however, allows a
flexible adjustment of methods and parameters on re-execution and therefore enables
dealing with changing requirements, for example regarding data quality or privacy.

In some practical applications, it is desired to deploy PPRL in an incremental fashion
such that new records can be added continuously without having to repeat linkage for
previously known records. This linkage mode is also known as online matching and
is illustrated in Figure 8.1b. In this linkage mode, database owners can dynamically
add new sets of records, including a single record or even an entire new database. The

153

Chapter 8 – PRIMAT: A Toolbox for Fast Privacy-preserving Matching

inserted records, calculated similarities between records, and match results are stored in
a database for future inquiries. For each inserted/queried record, the party submitting
the record receives the match status and additional information depending on the use
case. In Figure 8.1b, at first, database owner A sends a set of records to the PPRL
service (typically deployed at the linkage unit) and gets their match status as a response
(steps 1-2). Then, database owner B does the same with a set of its records (steps 3-4).
Further sets of records are then sent by an arbitrary party.

Adding individual records and querying their match status on-demand must be very
fast [LBÜ15], for instance, to trigger certain actions in emergency situations. Domains
that require such a real-time linkage include healthcare, law enforcement, and national
security, as well as the finance sector [Chr12b; CRS20]. In these areas, the queries aim
to check whether a person is present in a particular database, which corresponds to
an identity or solvency check, for example [Phu+12]. In real-time linkage scenarios, a
response typically must be provided within at most a few seconds. While incremental
linkage can provide real-time match information, the drawback is that there is no global
match decision possible. Each subset of records is matched based on the current linkage
configuration as well as the records contained at that time. This can lead to match
decisions in earlier stages which turn out as sub-optimal in later stages when more
records have been inserted.

In incremental linkage, each party can dynamically add new records that need to
be matched to previously added records. Therefore, the incremental linkage adds the
challenge of match cluster management, also known as entity clustering [NR18]. A match
cluster or entity cluster is a group (subset) of records that are assumed to represent
the same real-world entity. Ideally, each real-world entity is represented by exactly one
cluster (see Section 2.6.5.2). Each cluster is typically assigned a unique cluster ID, that
can be considered as an entity identifier (see Section 2.5.1). The task of entity clustering
is to determine and maintain a set of disjoint entity clusters such that all records within
a cluster match with each other. These records are thus considered referring to the
same entity, while records of different clusters refer to different entities.

For batch linkage, the input is a fixed and static set of records from different databases,
so that clustering needs to be performed only once. For incremental linkage, however,
records can continuously be added (or changed) so that the clusters need to be adapted
accordingly. The entity clustering has as input an existing (possibly empty) set of
clusters χexist, as well as a set of new records R. The objective is then to assign each
record r ∈ R either to an existing cluster c ∈ χexist, or to create a new cluster for
it. In the latter case, the new record r does not match any previously added record
(and thus entity) and therefore is considered as a new singleton cluster. Finally, the

154

8.2 Requirements for PPRL Tools

PPRL
Service

1

22

Database
Owner B

Database
Owner A

(a) Batch Matching

PPRL
Service

1 3

2

4
5

6

···

Database
Owner A

Database
Owner B

(b) Incremental Matching

Figure 8.1: Linkage Modes. The steps of the linkage are indicated with numbers in
circles.

output consists of the set of adapted clusters χexists and the set of new clusters χnew,
i. e., χ′

exist = χexist ∪ χnew.

In general, this corresponds to finding an assignment between each record and a cluster.
A single record can be added to at most one of the previously existing clusters. However,
several records may be added to the same cluster. Finding an optimal assignment
depends on the characteristics of the databases to be incrementally matched. Assuming
that a database owner will not provide duplicate records (which corresponds to a
duplicate-free database in the static case), each cluster can contain at most one record
from the respective database. If, in contrast, a database owner can provide duplicate
records (which corresponds to a dirty database in the static case), then each cluster
can contain more than one record from the respective database.

8.2.4 Support for Multiple Database Owners

While most previous PPRL approaches focus on only two data sources, it is essential
to support multi-party approaches with two or more data owners. In this case, the
matching records should not only be linked but also clustered so that all records in a
cluster match with each other. Incremental linkage has to determine whether a new
record belongs to an existing cluster or whether it represents a new cluster.

8.2.5 Ease of Use

PPRL workflows should need minimal parameter tuning effort or deep knowledge of the
underlying techniques. Therefore, a PPRL toolbox should provide appropriate default
settings for methods and parameters, as well as guidance on how to adjust these settings
to fit a particular use case. Moreover, the effort for integrating PPRL in existing system
environments or applications should be minimized.

155

Chapter 8 – PRIMAT: A Toolbox for Fast Privacy-preserving Matching

8.2.6 Evaluation

It is important for both practitioners and researchers to test and evaluate different PPRL
methods and parameter settings to determine effective configurations and appropriately
balance efficiency and privacy. For this purpose, tool support to generate and use
realistic synthetic test data is highly beneficial to determine effective PPRL workflows.
Furthermore, providing analysis and measurement facilities is helpful to evaluate different
approaches and configurations under uniform conditions.

8.3 Related Work

Many PPRL approaches have been proposed in the last years, as summarized in [VCV13;
Vat+17; Gko+21]. Recent approaches mostly rely on encoding techniques based on
Bloom filters[SBR09; SBR11] and make use of a trusted linkage unit that centrally
conducts the linkage of encoded records. While some PPRL tools have been implemented,
they do not meet all requirements collected in Section 8.2. A detailed comparison of
existing PPRL tools is given in Table 8.1.

Mainzelliste [LBÜ15] is a pseudonymization and identity management system designed
for multi-site medical applications. While it has already been used in medical joint
research projects in Germany, it focuses on field-level Bloom filter encodings and does
not support current hardening techniques and therefore does not provide tunable privacy
protection. The Mainzelliste supports incremental linkage, where a single record can be
added at a time. There is no distinction made according to the source of the records
and whether they are duplicate-free. However, as shown in [NR18], a joint consideration
of multiple records or complete databases can improve the linkage quality over a record-
by-record matching. Moreover, each cluster is represented by the oldest (first inserted)
record which can lead to a low linkage quality as it cannot compensate for successive
changes, for example, if a person first moves and then changes his/her name due to a
marriage.

LSHDB [KGV16] is another prototype, that offers parallel and distributed processing,
privacy-preserving blocking as well as both batch and incremental linkage. However, an
incremental linkage is only supported with limits, e. g., there is no clustering mechanism
for more than two records referring to the same entity. Besides, LSHDB does not provide
any encoding, hardening, or evaluation facilities.

PRIVATEER [Kar+15] is a PPRL research prototype that provides different blocking
and matching algorithms. It lacks support for state-of-the-art private blocking approaches
and does not provide incremental linkage.

156

8.4 Description of Toolbox Implementation

PRIM
AT

Main
zel

list
e [LBÜ15]

LSH
DB

[K
GV16]

PRIVATEER
[K

ar+
15]

SO
EMPI [Tot+

14]

Pack
age

‘PPRL’ [SR
22]

Open-source ✓ ✓ ✓ ✓ ✓ ✓

Linkage Unit (LU) + SMC LU LU LU LU LU LU
Data cleaning ✓ (✓) ✗ ✗ ✗ ✗

Flexible encoding ✓ FBF ✗ CLK RBF BF
Hardening support ✓ ✗ ✗ ✗ ✗ ✓

Private blocking ✓ ✓ ✓ SB ✓ MBT
Distributed/parallel execution (✓) ✗ ✓ ✗ ✗ ✗

Batch(B) + Inc.(I) Matching ✓ I ✓ B B+DB B
Match Cluster Management ✓ (✓) ✗ ✗ ✗ ✗

Table 8.1: Comparison of PPRL Tools.

SOEMPI [Tot+14] provides PPRL functionality and is also designed for medical appli-
cations. SOEMPI offers a variety of methods, including current encoding and blocking
techniques. However, it does not provide evaluation facilities, nor it is optimized for
incremental linkage.

Package ‘PPRL’ [SR22] is a toolbox for deterministic, probabilistic, and privacy-
preserving record linkage. It combines the functionality of the predecessor software
MergeToolBox (MTB) [SBB04] with current privacy-preserving linkage techniques. How-
ever, Package ‘PPRL’ mainly focuses on encoding techniques while providing only
limited support for linkage methods.

Overall, most existing tools fail to cover the entire PPRL process and lack any pre-
processing support to weaken typical data quality problems. Moreover, the existing
tools are mostly focusing on a certain set of encoding and linkage techniques, instead
of providing different techniques to support individual use cases.

8.4 Description of Toolbox Implementation

In Figure 8.2 the overall architecture of Primat is depicted. We differentiate between
two main roles for participating in a PPRL process (see also Section 2.7):

• Database owners (DOs): manage sensitive data in the form of person-related
database records, e. g., patient records, that should be linked to the other database

157

Chapter 8 – PRIMAT: A Toolbox for Fast Privacy-preserving Matching

Data Owner
Module

Data
Gen./Cor.
Component

Data
Cleaning
Component

Encoding
Component

Data Owner
Module

Data
Gen./Cor.
Component

Data
Cleaning
Component

Encoding
Component

Linkage and Utility
Module

Incremental Linkage
Component

Utilities
Component

Evaluation
Component

Batch Linkage
Component

Data Owner
Module

Data
Gen./Cor.
Component

Data
Cleaning
Component

Encoding
Component

Encoded
Quasi-Identifiers

Data Analysis

Global ID Medical/Usage Data

Global ID

1

2

3

Figure 8.2: Architecture of PRIMAT.

owners’ records in a privacy-preserving manner. Any database record consists of
specific attributes and has a unique record identifier that is no entity identifier.
We do not make any assumptions about the status of the databases to be linked
regarding inconsistencies or their deduplication status, i. e., if there is more than
one record per entity in a single database.

• Trusted third parties: can have multiple responsibilities within a linkage process.
For Primat, we assume that a trusted linkage unit (LU) performs the actual
linkage of encoded records submitted by the database owners. Using a linkage unit
is beneficial since it requires less complex protocols and low communication costs.
Secondly, we assume a data analyst who wants to combine the database owners’
data for analysis or research. Other third parties may be involved to coordinate
communication between database owners or provide parameter recommendations.

From a high-level perspective, each PPRL process consists of three steps (see Fig-
ure 8.2):

1. Each database owner prepares their records for linkage and encodes the identifying
attributes (quasi-identifiers) of each entity. The encoded quasi-identifiers are then
sent to the linkage unit.

2. The linkage unit conducts the linkage and returns global IDs (pseudonyms) to
the database owners. Thereby, every pair of records that has the same global ID
is considered a match.

3. The database owners send the medical/usage data together with the entities’
global ID to the data analyst, where the data for the same ID can be combined
for enhanced analysis.

158

8.4 Description of Toolbox Implementation

Primat consists of several key components that cover each step of the PPRL process
pipeline. Based on the two aforementioned roles typically occurring in PPRL protocols,
the components are separated into two modules, namely a DO module for pre-processing
and encoding of database records and a linkage and utility module which mainly provides
various linkage techniques for use at the linkage unit. Moreover, each module provides
functions for sending/receiving and generating/parsing data and parameter files. In the
following subsections, we give a description of each component in the two modules.

An overview of the components and functions offered by Primat can be found in
Table 8.2. Currently, out of 21 planned functions, 14 are implemented and ready for use,
including all essential functions required to perform a PPRL workflow. The missing
functions are planned as extensions to further improve the usability and performance
in some use cases. We have already implemented some of these planned extensions (4
out of 7), such as metric space filtering [SR16; Seh+21] our approaches for parallel
and distributed matching [FSR18; Gla+18], but an integration into Primat is still
pending.

8.4.1 DO Module

The DO module provides procedures that are required for database owners to appropri-
ately prepare their records for linkage. It consists of three key components (D1 - D3)
which we will describe in detail below.

8.4.1.1 Data Generation and Corruption Component

This component allows database owners to generate realistic synthetic datasets, possibly
based on real-world data, which can be used for probing and balancing PPRL workflows.
The linkage result obtained for a synthetic dataset can be analyzed, which supports the
selection of appropriate methods and fine-tuning of parameter settings.

8.4.1.2 Data Cleaning Component

The data cleaning component (D2) allows an extensive pre-processing of the database
owners’ data. In particular, it provides common operations to clean and standardize
data, e. g., removing/replacing values or splitting/merging attributes. Primat also
offers traditional record linkage techniques that can be used to detect intra-source
duplicates. The data cleaning functions provided by Primat are listed in Table 8.3.

159

Chapter 8 – PRIMAT: A Toolbox for Fast Privacy-preserving Matching

Component Function Status Reference
Data generation

(D1)
Generation of realistic synthetic test data 3 ⋔ [Dao22]
Corruption functions to simulate dirty data / ⋔ [TVC13]

Data cleaning
(D2)

Split/merge/remove attributes ○

Replace/remove unwanted values and stopwords ○

OCR transformation ○

Encoding
(D3)

Bloom filter encodings ○

Bloom filter hardening techniques ○

Support of alternative encoding schemes ○

Blocking key generation ○

Utilities
(L1)

Pre-processing templates / ® [Nób+18]
Private schema matching / ® [SCS15]

Matching
(L2, L3)

Standard blocking ○

LSH-based blocking ○

Metric space filtering 3 ⋔ [SR16; Seh+21]
Threshold-based classification ○

Post-processing methods ○

Parallel and distributed matching 3 ⋔ [FSR18; Gla+18]
Multi-party support & match cluster management ○

Incremental matching ○

Evaluation
(L4)

Measures for assessing quality, privacy and scala-
bility ○

Masked match result visualization 3 ⋔ [Sch21]

Table 8.2: Functional overview of Primat. The symbol ○ denotes implemented features
and the symbol 3 denotes features where an integration of an available implementation
(⋔) is outstanding. In contrast, the symbol / indicates planned features where the
corresponding approaches are described in the literature (®).

160

8.4 Description of Toolbox Implementation

Data Cleaning Function Description
AccentRemover Removes diacritics.

CharacterReplacer Replaces characters with strings based on a given replacement
mapping.

DigitRemover Removes all digits.

GenderNormalizer Transforms all gender character sequences, such as male, female,
m, f, w, 0, and 1, into a uniform representation.

LetterLowerCaseToNumber-
Normalizer

Converts o → 0, l → 1, z → 2, q → 4, s → 5, and g → 9 to
handle OCR errors.

LetterUpperCaseToNumber-
Normalizer

Converts O → 0, L → 1, Z → 2, A → 4, S → 5, G → 6, and B
→ 8 to handle OCR errors.

LowerCaseNormalizer Converts all letters to lowercase.
NonDigitRemover Remove all characters that are no digits.
NullRemover Removes strings representing null values.
NumberToLetterLowerCase-
Normalizer

Converts 0 → o, 1 → l, 2 → z, 4 → q, 5 → s, 9 → g to handle
OCR errors.

NumberToLetterUpperCase-
Normalizer

Converts 0 → O, 1 → L, 2 → Z, 4 → A, 5 → S, 6 → G, and 8
→ B to handle OCR errors.

PunctuationRemover Removes punctuation like dots or commas.

RegexReplacer Replaces each substring that matches the given regular expres-
sion with the given replacement.

SpecialCharacterRemover Removes special characters, such as ?,!,$.

StandardStringNormalizer
Applies WhitespaceRemover, UmlautNormalizer, Accent-
Remover, PunctuationRemover, NumberToLetterLower-
CaseNormalizer, and LowerCaseNormalizer.

StandardNumberNormalizer Applies LetterLowerCaseToNumberNormalizer, LetterUpper-
CaseToNumberNormalizer, and NonDigitRemover.

StringReplacer Replaces substrings with strings based on a given replacement
mapping.

SubstringNormalizer(0,x) Extracts the substring from the beginning to the x-th character.
TrimNormalizer Removes trailing or leading whitespace.

UmlautNormalizer Converts ä → ae, Ä → Ae, ö → oe, Ö → Oe, ü → ue, Ü → Ue,
and ß → ss.

UpperCaseNormalizer Converts all letters to upper case.
WhitespaceRemover Removes all whitespace.

Table 8.3: Overview of data cleaning functions offered by Primat.

161

Chapter 8 – PRIMAT: A Toolbox for Fast Privacy-preserving Matching

8.4.1.3 Encoding Component

The encoding component (D3) works as follows: At first, the identifying attributes of
each entity are transformed into a set of relevant record features. An overview of the
feature extraction functions that are provided by Primat is given in Table 8.4.

Extractor Function Data Type Description

QGramExtractor(q) String

Constructs all consecutive substrings of length q
where typically 1 ≤ q ≤ 3. Character padding can
be enabled, which adds padding characters at the
beginning and end of the string [Chr12b].

SubstringByPosition-
Extractor(i,j) String

Extracts a substring from position i to position j using
an optimistic approach that returns an empty string
or the maximum available substring if the attribute
value is too short.

SubstringByRegex-
Extractor(e) String Extracts substrings based on the specified regular

expression e.

PhoneticCode-
Extractor(f) String

Encodes the attribute value by applying a phonetic
encoding function f ∈ {Soundex, Metaphone, Dou-
ble Methaphone, Cologne Phonetic, NYSIIS, Beider
Morse} [OR18; HM02; Phi00; Pos69; Chr06].

JaccardLSHExtractor BitSet Applies a permutation p on the attribute value and
returns the position of the first 1-bit [Dur12].

HammingLSHExtractor BitSet Extracts an LSH key by sampling bits from certain
(randomly selected) bit positions (see Section 3.3).

IntegerRangeExtractor Integer

Generates a list of integer values for a given integer
value n by successively adding/subtracting 1 where
values outside a given range are wrapped around the
boundary of the range [VC16].

IdentityExtractor All
Applies the identity function. Useful for attributes
with short values (e. g., gender) or for error-free at-
tributes.

Table 8.4: Overview of extractor functions offered by Primat.

Secondly, these record features are encoded. We focus on Bloom-filter-based encoding
techniques as they are widely used in the PPRL domain [VCV13; Vat+17]. Since
standard Bloom filters are vulnerable to certain types of attacks (see Section 2.8.2.2),
Primat also provides recent hardening techniques (discussed in Section 7.2) to enhance
privacy and to limit the success of attacks. Primat also provides the two-step hash
encoding [RCS20] as an alternative encoding technique to encodings based on Bloom
filters.

162

8.4 Description of Toolbox Implementation

8.4.2 Linkage and Utility Module

The linkage and utility module mainly provides a wide range of methods and procedures
required for linkage. It offers four components (L1 - L4) which we will describe in detail
below.

8.4.2.1 Utilities Component

For database owners, it is challenging to select and agree on appropriate methods
and parameters. Hence, the utility component (L1) provides methods to automatically
determine parameters based on masked sample data. In particular, private schema
matching [Nób+18] and pre-processing templates [SCS15] are planned to support the
database owners to consistently prepare their data for linkage.

