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Abstract. The quality of components produced through additive manufacturing
processes, such as selective laser melting (SLM), is significantly influenced by
heat transfer phenomena. Numerical simulations have emerged as valuable tools
for gaining a deeper understanding of these processes. Deep investigation is made
possible by a large amount of sensor data in this area. Both offers the potential
to reduce the cost and time associated with empirical experimentation. Physics-
informed neural networks (PINNs) combine the data-driven capabilities of deep
neural networks with the mathematical formulations of physical laws, such as heat
diffusion. In particular, the gap between numerical simulations and data observa-
tions can be bridged. In this paper, we present a novel neural diffusion graph con-
volutional network (NDGCN) designed to reveal physically interpretable param-
eters and accurately predict heat transfer dynamics during the SLM process. Our
methodology involves representing the fabricated part as a graph model, con-
structed from high-dimensional data. This facilitates the integration of complex
geometries and thermal properties into our predictive framework.
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1 Introduction

SLM has emerged as a transformative technology in additive manufacturing, enabling
the fabrication of intricate components with unprecedented precision. However, the
quality of SLM-produced parts is profoundly influenced by the dynamic interplay of
circulating heating and cooling processes. Undesirable thermomechanical distortions,
porosity, and cracks are often caused by local and global overheating or rapid cooling.
To this end, a thorough understanding of heat transfer phenomena is required to opti-
mize manufacturing results. In the pursuit of such understanding, mathematical founda-
tions have played a central role. A partial differential equation (PDE) is used for mod-
eling heat diffusion. These equation provide a rigorous framework for comprehending
the underlying physics of heat transfer. Nonetheless, there exists a challenge: the dispar-
ities between numerical analysis based on these equation and real-world observations
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obtained from sensors. Furthermore, the collection of comprehensive data of an entire
component in the complicated SLM process proves to be impossible. Traditional ther-
mal imagers can only capture surface temperatures, leaving the dynamics of the build-
ing’s interior largely undetected. To address these challenges, PINNs have emerged as
a powerful tool by harmonizing data-driven modeling with the diffusion equation. This
fusion of data-driven and physics-based approaches not only expedites the training pro-
cess but also extends our ability to predict heat transfer behaviors within SLM, even in
areas devoid of sensor data. Building on the success of neural networks, Graph Con-
volutional Neural Networks (GCNs) have demonstrated remarkable predictive capabil-
ities in various applications involving large-scale data relationships. Intriguingly, the
mathematical description of GCNs functionality closely aligns with the structure of the
explicit Euler method, offering a promising avenue for knowledge transfer [4]. In this
paper, we propose a tailored NDGCN. It is designed to model discretized temperature
fields within a built part as node features, facilitating predictions of heat transfer during
additive manufacturing. Additionally, we explore the incorporation of different regu-
larization techniques based on the knowledge of heat transfer properties to enhance
training efficiency and accuracy. To the best of our knowledge, this work represents the
first application of a NDGCN in the context of SLM for heat transfer prediction. We
make an important contribution to this as follows:

— We introduce a NDGCN for the discovery of physically interpretable parameters and
the prediction of temperature fields using real measurement data.

— Our approach is benchmarked against numerical simulations employing the finite
volume method (FVM) and a PINN solution.

— We show that the stability of the learning algorithm can be improved using heat
transport properties in the form of control loss functions.

This paper is organized in the following manner. Related work that serves as a foun-
dation for this paper is presented in Sect. 2. Section 3 is a benchmark of the approach
in terms of learning physical parameters and in comparison to other methods. This
includes a FVM solution and a PINN solution. Section 4 describes the data integration.
A summary and discussion is given in Sect. 5.