8.4.2.2 Batch Linkage

The batch linkage component (L2) is the main component of this module as it im-
plements various linkage techniques. In particular, standard and LSH-based blocking
(see Section 3.3) are provided to reduce the complexity of the linkage. We also plan to
integrate metric space filtering approaches based on our previous work [SR16; Seh+21].
For comparing candidate record pairs, we provide frequently used similarity measures
as listed in Table 8.5.

Similarity Function Data Type Description
BraunBlanquetSimilarity Set, BitSet simBraunBlanquet(X, Y) = |X∩Y |/max(|X|,|Y |).
Dice similarity Set, BitSet See Equation 2.24.
Jaccard similarity Set, BitSet See Equation 2.23.
OverlapSimilarity Set, BitSet simSimpson(X, Y) = |X∩Y |/min(|X|,|Y |).
Hamming similarity BitSet simHamming(X, Y) = 1− ||X⊕Y ||1/max(||X||,||Y ||).

ContainmentSimilarity String Returns 1 if one string is contained in the other, and
0 otherwise.

JaroWinklerSimilarity String See [Chr12b].
LevenshteinSimilarity String See [Chr12b]

PrefixSimilarity String Returns 1 if one string has the other string as a prefix,
and 0 otherwise.

SuffixSimilarity String Returns 1 if one string has the other string as a suffix,
and 0 otherwise.

ExactSimilarity All Returns 1 if both values are equal and 0 otherwise.

Table 8.5: Overview of similarity functions offered by Primat.

Furthermore, we included several post-processing methods in Primat as shown in
Table 8.6. As described in Chapter 5, post-processing can significantly increase linkage

163

Chapter 8 – PRIMAT: A Toolbox for Fast Privacy-preserving Matching

quality by selecting the best match candidates when there are multiple candidate records
exceeding a given similarity threshold. This is beneficial if the databases to be linked are
considered clean (i. e., duplicate-free) and thus a one-to-one link cardinality constraint
can be enforced.

In order to determine the transitive closure, Primat provides a function to calculate
all connected components CC of a graph. In graph theory, a connected component
CC is a maximal-connected subgraph of a graph G, i. e., CC is not part of any larger
connected subgraph [Die17]. Each vertex and each edge belong to exactly one connected
component. For each connected component CC i ∈ CC it is ensured that all vertices in
CC i are pairwise connected by supplementing missing edges.

Post-Processing Method Link Con-
straint Description

Connected Components Transitive
Closure

Determines all connected components of a similarity
graph and adds missing edges within each component.

Symmetric Best Match
(Max1-Both) 1:1

Removes each edge (link) e = (a, b) ∈ E of a similarity
graph SG = (VA ∪ VB , E) with a ∈ VA, b ∈ VB where
vertex (record) a or b has another edge with a higher
similarity than e.

Stable Matching
(Stable Marriage)

1:1
Generates a stable matching, where no two records
of the two sources both have a higher similarity to
each other than to their matching record.

Maximum Weight Matching
(Kuhn-Munkres Algorithm)

1:1
Generates a maximum weight matching, where the
sum of the overall similarities between records in the
final linkage result is maximized.

Asymmetric Best Match
(Max1-Right/Left) 1:N/N:1

For any record a ∈ VA (or b ∈ VB) only the best
matching record of the other source is accepted. This
approach does not result in a graph matching.

Table 8.6: Overview of post-processing methods offered by Primat.

Finally, we plan to integrate our parallel and distributed PPRL approaches based on
our previous work (see Chapter 3 and [Gla+18]). These approaches make it possible to
efficiently link even tens of millions of records but generally require the commissioning
of an HDFS computer cluster. Our distributed PPRL approaches are based on Apache
Flink, a framework and distributed processing engine. Apache Flink also supports a local
setup on a single machine utilizing available CPU cores, but this will likely introduce
an overhead for small- to medium-scale linkage projects. However, even without these
extensions, Primat is able to efficiently link up to a million records on commodity
hardware. Only the linkage of larger databases will require a high-performance server
or an HDFS computer cluster.

164

8.4 Description of Toolbox Implementation

8.4.2.3 Incremental Linkage Component

The incremental linkage component (L3) extends the batch linkage component (L2)
by providing database support to store, retrieve, and update previous match results,
i. e., clusters of matching records (entity clusters). Hence, new records can be added
continuously from multiple parties without repeating the complete linkage for every
record.

A database is necessary to store all previously added records as well as partial linkage
results, such as the resulting similarity graph and entity clusters. Also, information about
the database owners and their databases needs to be stored, especially which databases
are considered clean/dirty. In each linkage iteration j, the incremental linkage approach
uses as input the set of new records Rj to be matched and stored, the set of existing
records Rexist = R0∪ . . .∪Rj−1, the set of existing clusters χexist = χ0∪ . . .∪χj−1 as well
as a specific linkage configuration, including a blocking function fblocking, a comparison
method (set of similarity functions to be applied on the records’ attribute values) and a
decision model DM for classifying matches and non-matches. It is generally possible to
insert only one record in an iteration, i. e., |Rj| = 1. However, inserting and matching
multiple records (or even a complete new source database) at once can significantly
improve linkage quality over record-wise matching, at least for duplicate-free source
databases, as shown in [NR18].

In Figure 8.3 we illustrate the drawback of a record-wise matching compared to a
batch-wise matching of two records r1, r2 ∈ DA where DA is considered as duplicate-free.
If records r1 and r2 are inserted and matched separately, then r1 is matched to record
e1 ∈ DB assuming that sim(r1, e1) = 0.7 ≥ t. As a consequence, r1 and e1 are added
to the same cluster. When r2 is inserted, it has a higher similarity to e1 than r1 has
to e1. However, since the cluster of e1 already contains a record of database DA and
DA is considered clean, r2 cannot be added to this cluster and therefore builds a new
singleton cluster. In Figure 8.3b, records r1 and r2 are inserted and matched in the
same linkage iteration (batch). In that case, the higher similarity of r2 to e1 can be
taken into account, and therefore r2 and e1 are assigned to the same cluster, while r1

builds a singleton cluster.

The incremental matching follows the general linkage process as depicted in Figure 2.1.
We assume that the incremental linkage is conducted by a linkage unit. Therefore, the
linkage unit maintains the aforementioned database, denoted as DLU. The first step
of the incremental linkage is blocking, which aims to limit the number of candidate
record pairs. Each new record r ∈ Rj is assigned to a set of blocks depending on the
blocking function fblocking. Without blocking, each new record needs to be compared
to all previously added records, which would result in a linear complexity that grows

165

Chapter 8 – PRIMAT: A Toolbox for Fast Privacy-preserving Matching

Rj+1

Rj

0.7

Maya Muster
07.11.1969

Ritterstraße 9-13

Max Muster
07.10.1969

Humboldstraße 25

Max Muster
07.10.1969

Ritterstraße 9-13

0.8

(a) Record-wise Matching

Rj

0.7

Maya Muster
07.11.1969

Ritterstraße 9-13

Max Muster
07.10.1969

Humboldstraße 25

Max Muster
07.10.1969

Ritterstraße 9-130.8

(b) Batch-wise Matching

Figure 8.3: Record-wise vs. batch-wise incremental matching.

with the number of records in the database DLU . Each new record r ∈ Rj as well as its
blocking key values are stored in the database.

We then consider two incremental matching variants, namely record-based and cluster-
based incremental matching, which we will describe in the following. Both approaches
are also illustrated in Figure 8.4.

8.4.3 Record-based Incremental Matching

The record-based incremental matching approach is similar to batch matching. In the
blocking step, each new record r ∈ Rj is compared to all existing (previously added)
records that have the same value for at least one blocking key. The resulting record
pairs are considered candidate pairs and compared in detail (see Section 2.6.3.1).

In our example in Figure 8.4, the blocking key values for each record are indicated
with two squares below each vertex. For instance, records r3 and e5 are considered as a
candidate record pair because they have the same value for the first blocking key. In
contrast, r1 and e5 are not compared in detail as they do not share any blocking key
value.

We denote the set of candidate record pairs for iteration j as Cj . In the next step, these
candidate record pairs are compared in detail and classified based on a decision model
DM which results in a set of (potential) matches Mj ⊆ {(r, e) | r ∈ Rj, e ∈ Rexist}. Each
record r ∈ Rj will generally match to a specific subset of existing records, denoted as
Mj(r) = {e | (r, e) ∈ Mi}. If Mj(r) = ∅, then no matching record for r was found and thus
r is assigned to a new (singleton) match cluster cr = {r} which is added to the set
of new clusters χj, i. e., χ′

j = χj ∪ {cr}. If |Mj(r)| ≥ 1, then r matches to one or more
existing records e ∈ Mj(r).

Depending on whether a source database is considered clean (duplicate-free) or dirty
(containing intra-source duplicates), only one or multiple records from the same source

166

8.4 Description of Toolbox Implementation

Database
Owner A

Database
Owner B

Database
Owner C

Linkage Unit

c1

c2

c4
c5

2 3

1 6

3 4

7 9

7 2 7 4

1 3

1 0

3 8

3 4

3 5

0 6

2 4

c32 1

7 4

0.7

0.95

0.85

0.95

0.
85

0.75

0.65

0.7

0.8

0.8

0.85 0.85
0.9

0.65

0.75

c1

7 2

3 83 43 53 4
c2

7 47 9 7 4

2 42 1
c3

1 3 1 02 3

c5 1 60 6

c4

c6

Rj DBj-1+ = DBj

Record-based

c1

7 2

3 83 43 53 4
c2

7 47 9 7 4

2 42 1
c3

1 3 1 0

2 3

c5 1 60 6

c4

c6

Cluster-based

Figure 8.4: Record-based vs. cluster-based incremental matching of databases DA, DB,
and DC . While the databases DA and DC are considered clean, the database DB is
considered dirty (as indicated by the broom icon). Blocking is conducted using two
blocking keys. The blocking key values for each record are indicated with two squares
below each vertex. Gray edges indicate a link constraint violation and are therefore not
considered as potential match candidates. In cluster-based incremental matching, a star
denotes the representative of each cluster.

167

Chapter 8 – PRIMAT: A Toolbox for Fast Privacy-preserving Matching

database can be assigned to the same match cluster. If a database is considered clean,
then no two records of that database can be assigned to the same match cluster. On
the other hand, if a database is considered dirty, then each match cluster may contain
several records of that database. Therefore, if r ∈ DP and database DP of database
owner P is considered as clean, for each matching record e ∈ Mj(r) it needs to be
checked, if its corresponding cluster c(e) ∈ χexist already contains another record from
that database. In this case, e is no longer considered as a match, i. e., M′

j(r) = Mj(r)\{e}.
In our running example, databases DA and DC are considered as clean. Therefore, the
candidate pair (r3, e8) is removed (as indicated with a gray edge) since the cluster
c(e8) = c3 already contains record e9 ∈ DA. Also, the candidate pair (r6, e2) is removed
as c(e2) = c4 already contains record r3 ∈ DC .

Finally, a post-processing step needs to be conducted in order to enforce the desired link
constraints between clusters and records. In general, each new record can be assigned to
at maximum one existing match cluster (since each match cluster represents a real-world
entity). As default strategy, for each new record r ∈ Ri, therefore, we select the cluster
c(e) of record e ∈ M′

j(r) to which r has the highest similarity. However, there may be
two (or more) records r1, r2 ∈ Rj that were submitted by database owner P which
corresponding database DP is considered clean, and both, r1 and r2, have the highest
similarity to a record e ∈ Rexist, or to records e1, e2 ∈ Rexist which correspond to the
same match cluster, i. e., c(e1) = c(e2). In these cases, a one-to-one link constraint needs
to be enforced (see Table 8.6). After the post-processing step, each record r ∈ Rj is
either assigned to an existing cluster c ∈ χexist or to a new (singleton) cluster c′ ∈ χj.
Finally, the database DLU is updated accordingly.

In our running example, records r1, r2, r3 ∈ DA have their highest similarity to record
e1 ∈ DC . However, since DA is considered as clean, at maximum one record can be
assigned to the corresponding cluster of e1 which is c1. In our example, we obtain a
stable matching and therefore assign r2 to cluster c1, r3 to cluster c2, and r1 to a new
singleton cluster c6. By using Max1-Both instead, record r2 would be assigned to cluster
c1, while r2 and r3 would build two new singleton clusters.

8.4.4 Cluster-based Incremental Matching

In our cluster-based incremental matching approach, each cluster is assigned a cluster
representative. Similar to clustering approaches [LRU14], we distinguish two types of
cluster representatives: medoids (also known as clustroids) and centroids. In general,
the medoid of a cluster is the most centrally located actual data point in that cluster.
In contrast, the centroid of a cluster constitutes the center of the cluster, which is not
necessarily an actual data point. In the clustering literature, medoids and centroids are

168

8.4 Description of Toolbox Implementation

generally defined by using a certain measure of distance. Here, we do not use these strict
definitions but rather use the terms to differentiate whether the cluster representatives
are actual data points (records) or not. We denote the respective strategies as REPRMedoid

and REPRCentroid.

For both types of cluster representatives, we consider several selection strategies. Cur-
rently, as medoid either the oldest (first inserted) or the newest (last inserted) record of
the cluster can be selected. In addition, the record with the highest average similarity
to the other cluster members could be chosen. How to select the centroid of a cluster
depends on the privacy technique that is used to encode the records. In this work, we
focus on encodings based on Bloom filters and therefore consider the centroid of a
cluster by aggregating the Bloom filters of the cluster members. A trivial approach is to
combine the Bloom filters of the cluster members into a single Bloom filter by using the
bitwise and- or bitwise or-operation. However, this approach does not seem promising,
since the number of 1-bits in the combined Bloom filter is likely to become quite low
(and) or high (or) as the cluster size increases. As a more sophisticated approach, we
therefore consider combining the Bloom filters of the cluster members into an integer
array by counting the number of 1-bits for each bit position. This data structure is
similar to a counting Bloom filter (CBF) [Fan+00; Mit02].

In Figure 8.5, we illustrate two different strategies for selecting cluster representatives.
In Figure 8.5a, the record that was assigned first to that cluster is chosen as cluster
representative (REPR1st

Medoid). The drawback of this approach is that it depends on the
quality of the record that was inserted first and initially builds the cluster. In the
example, r1 is inserted first and contains some errors. While r2 can still be matched to
r1 with a similarity of 0.67, the similarity between r3 and r1 is too low, and therefore
r3 is (wrongly) assigned to a singleton cluster. In Figure 8.5b, a counting Bloom filter
(CBF) is maintained to represent the cluster (REPRCBF

Centroid). The cluster representative
is dynamically updated after adding a new record. As a consequence, r3 now reaches
a similarity of 0.8 (using Equation 8.2) to the cluster representative and is therefore
(correctly) assigned to the same cluster as r1 and r2. However, these strategies require
a comparative evaluation, especially considering increasing cluster sizes and different
sequences for inserting records.

In our cluster-based incremental matching, also each cluster is assigned a set of blocking
key values and thus blocks. For assigning blocking key values to clusters, we consider
two strategies, BLOCKMBRS and BLOCKREPR. The BLOCKMBRS strategy determines the blocking
key values of a cluster depending on the cluster members, namely either by union or
by intersection of the blocking key values of all records in the cluster. The BLOCKREPR

strategy instead takes the blocking key values of the cluster representative also for the
cluster itself. The blocking step results in a set of record-cluster candidate pairs (r, c)

169

Chapter 8 – PRIMAT: A Toolbox for Fast Privacy-preserving Matching

Rj+1

Maks Muster
10.07.1969

Ritterstraße 9-13

Max Muster
07.10.1969

Ritterstraße 9-13

0.67

Max Muster
07.10.1969

Humboldstraße 25

0.5

0.78

0.67

0.67

0.67

Rj

Rj+2

(a) Medoid – Oldest

Rj+1

0.67

Rj

Rj+2

Maks Muster
10.07.1969

Ritterstraße 9-13

0 1 1 1 0 0 1 1 1 0 1 0

Max Muster
07.10.1969

Ritterstraße 9-13

0 1 1 1 0 1 1 1 0 1 1 0

0 2 2 2 0 1 2 2 1 1 2 0

0 1 1 1 0 0 1 1 1 0 1 0

0 1 1 1 0 0 1 1 1 0 1 0

Max Muster
07.10.1969

Humboldstraße 25

0 1 1 0 1 1 1 1 0 1 1 0

0.8

0 3 3 2 1 2 3 3 1 2 3 00 2 2 2 0 1 2 2 1 1 2 0

(b) Centroid – CBF

Figure 8.5: Strategies for selecting cluster representatives

that are built for each record r ∈ Rj that is assigned to the same block as a cluster
c ∈ χexist .

To perform the comparison on record-cluster candidate pairs, we also consider two
strategies, namely COMPMBRS and COMPREPR. Currently, Primat applies strategy COMPREPR,
where each record is compared to the cluster representative only, which can be either
a medoid or centroid. While medoids are of the same type of data (as they are an
actual cluster member), centroids may be of a different type. This is particularly the
case when a cluster of records encoded as Bloom filters, i. e., bit arrays, is represented
by an integer array (counting Bloom filter). Let x ∈ Bm be a bit array of size m and
y ∈ Nm an integer array of size m. We can calculate the similarity between x and y by

170

8.4 Description of Toolbox Implementation

simply considering each element y[i] > 0 as 1 and then calculating any binary similarity
measure (see Definition 2.8.1.2). For the Jaccard similarity, the similarity function is
then defined as:

simSimpleJaccard(x, y) =
∑m−1

i=0 x[i] ∧ sgn(y[i])∑m−1
i=0 x[i] ∨ sgn(y[i])

(8.1)

To take into account how many cluster members set a certain position in y, we consider
the following similarity function, which is also based on Jaccard similarity:

sim(x, y)WeightedJaccard =
∑m−1

i=0 x[i] · y[i]
|c(y)|∑m−1

i=0
y[i]

|c(y)|

=
∑m−1

i=0 x[i] · y[i]∑m−1
i=0 y[i]

(8.2)

Here |c(y)| denotes the size of the cluster which y represents, i. e., the number of records
(members) in the cluster. Moreover, we consider the cosine similarity that is frequently
used in data mining applications to compare real-valued vectors [LRU14]:

simcos(x,y) =
∑m−1

i=0 x[i] · y[i]√∑m−1
i=0 x[i]2 ·∑m−1

i=0 y[i]2
(8.3)

For example, let x = [0, 1, 1, 0, 0, 1] and y = [1, 3, 2, 0, 0, 2] with |c(y)| = 3. Then,
simSimpleJaccard(x, y) = 3

4 , simWeightedJaccard(x, y) = 3+2+2
1+3+2+2 = 7

8 , and simcos(x,y) =
7√

3·
√

18 ≈ 0.9526.

Record r is then added to cluster c, where r has the highest similarity to the cluster
representative. Yet, if r originates from a database that is considered clean, then c must
not contain another record of this database.

When using strategy COMPREPR, a new record is compared only with the cluster represen-
tatives. This strategy is very efficient because the comparisons are performed only on a
subset of the cluster representatives. However, depending on the strategy to select the
cluster representative and the quality of the cluster representative, this strategy might
lead to misclassifications.

In our running example shown in Figure 8.4, we illustrate the cluster-based incremental
using the strategies BLOCKREPR and COMPREPR. This approach generates only 7 candidate
pairs (indicated with thick lines), while the record-based incremental matching approach
generates 15 candidate pairs. However, r5 and e3 have different values for both blocking
keys and r5 is therefore not compared to any member of cluster c4. As a consequence,
r5 is assigned to cluster c3 instead of cluster c4 like in the record-based incremental
matching approach.

In contrast to strategy COMPREPR, the COMPMBRS strategy (additionally) considers the
similarities between a record r and the members of a candidate cluster. As a consequence,
this strategy requires additional record pair comparisons and is therefore less efficient

171

Chapter 8 – PRIMAT: A Toolbox for Fast Privacy-preserving Matching

than the COMPREPR strategy. To determine the optimal cluster for a new record r, different
heuristics can be considered that utilize features obtained from the resulting similarity
(sub)graph. In particular, we consider selecting the cluster where (1) record r has the
highest average similarity to the cluster members; or (2) where r has the largest number
of links (above a given threshold) to members of the cluster.

Similar to the record-based incremental linkage approach, a post-processing step is
conducted to enforce the link constraints between records and clusters depending on
the characteristics of the source databases. Then, each record r ∈ Rj is either assigned
to an existing or new cluster. Finally, the cluster representatives and cluster blocking
key values are updated accordingly.

8.4.4.1 Evaluation Component

It is important for both practitioners and researchers to evaluate PPRL methods and
workflows. For researchers, such evaluation is often straightforward since ground truth
data, i. e., the correct linkage result, is usually available. However, quality metrics
like precision, recall, and F-measure need to be determined to comparatively evaluate
different PPRL methods and parameters. In practice, in contrast, ground truth data
is generally not available and, in addition, a manual inspection of records or linkage
results is often prohibited due to privacy constraints. Nevertheless, some metrics, such
as runtime, reduction ratio, or the number and average size of blocks, can still indicate
bad parameter or method choices. Primat allows calculating various performance
measures, including our unsupervised approaches to estimating linkage quality in the
absence of ground truth data (see Chapter 6). We also plan to add privacy-preserving
visualization approaches that can be utilized to grant authorized experts insights into
linkage results without degrading privacy [Kum+14; Rag+18]. An implementation
already exists [Sch21], but an integration into Primat is currently pending.

8.5 Conclusion

In this chapter, we presented our PPRL toolbox Primat that allows a flexible definition,
execution, and evaluation of PPRL workflows. Primat provides various state-of-the-art
encoding and linkage techniques covering the entire PPRL process, and thus drastically
reduces the effort to deploy PPRL in practice. For future work, we plan to integrate
additional features in Primat, such as the planned functions for generating realistic test
datasets as well as approaches for masked match result visualization. We also plan to
gradually add new methods related to ongoing research in the field of PPRL. Finally, we

172

8.5 Conclusion

plan to comprehensively evaluate Primat’s capabilities regarding incremental matching
to determine which of our proposed methods performs best.

173

9
Conclusion and Outlook

In this thesis, we have presented comprehensive research in scalable and accurate
privacy-preserving record linkage (PPRL). In Section 9.1, we summarize our research
problems and contributions of this thesis. Finally, in Section 9.2, we discuss directions
for future research.

9.1 Conclusion

Privacy-preserving record linkage (PPRL) is confronted with three main challenges
which are quality, scalability, and privacy. The linkage process must be effective and
provide high-quality linkage results that allow the integration of data from different
databases for accurate and extensive data analysis. PPRL also needs to be scalable,
so that even several million records from multiple databases can be linked efficiently.
Finally, PPRL needs to protect the privacy of individuals whose corresponding records
are part of the linkage. Therefore, no personal data should be revealed in the linkage
process. In this thesis, we tackled all three key challenges of linking sensitive data.
We addressed several shortcomings identified in the area of PPRL by the following
contributions:

• We developed parallel and distributed PPRL approaches using blocking techniques
based on locality-sensitive hashing. Our approaches utilize Apache Flink as a
modern distributed processing framework and can thus be executed on large shared-
nothing computer clusters to parallelize and speed up computations. Our parallel
PPRL approaches showed high efficiency and effectiveness for large synthetic and
real-world datasets with up to 16 million records.

• We extended LSH-based blocking to support attribute-level encodings. We imple-
mented our extensions within the identity management software named Mainzel-
liste. The Mainzelliste is widely used in the medical domain and focuses on

175

Chapter 9 – Conclusion and Outlook

attribute-level encodings as they generally provide higher linkage quality at the
expense of lower security properties. This compromise is necessary in some bio-
medical applications to ensure a very high linkage quality. Our extensions for
LSH-based blocking showed drastically improved runtimes without reductions in
terms of linkage quality.

• Simple threshold-based classification approaches are widely used in PPRL scenarios
but can lead to low linkage quality, in particular, if the threshold is not chosen
appropriately. In addition, depending on the characteristics of the source databases,
certain link constraints arise that are not taken into account by a pairwise
classification of record pairs. To enforce such link constraints and to reduce
the impact of thresholds that have been set too low, we proposed different
post-processing strategies to resolve multiple match candidates. We showed that
post-processing raises the overall linkage quality, in particular in PPRL scenarios
that deal with dense or dirty data. Moreover, the linkage quality is far more stable
for lower thresholds when using post-processing. This becomes highly beneficial in
practical applications where an optimal threshold value is usually hard to define.

• Another major contribution of our work relates to the evaluation of PPRL algo-
rithms. Assessing linkage quality is difficult in real-world applications, as ground
truth data is often not available and manual verification of match results is not
possible due to privacy concerns. Therefore, we proposed novel unsupervised
approaches for privately estimating the linkage quality. Based on these estimates,
methods, and parameters can be adjusted and optimized. Our evaluation using
several real-world datasets from different domains showed that our estimates are
close to the actual linkage quality.

• We have also conducted a comprehensive and comparative evaluation of different
hardening techniques for encodings based on Bloom filters. In this context, we
have proposed a novel set of privacy measures that assess the uniformity of the
frequency distribution of 1-bits within the encoded records. Previous approaches
for measuring privacy often depend on a reference dataset or a certain type of
attack. In contrast, our proposed privacy measures solely depend on a Bloom
filter dataset. The evaluation showed that multiple hardening techniques lead to
poor linkage quality and therefore cannot be used in practice. A few hardening
techniques, however, are able to maintain a high linkage quality while reducing
any frequency information, making frequency-based cryptanalysis unlikely to be
successful.

• We have developed an open-source PPRL toolbox called Primat that combines
several state-of-the-art encoding and linkage methods into a single framework
that allows both practitioners and researchers to easily set up and comparatively

176

9.2 Outlook

evaluate different PPRL pipelines. Primat offers several modules for data owners
and the linkage unit that can be integrated as a library (dependency) into existing
projects to provide PPRL functions. In addition, Primat offers two linkage modes,
namely batch matching and incremental matching. To the best of our knowledge,
Primat is the only open-source PPRL tool that covers the entire PPRL process
and provides full support for both linkage modes.

Overall, our approaches improve the applicability of PPRL approaches in real-world
applications where large datasets need to be matched accurately and efficiently. However,
there are still several open research questions in the area of PPRL that need to be
addressed.

9.2 Outlook

Finally, we discuss several open research questions that are left for future work.

Enhanced privacy measures for PPRL: The aim of privacy measures is to quantify
the degree of privacy and the amount of protection that is offered by a specific privacy-
preserving technology. Such measures are therefore necessary to objectively compare
different competing approaches in a standardized way. While different privacy measures
have been proposed in the literature [WE18], there is currently no single all-purpose
privacy measure that is commonly accepted [CRS20]. Due to the diversity and complexity
of privacy measures, choosing an appropriate privacy measure is challenging [WE18].
Moreover, such measures should ideally be applicable to different encoding techniques
developed for PPRL. They should also take various factors into account, such as
certain characteristics of the databases to be linked (e. g., size of databases or frequency
distribution of values), as well as the adversary’s capabilities and goals. In addition,
privacy measures are required that do not only provide a single measure for each
database but also provide assessment for individual, particularly vulnerable subsets of
records. This indicates the need for novel multidimensional privacy measures.

As discussed in Chapter 7, most existing privacy measures for PPRL rely on a global
reference dataset or depend on the re-identification rate of a specific attack and its
assumptions. Therefore, we proposed a novel set of privacy measures that solely depend
on the encoded (Bloom filter) database and measure the uniformity (evenness) of
the 1-bit distribution. The more uniform the 1-bit distribution is, the less likely any
frequency-based cryptanalysis will be successful. However, a uniform 1-bit distribution
does not necessarily imply a fully patternless outcome that is indistinguishable from a
randomly generated output. Therefore, more attention towards this direction is required
and novel measures to quantify privacy in terms of randomness are needed. To assess

177

Chapter 9 – Conclusion and Outlook

the extent of correlation between different encoding fragments (e. g., bit positions) that
could be exploited in attack scenarios, correlation measures such as the Phi coefficient
are interesting to investigate.

Selective hardening for vulnerable values: Hardening techniques aim to improve the
privacy properties of encoding techniques in order to prevent certain types of attacks.
Until now, typically only a single hardening technique is applied on the entire input
databases to be linked. Therefore, the vulnerability of individuals or groups of encoded
records is not considered. Since hardening techniques generally show a trade-off between
linkage quality and privacy, a compelling research direction is to analyze which minimum
combination of techniques is required to minimize the likelihood of success regarding
different attacks while maintaining a high linkage quality. Ideally, an approach would
automatically identify all vulnerable subsets of records in the input databases and then
determine a minimal set of techniques that are required to protect these subsets against
known attacks.

Overcoming similarity vulnerabilities: To address errors and inconsistencies in real-
world data, PPRL encoding techniques need to support approximate matching and
thus the calculation of similarities between encoded records. As a consequence, the
similarities between encoded records can be compared to the similarities of plaintext
records, e. g., by using publicly available datasets. Since the encodings are similarity-
preserving, there remains a relationship between the plaintext and the encoded records.
Most attacks on PPRL developed so far exploit the length and frequency information of
encoded values. However, recent graph-based similarity attacks exploit this relationship
by analyzing and matching the similarity graphs of the encoded and the plaintext records.
So far, only a few works have focused on hardening or novel encoding techniques that
aim at avoiding attacks that exploit the similarity neighborhood of encodings. Therefore,
new encoding techniques and protocols are needed to hide or perturb the similarities
between encoded records to prevent such attacks.

Evaluation of different encoding schemes: Encodings based on Bloom filters [SBR11]
have become the quasi-standard in recent PPRL approaches in both research and
practical applications [Vat+17; Gko+21]. At the same time, several vulnerabilities were
identified, and successful attacks were mounted on such encodings [Vid+23]. Different
hardening techniques and several alternative encoding techniques, such as the use
of tabulation min-hash [Smi17], two-step hash encoding [RCS20], and autoencoders
[Chr+22], have therefore been proposed. Currently, however, a comprehensive evaluation
of these different encoding schemes in terms of linkage quality and privacy guarantees
is missing. It also remains unclear how alternative encoding techniques can withstand
novel pattern mining or graph-based attacks.

178

9.2 Outlook

Advanced classification techniques: Another important research question is how to
employ advanced classification techniques in a privacy-preserving context. In particular,
the recent focus on the use of record-level encodings due to their lower vulnerability
against attacks limits the choice of classification methods. As a consequence, more
sophisticated classification techniques developed for traditional record linkage often
cannot be applied in PPRL scenarios. This also restricts the handling of null values,
swapped attributes, or heterogeneous databases with different database schemes. More
efforts are needed in this direction of research to achieve high-quality linkage results in
real-world PPRL applications.

Protocols without a linkage unit: Most existing PPRL approaches that have been
proposed in the literature rely on a trusted third party, the linkage unit, that conducts
the actual linkage of encoded records [Vat+17; Gko+21]. In general, protocols that utilize
a linkage unit are straightforward to deploy and efficient in terms of communication and
computation costs. In contrast, if the linkage is solely conducted among the database
owners, the protocols are more complex and typically require high communication and
computation costs to ensure that no linkage participant can learn something about
another party’s private data [CRS20]. In practice, however, determining a unit or
organization that can act as a linkage unit is often challenging. This is because such
an organization must be trustworthy, as well as independent of the database owners
involved in the linkage. In this regard, further research is needed that investigates
efficient protocols without a linkage unit, such as scalable techniques based on secure
multi-party computation (SMC) or homomorphic encryption approaches.

PPRL for other adversarial models: Most PPRL approaches and attack scenarios
assume an honest-but-curious (HBC) adversarial model [Vat+17; Gko+21]. In practice,
however, this assumption may be insufficient, in particular in multi-party PPRL scenarios
where potentially many parties participate in the linkage, and the parties may not know
and trust each other. Such multi-party linkage scenarios also increase the risk of privacy
breaches due to possible collusion between a subset of parties. Future work is required
to explore threats and countermeasures for a range of malicious adversarial models.
For example, it would be interesting to investigate how honest linkage participants can
detect different types of misbehavior by dishonest parties.

Combination of PPRL and privacy-preserving machine learning: The goal of privacy-
preserving machine learning (PPML) is to allow the analysis of person-related data
with machine learning methods while guaranteeing a high degree of privacy to prevent
the identity of individuals to be revealed [AC19]. A main focus of PPML has been to
perturb database records or analysis results, for instance, by generalization of values
or by introducing noise with differential privacy techniques [Liu+21]. While there has
been a substantial degree of research on PPML and PPRL, the combination of both has

179

Chapter 9 – Conclusion and Outlook

achieved almost no attention so far. State-of-the-art PPML methods [Pap+18] train
machine learning models at different database owners, combine the learned models for
improved classification, and then apply differential privacy [Dwo06] to the learned results
for improved privacy. However, such approaches are unable to utilize the combined and
complementing information about individuals from the different databases as made
possible by the additional use of PPRL. A task for future work is to investigate novel
combinations of PPRL and PPML to support the enhanced use of PPML in applications
that benefit from combined personal data from multiple databases.

180

List of Figures

1.1 The three key challenges of PPRL. 4

2.1 PPRL process for two database owners (parties). 20
2.2 Example PPRL application scenario. 21
2.3 Example similarity distribution of true matches and true non-matches. 33
2.4 An example of a Bloom filter yielding a false positive. 42
2.5 Types of Bloom Filters. 45

3.1 P3RL approach using Apache Flink. 54
3.2 Pairs completeness against runtime of different HLSH parameter settings. 60
3.3 Evaluation of HLSH duplicate candidate filter and HLSH key restriction. 63
3.4 Execution times for different blocking methods. 64
3.5 Speedup evaluation for the blocking methods. 65

4.1 LSH-blocking variants on attribute-level Bloom filters. 70
4.2 F-Measure against runtime for different numbers of LSH keys and key

lengths. 74
4.3 Comparison of average insertion times per patient record. 76

5.1 Example linkage graph containing several multi-links. 83
5.2 Different types of matchings. 83
5.3 Illustration of the resulting linkage graph after applying different post-

processing methods. 85
5.4 Quality results for the datasets G1, G2 and N using different post-

processing methods. 89
5.5 Runtime results for the datasets G1, G2 and N using different post-

processing methods. 91

6.1 Example similarity graph. 101
6.2 Illustration of the cryptoset approach. 102
6.3 Evaluation of cryptoset approach. 110
6.4 Quality estimation results on NCVR dataset. 111
6.5 Quality estimation results on MusicBrainz dataset. 113

181

LIST OF FIGURES

6.6 Quality estimation results on Dexter dataset. 114

7.1 Relative bigram frequencies for datasets N and O. 134
7.2 Comparison of Lorenz curves for plaintext and encoded records (Bloom

filters). 135
7.3 Evaluation of standard Bloom filters using bigrams without padding for

varying number of hash functions (k) on dataset N 136
7.4 Comparison of Bloom filter privacy for bigrams and trigrams with and

without using padding for datasets N and O. 139
7.5 Impact of attribute salting. 140
7.6 Evaluation of varying number of hash functions based on attribute weights. 141
7.7 Impact of record salting. 143
7.8 Evaluation of random noise approaches. 144
7.9 Evaluation of re-hashing. 145
7.10 Evaluation of balanced Bloom filters, xor-folding, Rule90 and re-sampling. 147
7.11 Evaluation of window-based xor using different windows sizes. 149

8.1 Linkage Modes. 155
8.2 Architecture of PRIMAT. 158
8.3 Record-wise vs. batch-wise incremental matching. 166
8.4 Record-based vs. cluster-based incremental matching. 167
8.5 Strategies for selecting cluster representatives. 170

182

List of Tables

2.1 Database D1 after pre-processing. 23
2.2 Database D2 after pre-processing. 23
2.3 Database D3 after pre-processing. 23
2.4 Database D4 after pre-processing. 23
2.5 Blocking key values (BKV) for database D2. 28
2.6 Blocking key values (BKV) for database D4. 28
2.7 Partitions resulting from blocking. 28
2.8 Operations on bit vectors. 42

3.1 Estimated average attribute length and the resulting number of q-grams. 59
3.2 Comparison of different blocking schemes. 61

4.1 Description of datasets used for the evaluation of attribute-level LSH. . 72
4.2 Bloom filter encoding parameters. 73
4.3 Mainzelliste evaluation results using different blocking approaches. . . 75

5.1 Dataset characteristics and used parameters for the evaluation of differ-
ent post-processing methods. 88

6.1 Characteristics and linking configuration of MusicBrainz and Dexter
datasets. 106

6.2 Averaged information gain I(CA||CU) and I(CB||CU). 112

7.1 Overview of Bloom filter hardening techniques. 120
7.2 Transformation rules for Rule90. 126
7.3 Characteristics of datasets N and O used for the evaluation of hardening

techniques. 133
7.4 Analysis of q-gram frequency distribution. 134
7.5 Comparison of Bloom filter encodings using bi- and trigrams with and

without padding for dataset N . 138
7.6 Comparison of Bloom filter encodings using bi- and trigrams with and

without padding for dataset O. 139

8.1 Comparison of PPRL Tools. 157

183

LIST OF TABLES

8.2 Functional overview of Primat. 160
8.3 Overview of data cleaning functions offered by Primat. 161
8.4 Overview of extractor functions offered by Primat. 162
8.5 Overview of similarity functions offered by Primat. 163
8.6 Overview of post-processing methods offered by Primat. 164

184

References

[AC19] Mohammad Al-Rubaie and J. Morris Chang. In: IEEE Security & Privacy
17.2 (2019), pp. 49–58. doi: 10.1109/MSEC.2018.2888775.