2 Related Work

2.1 Numerical Analysis and PINNs

Numerical analysis are indispensable in scientific and engineering research. These
methods are particularly valuable when analytical solutions are either infeasible or
non-existent due to the complexity of the underlying physics, such as the heat trans-
fer in SLM. The state of the art for approximately solve PDEs are the finite difference
method, FVM, and the finite element method. Mukherjee et al. presented a pioneering
work for simulating heat transfer and fluid flow in AM using the FVM [15,16]. PINNs
represent a recent innovation at the intersection of machine learning and numerical sim-
ulations. For SLM processes involving highly physical interactions, obtaining sufficient
data to train accurate machine learning models can be prohibitively expensive, time-
consuming, or even impossible. Traditional data-driven methods such as deep learning
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often struggle with data scarcity because they rely on large data sets for effective gener-
alization. PINNs offer an elegant solution to this problem by seamlessly incorporating
domain-specific knowledge of heat transfer into neural network architectures. Raissi
et al. has laid the foundation for this area of research and for much of the successful
work of the past few years [17]. A comprehensive overview of PINNs in heat transfer
problems is given by Cai et al. [3]. Uhrich et al. are given a heat forecasting on a built
part in AM using simplified 2-dimensional PINN models [21]. A multi-model, physics-
informed machine learning approach based on thermal and grayscale image analysis is
presented by Bauer et al. [2].

2.2 Differential Equation Inspired Neural Networks

Deep Neural Networks are often seen as complex “black boxes,” making it challenging
to understand their inner workings, despite their primary goal of learning patterns in
data. This lack of transparency makes it difficult to assess a neural network’s suitability
for a specific task, often requiring trial and error. Additionally, the unpredictability of
trained models in real-world situations adds complexity, causing concerns about their
stability, robustness, and reliability. For this purpose, Weinan was the first author to
introduce the bridge between deep residual networks (Resnets) [10] and ODEs [7]. The
use of ODE-inspired network design for single image super-resolution is given by He et
al.. The authors proposed several network architectures based on Runge-Kutta methods
[11]. An ODE transformer network is recently presented by Khoshsirat and Kamb-
hamettu [13]. Ruthotto and Haber are given more specific DNN architectures that are
motivated by PDEs. The foundation for the network design are the different classes of
PDEs [18]. Alt et al. has also presented the transfer of the rich set of numerical foun-
dations from PDEs to DNNSs [1]. Shen er al. extend the explicit forward Euler method
with the implicit backward counterpart and present a neural network for single image
dehazing inspired by implicit Euler ODEs in their work [19]. Uhrich et al. showed how
to predict valve failure using a neural network inspired by mathematical formulations
of the operation of an electrodynamic valve [20].

2.3 Neural Diffusion Graph Networks

A novel approach that views deep learning on graphs as a continuous diffusion pro-
cess and interprets Graph Neural Networks as discrete approximations of an underlying
PDE is introduced by Chamberlain et al.. They addresses challenges commonly faced
by graph learning models, such as depth, oversmoothing, and bottlenecks, while ensur-
ing stability with respect to data perturbations in both implicit and explicit discretization
schemes. The authors develop linear and nonlinear versions of GRAND, which demon-
strate competitive performance on various standard graph benchmarks [4]. Two inter-
esting applications of such approaches are climate modeling and stream water temper-
ature prediction, presented by Choi et al. and Jia et al., respectively [6, 12]. We follow
the work of Chamberlain et al., which serves as a foundation for our approach.
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3 Methodology and Benchmarking

3.1 Methodology NDGCN

A Graph data structure are a collection of vertices and edges G = (V,E), V =
{1,...,N}, E CV x V. Vertex distances d are described by the euclidean distance of
vertex positions p(v) € R®. For simplicity, a cubic mesh graph with equidistant vertices
is used for benchmarking, as shown in Fig. 1. Heat diffusion processes in SLM can be
described by the heat equation:

gy FT@) }
T(Ivt) - C(T((E,t))pAT( 7t) + Q( 7t)7
1

($1,1‘2,1'3) € “Qa te [OaT]

with the thermal conductivity , the specific heat c, the heat generated per volume Q and
the density p. To approximate a given initial-boundary value problem on a graph model,
a NDGCN is described in the following explicit scheme using forward time difference:

K(Th)
o(Tn)p
The vertices of the graph represents temperature features 7' : V' x [0,7) — R and the

edges are weighted w(v1,v2,¢) : V x V x [0,7), where w = -*. L represents the
laplacian matrix, which is a discretized form of the laplace operator:

Tn+1 = Tn + (5t

LT, +6t-Qn, ()

L=A-D A3)

where A is the adjacency matrix, containing the connectivity between adjacent vertices,
and D is the diagonal degree matrix, i.e. the matrix that has as the i-th diagonal element,
the sum of the entries in the i-th row of A.

Fig. 1. Potential Cubic Mesh - Vertices and edges are equidistant
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Fig. 2. Heat Transfer Prediction - The predicted solution of the NDGCN is compared with the
FVM and a PINN solution as a baseline [22]. The NDGCN approach is able to reproduce the
PINN and FVM solution

Due to the equal distribution of all vertices and edges, the trainable weights can be
equated with the physical parameters x(7") and ¢(T"). The timesteps are equivalent to
the number of layers in the NDGCN. The initial condition and Dirichlet boundary is
formulized in the following manner:

T(to,z) = Ty, (z1,72,73) € 2 4

T(t,x) =Tp, (x1,22,23) € 2, t€[0,T) 5)

The Robin boundary condition is defined by the gaussian heat flux q of the energy
source across the top surface:

oT
K/% = Q(xvt)a ($1,$2) S QS (6)

(N

q = ) ex )
Y L

2AP b (2(r0 - vt)2>

with rg = (%2, #2&)
where P is the laser power, x1;, and xo; are the distance from the laser beam axis, 7y
is the radius of the laser, and A is the absorption of the laser energy. v is the scanning

velocity.

3.2 Benchmark

The performance of the approach to identify the physical parameters of 316L stainless
steel is evaluated to benchmark the NDGCN model. The approach relies on utilizing
the numerical solution of the boundaries as training data, in particular for the upper
boundary. The training of the NDGCN model is guided by a loss function designed
to incorporate Dirichlet boundary conditions, a crucial aspect in accurately modeling
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Table 1. Thermal and mechanical properties

Properties

Laser Power P (W) 250

Ambient Temperature 7 (K) 293.15

Density p (kg/m®) 0.6 - 7800

Thermal conductivity x (W/(m K)) 7.092 +0.636 x 1072 T

Identified thermal conductivity x (W/(m K)) | 8.436 + 0.219 x 1072T

Specific heat ¢ (J/(kg K)) 330.9 4+ 0.5637 —4.015 x 107412
+9.465% 10753

Identified specific heat ¢ (J(kg K)) 319.15+40.676T-2.285x 10~ 3T?

Absorption of the laser energy A 9% 1072

Laser Beam Radius r (m) 14x107*

physical systems. This loss function serves as the driving force for training the model,
ensuring it captures the essential physics of the problem:

N,—1
1 7 7 ) 7
cz_Nv ;_O: (Ts(t',2") — Tprea(t', x%))? 8)

where N, are the number of vertices on the boundaries. Figure 2 visually demonstrates
the efficacy of the NDGCN approach in reproducing the solutions obtained through
FVM approximation and PINN solution. The successful reproduction of these solutions
highlights the robustness and accuracy of the model. Figure 3 provides further insight
into the capabilities of the NDGCN approach. It showcases that the model can predict
heat transfer patterns within the constructed part without the need for additional data.

X3 =
—— 1.0e-04m —— 9.0e-05m —— 8.0e-05m —— 7.0e-05m —— 6.0e-05m —— 5.0e-05m

1le3 Neural Diffusion Graph PINN
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Fig. 3. Prediction of inside the built - The NDGCN model is able to predict the heat transfer in
the inside of the built. The results are compared against the PINN solution
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The trainable parameters of the NDGCN model are physically interpretable, as
shown in Table 1. The trainable weights are modelled as parameters of the specific
heat and thermal conductivity.

4 Data Integration

An arbitrary spatial structure can be approximately described using a simplicial 3-
complex. For each layer in a printing job, the objective is to represent the partial object
printed up to that point, by a simplicial complex, such that a) the shape of the complex
closely resembles the shape of the part, and b) the dynamics of the heat distribution in
the part can be modeled by a diffusion process on the underlying graph, i.e. the graph
whose vertices and edges are given by the 0- and 1-simplices in the complex. Thermal
images of the surface are taken periodically during the printing process. The shape of
each layer of the part can be detected from these images. Stacking this information for
all layers, we obtain a 3-dimensional model of the object.