[AES03] Rakesh Agrawal, Alexandre V. Evfimievski, and Ramakrishnan Srikant.
“Information Sharing Across Private Databases.” In: ACM SIGMOD In-
ternational Conference on Management of Data. ACM, 2003, pp. 86–97.
doi: 10.1145/872757.872771.

[AGK12] Mohammad Alaggan, Sébastien Gambs, and Anne-Marie Kermarrec. “BLIP:
Non-interactive Differentially-Private Similarity Computation on Bloom
filters.” In: Stabilization, Safety and Security of Distributed Systems. 2012,
pp. 202–216. doi: 10.1007/978-3-642-33536-5_20.

[AHS23] Frederik Armknecht, Youzhe Heng, and Rainer Schnell. “Strengthening
Privacy-Preserving Record Linkage Using Diffusion.” In: Proceedings on
Privacy Enhancing Technologies Symposium (POPETS). Vol. 2023. 2. 2023,
pp. 298–311. doi: 10.56553/popets-2023-0054.

[AKM13] Hotham Altwaijry, Dmitri V. Kalashnikov, and Sharad Mehrotra. “Query-
Driven Approach to Entity Resolution.” In: Proceedings of the VLDB
Endowment. Vol. 6. 14. 2013, pp. 1846–1857. doi: 10.14778/2556549.
2556567.

[Arp+18] Daniel Arp, Erwin Quiring, Tammo Krueger, Stanimir Dragiev, and Kon-
rad Rieck. “Privacy-Enhanced Fraud Detection with Bloom Filters.” In:
Security and Privacy in Communication Networks. Springer, 2018, pp. 396–
415. doi: 10.1007/978-3-030-01701-9_22.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. “Fast Algorithms for Mining
Association Rules in Large Databases.” In: Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases (VLDB). Morgan Kaufmann
Publishers Inc., 1994, pp. 487–499. isbn: 1-55860-153-8.

[BAQ01] F. Borst, F.-A. Allaert, and C. Quantin. “The Swiss solution for anony-
mously chaining patient files.” In: Studies in Health Technology and Infor-
matics (2001), pp. 1239–1241. doi: 10.3233/978-1-60750-928-8-1239.

185

https://doi.org/10.1109/MSEC.2018.2888775
https://doi.org/10.1145/872757.872771
https://doi.org/10.1007/978-3-642-33536-5_20
https://doi.org/10.56553/popets-2023-0054
https://doi.org/10.14778/2556549.2556567
https://doi.org/10.14778/2556549.2556567
https://doi.org/10.1007/978-3-030-01701-9_22
https://doi.org/10.3233/978-1-60750-928-8-1239

References

[BBR11] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm, eds. Schema Match-
ing and Mapping. Springer, 2011. isbn: 978-3-642-16518-4. doi: 10.1007/
978-3-642-16518-4.

[Ber+16] Inga Bernemann, Markus Kersting, Jana Prokein, Michael Hummel, Nor-
man Klopp, and Thomas Illig. “Zentralisierte Biobanken als Grundlage
für die medizinische Forschung.” In: Bundesgesundheitsblatt 59 (2016),
pp. 336–343. doi: 10.1007/s00103-015-2295-2.

[Bey04] Paul Beynon-Davies. Database Systems. 3. Palgrave Macmillan, 2004. isbn:
978-1403916013.

[BG02] J. Bass and C. Garfield. “Statistical linkage keys: How effective are they?”
In: Symposium on Health Data Linkage. 2002, pp. 40–45. url: https:
//phidu.torrens.edu.au/pdf/1999-2004/symposium-proceedings-
2003/bass.pdf (visited on 07/05/2023).

[BGH11] Guilherme Dal Bianco, Renata Galante, and Carlos A. Heuser. “A fast
approach for parallel deduplication on multicore processors.” In: Proceedings
of the 2011 ACM Symposium on Applied Computing (SAC). ACM, 2011,
pp. 1027–1032. doi: 10.1145/1982185.1982411.

[Bin+22] Olivier Binette, Sokhna A York, Emma Hickerson, Youngsoo Baek, Sarvo
Madhavan, and Christina Jones. Estimating the Performance of Entity
Resolution Algorithms: Lessons Learned Through PatentsView.org. 2022.
doi: 10.48550/ARXIV.2210.01230.

[Blo70] Burton Bloom. “Space/Time Trade-offs in Hash Coding with Allowable
Errors.” In: Communications of the ACM (CACM) 13.7 (1970), pp. 422–
426. doi: 10.1145/362686.362692.

[BM04] Andrei Broder and Michael Mitzenmacher. “Network Applications of Bloom
Filters: A Survey.” In: Internet Mathematics 1.4 (2004), pp. 485–509. doi:
10.1080/15427951.2004.10129096.

[Böh+12] Christoph Böhm, Gerard de Melo, Felix Naumann, and Gerhard Weikum.
“LINDA: Distributed Web-of-Data-Scale Entity Matching.” In: Proceedings
of the 21st ACM International Conference on Information and Knowledge
Management (CIKM). ACM, 2012, pp. 2104–2108. doi: 10.1145/2396761.
2398582.

[Boy+16] James H. Boyd, Tenniel Guiver, Sean M. Randall, Anna M. Ferrante,
J. B. Semmens, Phil Anderson, and Teresa Dickinson. “A simple sampling
method for estimating the accuracy of large scale record linkage projects.”
In: Methods of Information in Medicine 55.03 (2016), pp. 276–283. doi:
10.3414/ME15-01-0152.

186

https://doi.org/10.1007/978-3-642-16518-4
https://doi.org/10.1007/978-3-642-16518-4
https://doi.org/10.1007/s00103-015-2295-2
https://phidu.torrens.edu.au/pdf/1999-2004/symposium-proceedings-2003/bass.pdf
https://phidu.torrens.edu.au/pdf/1999-2004/symposium-proceedings-2003/bass.pdf
https://phidu.torrens.edu.au/pdf/1999-2004/symposium-proceedings-2003/bass.pdf
https://doi.org/10.1145/1982185.1982411
https://doi.org/10.48550/ARXIV.2210.01230
https://doi.org/10.1145/362686.362692
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1145/2396761.2398582
https://doi.org/10.1145/2396761.2398582
https://doi.org/10.3414/ME15-01-0152

References

[BRF15] James H. Boyd, Sean M. Randall, and Anna M. Ferrante. “Application of
Privacy-Preserving Techniques in Operational Record Linkage Centres.”
In: Medical Data Privacy Handbook. Springer, 2015, pp. 267–287. isbn:
978-3-319-23633-9. doi: 10.1007/978-3-319-23633-9_11.

[Bro+17] Adrian P. Brown, Christian Borgs, Sean M. Randall, and Rainer Schnell.
“Evaluating privacy-preserving record linkage using cryptographic long-
term keys and multibit trees on large medical datasets.” In: BMC Medical
Informatics and Decision Making 17.83 (2017). doi: 10.1186/s12911-
017-0478-5.

[Bro97] Andrei Z. Broder. “On the resemblance and containment of documents.”
In: Compression and Complexity of Sequences Proceedings. IEEE, 1997,
pp. 21–29. doi: 10.1109/SEQUEN.1997.666900.

[BS22] Olivier Binette and Rebecca C. Steorts. “(Almost) All of Entity Resolu-
tion.” In: Science Advances 8.12 (2022). doi: 10.1126/sciadv.abi8021.

[Buc12] Johannes Buchmann. Internet Privacy: Eine multidisziplinäre Bestandsauf-
nahme / A multidisciplinary analysis. Springer, 2012. doi: 10.1007/978-
3-642-31943-3.

[Bun23] Bundesministerium für Gesundheit (BMG). Gesetzliche Krankenversicherung
– Mitglieder, mitversicherte Angehörige und Krankenstand (Monatswerte
Januar-Dezember 2022). 2023. url: https://www.bundesgesundheitsm
inisterium.de/fileadmin/Dateien/3_Downloads/Statistiken/GKV/
Mitglieder_Versicherte/Januar_bis_Dezember_2022_bf.pdf (visited
on 06/28/2023).

[BW15] Manuel Burkhart and Birgitt Wiese. Deutsches Mukoviszidose-Register
– Berichtsband 2015. 2015. url: https://www.muko.info/fileadmin/
user_upload/angebote/qualitaetsmanagement/register/berichtsb
aende/berichtsband_2015.pdf (visited on 03/03/2020).

[Can+18] Rémi Canillas, Rania Talbi, Sara Bouchenak, Omar Hasan, Lionel Brunie,
and Laurent Sarrat. “Exploratory Study of Privacy Preserving Fraud De-
tection.” In: Proceedings of the 19th International Middleware Conference
Industry. ACM, 2018, pp. 25–31. doi: 10.1145/3284028.3284032.

[Car+15] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. “Apache Flink: Stream and Batch Processing
in a Single Engine.” In: Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering (TCDE) 38.4 (2015).

187

https://doi.org/10.1007/978-3-319-23633-9_11
https://doi.org/10.1186/s12911-017-0478-5
https://doi.org/10.1186/s12911-017-0478-5
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1126/sciadv.abi8021
https://doi.org/10.1007/978-3-642-31943-3
https://doi.org/10.1007/978-3-642-31943-3
https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/Statistiken/GKV/Mitglieder_Versicherte/Januar_bis_Dezember_2022_bf.pdf
https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/Statistiken/GKV/Mitglieder_Versicherte/Januar_bis_Dezember_2022_bf.pdf
https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/Statistiken/GKV/Mitglieder_Versicherte/Januar_bis_Dezember_2022_bf.pdf
https://www.muko.info/fileadmin/user_upload/angebote/qualitaetsmanagement/register/berichtsbaende/berichtsband_2015.pdf
https://www.muko.info/fileadmin/user_upload/angebote/qualitaetsmanagement/register/berichtsbaende/berichtsband_2015.pdf
https://www.muko.info/fileadmin/user_upload/angebote/qualitaetsmanagement/register/berichtsbaende/berichtsband_2015.pdf
https://doi.org/10.1145/3284028.3284032

References

[Cau15] Jörg Caumanns. 100% Standards: CDA, FHIR, CTS-2 und EFA für elek-
tronische Fragebögen. 2015. url: https://cdn3.scrivito.com/fokus/
57a537e2ec27cb7b/0a3a0655dcc079f58890e39dbdca4781/E- HEALTH_
Standards_PB_03-2015_v03.pdf (visited on 03/03/2020).

[CCT10] Seung-Seok Choi, Sung-Hyuk Cha, and Charles C Tappert. “A survey
of binary similarity and distance measures.” In: Journal of Systemics,
Cybernetics and Informatics 8.1 (2010), pp. 43–48. doi: 10.1.1.352.6123.

[Cha+21] Panagiotis Charalampopoulos, Huiping Chen, Peter Christen, Grigorios
Loukides, Nadia Pisanti, Solon P. Pissis, and Jakub Radoszewski. “Pattern
Masking for Dictionary Matching.” In: 32nd International Symposium on
Algorithms and Computation (ISAAC 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik GmbH, 2021, pp. 1–19. doi: 10.4230/LIPIcs.
ISAAC.2021.65.

[Che+05] Jonathan Chen, S. Joshua Swamidass, Yimeng Dou, Jocelyne Bruand,
and Pierre Baldi. “ChemDB: A Public Database of Small Molecules and
Related Chemoinformatics Resources.” In: Bioinformatics 21.22 (2005),
pp. 4133–4139. doi: 10.1093/bioinformatics/bti683.

[Che76] Peter Pin-Shan Chen. “The Entity-Relationship Model—toward a Unified
View of Data.” In: ACM Transactions on Database Systems (TODS) 1.1
(1976), pp. 9–36. doi: 10.1145/320434.320440.

[ChI15] ChILD-EU Research Consortium. Ethics/Data Safety. 2015. url: http://
www.klinikum.uni-muenchen.de/Child-EU/en/child-eu-register/
register/ethics_data_safety/index.html (visited on 06/27/2023).

[CHK23] Peter Christen, David J. Hand, and Nishadi Kirielle. “A Review of the
F-Measure: Its History, Properties, Criticism, and Alternatives.” In: ACM
Computing Surveys (2023). doi: 10.1145/3606367.

[Chr+18a] Peter Christen, Thilina Ranbaduge, Dinusha Vatsalan, and Rainer Schnell.
“Precise and Fast Cryptanalysis for Bloom Filter Based Privacy-Preserving
Record Linkage.” In: IEEE Transactions on Knowledge and Data Engi-
neering (TKDE) 31.11 (2018), pp. 2164–2177. doi: 10.1109/TKDE.2018.
2874004.

[Chr+18b] Peter Christen, Anushka Vidanage, Thilina Ranbaduge, and Rainer Schnell.
“Pattern-Mining Based Cryptanalysis of Bloom Filters for Privacy-Preserving
Record Linkage.” In: Advances in Knowledge Discovery and Data Mining
(PAKDD 2018). Vol. 10939. Springer, 2018, pp. 530–542. doi: 10.1007/
978-3-319-93040-4_42.

188

https://cdn3.scrivito.com/fokus/57a537e2ec27cb7b/0a3a0655dcc079f58890e39dbdca4781/E-HEALTH_Standards_PB_03-2015_v03.pdf
https://cdn3.scrivito.com/fokus/57a537e2ec27cb7b/0a3a0655dcc079f58890e39dbdca4781/E-HEALTH_Standards_PB_03-2015_v03.pdf
https://cdn3.scrivito.com/fokus/57a537e2ec27cb7b/0a3a0655dcc079f58890e39dbdca4781/E-HEALTH_Standards_PB_03-2015_v03.pdf
https://doi.org/10.1.1.352.6123
https://doi.org/10.4230/LIPIcs.ISAAC.2021.65
https://doi.org/10.4230/LIPIcs.ISAAC.2021.65
https://doi.org/10.1093/bioinformatics/bti683
https://doi.org/10.1145/320434.320440
http://www.klinikum.uni-muenchen.de/Child-EU/en/child-eu-register/register/ethics_data_safety/index.html
http://www.klinikum.uni-muenchen.de/Child-EU/en/child-eu-register/register/ethics_data_safety/index.html
http://www.klinikum.uni-muenchen.de/Child-EU/en/child-eu-register/register/ethics_data_safety/index.html
https://doi.org/10.1145/3606367
https://doi.org/10.1109/TKDE.2018.2874004
https://doi.org/10.1109/TKDE.2018.2874004
https://doi.org/10.1007/978-3-319-93040-4_42
https://doi.org/10.1007/978-3-319-93040-4_42

References

[Chr+22] Victor Christen, Tim Häntschel, Peter Christen, and Erhard Rahm. “Privacy-
Preserving Record Linkage Using Autoencoders.” In: International Journal
of Data Science and Analytics 15.4 (2022), pp. 347–357. doi: 10.1007/
s41060-022-00377-2.

[Chr06] Peter Christen. “A Comparison of Personal Name Matching: Techniques
and Practical Issues.” In: Data Mining Workshops, 2006. ICDM Workshops
2006. Sixth IEEE International Conference on. IEEE, 2006, pp. 290–294.

[Chr12a] Peter Christen. “A Survey of Indexing Techniques for Scalable Record
Linkage and Deduplication.” In: IEEE Transactions on Knowledge and
Data Engineering (TKDE) 24.9 (2012), pp. 1537–1555. doi: 10.1109/
TKDE.2011.127.

[Chr12b] Peter Christen. Data Matching. Concepts and Techniques for Record Link-
age, Entity Resolution, and Duplicate Detection. Springer, 2012. doi: 10.
1007/978-3-642-31164-2.

[Con+05] Paolo Contiero, A. Tittarelli, G. Tagliabue, A. Maghini, S. Fabiano, P.
Crosignani, and R. Tessandori. “The EpiLink Record Linkage Software:
Presentation and Results of Linkage Test on Cancer Registry Files.”
In: Methods of information in medicine 44.01 (2005), pp. 66–71. doi:
10.1055/s-0038-1633924.

[Cou+21] T. G. Coulson, M. Bailey, C. Reid, G. Shardey, Williams-Spence. J., S.
Huckson, S. Chavan, and D. Pilcher. “Linkage of Australian national
registry data using a statistical linkage key.” In: BMC Medical Informatics
and Decision Making 21.37 (2021). doi: 10.1186/s12911-021-01393-1.

[Cou50] Council of Europe. Convention for the Protection of Human Rights and
Fundamental Freedoms. 1950. url: https://www.echr.coe.int/docume
nts/d/echr/convention_ENG (visited on 10/13/2023).

[CRS20] Peter Christen, Thilina Ranbaduge, and Rainer Schnell. Linking Sensitive
Data. Methods and Techniques for Practical Privacy-Preserving Informa-
tion Sharing. Springer, 2020. doi: 10.1007/978-3-030-59706-1.

[CSS18] Xiao Chen, Eike Schallehn, and Gunter Saake. “Cloud-Scale Entity Reso-
lution: Current State and Open Challenges.” In: Open Journal of Big Data
(OJBD) 4.1 (2018), pp. 30–51. url: http://nbn-resolving.de/urn:
nbn:de:101:1-201804155766 (visited on 06/30/2023).

[CV12] Lidia Ceriani and Paolo Verme. “The Origins of the Gini Index: Extracts
from Variabilità e Mutabilità (1912) by Corrado Gini.” In: The Journal
of Economic Inequality 10.3 (2012), pp. 421–443. doi: 10.1007/s10888-
011-9188-x.

189

https://doi.org/10.1007/s41060-022-00377-2
https://doi.org/10.1007/s41060-022-00377-2
https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1055/s-0038-1633924
https://doi.org/10.1186/s12911-021-01393-1
https://www.echr.coe.int/documents/d/echr/convention_ENG
https://www.echr.coe.int/documents/d/echr/convention_ENG
https://doi.org/10.1007/978-3-030-59706-1
http://nbn-resolving.de/urn:nbn:de:101:1-201804155766
http://nbn-resolving.de/urn:nbn:de:101:1-201804155766
https://doi.org/10.1007/s10888-011-9188-x
https://doi.org/10.1007/s10888-011-9188-x

References

[CV13] Peter Christen and Dinusha Vatsalan. “Flexible and extensible generation
and corruption of personal data.” In: Proceedings of the 22nd ACM Inter-
national Conference on Information & Knowledge Management (CIKM).
ACM, 2013, pp. 1165–1168. doi: 10.1145/2505515.2507815.

[CZ18] Lianhua Chi and Xingquan Zhu. “Hashing Techniques: A Survey and
Taxonomy.” In: ACM Computing Surveys 50.1 (2018), pp. 1–36. doi:
10.1145/3047307.