4.1 Graph Construction from Thermal Images

We associate the pixels of a thermal image with points on a plane in R?, that is parallel
to the (X, y)-plane and contains the current layer of the printing job. A point is assumed
to be part of the printed object, if the temperature value of the associated pixel is above
an empirical threshold. If this is the case, the point is added to a point cloud in R3, giv-
ing the pixel coordinates a third component for the height of the layer. A representative
subset needs to be selected from the composite point cloud to build the simplicial com-
plex. To this end, we make use of the pruning method described in [14], that iteratively
removes the point with the highest scale-invariant density (SID).

— |

Fig. 4. Simplicial Complex - created from a helix-shaped point cloud, using SID-based pruning,
Delaunay triangulation and restriction to the interior of the alpha shape

Since the data comes from R instead of a plane, we adapt the SID, by replacing
the r-density with the 3-dimensional analogue:

):#{”Uj_viH<7’ :1<j <N, i#j}

4.3
37T

dr (’Ui

C))
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Which is the number of data points in the r-ball around v;, divided by the volume of
the ball. The scale-invariant density is defined as the integral over all r-densities:

o0
d(v;) = / d,(v;)dr (10)
0
and by a similar calculation as in [14], we see that:
-1
d(vi) = (2”) ; oi = vy~ (n
JF

In each step, the point with the highest spatial redundancy (measured by the SID) is
removed. The resulting subset is relatively homogeneously distributed over the interior
of the point cloud, but contains many boundary points, as their surrounding is partially
void, resulting in a lower SID. This is desirable, as the boundary points define the shape
of the printed object. For building the graphs representing the partially printed object,
we iterate over the number of layers n, ranging from 1 to the total number N of layers
in the printing job. For each n, the pruned set of points from the previous step is consid-
ered together with the points from the n-th layer. We restrict pruning to points from the
top k layers (k < N), thus the representation for the first n — k layers is inherited. A
simplicial complex is constructed from the set of pruned points, using Delaunay trian-
gulation [5]. The printed part must not necessarily be convex, but the shape produced
by the Delaunay triangulation always is. To extract only the simplices that are within
the boundary of the printed part, we use an alpha shape [8] to determine the hull of the
point cloud. Removing the simplices that are not encased by the alpha shape, we end up
with a simplicial 3-complex that resembles the shape of our printed object (see Fig. 4).
The vertices and edges of this complex are used to define a graph.
The vertices are categorized based on spatial position:

—

. vertices in the lowest layer are assigned to the bottom boundary class

2. vertices in the surface layer are assigned to the top boundary class

3. vertices that are part of a surface of the alpha shape, but neither in the top- nor bottom
boundary are assigned to the side boundary class

4. vertices that are not part of either of these classes are assigned to the interior class

C; = C(v;) denotes the class of the vertex v;, i = 1,... N.

4.2 Modelling Internal Heat Using Graph Diffusion

Due to non-equidistant vertices in the graph and a random laser trajectory in the 3D
printing process, we propose a more complex model to predict the heat transfer based
on real measurement data. Revisiting (1), we simplify notation by expressing the con-
ductivity term ﬁ as a single parameter o

T(z,t) = (T (x,1)) AT (2, t) — Q(z, T (x,t)) (12)
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For a discrete approximation of the heat process on a graph, we replace the Laplacian
A with the Graph Laplacian L (3).

(LT)(vint) = 3 ayyT(v;.t) _( 3 aij)T(vi,t)

= Z Qi (T(’l}j, t) — T(’l}i7 t)) (13)

As a result, we obtain the diffusion equation on the graph:
T(t) :cv(T(vi7 t)) (LT) (t) — Q(vi, T (v;, t))
= Z (a(T(vi, t))aij (T(vj, t) — T(vi,t))> - Q(vi, T(vi,t)) (14)

ViU

This equation can be rewritten using a state-dependent adjacency A(T) =
(Q(T(Ui, t)) - aij> ~,and L(T) accordingly, to get:
1,5

T=L(TT - Q(T) (15)

Here T is a vector of temperature values and () is a vector-valued function.

Let ¢;;(T') denote the entries of A(T"). We assume that ¢;; only depends on the tem-
perature of the vertices it connects, i.e. ¢;;(T") = ¢;;(T};, T;). Furthermore, ¢;; should
not depend on the specific vertices v;, v;, but only on their local properties, i.e.