[Dao22] Duc Dung Dao. “Konzeption und Realisierung einer Anwendung zur Gener-
ierung von personenbezogenen Daten.” Bachelor’s Thesis. Universität
Leipzig, 2022.

[Dat04] Christopher John Date. An Introduction to Database Systems. 8. Addison-
Wesley, 2004. isbn: 0-321-18956-6.

[Deu23] Deutsche Telekom AG. Deutsche Telekom Company Presentation. 2023.
url: https://www.telekom.com/resource/blob/326540/f23a7bf
1dd5b37cdc4af9ad02f2b4c35/dl- presentation- deutsche- telekom-
data.pdf (visited on 06/28/2023).

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Pro-
cessing on Large Clusters.” In: Communications of the ACM (CACM) 51.1
(2008).

[DH19] James C. Doidge and Katie L. Harron. “Reflections on modern methods:
linkage error bias.” In: International Journal of Epidemiology 48.6 (2019),
pp. 2050–2060. doi: 10.1093/ije/dyz203.

[Dic45] Lee R. Dice. “Measures of the Amount of Ecologic Association Between
Species.” In: Ecology 26.3 (1945), pp. 297–302. doi: 10.2307/1932409.

[Die17] Reinhard Diestel. Graph Theory. 5. Springer, 2017. doi: 10.1007/978-3-
662-53622-3.

[DQB95] L. Dusserre, C. Quantin, and H. Bouzelat. “A One Way Public Key
Cryptosystem for the Linkage of Nominal Files in Epidemiological Studies.”
In: Medinfo 8 (1995), pp. 644–647. url: https://pubmed.ncbi.nlm.nih.
gov/8591288/ (visited on 06/28/2023).

[DR02] Hong-Hai Do and Erhard Rahm. “COMA - A System for Flexible Com-
bination of Schema Matching Approaches.” In: Proceedings of the 28th
international conference on Very Large Data Bases (VLDB). VLDB En-
dowment, 2002, pp. 610–621. doi: 10.5555/1287369.1287422.

190

https://doi.org/10.1145/2505515.2507815
https://doi.org/10.1145/3047307
https://www.telekom.com/resource/blob/326540/f23a7bf1dd5b37cdc4af9ad02f2b4c35/dl-presentation-deutsche-telekom-data.pdf
https://www.telekom.com/resource/blob/326540/f23a7bf1dd5b37cdc4af9ad02f2b4c35/dl-presentation-deutsche-telekom-data.pdf
https://www.telekom.com/resource/blob/326540/f23a7bf1dd5b37cdc4af9ad02f2b4c35/dl-presentation-deutsche-telekom-data.pdf
https://doi.org/10.1093/ije/dyz203
https://doi.org/10.2307/1932409
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://pubmed.ncbi.nlm.nih.gov/8591288/
https://pubmed.ncbi.nlm.nih.gov/8591288/
https://doi.org/10.5555/1287369.1287422

References

[Dun46] Halbert L. Dunn. “Record linkage.” In: American Journal of Public Health
and the Nations Health 36.12 (1946), pp. 1412–1416. url: https://www.n
cbi.nlm.nih.gov/pmc/articles/PMC1624512/ (visited on 06/28/2023).

[Dur+14] Elizabeth A. Durham, Murat Kantarcioglu, Yuan Xue, Csaba Toth, Mehmet
Kuzu, and Bradley Malin. “Composite Bloom Filters for Secure Record
Linkage.” In: IEEE Transactions on Knowledge and Data Engineering
(TKDE) 26.12 (2014), pp. 2956–2968. doi: 10.1109/TKDE.2013.91.

[Dur12] Elizabeth Ashley Durham. “A Framework for Accurate, Efficient Private
Record Linkage.” PhD thesis. Vanderbilt University, 2012. url: https:
//etd.library.vanderbilt.edu/etd- 03262012- 144837 (visited on
06/27/2023).

[Dwo06] Cynthia Dwork. “Differential Privacy.” In: Automata, Languages and Pro-
gramming. Springer, 2006, pp. 1–12. doi: 10.1007/11787006_1.

[Eft+17] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Ste-
fanidis, and Themis Palpanas. “Parallel Meta-Blocking for Scaling Entity
Resolution over Big Heterogeneous Data.” In: Information Systems 65.C
(2017), pp. 137–157. doi: 10.1016/j.is.2016.12.001.

[Ege+15] Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias Senker, and
Jörn Tillmanns. “Privately Computing Set-Union and Set-Intersection
Cardinality via Bloom Filters.” In: Information Security and Privacy.
Vol. 9144. 2015, pp. 413–430. doi: 10.1007/978-3-319-19962-7_24.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios.
“Duplicate Record Detection: A survey.” In: IEEE Transactions on Knowl-
edge and Data Engineering (TKDE) 19.1 (2007), pp. 1–16. doi: 10.1109/
TKDE.2007.250581.

[ES03] D. M. Endres and J. E. Schindelin. “A New Metric for Probability Dis-
tributions.” In: IEEE Transactions on Information Theory 49.7 (2003),
pp. 1858–1860. doi: 10.1109/TIT.2003.813506.

[Eur12] European Parliament, Council & Commission. “Charter of Fundamental
Rights of the European Union.” In: Official Journal of the European Union
(OJ C 326) (2012), pp. 391–407. doi: 10.3000/1977091X.C_2012.326.
eng.

[Eur16a] European Parliament & Council. “Directive (EU) 2016/681 of the European
Parliament and of the Council of 27 April 2016 on the use of passenger
name record (PNR) data for the prevention, detection, investigation and
prosecution of terrorist offences and serious crime.” In: Official Journal of

191

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1624512/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1624512/
https://doi.org/10.1109/TKDE.2013.91
https://etd.library.vanderbilt.edu/etd-03262012-144837
https://etd.library.vanderbilt.edu/etd-03262012-144837
https://doi.org/10.1007/11787006_1
https://doi.org/10.1016/j.is.2016.12.001
https://doi.org/10.1007/978-3-319-19962-7_24
https://doi.org/10.1109/TKDE.2007.250581
https://doi.org/10.1109/TKDE.2007.250581
https://doi.org/10.1109/TIT.2003.813506
https://doi.org/10.3000/1977091X.C_2012.326.eng
https://doi.org/10.3000/1977091X.C_2012.326.eng

References

the European Union Legislation series 119 (OJ L 119) 59 (2016), pp. 132–
149. issn: 1977-0677.

[Eur16b] European Parliament & Council. “Regulation (EU) 2016/679 of the Euro-
pean Parliament and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing Directive 95/46/EC (General
Data Protection Regulation).” In: Official Journal of the European Union
Legislation series 119 (OJ L 119) 59 (2016), pp. 1–88. issn: 1977-0677.

[EVE02] Mohamed G. Elfeky, Vassilios S. Verykios, and Ahmed K. Elmagarmid.
“TAILOR: A Record Linkage Toolbox.” In: Proceedings of the 18th Inter-
national Conference on Data Engineering (ICDE). IEEE, 2002, pp. 17–28.
doi: 10.1109/ICDE.2002.994694.

[Fan+00] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. “Summary Cache:
A Scalable Wide-Area Web Cache Sharing Protocol.” In: Proceedings of
IEEE/ACM Transactions on Networking (TON) 8.3 (2000), pp. 281–293.
doi: 10.1109/90.851975.

[Fis+15] Jeffrey Fisher, Peter Christen, Qing Wang, and Erhard Rahm. “A Clustering-
Based Framework to Control Block Sizes for Entity Resolution.” In: Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). ACM, 2015. doi: 10.1145/2783258.
2783396.

[FL83] Wendy R. Fox and Gabriel W. Lasker. “The Distribution of Surname
Frequencies.” In: International Statistical Review 51.1 (1983), pp. 81–87.
doi: 10.2307/1402733.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. “Efficient Private
Matching and Set Intersection.” In: Advances in Cryptology - EURO-
CRYPT 2004. Vol. 3027. Springer, 2004, pp. 1–19. doi: 10.1007/978-3-
540-24676-3_1.

[For+13] Benedikt Forchhammer, Thorsten Papenbrock, Thomas Stening, Sven
Viehmeier, Uwe Draisbach, and Felix Naumann. “Duplicate Detection
on GPUs.” In: Proceedings Datenbanksysteme für Business, Technologie
und Web (BTW). Gesellschaft für Informatik, 2013. isbn: 978-3-88579-
608-4. url: https://dl.gi.de/items/83d5091b-b2fc-4c28-bb09-
5a55d95b6d80 (visited on 06/27/2023).

192

https://doi.org/10.1109/ICDE.2002.994694
https://doi.org/10.1109/90.851975
https://doi.org/10.1145/2783258.2783396
https://doi.org/10.1145/2783258.2783396
https://doi.org/10.2307/1402733
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://dl.gi.de/items/83d5091b-b2fc-4c28-bb09-5a55d95b6d80
https://dl.gi.de/items/83d5091b-b2fc-4c28-bb09-5a55d95b6d80

References

[Fra+18] Martin Franke, Ziad Sehili, Marcel Gladbach, and Erhard Rahm. “Post-
Processing Methods for High Quality Privacy-Preserving Record Linkage.”
In: Data Privacy Management, Cryptocurrencies and Blockchain Technol-
ogy (DPM, CBT). Springer, 2018, pp. 263–278. doi: 10.1007/978-3-030-
00305-0_19.

[Fra+19] Martin Franke, Marcel Gladbach, Ziad Sehili, Florens Rohde, and Erhard
Rahm. “ScaDS Research on Scalable Privacy-preserving Record Linkage.”
In: Datenbank-Spektrum 19.1 (2019), pp. 31–40. doi: 10.1007/s13222-
019-00305-y.

[Fra+21] Martin Franke, Ziad Sehili, Florens Rohde, and Erhard Rahm. “Evalua-
tion of Hardening Techniques for Privacy-Preserving Record Linkage.” In:
Proceedings of the 24th International Conference on Extending Database
Technology (EDBT). OpenProceedings.org, 2021. doi: 10.5441/002/EDBT.
2021.26.

[Fra+24] Martin Franke, Victor Christen, Peter Christen, Florens Rohde, and Erhard
Rahm. “(Privately) Estimating Linkage Quality for Record Linkage.” In:
Proceedings of the 27th International Conference on Extending Database
Technology (EDBT). OpenProceedings.org, 2024.

[Fra23] Martin Franke. PRIMAT: Private Matching Toolbox. 2023. url: https:
//git.informatik.uni- leipzig.de/dbs/pprl/primat (visited on
06/28/2023).

[FS69] Ivan P. Fellegi and Alan B. Sunter. “A Theory for Record Linkage.” In:
Journal of the American Statistical Association (JASA) 64.328 (1969),
pp. 1183–1210. doi: 10.1080/01621459.1969.10501049.

[FSR18] Martin Franke, Ziad Sehili, and Erhard Rahm. “Parallel Privacy-preserving
Record Linkage using LSH-based Blocking.” In: Proceedings of the 3rd
International Conference on Internet of Things, Big Data and Security
(IoTBDS). SCITEPRESS - Science and Technology Publications, 2018,
pp. 195–203. doi: 10.5220/0006682701950203.

[FSR19] Martin Franke, Ziad Sehili, and Erhard Rahm. “PRIMAT: A Toolbox for
Fast Privacy-Preserving Matching.” In: Proceedings of the VLDB Endow-
ment. Vol. 12. 12. 2019, pp. 1826–1829. doi: 10.14778/3352063.3352076.

[FT04] B. Fuglede and F. Topsoe. “Jensen-Shannon Divergence and Hilbert Space
Embedding.” In: International Symposium on Information Theory (ISIT)
Proceedings. 2004. doi: 10.1109/ISIT.2004.1365067.

193

https://doi.org/10.1007/978-3-030-00305-0_19
https://doi.org/10.1007/978-3-030-00305-0_19
https://doi.org/10.1007/s13222-019-00305-y
https://doi.org/10.1007/s13222-019-00305-y
https://doi.org/10.5441/002/EDBT.2021.26
https://doi.org/10.5441/002/EDBT.2021.26
https://git.informatik.uni-leipzig.de/dbs/pprl/primat
https://git.informatik.uni-leipzig.de/dbs/pprl/primat
https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.5220/0006682701950203
https://doi.org/10.14778/3352063.3352076
https://doi.org/10.1109/ISIT.2004.1365067

References

[Gas72] Joseph L. Gastwirth. “The Estimation of the Lorenz Curve and Gini
Index.” In: The Review of Economics and Statistics 54.3 (1972), p. 306.
doi: 10.2307/1937992.

[GH21] Leonardo Gazzarri and Melanie Herschel. “End-to-End Task Based Paral-
lelization for Entity Resolution on Dynamic Data.” In: Proceedings of the
2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 2021, pp. 1248–1259. doi: 10.1109/ICDE51399.2021.00112.

[GI89] Dan Gusfield and Robert W. Irving. The Stable Marriage Problem: Struc-
ture and Algorithms. MIT Press, 1989. isbn: 978-0262515528. doi: 10.
5555/68392.

[Gib+16] Alison Gibberd, Rajah Supramaniam, Anthony Dillon, Bruce K. Arm-
strong, and Dianne L. O’Connel. “Lung cancer treatment and mortality for
Aboriginal people in New South Wales, Australia: results from a population-
based record linkage study and medical record audit.” In: BMC Cancer
16.1 (2016), p. 289. doi: 10.1186/s12885-016-2322-1.

[Gko+21] Aris Gkoulalas-Divanis, Dinusha Vatsalan, Dimitrios Karapiperis, and Mu-
rat Kantarcioglu. “Modern Privacy-Preserving Record Linkage Techniques:
An Overview.” In: IEEE Transactions on Information Forensics and Secu-
rity (TIFS) 16 (2021), pp. 4966–4987. doi: 10.1109/TIFS.2021.3114026.

[Gla+18] Marcel Gladbach, Ziad Sehili, Thomas Kudrass, Peter Christen, and Erhard
Rahm. “Distributed Privacy-Preserving Record Linkage Using Pivot-Based
Filter Techniques.” In: IEEE 34th International Conference on Data En-
gineering Workshops (ICDEW) Proceedings. IEEE, 2018, pp. 33–38. doi:
10.1109/ICDEW.2018.00013.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. “How to Play ANY Mental
Game.” In: Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing (STOC). ACM, 1987, pp. 218–229. doi: 10.1145/
28395.28420.

[God17] Michelle Goddard. “The EU General Data Protection Regulation (GDPR):
European Regulation That Has a Global Impact.” In: International Journal
of Market Research 59.6 (2017), pp. 703–705. doi: 10.2501/IJMR-2017-
050.

[Gre18] Samuel Greengard. “Weighing the Impact of GDPR.” In: Communications
of the ACM 61.11 (2018), pp. 16–18. doi: 10.1145/3276744.

[GS62] David Gale and Lloyd S. Shapley. “College Admissions and the Stability of
Marriage.” In: The American Mathematical Monthly 69.1 (1962), pp. 9–15.
doi: 10.2307/2312726.

194

https://doi.org/10.2307/1937992
https://doi.org/10.1109/ICDE51399.2021.00112
https://doi.org/10.5555/68392
https://doi.org/10.5555/68392
https://doi.org/10.1186/s12885-016-2322-1
https://doi.org/10.1109/TIFS.2021.3114026
https://doi.org/10.1109/ICDEW.2018.00013
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.2501/IJMR-2017-050
https://doi.org/10.2501/IJMR-2017-050
https://doi.org/10.1145/3276744
https://doi.org/10.2307/2312726

References

[Hav+14] C. Havemann, T. Bahls, M. Bialke, W. Hoffmann, M. Quade, and T. Mauß.
Verfahrensbeschreibung und Datenschutzkonzept des Zentralen Datenman-
agements des Deutschen Zentrums für Herz-Kreislauf-Forschung. 2014. url:
https://dzhk.de/fileadmin/user_upload/Datenschutzkonzept_
des_DZHK.pdf (visited on 06/07/2023).

[HC18] David Hand and Peter Christen. “A Note on Using the F-Measure for
Evaluating Record Linkage Algorithms.” In: Statistics and Computing 28.3
(2018), pp. 539–547. doi: 10.1007/s11222-017-9746-6.

[HCK21] David J. Hand, Peter Christen, and Nishadi Kirielle. “F*: an interpretable
transformation of the F-measure.” In: Machine Learning 110.3 (2021),
pp. 451–456. doi: 10.1007/s10994-021-05964-1.

[HDG20] Katie Harron, James C. Doidge, and Harvey Goldstein. “Assessing data
linkage quality in cohort studies.” In: Annals of Human Biology 47.2 (2020),
pp. 218–226. doi: 10.1080/03014460.2020.1742379.

[HF10] Rob Hall and Stephen E. Fienberg. “Privacy-Preserving Record Linkage.”
In: International Conference on Privacy in Statistical Databases (PSD).
Springer, 2010, pp. 269–283. doi: 10.1007/978-3-642-15838-4_24.

[Hil+20] Kai Hildebrandt, Fabian Panse, Niklas Wilcke, and Norbert Ritter. “Large-
Scale Data Pollution with Apache Spark.” In: IEEE Transactions on Big
Data 6.2 (2020), pp. 396–411. doi: 10.1109/TBDATA.2016.2637378.

[HKN14] Arvid Heise, Gjergji Kasneci, and Felix Naumann. “Estimating the number
and sizes of fuzzy-duplicate clusters.” In: Proceedings of the 23rd ACM In-
ternational Conference on Conference on Information and Knowledge Man-
agement (CIKM). 2014, pp. 959–968. doi: 10.1145/2661829.2661885.

[HKP12] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and
Techniques. 3. Morgan Kaufmann, 2012. doi: 10.1016/C2009-0-61819-5.

[HM02] David Holmes and M. Catherine McCabe. “Improving Precision and Recall
for Soundex Retrieval.” In: Proceedings of the International Conference
on Information Technology: Coding and Computing (ITCC). IEEE, 2002,
pp. 22–26. doi: 10.1109/ITCC.2002.1000354.

[HR15] Wilko Henecka and Matthew Roughan. “Privacy-Preserving Fraud Detec-
tion Across Multiple Phone Record Databases.” In: IEEE Transactions on
Dependable and Secure Computing (TDSC) 12.6 (2015), pp. 640–651. doi:
10.1109/TDSC.2014.2382573.

195

https://dzhk.de/fileadmin/user_upload/Datenschutzkonzept_des_DZHK.pdf
https://dzhk.de/fileadmin/user_upload/Datenschutzkonzept_des_DZHK.pdf
https://doi.org/10.1007/s11222-017-9746-6
https://doi.org/10.1007/s10994-021-05964-1
https://doi.org/10.1080/03014460.2020.1742379
https://doi.org/10.1007/978-3-642-15838-4_24
https://doi.org/10.1109/TBDATA.2016.2637378
https://doi.org/10.1145/2661829.2661885
https://doi.org/10.1016/C2009-0-61819-5
https://doi.org/10.1109/ITCC.2002.1000354
https://doi.org/10.1109/TDSC.2014.2382573

References

[HS98] Mauricio A. Hernández and Salvatore J. Stolfo. “Real-world Data is
Dirty: Data Cleansing and The Merge/Purge Problem.” In: Data Min-
ing and Knowledge Discovery 2.1 (1998), pp. 9–37. doi: 10.1023/A:
1009761603038.

[HSW07] Thomas N. Herzog, Fritz J. Scheuren, and William E. Winkler. Data
Quality and Record Linkage Techniques. Springer, 2007. doi: 10.1007/0-
387-69505-2.

[IM08] Kazuo Iwama and Shuichi Miyazaki. “A Survey of the Stable Marriage
Problem and Its Variants.” In: Proceedings of the International Conference
on Informatics Education and Research for Knowledge-Circulating Society
(ICKS). IEEE, 2008, pp. 131–136. doi: 10.1109/ICKS.2008.7.

[IM98] Piotr Indyk and Rajeev Motwani. “Approximate Nearest Neighbors: To-
wards Removing the Curse of Dimensionality.” In: Proceedings of the
thirtieth annual ACM symposium on Theory of computing (STOC). ACM,
1998, pp. 604–613. doi: 10.1145/276698.276876.

[Irv94] Robert W. Irving. “Stable Marriage and Indifference.” In: Discrete Applied
Mathematics 48.3 (1994), pp. 261–272. doi: 10.1016/0166-218X(92)
00179-P.

[Jac12] Paul Jaccard. “The distribution of the flora in the alpine zone.” In: New
Phytologist 11.2 (1912), pp. 37–50. doi: 10.1111/j.1469-8137.1912.
tb05611.x.

[JH06] Jeff Jonas and Jim Harper. “Effective Counterterrorism and the Limited
Role of Predictive Data Mining.” In: Policy Analysis 584 (2006). url:
http://www.jstor.org/stable/resrep04886 (visited on 06/27/2023).

[Jia+14] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. “String Simi-
larity Joins: An Experimental Evaluation.” In: Proceedings of the VLDB
Endowment 7.8 (2014), pp. 625–636. doi: 10.14778/2732296.2732299.

[Kar+15] Alexandros Karakasidis et al. “PRIVATEER: A Private Record Linkage
Toolkit.” In: CAiSe Forum. 2015, pp. 197–204. url: http://ceur-ws.
org/Vol-1367/#paper-26 (visited on 06/27/2023).

[Kar05] Rosemary Karmel. Data linkage protocols using a statistical linkage key.
Tech. rep. Australian Institute of Health and Welfare, 2005.

[Kas+20] Saffija Kasem-Madani, Timo Malderle, Felix Boes, and Michael Meier.
“Privacy-Preserving Warning Management for an Identity Leakage Warning
Network.” In: Proceedings of the 2020 European Interdisciplinary Cyberse-
curity Conference (EICC). ACM, 2020, pp. 1–6. doi: 10.1145/3424954.
3424955.

196

https://doi.org/10.1023/A:1009761603038
https://doi.org/10.1023/A:1009761603038
https://doi.org/10.1007/0-387-69505-2
https://doi.org/10.1007/0-387-69505-2
https://doi.org/10.1109/ICKS.2008.7
https://doi.org/10.1145/276698.276876
https://doi.org/10.1016/0166-218X(92)00179-P
https://doi.org/10.1016/0166-218X(92)00179-P
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://www.jstor.org/stable/resrep04886
https://doi.org/10.14778/2732296.2732299
http://ceur-ws.org/Vol-1367/#paper-26
http://ceur-ws.org/Vol-1367/#paper-26
https://doi.org/10.1145/3424954.3424955
https://doi.org/10.1145/3424954.3424955

References

[KGV16] Dimitrios Karapiperis, Aris Gkoulalas-Divanis, and Vassilios S. Verykios.
“LSHDB: A parallel and distributed engine for record linkage and similarity
search.” In: Proceedings of the IEEE 16th International Conference on
Data Mining Workshops (ICDMW). IEEE, 2016, pp. 1–4. doi: 10.1109/
ICDMW.2016.7867099.

[KGV17] Dimitrios Karapiperis, Aris Gkoulalas-Divanis, and Vassilios S. Verykios.
“Distance-Aware Encoding of Numerical Values for Privacy-Preserving
Record Linkage.” In: Proceedings of the 2017 IEEE 33rd International
Conference on Data Engineering (ICDE). IEEE, 2017, pp. 135–138. doi:
10.1109/ICDE.2017.58.

[KGV18] Dimitrios Karapiperis, Aris Gkoulalas-Divanis, and Vassilios S. Verykios.
“FEDERAL: A Framework for Distance-Aware Privacy-Preserving Record
Linkage.” In: IEEE Transactions on Knowledge and Data Engineering
(TKDE) 30.2 (2018), pp. 292–304. doi: 10.1109/TKDE.2017.2761759.

[Kho+15] Abel N. Kho, John P. Cashy, Kathryn L. Jackson, Adam R. Pah, Satyender
Goel, Jörn Boehnke, John Eric Humphries, Scott Duke Kominers, Bala N
Hota, Shannon A Sims, et al. “Design and implementation of a privacy
preserving electronic health record linkage tool in Chicago.” In: Journal
of the American Medical Informatics Association (JAMIA) 22.5 (2015),
pp. 1072–1080. doi: 10.1093/jamia/ocv038.

[KK23] Alexandros Karakasidis and Georgia Koloniari. “More Sparking Soundex-
Based Privacy-Preserving Record Linkage.” In: Algorithmic Aspects of
Cloud Computing (ALGOCLOUD 2022), LNCS. Vol. 13799. Springer,
2023, pp. 73–93. doi: 10.1007/978-3-031-33437-5_5.

[KL51] S. Kullback and R. A. Leibler. “On Information and Sufficiency.” In: The
Annals of Mathematical Statistics 22.1 (1951), pp. 79–86. doi: 10.1214/
aoms/1177729694.

[KR10] Hanna Köpcke and Erhard Rahm. “Frameworks for entity matching: A
comparison.” In: Data & Knowledge Engineering 69.2 (2010), pp. 197–210.
doi: 10.1016/j.datak.2009.10.003.

[Kra91] Mark A. Kramer. “Nonlinear principal component analysis using autoas-
sociative neural networks.” In: AIChE Journal 37.2 (1991), pp. 233–243.
doi: 10.1002/aic.690370209.

[Kra92] Mark A. Kramer. “Autoassociative neural networks.” In: Computers &
Chemical Engineering 16.4 (1992), pp. 313–328. doi: 10.1016/0098-
1354(92)80051-A.

197

https://doi.org/10.1109/ICDMW.2016.7867099
https://doi.org/10.1109/ICDMW.2016.7867099
https://doi.org/10.1109/ICDE.2017.58
https://doi.org/10.1109/TKDE.2017.2761759
https://doi.org/10.1093/jamia/ocv038
https://doi.org/10.1007/978-3-031-33437-5_5
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1016/j.datak.2009.10.003
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1016/0098-1354(92)80051-A
https://doi.org/10.1016/0098-1354(92)80051-A

References

[KS14] Martin Kroll and Simone Steinmetzer. “Automated Cryptanalysis of Bloom
Filter Encryptions of Health Records.” In: Proceedings of the Interna-
tional Conference on Health Informatics (ICHI) (2014). doi: 10.5220/
0005176000050013.

[KTR12] Lars Kolb, Andreas Thor, and Erhard Rahm. “Dedoop: Efficient Dedu-
plication with Hadoop.” In: Proceedings of the VLDB Endowment 5.12
(2012), pp. 1878–1881. doi: 10.14778/2367502.2367527.

[KTR13] Lars Kolb, Andreas Thor, and Erhard Rahm. “Don’t Match Twice: Re-
dundancy-free Similarity Computation with MapReduce.” In: Proceedings
of the Second Workshop on Data Analytics in the Cloud (DanaC). ACM,
2013, pp. 1–5. doi: 10.1145/2486767.2486768.

[Kue+12] Claudia E. Kuehni, Corina S. Rueegg, Gisela Michel, Cornelia E. Rebholz,
Marie-Pierre F. Strippoli, Felix K. Niggli, Matthias Egger, Nicolas X. von
der Weid, and Swiss Paediatric Oncology Group (SPOG). “Cohort Profile:
The Swiss Childhood Cancer Survivor Study.” In: International Journal
of Epidemiology 41.6 (2012), pp. 1553–1564. doi: 10.1093/ije/dyr142.

[Kum+14] Hye-Chung Kum, Ashok Krishnamurthy, Ashwin Machanavajjhala, Michael
K Reiter, and Stanley Ahalt. “Privacy preserving interactive record linkage
(PPIRL).” In: Journal of the American Medical Informatics Association
(JAMIA) 21.2 (2014), pp. 212–220. doi: 10.1136/amiajnl-2013-002165.

[Kum+21] Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, and Tanmay
Choudhury. “Secure and Efficient Multiparty Private Set Intersection
Cardinality.” In: Adv. Math. Commun. 15.2 (2021), pp. 365–386. doi:
10.3934/amc.2020071.

[Kuz+11] Mehmet Kuzu, Murat Kantarcioglu, Elizabeth Durham, and Bradley Malin.
“A Constraint Satisfaction Cryptanalysis of Bloom Filters in Private Record
Linkage.” In: Privacy Enhancing Technologies (PETS). Springer, 2011,
pp. 226–245. doi: 10.1007/978-3-642-22263-4_13.

[KV09] Alexandros Karakasidis and Vassilios S. Verykios. “Privacy Preserving
Record Linkage Using Phonetic Codes.” In: Proceedings of the 2009 Fourth
Balkan Conference in Informatics (BCI). IEEE, 2009. doi: 10.1109/BCI.
2009.29.

[KV13] Dimitrios Karapiperis and Vassilios S. Verykios. “A Distributed Framework
For Scaling Up LSH-Based Computations in Privacy Preserving Record
Linkage.” In: Proceedings of the 6th Balkan Conference in Informatics
(BCI). ACM, 2013. doi: 10.1145/2490257.2490258.

198

https://doi.org/10.5220/0005176000050013
https://doi.org/10.5220/0005176000050013
https://doi.org/10.14778/2367502.2367527
https://doi.org/10.1145/2486767.2486768
https://doi.org/10.1093/ije/dyr142
https://doi.org/10.1136/amiajnl-2013-002165
https://doi.org/10.3934/amc.2020071
https://doi.org/10.1007/978-3-642-22263-4_13
https://doi.org/10.1109/BCI.2009.29
https://doi.org/10.1109/BCI.2009.29
https://doi.org/10.1145/2490257.2490258

References

[KV14] Dimitrios Karapiperis and Vassilios S. Verykios. “A Distributed Near-
Optimal LSH-based Framework for Privacy-Preserving Record Linkage.”
In: Computer Science and Information Systems 11.2 (2014), pp. 745–763.
doi: 10.2298/CSIS140215040K.

[KV15] Dimitrios Karapiperis and Vassilios S. Verykios. “An LSH-Based Blocking
Approach with a Homomorphic Matching Technique for Privacy-Preserving
Record Linkage.” In: IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE) 27.4 (2015), pp. 909–921. doi: 10.1109/TKDE.2014.2349916.

[KV16] Dimitrios Karapiperis and Vassilios S. Verykios. “A fast and efficient
Hamming LSH-based scheme for accurate linkage.” In: Knowledge and
Information Systems (KAIS) 49.3 (2016), pp. 861–884. doi: 10.1007/
s10115-016-0919-y.

[KVC12] Alexandros Karakasidis, Vassilios S. Verykios, and Peter Christen. “Fake
Injection Strategies for Private Phonetic Matching.” In: Data Privacy Man-
agement and Autonomous Spontaneus Security (DPM, SETOP). Springer,
2012, pp. 9–24. doi: 10.1007/978-3-642-28879-1_2.

[Lam93] Diane Lambert. “Measures of disclosure risk and harm.” In: Journal of
Official Statistics 9 (1993), pp. 313–313.

[LBÜ15] Martin Lablans, Andreas Borg, and Frank Ückert. “A RESTful interface to
pseudonymization services in modern web applications.” In: BMC Medical
Informatics and Decision Making 15.1 (2015), p. 2. doi: 10.1186/s12911-
014-0123-5.

[LBÜ23] Martin Lablans, Andreas Borg, and Frank Ückert. Mainzelliste (Bitbucket
Repository). 2023. url: https://bitbucket.org/medicalinformatics/
mainzelliste (visited on 06/28/2023).

[Lee+18] Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, and
Xiaoqian Jiang. “Privacy-Preserving Patient Similarity Learning in a Fed-
erated Environment: Development and Analysis.” In: JMIR Medical Infor-
matics 6.2 (2018), e20. doi: 10.2196/medinform.7744.

[Len06] Rainer Lenz. “Measuring the Disclosure Protection of Micro Aggregated
Business Microdata. An Analysis Taking as An Example the German
Structure of Costs Survey.” In: (2006). url: https://www.statistisch
ebibliothek.de/mir/receive/DEMonografie_mods_00000698 (visited
on 06/27/2023).

[Liu+21] Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zi-
huai Lin. “When Machine Learning Meets Privacy: A Survey and Outlook.”
In: ACM Computing Surveys 54.2 (2021). doi: 10.1145/3436755.

199

https://doi.org/10.2298/CSIS140215040K
https://doi.org/10.1109/TKDE.2014.2349916
https://doi.org/10.1007/s10115-016-0919-y
https://doi.org/10.1007/s10115-016-0919-y
https://doi.org/10.1007/978-3-642-28879-1_2
https://doi.org/10.1186/s12911-014-0123-5
https://doi.org/10.1186/s12911-014-0123-5
https://bitbucket.org/medicalinformatics/mainzelliste
https://bitbucket.org/medicalinformatics/mainzelliste
https://doi.org/10.2196/medinform.7744
https://www.statistischebibliothek.de/mir/receive/DEMonografie_mods_00000698
https://www.statistischebibliothek.de/mir/receive/DEMonografie_mods_00000698
https://doi.org/10.1145/3436755

References

[LP09] Yehuda Lindell and Benny Pinkas. “Secure Multiparty Computation for
Privacy-Preserving Data Mining.” In: Journal of Privacy and Confiden-
tiality 1.1 (2009), pp. 59–98.

[LR96] A. J. Lait and Brian Randell. “An Assessment of Name Matching Algo-
rithms.” In: Technical Report Series-University of Newcastle Upon Tyne
Computing Science (1996). url: https://citeseerx.ist.psu.edu/
document?doi=f0c1613a85244f6386ed8c6e4eae2880208ed675 (visited
on 06/27/2023).

[LRU14] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of
Massive Datasets. Cambridge University Press, 2014. isbn: 978-1108476348.

[LS11] Bart Lamiroy and Tao Sun. “Computing precision and recall with miss-
ing or uncertain ground truth.” In: International Workshop on Graphics
Recognition (GREC). Springer, 2011, pp. 149–162. doi: 10.1007/978-3-
642-36824-0_15.

[LSR21] Stefan Lerm, Alieh Saeedi, and Erhard Rahm. “Extended Affinity Propaga-
tion Clustering for Multi-source Entity Resolution.” In: Proceedings Daten-
banksysteme für Business, Technologie und Web (BTW). Vol. P-311. LNI.
Gesellschaft für Informatik, 2021, pp. 217–236. doi: 10.18420/btw2021-
11.

[LSÜ18] Martin Lablans, Esther Erika Schmidt, and Frank Ückert. “An Architecture
for Translational Cancer Research As Exemplified by the German Cancer
Consortium.” In: JCO Clinical Cancer Informatics 2 (2018), pp. 1–8. doi:
10.1200/CCI.17.00062.

[LT05] Hsiao-Ying Lin and Wen-Guey Tzeng. “An Efficient Solution to the Mil-
lionaires’ Problem Based on Homomorphic Encryption.” In: Applied Cryp-
tography and Network Security. Springer, 2005, pp. 456–466. doi: 10.1007/
11496137_31.

[Luo+17] Qingwei Luo, Xue Qin Yu, David Paul Smith, David Eamon Goldsbury,
Claire Cooke-Yarborough, Manish Indravadan Patel, and Dianne Lesley
O’Connell. “Cancer-related hospitalisations and ’unknown’ stage prostate
cancer: a population-based record linkage study.” In: BMJ open 7.1 (2017).
doi: 10.1136/bmjopen-2016-014259.

[MC16] Leigh Metcalf and William Casey. Cybersecurity and Applied Mathematics.
Syngress, 2016. doi: 10.1016/C2015-0-01807-X.

200

https://citeseerx.ist.psu.edu/document?doi=f0c1613a85244f6386ed8c6e4eae2880208ed675
https://citeseerx.ist.psu.edu/document?doi=f0c1613a85244f6386ed8c6e4eae2880208ed675
https://doi.org/10.1007/978-3-642-36824-0_15
https://doi.org/10.1007/978-3-642-36824-0_15
https://doi.org/10.18420/btw2021-11
https://doi.org/10.18420/btw2021-11
https://doi.org/10.1200/CCI.17.00062
https://doi.org/10.1007/11496137_31
https://doi.org/10.1007/11496137_31
https://doi.org/10.1136/bmjopen-2016-014259
https://doi.org/10.1016/C2015-0-01807-X

References

[MG07] Anan Marie and Avigdor Gal. “On the Stable Marriage of Maximum
Weight Royal Couples.” In: AAAI Workshop on Information Integration on
the Web. 2007. url: https://citeseerx.ist.psu.edu/document?doi=
70535747fd11d4f6a6cb7feca7fd50f59eeae89c (visited on 06/27/2023).

[MGR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. “Similarity Flood-
ing: A Versatile Graph Matching Algorithm and Its Application to Schema
Matching.” In: Proceedings of the 18th International Conference on Data
Engineering (ICDE). 2002, pp. 117–128. doi: 10.1109/ICDE.2002.994702.

[Mit+16] William Mitchell, Rinku Dewri, Ramakrishna Thurimella, and Max Roschke.
“A Graph Traversal Attack on Bloom Filter Based Medical Data Aggrega-
tion.” In: International Journal of Big Data Intelligence 4.4 (2016), p. 217.
doi: 10.1504/IJBDI.2017.086956.

[Mit02] M. Mitzenmacher. “Compressed Bloom filters.” In: Proceedings of IEEE/ACM
Transactions on Networking (TON 10.5 (2002), pp. 604–612. doi: 10.1109/
TNET.2002.803864.

[Moo+14] Cecilia L. Moore, Janaki Amin, Heather F. Gidding, and Matthew G. Law.
“A New Method for Assessing How Sensitivity and Specificity of Linkage
Studies Affects Estimation.” In: PLOS ONE 9.7 (2014), pp. 1–6. doi:
10.1371/journal.pone.0103690.