1. their distance 0;; = |lv; — v |2
2. the vertex classes C'(v;), C(v;)
3. the scale-invariant densities d(v;), d(v;)

Under these assumptions, there is some function ¢, modelling the connectivity of
adjacent nodes:

¢ii (T) = ¢(0ij, T3, T}, Ci, Cj, d;, dj) (16)

In a similar fashion, the i-th entry of the dissipation vector Q(T') = (Q; (T))Z. should
only depend on the local properties of v;, i.e. T3, C;, d;. This implies that there is some
function v, s.t.:

Q(T) = (T, Cy, d;) a7

For the neural diffusion model, the functions ¢, v are approximated by single-hidden-
layer networks, and L, () are composed by the evaluations of these models.

We propose a NDGCN model for predicting the temperature change over discrete
time-steps for arbitrary graphs, defined by the equation:

Tpir =T + <i@j (5tL(Tn))j(Tn - %Q(T,J)) —8t-Q(T,)  (18)

=1
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This model contains the trainable submodels ¢, 1 determining L and @), as well as
the trainable parameters ©;, which define a graph convolution. The model Eq. (18) is
motivated by the Taylor series for a solution of the homogeneous heat equation:

o0

T(t+ ot) = Z% <<&)]T> (t)(6t)?

J=

T(t) + Z_;% ((%) T> (t)(6t)7 (19)

Note that for a solution of the homogeneous heat equation, 1ts derivative w.r.t. ¢ is again
a solution of the heat equation, since 0 = (T aAT) — aAT'. Hence, we can

replace ( ) by ()7 in the Taylor series. Approx1mat1ng aAby L(T), we obtain:

T(t + 6t) Z ]1 T) (t)(st)’ (20)

The model Eq. (18) is derived from this by evaluating the first k terms of the series,
accounting for the inhomogeneity due to dissipation, and relaxing the fixed coefficients
1/4! to trainable parameters.

Training this kind of model entails several practical challenges: First, using the
model to predict changes in surface temperature, requires knowing the initial state 7} for
all vertices, including those that cannot be observed. Additionally, the limited observ-
ability of vertices likely leads to an underdetermined optimization problem, which
raises doubts about the model’s ability to accurately represent the internal heat state.
Finally, the model’s locality means that vertices beyond a certain distance from the sur-
face (namely, k steps in the graph) do not directly influence the observations, and thus
are not tracked by the learning algorithm.

To address the first problem, the initial state T} is constructed by iterative model pre-
dictions for each layer, starting from the first layer, where all vertices can be observed.
However, this requires a relatively well-trained model in the first place. To resolve this
circular dependency, we start by training the model on just the first two layers, and then
gradually increase the number of layers when the model has learned a good prediction
for the current depth. For controlling the other problems, we rely on regularizing loss
functions, that are motivated by known properties of heat conduction and enforce those
properties on the model predictions.

First, we ensure that the relative magnitude of the convolution parameters is consis-
tent with the derivation from the Taylor series, using the loss term:

k

64! 2
5%

j=1

For the connectivity model ¢, it is known from the discretization of the continuous
Laplace, that the connectivity of two adjacent vertices should be proportional to the
inverse square of their distance, .Ql-_jQ. Assuming ¢(g;;) = Tgi_j2 (keeping all other
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parameters constant), it follows ¢’(g;;) = —27@1-_]-3, and thus % = —2&‘_]‘1’ which
J

is independent of the scale 7. Therefore, the second regularizing loss term is given by:
¢ (0i5) )’
Lo= > (% - (—20;") (22)
i, jrirj v(0ij)

which ensures consistency of the edge weights with the distances of the connected
vertices. Furthermore, dissipation can only occur at the boundary, so 1) = 0 is required
for interior points, motivating the loss:

Ly= Y (TG dy) (23)

2: C;=int.

Using knowledge from the theoretical study of PDEs, it is also possible to make state-
ments about the temporal evolution of the heat state. First, the total thermal energy in the

body can only change because of dissipation, thus Y, 75,41 (i) = >, (Tn (1) —Qn (z))
Therefore, a loss function is proposed:

£heat - <Z (Tn+1(z) - Tn(l) + Qn(”)) (24)

K2

Another well known property of the evolution of heat distribution is the maximum prin-
ciple (see for example [9], §2.3.). For our purpose, it suggests that the temperature at
a vertex is within the range given by the minimum and maximum over its previous
temperature and the temperatures of connected vertices. This is expressed by the regu-
larizing loss terms:

Lo = > max (0, Ty (i) — max(M))2 (25)
Loin =Y max (0, min(M) — Tnﬂ(i))2 (26)

M = {Tn(l), Tn+1(j)a J~ Z}

Furthermore, a potential energy for the heat distribution can be defined. It is given by:

E(T,t) = /U (T(a:,t)—T(t))zdx 27)

For the time-differential of this energy, one can compute:
B(T,t) =2 / (T(a:, t) — T(t))T(a:, #)dz
U
—2a / (T(:c, £) — T(t))AT(:c, t)dz
U

:2a< . (T(w,t)—T(t))(VT(:c,t)-J/)dS—/U|VT(:c,t)|2dx> (28)

energy from dissipation >0
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TIK]

X 350

Fig. 5. Predicting heat transfer of a 350-layer printed inverted pyramid - Heat transfer can
be predicted over a long period of time by integrating real measured data into a graph model

Assuming dissipation is relatively small, it should roughly hold that £ < 0, so
E(Ty+1) < E(T,,). Thus, we introduce another loss term:

Lenergy = max (0, E(Tpy1) — E(Tn)) (29)

For training the model, the regularizing loss functions Lo, L, L, Lheat Lmins Lmaxs
and Lenergy, as well as the prediction loss

2
Laa= Y (Ton() =T D) (30)
i: C;=top

are added using appropriate weights, and the descent algorithm seeks to find a minimum
for the sum, i.e. a model state that fits the data without violating known properties of
heat diffusion. This restricts the admissible set of solutions, thus mitigating the problem
of underdetermination, and the regularizing loss functions also regard vertices that are
disconnected from the surface and therefore not captured by Lya,-

4.3 Results

The model is restricted for learning a consistent diffusion process, both with the laws
of physics and the observations.
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To generate the initial states for the training steps, the model training starts only for
the first layer (where we can observe the complete state), and then gradually increase
the number of layers used for training.

The model is trained on the first 100 layers of a print job for an inverted pyramid
frustum to evaluate predictions for all 500 layers. The optimisation was performed with
the ADAM optimizer. We used a learning rate of 7 = 1x 107> and decay rates 5, = 0.5
and (B3 = 0.99, which estimate the first and second moments of the gradient less than
usual. Our model architecture contains the same number of layers as the thermal images
are generated. The frame rate has been limited to 3 Hz in order to be in control of the
amount of data. The internal state of the model after printing up to 350 layers is shown
in Fig. 5. For now, it is not possible to verify these predictions, as the lower layers cannot
be observed. However, the distributions seem to be consistent with the heat process in
an object.

5 Conclusion and Discussion

In this paper, we have proposed an NDGCN approach for predicting heat transfer in
SLM processes. First, we have given a benchmark for our model to reproduce synthetic
data and discover physically interpretable parameters modeled as trainable weights of
the network. This foundational step underscores the potential of our approach in cap-
turing underlying physical processes. In the second part, a generated graph data struc-
ture is used to integrate thermal imaging data. In addition, we extend our model with
several regularization principles to predict heat transfer using real measurement data.
While this work represents an essential proof of concept with promising initial results,
several avenues for future research and refinement are evident. First, the second part
of the paper lacks a comprehensive evaluation of our results in comparison to base-
line models, including other machine learning approaches. This comparative analysis
will provide valuable insights into the effectiveness of our NDGCN in relation to exist-
ing methodologies. Additionally, we anticipate expanding our dataset to encompass a
broader range of built geometries and scenarios, thereby enhancing the robustness and
applicability of our model. This broader dataset will not only facilitate a more thorough
evaluation but also enable us to explore diverse industrial applications. Furthermore,
we acknowledge the importance of addressing the computational complexity of our
NDGCN model relative to other techniques like PINNs or numerical analysis. Such an
evaluation will help in understanding the computational trade-offs associated with our
approach and guide its optimization for practical use cases.
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