[MR17] Neil G. Marchant and Benjamin I. P. Rubinstein. “In Search of an Entity
Resolution OASIS: Optimal Asymptotic Sequential Importance Sampling.”
In: Proceedings of the VLDB Endowment. Vol. 10. 11. 2017, p. 12. doi:
10.14778/3137628.3137642.

[MS07] Christian Meilicke and Heiner Stuckenschmidt. “Analyzing Mapping Ex-
traction Approaches.” In: Proceedings of the 2nd International Conference
on Ontology Matching (OM). 2007, pp. 25–36. url: https : / / ceur -
ws.org/Vol-304/paper3.pdf (visited on 06/27/2023).

[MT79] Robert Morris and Ken Thompson. “Password Security: A Case History.”
In: Communications of the ACM (CACM) 22.11 (1979), pp. 594–597. doi:
10.1145/359168.359172.

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domization and Probabilistic Techniques in Algorithms and Data Analysis.
Cambridge University Press, 2017. isbn: 978-1-107-15488-9.

[Mun57] James Munkres. “Algorithms for the Assignment and Transportation Prob-
lems.” In: Journal of the Society for Industrial and Applied Mathematics
5.1 (1957), pp. 32–38. url: https://www.jstor.org/stable/2098689
(visited on 06/20/2023).

201

https://citeseerx.ist.psu.edu/document?doi=70535747fd11d4f6a6cb7feca7fd50f59eeae89c
https://citeseerx.ist.psu.edu/document?doi=70535747fd11d4f6a6cb7feca7fd50f59eeae89c
https://doi.org/10.1109/ICDE.2002.994702
https://doi.org/10.1504/IJBDI.2017.086956
https://doi.org/10.1109/TNET.2002.803864
https://doi.org/10.1109/TNET.2002.803864
https://doi.org/10.1371/journal.pone.0103690
https://doi.org/10.14778/3137628.3137642
https://ceur-ws.org/Vol-304/paper3.pdf
https://ceur-ws.org/Vol-304/paper3.pdf
https://doi.org/10.1145/359168.359172
https://www.jstor.org/stable/2098689

References

[Mus+14] Marita Muscholl, Martin Lablans, Thomas OF Wagner, and Frank Ückert.
“OSSE – open source registry software solution.” In: Orphanet Journal of
Rare Diseases 9.1 (2014). doi: 10.1186/1750-1172-9-S1-O9.

[MW70] David G. McVitie and Leslie B. Wilson. “Stable Marriage Assignment for
Unequal Sets.” In: BIT Numerical Mathematics 10.3 (1970), pp. 295–309.
doi: 10.1007/BF01934199.

[Nat08] National Institute of Standards and Technology. The Keyed-Hash Message
Authentication Code (HMAC). Tech. rep. NIST FIPS 198-1. 2008. doi:
10.6028/NIST.FIPS.198-1.

[NdM12] Andriy Nikolov, Mathieu d’Aquin, and Enrico Motta. “Unsupervised Learn-
ing of Link Discovery Configuration.” In: The Semantic Web: Research and
Applications (ESWC). Springer, 2012, pp. 119–133. doi: 10.1007/978-3-
642-30284-8_15.

[New+59] Howard B. Newcombe, James M. Kennedy, S. J. Axford, and Allison P.
James. “Automatic Linkage of Vital Records.” In: Science 130.3381 (1959),
pp. 954–959. doi: 10.1126/science.130.3381.954.

[New67] Howard B. Newcombe. “Record Linking: The Design of Efficient Systems for
Linking Records into Individual and Family Histories.” In: The American
Journal of Human Genetics 19.3 Pt 1 (1967), p. 335. url: https://www.n
cbi.nlm.nih.gov/pmc/articles/PMC1706275/ (visited on 06/28/2023).

[Ngo+13] Axel-Cyrille Ngonga Ngomo, Lars Kolb, Norman Heino, Michael Hartung,
Sören Auer, and Erhard Rahm. “When to Reach for the Cloud: Using
Parallel Hardware for Link Discovery.” In: The Semantic Web: Semantics
and Big Data (ESWC). Springer, 2013, pp. 275–289. doi: 10.1007/978-
3-642-38288-8_19.

[Nie+14] Frank Niedermeyer, Simone Steinmetzer, Martin Kroll, and Rainer Schnell.
“Cryptanalysis of Basic Bloom Filters Used for Privacy Preserving Record
Linkage.” In: German Record Linkage Center, Working Paper Series, No.
WP-GRLC-2014-04 (2014). doi: 10.2139/ssrn.3530867.

[NK62] Howard B. Newcombe and James M. Kennedy. “Record Linkage: Making
Maximum Use of the Discriminating Power of Identifying Information.” In:
Communications ACM (CACM) 5.11 (1962), pp. 563–566. doi: 10.1145/
368996.369026.

[NL13] Axel-Cyrille Ngonga Ngomo and Klaus Lyko. “Unsupervised Learning of
Link Specifications: Deterministic vs. Non-Deterministic.” In: Proceedings
of the Ontology Matching Workshop. 2013, p. 12. doi: 10.5555/2874493.
2874496.

202

https://doi.org/10.1186/1750-1172-9-S1-O9
https://doi.org/10.1007/BF01934199
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.1007/978-3-642-30284-8_15
https://doi.org/10.1007/978-3-642-30284-8_15
https://doi.org/10.1126/science.130.3381.954
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1706275/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1706275/
https://doi.org/10.1007/978-3-642-38288-8_19
https://doi.org/10.1007/978-3-642-38288-8_19
https://doi.org/10.2139/ssrn.3530867
https://doi.org/10.1145/368996.369026
https://doi.org/10.1145/368996.369026
https://doi.org/10.5555/2874493.2874496
https://doi.org/10.5555/2874493.2874496

References

[Nób+18] Thiago Pereira da Nóbrega, Carlos Eduardo S. Pires, Tiago Brasileiro
Araújo, and Demetrio Gomes Mestre. “Blind attribute pairing for privacy-
preserving record linkage.” In: Proceedings of ACM Symposium on Applied
Computing (SAC). 2018, pp. 557–564. isbn: 978-1-4503-5191-1. doi: 10.
1145/3167132.3167193.

[Nor23] North Carolina State Board of Elections (NCSBE). Voter Registration
Data. 2023. url: https : / / www . ncsbe . gov / results - data / voter -
registration-data (visited on 06/22/2023).

[NR18] Markus Nentwig and Erhard Rahm. “Incremental clustering on linked
data.” In: IEEE International Conference on Data Mining Workshops
(ICDMW). 2018. doi: 10.1109/ICDMW.2018.00084.

[OR18] M. Odell and R. Russell. “The soundex coding system.” In: US Patents
1261167 (1918).

[OSR19] Daniel Obraczka, Alieh Saeedi, and Erhard Rahm. “Knowledge Graph
Completion with FAMER.” In: Proceedings of ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining (KDD), DI2KG Workshop.
2019. url: http://ceur-ws.org/Vol-2512/paper1.pdf (visited on
05/05/2023).

[Pag+99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. “The
PageRank Citation Ranking: Bringing Order to the Web.” In: The Web
Conference. 1999.

[Pan+21] Fabian Panse, André Düjon, Wolfram Wingerath, and Benjamin Wollmer.
“Generating Realistic Test Datasets for Duplicate Detection at Scale Using
Historical Voter Data.” In: Proceedings of the 24th International Conference
on Extending Database Technology (EDBT). 2021, pp. 570–581. doi: 10.
5441/002/edbt.2021.67.

[Pap+17] George Papadakis, Konstantina Bereta, Themis Palpanas, and Manolis
Koubarakis. “Multi-core Meta-blocking for Big Linked Data.” In: ACM,
2017, pp. 33–40. doi: 10.1145/3132218.3132230.

[Pap+18] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal
Talwar, and Úlfar Erlingsson. “Scalable Private Learning with PATE.”
In: Sixth International Conference on Learning Representations (ICLR).
2018. url: https://openreview.net/forum?id=rkZB1XbRZ (visited on
07/26/2023).

203

https://doi.org/10.1145/3167132.3167193
https://doi.org/10.1145/3167132.3167193
https://www.ncsbe.gov/results-data/voter-registration-data
https://www.ncsbe.gov/results-data/voter-registration-data
https://doi.org/10.1109/ICDMW.2018.00084
http://ceur-ws.org/Vol-2512/paper1.pdf
https://doi.org/10.5441/002/edbt.2021.67
https://doi.org/10.5441/002/edbt.2021.67
https://doi.org/10.1145/3132218.3132230
https://openreview.net/forum?id=rkZB1XbRZ

References

[Pap+21] George Papadakis, Ekaterini Ioannou, Emanouil Thanos, and Themis
Palpanas. The Four Generations of Entity Resolution. Vol. 16. Synthesis
Lectures on Data Management 2. Springer, 2021, pp. 1–170. doi: 10.1007/
978-3-031-01878-7.

[Pap+22] George Papadakis, Vasilis Efthymiou, Emmanouil Thanos, and Oktie
Hassanzadeh. “Bipartite Graph Matching Algorithms for Clean-Clean
Entity Resolution: An Empirical Evaluation.” In: Proceedings of the 25th
International Conference on Extending Database Technology (EDBT). 2022.
doi: 10.48786/edbt.2022.41.

[PBM14] Emmanouil Antonios Platanios, Avrim Blum, and Tom Mitchell. “Estimat-
ing accuracy from unlabeled data.” In: Proceedings of the 30th Conference
on Uncertainty in Artificial Intelligence (UAI). 2014. doi: 10.1184/R1/
6605273.v1.

[Phi00] Lawrence Philips. “The double metaphone search algorithm.” In: C/C++
users journal 18.6 (2000), pp. 38–43.

[Phu+12] Clifton Phua, Kate Smith-Miles, Vincent Lee, and Ross Gayler. “Resilient
Identity Crime Detection.” In: IEEE Transactions on Knowledge and Data
Engineering (TKDE) 24.3 (2012), pp. 533–546. doi: 10.1109/TKDE.2010.
262.

[Pin+19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. “SpOT-Light:
Lightweight Private Set Intersection from Sparse OT Extension.” In:
Advances in Cryptology. Vol. 11694. Springer, 2019, pp. 401–431. doi:
10.1007/978-3-030-26954-8_13.

[Pit+18] Robespierre Pita, Clicia Pinto, Samila Sena, Rosemeire Fiaccone, Leila
Amorim, Sandra Reis, Mauricio L. Barreto, Spiros Denaxas, and Marcos
Ennes Barreto. “On the Accuracy and Scalability of Probabilistic Data
Linkage Over the Brazilian 114 Million Cohort.” In: IEEE Journal of
Biomedical and Health Informatics (JBHI) 22.2 (2018), pp. 346–353. doi:
10.1109/JBHI.2018.2796941.

[Pos69] Hans Joachim Postel. “Die Kölner Phonetik. Ein Verfahren zur Identi-
fizierung von Personennamen auf der Grundlage der Gestaltanalyse.” In:
IBM-Nachrichten 19 (1969), pp. 925–931.

[Pow+17] Conrad Pow, Karey Iron, James Boyd, Adrian Brown, Simon Thompson,
Nelson Chong, and Charlotte Ma. “Privacy-Preserving Record Linkage:
An International Collaboration between Canada, Australia and Wales.”
In: International Journal of Population Data Science 1.1 (2017). doi:
10.23889/ijpds.v1i1.101.

204

https://doi.org/10.1007/978-3-031-01878-7
https://doi.org/10.1007/978-3-031-01878-7
https://doi.org/10.48786/edbt.2022.41
https://doi.org/10.1184/R1/6605273.v1
https://doi.org/10.1184/R1/6605273.v1
https://doi.org/10.1109/TKDE.2010.262
https://doi.org/10.1109/TKDE.2010.262
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1109/JBHI.2018.2796941
https://doi.org/10.23889/ijpds.v1i1.101

References

[Qua+98] Catherine Quantin, H. Bouzelat, F. A. A Allaert, A. M. Benhamiche, J.
Faivre, and L. Dusserre. “How to ensure data security of an epidemiological
follow-up:quality assessment of an anonymous record linkage procedure.”
In: International Journal of Medical Informatics 49.1 (1998), pp. 117–122.
doi: https://doi.org/10.1016/S1386-5056(98)00019-7.

[Rag+18] Eric D. Ragan, Hye-Chung Kum, Gurudev Ilangovan, and Han Wang.
“Balancing Privacy and Information Disclosure in Interactive Record Link-
age with Visual Masking.” In: Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM, 2018. doi: 10.1145/
3173574.3173900.

[Ran+14] Sean M. Randall, Anna M. Ferrante, James H. Boyd, Jacqueline K. Bauer,
and James B. Semmens. “Privacy-preserving record linkage on large real
world datasets.” In: Journal of Biomedical Informatics 50 (2014), pp. 205–
212. doi: 10.1016/j.jbi.2013.12.003.

[Ran+16] Sean M. Randall, Anna M. Ferrante, James H. Boyd, A. P. Brown, and J. B.
Semmens. “Limited privacy protection and poor sensitivity: Is it time to
move on from the statistical linkage key-581?” In: Health Information Man-
agement Journal 45.2 (2016), pp. 71–79. doi: 10.1177/1833358316647587.

[Ran+19] Sean M. Randall, Adrian P. Brown, Anna M. Ferrante, and James H.
Boyd. “Privacy Preserving Linkage Using Multiple Dynamic Match Keys.”
In: International Journal of Population Data Science 4.1 (2019). doi:
10.23889/ijpds.v4i1.1094.

[RCS20] Thilina Ranbaduge, Peter Christen, and Rainer Schnell. “Secure and Accu-
rate Two-Step Hash Encoding for Privacy-Preserving Record Linkage.” In:
Advances in Knowledge Discovery and Data Mining. Vol. 12085. Springer,
2020, pp. 139–151. doi: 10.1007/978-3-030-47436-2_11.

[RCS21] Thilina Ranbaduge, Peter Christen, and Rainer Schnell. “Large Scale
Record Linkage in the Presence of Missing Data.” In: arXiv preprint
(2021). doi: 10.48550/arXiv.2104.09677.

[RD00] Erhard Rahm and Hong Hai Do. “Data Cleaning: Problems and Cur-
rent Approaches.” In: Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering 23.4 (2000), pp. 3–13.

[Roh+21] Florens Rohde, Martin Franke, Ziad Sehili, Martin Lablans, and Er-
hard Rahm. “Optimization of the Mainzelliste software for fast privacy-
preserving record linkage.” In: Journal of Translational Medicine 19.33
(2021). doi: 10.1186/s12967-020-02678-1.

205

https://doi.org/https://doi.org/10.1016/S1386-5056(98)00019-7
https://doi.org/10.1145/3173574.3173900
https://doi.org/10.1145/3173574.3173900
https://doi.org/10.1016/j.jbi.2013.12.003
https://doi.org/10.1177/1833358316647587
https://doi.org/10.23889/ijpds.v4i1.1094
https://doi.org/10.1007/978-3-030-47436-2_11
https://doi.org/10.48550/arXiv.2104.09677
https://doi.org/10.1186/s12967-020-02678-1

References

[Roh+23] Florens Rohde, Martin Franke, Victor Christen, and Erhard Rahm. “Value-
specific Weighting for Record-level Encodings in Privacy-Preserving Record
Linkage.” In: Proceedings Datenbanksysteme für Business, Technologie und
Web (BTW). Gesellschaft für Informatik, 2023. doi: 10.18420/BTW2023-
21.

[Ros10] Sheldon M. Ross. Introduction to Probability Models. 10th. Elsevier, 2010.
isbn: 978-0-12-375686-2.

[Rou09] Vassil Roussev. “Hashing and Data Fingerprinting in Digital Forensics.”
In: IEEE Security & Privacy 7.2 (2009), pp. 49–55. doi: 10.1109/MSP.
2009.40.

[Rou10] V. Roussev. “Data fingerprinting with similarity digests.” In: Advances in
Digital Forensics. Vol. 337. Springer, 2010, pp. 207–226. doi: 10.1007/978-
3-642-15506-2_15.

[RS20] Thilina Ranbaduge and Rainer Schnell. “Securing Bloom Filters for Privacy-
preserving Record Linkage.” In: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management (CIKM). ACM,
2020, pp. 2185–2188. doi: 10.1145/3340531.3412105.

[San+07] Walter Santos, Thiago Teixeira, Carla Machado, Wagner Meira Jr., Re-
nato Ferreira, Dorgival Guedes, and Altigran S. Da Silva. “A Scalable
Parallel Deduplication Algorithm.” In: Computer Architecture and High
Performance Computing. IEEE, 2007, pp. 79–86. doi: 10.1109/SBAC-
PAD.2007.32.

[SB16a] Rainer Schnell and Christian Borgs. “Randomized Response and Balanced
Bloom Filters for Privacy Preserving Record Linkage.” In: International
Conference on Data Mining Workshops (ICDMW). IEEE, 2016, pp. 218–
224. doi: 10.1109/ICDMW.2016.29.

[SB16b] Rainer Schnell and Christian Borgs. “XOR-Folding for Hardening Bloom
Filter-Based Encryptions for Privacy-Preserving Record Linkage.” In: Ger-
man Record Linkage Center, Working Paper Series, NO. WP-GRLC-2016-
03 (2016). doi: 10.2139/ssrn.3527984.

[SB18] Rainer Schnell and Christian Borgs. “Hardening Encrypted Patient Names
Against Cryptographic Attacks Using Cellular Automata.” In: Proceedings
of the 2018 IEEE International Conference on Data Mining Workshops
(ICDMW). IEEE, 2018, pp. 518–522. doi: 10.1109/ICDMW.2018.00082.

206

https://doi.org/10.18420/BTW2023-21
https://doi.org/10.18420/BTW2023-21
https://doi.org/10.1109/MSP.2009.40
https://doi.org/10.1109/MSP.2009.40
https://doi.org/10.1007/978-3-642-15506-2_15
https://doi.org/10.1007/978-3-642-15506-2_15
https://doi.org/10.1145/3340531.3412105
https://doi.org/10.1109/SBAC-PAD.2007.32
https://doi.org/10.1109/SBAC-PAD.2007.32
https://doi.org/10.1109/ICDMW.2016.29
https://doi.org/10.2139/ssrn.3527984
https://doi.org/10.1109/ICDMW.2018.00082

References

[SBB04] Rainer Schnell, Tobias Bachteler, and Stefan Bender. “A Toolbox for record
linkage.” In: Austrian Journal of Statistics 33.1-2 (2004), pp. 125–133. url:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-131815 (visited
on 06/27/2023).

[SBR09] Rainer Schnell, Tobias Bachteler, and Jörg Reiher. “Privacy-preserving
record linkage using Bloom filters.” In: BMC Medical Informatics and
Decision Making 9.1 (2009), p. 41. doi: 10.1186/1472-6947-9-41.

[SBR11] Rainer Schnell, Tobias Bachteler, and Jörg Reiher. “A Novel Error-Tolerant
Anonymous Linking Code.” In: German Record Linkage Center, No. WP-
GRLC-2011-02 (2011). doi: 10.2139/ssrn.3549247.

[Sca+07] Monica Scannapieco, Ilya Figotin, Elisa Bertino, and Ahmed K. Elma-
garmid. “Privacy Preserving Schema and Data Matching.” In: Proceedings
of the 2007 ACM SIGMOD International Conference on Management of
Data. ACM, 2007, pp. 653–664. doi: 10.1145/1247480.1247553.

[SCF10] Araken M. Santos, Anne M. P. Canuto, and Antonino Feitosa Neto. “Eval-
uating classification methods applied to multi-label tasks in different do-
mains.” In: Proceedings of the 10th International Conference on Hybrid
Intelligent Systems (HIS). 2010, pp. 61–66. doi: 10.1109/HIS.2010.
5600014.

[Sch15] Rainer Schnell. “Privacy-preserving record linkage.” In: Methodological
Developments in Data Linkage. John Wiley & Sons, 2015, pp. 201–225.
url: https://openaccess.city.ac.uk/id/eprint/14393/ (visited on
05/24/2023).

[Sch21] Max Schrodt. “Konzeption und Implementierung eines Tools zur visuellen
Maskierung beim interaktiven Record Linkage.” Bachelor’s Thesis. Univer-
sität Leipzig, 2021.

[SCS15] Kurt Schmidlin, Kerri M. Clough-Gorr, and Adrian Spoerr. “Privacy
Preserving Probabilistic Record Linkage (P3RL): a novel method for linking
existing health-related data and maintaining participant confidentiality.”
In: BMC Medical Research Methodology 15.1 (2015). doi: 10.1186/s12874-
015-0038-6.

[SDR21] Alieh Saeedi, Lucie David, and Erhard Rahm. “Matching Entities from
Multiple Sources with Hierarchical Agglomerative Clustering.” In: Proceed-
ings of the 13th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management IC3K. SCITEPRESS,
2021, pp. 40–50. doi: 10.5220/0010649600003064.

207

https://nbn-resolving.org/urn:nbn:de:0168-ssoar-131815
https://doi.org/10.1186/1472-6947-9-41
https://doi.org/10.2139/ssrn.3549247
https://doi.org/10.1145/1247480.1247553
https://doi.org/10.1109/HIS.2010.5600014
https://doi.org/10.1109/HIS.2010.5600014
https://openaccess.city.ac.uk/id/eprint/14393/
https://doi.org/10.1186/s12874-015-0038-6
https://doi.org/10.1186/s12874-015-0038-6
https://doi.org/10.5220/0010649600003064

References

[Seh+15] Ziad Sehili, Lars Kolb, Christian Borgs, Rainer Schnell, and Erhard Rahm.
“Privacy Preserving Record Linkage with PPJoin.” In: Proceedings Daten-
banksysteme für Business, Technologie und Web (BTW). Vol. P-241. LNI.
Gesellschaft für Informatik, 2015, pp. 85–104. doi: 20.500.12116/2453.

[Seh+21] Ziad Sehili, Florens Rohde, Martin Franke, and Erhard Rahm. “Multi-
Party Privacy Preserving Record Linkage in Dynamic Metric Space.” In:
Proceedings Datenbanksysteme für Business, Technologie und Web (BTW).
Vol. P-311. LNI. Gesellschaft für Informatik, 2021, pp. 257–278. doi:
10.18420/btw2021-13.

[Skr+16] T. Skripcak, U. Just, M. Simon, D. Büttner, A. Lühr, M. Baumann,
and M. Krause. “Toward Distributed Conduction of Large-Scale Studies
in Radiation Therapy and Oncology: Open-Source System Integration
Approach.” In: IEEE Journal of Biomedical and Health Informatics 20.5
(2016), pp. 1397–1403. doi: 10.1109/JBHI.2015.2450833.

[Smi17] Duncan Smith. “Secure Pseudonymisation for Privacy-Preserving Proba-
bilistic Record Linkage.” In: Journal of Information Security and Applica-
tions 34 (2017), pp. 271–279. doi: 10.1016/j.jisa.2017.01.002.

[SMR15] S. Joshua Swamidass, Matthew Matlock, and Leon Rozenblit. “Securely
Measuring the Overlap between Private Datasets with Cryptosets.” In:
PLOS ONE 10.2 (2015). doi: 10.1371/journal.pone.0117898.

[Sna07] Chakkrit Snae. “A Comparison and Analysis of Name Matching Algo-
rithms.” In: International Journal of Computer and Information Engineer-
ing 1.1 (2007), pp. 107–112.

[SPR18] Alieh Saeedi, Eric Peukert, and Erhard Rahm. “Using Link Features for
Entity Clustering in Knowledge Graphs.” In: Proceedings of the European
Semantic Web Conference (ESWC) 2018. Vol. 10843. Lecture Notes in
Computer Science. Springer, 2018, pp. 576–592. doi: 10.1007/978-3-
319-93417-4_37.

[SPR20] Alieh Saeedi, Eric Peukert, and Erhard Rahm. “Incremental Multi-source
Entity Resolution for Knowledge Graph Completion.” In: Proceedings
of the European Semantic Web Conference (ESWC) 2012. Vol. 12123.
Lecture Notes in Computer Science. Springer, 2020, pp. 393–408. doi:
10.1007/978-3-030-49461-2_23.

[SR16] Ziad Sehili and Erhard Rahm. “Speeding up Privacy Preserving Record
Linkage for Metric Space Similarity Measures.” In: Datenbank-Spektrum
16.3 (2016), pp. 227–236. doi: 10.1007/s13222-016-0222-9.

208

https://doi.org/20.500.12116/2453
https://doi.org/10.18420/btw2021-13
https://doi.org/10.1109/JBHI.2015.2450833
https://doi.org/10.1016/j.jisa.2017.01.002
https://doi.org/10.1371/journal.pone.0117898
https://doi.org/10.1007/978-3-319-93417-4_37
https://doi.org/10.1007/978-3-319-93417-4_37
https://doi.org/10.1007/978-3-030-49461-2_23
https://doi.org/10.1007/s13222-016-0222-9

References

[SR22] Rainer Schnell and Dorothea Rukasz. Package ’PPRL’. 2022. url: https:
//cran.r-project.org/package=PPRL (visited on 06/22/2023).

[SRB17] Rainer Schnell, Anke Richter, and Christian Borgs. “A Comparison of
Statistical Linkage Keys with Bloom Filter-based Encryptions for Privacy-
preserving Record Linkage Using Real-world Mammography Data:” in:
Proceedings of the 10th International Joint Conference on Biomedical Engi-
neering Systems and Technologies. SCITEPRESS - Science and Technology
Publications, 2017, pp. 276–283. doi: 10.5220/0006140302760283.

[Sta11] William Stallings. Cryptography and Network Security: Principles and
Practice. 5. Prentice Hall, 2011. isbn: 978-0-13-609704-4.

[Sta23a] Statistisches Bundesamt (Destatis). Genesis-Online: Die Datenbank des
Statistischen Bundesamtes. 2023. url: https://www-genesis.destatis.
de/genesis/online (visited on 06/28/2023).

[Sta23b] Statistisches Bundesamt (Destatis). Krankenhäuser in Deutschland. 2023.
url: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/
Gesundheit/Krankenhaeuser/_inhalt.html (visited on 06/28/2023).

[Sto+17] Holger Storf, Jannik Schaaf, Dennis Kadioglu, Jens Göbel, Thomas O. F.
Wagner, and Frank Ückert. “Register für seltene Erkrankungen.” In: Bun-
desgesundheitsblatt 60.5 (2017), pp. 523–531. doi: 10.1007/s00103-017-
2536-7. url: https://doi.org/10.1007/s00103-017-2536-7.

[The23a] The Apache Software Foundation. Apache Flink - Stateful Computations
over Data Streams. 2023. url: https://flink.apache.org/ (visited on
06/28/2023).

[The23b] The Apache Software Foundation. Apache Spark - Unified engine for large-
scale data analytics. 2023. url: https://spark.apache.org/ (visited on
06/28/2023).

[TMF21] TMF - Technologie- und Methodenplattform für die vernetzte medizinische
Forschung e.V. Mainzelliste | Toolpool Gesundheitsforschung. 2021. url:
https://www.toolpool-gesundheitsforschung.de/produkte/mainze
lliste (visited on 06/28/2023).

[Tot+14] Csaba Toth et al. “SOEMPI: A Secure Open Enterprise Master Patient
Index Software Toolkit for Private Record Linkage.” In: AMIA Annual
Symposium Proceedings (2014), pp. 1105–1114. url: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4419976/ (visited on 06/27/2023).

209

https://cran.r-project.org/package=PPRL
https://cran.r-project.org/package=PPRL
https://doi.org/10.5220/0006140302760283
https://www-genesis.destatis.de/genesis/online
https://www-genesis.destatis.de/genesis/online
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/_inhalt.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/_inhalt.html
https://doi.org/10.1007/s00103-017-2536-7
https://doi.org/10.1007/s00103-017-2536-7
https://doi.org/10.1007/s00103-017-2536-7
https://flink.apache.org/
https://spark.apache.org/
https://www.toolpool-gesundheitsforschung.de/produkte/mainzelliste
https://www.toolpool-gesundheitsforschung.de/produkte/mainzelliste
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419976/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419976/

References

[TVC13] Khoi-Nguyen Tran, Dinusha Vatsalan, and Peter Christen. “GeCo – An
online personal data Generator and Corruptor.” In: Proceedings of the 22nd
ACM international conference on Information & Knowledge Management
(CIKM). ACM, 2013, pp. 2473–2476. doi: 10.1145/2505515.2508207.

[Uni48] United Nations General Assembly. Universal Declaration of Human Rights
(UDHR). 1948.

[Vat+14] Dinusha Vatsalan, Peter Christen, Christine M. O’Keefe, and Vassilios
S. Verykios. “An Evaluation Framework for Privacy-Preserving Record
Linkage.” In: Journal of Privacy and Confidentiality (JPC) 6.1 (2014),
p. 3. doi: 10.29012/jpc.v6i1.636.

[Vat+17] Dinusha Vatsalan, Ziad Sehili, Peter Christen, and Erhard Rahm. “Privacy-
Preserving Record Linkage for Big Data: Current Approaches and Re-
search Challenges.” In: Handbook of Big Data Technologies. Springer, 2017,
pp. 851–895. doi: 10.1007/978-3-319-49340-4_25.

[VC14] Dinusha Vatsalan and Peter Christen. “Scalable Privacy-Preserving Record
Linkage for Multiple Databases.” In: Proceedings of the 23rd ACM In-
ternational Conference on Conference on Information and Knowledge
Management (CIKM). ACM, 2014, pp. 1795–1798. doi: 10.1145/2661829.
2661875.

[VC16] Dinusha Vatsalan and Peter Christen. “Privacy-preserving matching of
similar patients.” In: Journal of Biomedical Informatics 59 (2016), pp. 285–
298. doi: 10.1016/j.jbi.2015.12.004.

[VCV13] Dinusha Vatsalan, Peter Christen, and Vassilios S. Verykios. “A taxonomy
of privacy-preserving record linkage techniques.” In: Information Systems
38.6 (2013), pp. 946–969. doi: 10.1016/j.is.2012.11.005.

[Vid+20a] Anushka Vidanage, Peter Christen, Thilina Ranbaduge, and Rainer Schnell.
“A Graph Matching Attack on Privacy-Preserving Record Linkage.” In: In-
ternational Conference on Information & Knowledge Management (CIKM).
ACM, 2020, pp. 1485–1494. doi: 10.1145/3340531.3411931.

[Vid+20b] Anushka Vidanage, Thilina Ranbaduge, Peter Christen, and Sean Randall.
“Privacy Attack on Multiple Dynamic Match-key Based Privacy-Preserving
Record Linkage.” In: International Journal of Population Data Science 5.1
(2020). doi: 10.23889/ijpds.v5i1.1345.

[Vid+22] Anushka Vidanage, Thilina Ranbaduge, Peter Christen, and Rainer Schnell.
“A Taxonomy of Attacks on Privacy-Preserving Record Linkage.” In: Jour-
nal of Privacy and Confidentiality (JPC) 12.1 (2022). doi: https://doi.
org/10.29012/jpc.764.

210

https://doi.org/10.1145/2505515.2508207
https://doi.org/10.29012/jpc.v6i1.636
https://doi.org/10.1007/978-3-319-49340-4_25
https://doi.org/10.1145/2661829.2661875
https://doi.org/10.1145/2661829.2661875
https://doi.org/10.1016/j.jbi.2015.12.004
https://doi.org/10.1016/j.is.2012.11.005
https://doi.org/10.1145/3340531.3411931
https://doi.org/10.23889/ijpds.v5i1.1345
https://doi.org/https://doi.org/10.29012/jpc.764
https://doi.org/https://doi.org/10.29012/jpc.764

References

[Vid+23] Anushka Vidanage, Peter Christen, Thilina Ranbaduge, and Rainer Schnell.
“A Vulnerability Assessment Framework for Privacy-Preserving Record
Linkage.” In: ACM Transactions on Privacy and Security (2023). doi:
10.1145/3589641.

[VRC19] Sirintra Vaiwsri, Thilina Ranbaduge, and Peter Christen. “Reference Val-
ues Based Hardening for Bloom Filters Based Privacy-Preserving Record
Linkage.” In: Proceedings of the 2018 Australasian Conference on Data
Mining. Vol. 996. Springer, 2019, pp. 189–202. doi: 10.1007/978-981-13-
6661-1_15.

[Wan+10] Chaokun Wang, Jianmin Wang, Xuemin Lin, Wei Wang, Haixun Wang,
Hongsong Li, Wanpeng Tian, Jun Xu, and Rui Li. “MapDupReducer:
Detecting Near Duplicates over Massiv Datasets.” In: Proceedings of the
2010 ACM SIGMOD International Conference on Management of data.
ACM, 2010. doi: 10.1145/1807167.1807296.

[WCA04] Gang Wang, Hsinchun Chen, and Homa Atabakhsh. “Automatically De-
tecting Deceptive Criminal Identities.” In: Communications of the ACM
(CACM) 47.3 (2004), pp. 70–76. doi: 10.1145/971617.971618.

[WE18] Isabel Wagner and David Eckhoff. “Technical Privacy Metrics: A Systematic
Survey.” In: ACM Computing Surveys 51.3 (2018), pp. 1–38. doi: 10.1145/
3168389.

[Web+12] S. C. Weber, H. Lowe, A. Das, and T. Ferris. “A simple heuristic for blind-
folded record linkage.” In: Journal of the American Medical Informatics
Association (JAMIA) 19 (2012), e157–e161. doi: 10.1136/amiajnl-2011-
000329.

[Wes01] Douglas Brent West. Introduction to Graph Theory. Vol. 2. Prentice Hall,
2001. isbn: 978-0130144003.

[Xu+20] Jie Xu, Zhenxing Xu, Peter Walker, and Fei Wang. “Federated Patient
Hashing.” In: AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020,
pp. 6486–6493. doi: 10.1609/aaai.v34i04.6121.

[XW05] Rui Xu and Donald C. Wunsch. “Survey of Clustering Algorithms.” In:
IEEE Transactions on Neural Networks 16.3 (2005), pp. 645–678. doi:
10.1109/TNN.2005.845141.

[Yao82] Andrew C. Yao. “Protocols for secure computations.” In: 23rd Annual
Symposium on Foundations of Computer Science (SFCS) Proceedings. 1982,
pp. 160–164. doi: 10.1109/SFCS.1982.38.

211

https://doi.org/10.1145/3589641
https://doi.org/10.1007/978-981-13-6661-1_15
https://doi.org/10.1007/978-981-13-6661-1_15
https://doi.org/10.1145/1807167.1807296
https://doi.org/10.1145/971617.971618
https://doi.org/10.1145/3168389
https://doi.org/10.1145/3168389
https://doi.org/10.1136/amiajnl-2011-000329
https://doi.org/10.1136/amiajnl-2011-000329
https://doi.org/10.1609/aaai.v34i04.6121
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/SFCS.1982.38

References

[YW20] Yun William Yu and Griffin M Weber. “Balancing Accuracy and Privacy in
Federated Queries of Clinical Data Repositories: Algorithm Development
and Validation.” In: Journal of Medical Internet Research (2020). doi:
10.2196/18735.

212

https://doi.org/10.2196/18735

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten Quellen
und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sinngemäß aus
veröffentlichten oder unveröffentlichten Schriften entnommen wurden, und alle Angaben,
die auf mündlichen Auskünften beruhen, als solche kenntlich gemacht. Ebenfalls sind
alle von anderen Personen bereitgestellten Materialien oder erbrachten Dienstleistungen
als solche gekennzeichnet.

Leipzig, 25.10.2023 Martin Franke

213

	Abstract
	Acknowledgments
	Dissertation-related Publications
	Contents
	Introduction
	Motivation
	Scientific Contributions
	Structure of Thesis

	Background and Related Work
	Historic Overview of Record Linkage
	Legal Background
	PPRL Problem Definition
	PPRL Computation Complexity
	Keys and Identifiers
	PPRL Process
	Linkage Protocols
	Bloom Filter Encodings

	Parallel Privacy-Preserving Record Linkage using LSH-based Blocking
	Motivation
	Related Work
	Locality-sensitive Hashing
	Parallel PPRL (P3RL)
	Evaluation
	Conclusion

	LSH‑based Blocking on Attribute-level Bloom Filters
	Motivation
	Background
	Approaches for LSH Blocking on Attribute-level Bloom Filters
	Evaluation
	Conclusion

	Post-processing Methods for High Quality PPRL
	Motivation
	Background
	Related Work
	Problem Definition
	Post-processing Strategies for PPRL
	Evaluation
	Conclusion

	(Privately) Estimating Linkage Quality for Record Linkage
	Motivation
	Problem Definition
	Related Work
	Estimating Linkage Quality using Similarity Graphs
	Discussion of Privacy Aspects
	Experimental Evaluation
	Conclusion

	Evaluation of Hardening Techniques for PPRL
	Motivation
	Bloom Filter Variants and Hardening Methods
	Bloom Filter Privacy Measures
	Evaluation Setup
	Results and Discussion
	Conclusion

	PRIMAT: A Toolbox for Fast Privacy-preserving Matching
	Motivation
	Requirements for PPRL Tools
	Related Work
	Description of Toolbox Implementation
	Conclusion

	Conclusion and Outlook
	Conclusion
	Outlook

	List of Figures
	List of Tables
	References
	Selbständigkeitserklärung

