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Abstract: In contrast to privacy attacks focussing on individuals in a training dataset (e.g., membership inference),
Property Inference Attacks (PIAs) are aimed at extracting population-level properties from trained Machine
Learning (ML) models. These sensitive properties are often based on ratios, such as the ratio of male to female
records in a dataset. If a company has trained an ML model on customer data, a PIA could for example reveal
the demographics of their customer base to a competitor, compromising a potential trade secret. For ratio-
based properties, inferring over a continuous range using regression is more natural than classification. We
therefore extend previous white-box and black-box attacks by modelling property inference as a regression
problem. For the black-box attack we further reduce prior assumptions by using an arbitrary attack dataset,
independent from a target model’s training data. We conduct experiments on three datasets for both white-box
and black-box scenarios, indicating promising adversary performances in each scenario with a test R² between
0.6 and 0.86. We then present a new defense mechanism based on adversarial training that successfully
inhibits our black-box attacks. This mechanism proves to be effective in reducing the adversary’s R² from
0.63 to 0.07 and induces practically no utility loss, with the accuracy of target models dropping by no more
than 0.2 percentage points.

1 INTRODUCTION

Machine Learning (ML) technologies are as present
as never before and their advancement is signif-
icantly enhancing capabilities across multiple do-
mains. However, this progress also introduces new
challenges, particularly in the realm of data privacy.
In healthcare and other user-centric areas, training
large ML models requires ever increasing amounts of
personal data to provide the desired outcomes. Dan-
gers to privacy mostly stem from ML models be-
ing prone to leaking information about their training
data under adverserial attacks (Al-Rubaie and Chang,
2019). A famous example among these are member-
ship inference attacks (Shokri et al., 2017), deciding
membership of individuals in training data, given a
trained model. More recently Property Inference At-
tacks (PIAs) (Ateniese et al., 2015) have emerged as
a critical threat, where adversaries aim to infer sensi-
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tive properties from the training data of target mod-
els without direct access to the underlying data. Ex-
amples for such critical properties include the gen-
der ratio (male to female) in a dataset or the status
of security patches in log files used by an intrusion
detection system (Ganju et al., 2018). These adverse-
rial threats lead to an increasing body of research in
Privacy-Preserving ML (PPML) that revolves around
attacking and defending ML models in various sce-
narios (Xu et al., 2021).

The threat of PIAs is especially severe in in white-
box scenarios, where attackers have complete knowl-
edge of the target model’s architecture and parame-
ters (Ateniese et al., 2015; Ganju et al., 2018; Stock
et al., 2023). However unlike their white-box coun-
terparts, black-box attacks do not require detailed
knowledge of the model, reflecting more realistic ad-
versarial scenarios against services that only query
models for their outputs (Zhang et al., 2021). We in-
troduce a novel method of training a black-box ad-
versary for property inference, where we extend the
conventional black-box PIAs to use an arbitrary at-



tack dataset as input to the target model, which can
be independent from the model’s training data. By
formulating PIAs as a regression problem, the adver-
sary can freely extract the most likely distrubtion of a
property in the original training data (Suri and Evans,
2022). We show the feasibility of our black-box PIA
in attacking Random Forest models and Deep Neural
Networks (DNNs). To put our black-box results into
context, we compare them to an adapted white-box
attack by (Ganju et al., 2018) that we run for the same
scenarios. In all scenarios, we are able to obtain ad-
versaries with a coefficient of determination (R²) of
at least 0.6, ranging up to 0.72 with black-box access
and up to 0.86 with white-box access.

As a defense mechanism to our black-box PIA at-
tack, we test the possiblity of directly including an
adverserial loss in model training, which is inspired
by (Grari et al., 2020) who showed the effectiveness
for enhancing a model’s fairness. The idea is to check
the model’s proneness to PIAs after each training
round and to then accordingly influence the model’s
next updates to steer the model into hiding the original
property distibution from its outputs. The model is in-
stead trained to blind the adversary with a predefined
target property value. We evaluate the resulting abil-
ity on mitigating the risks associated with black-box
PIAs but also monitor the negative impact on model
utility from impairing model training. Our results
demonstrate that our mechanism effectively reduces
black-box PIA success by an order of magnitude to
an R² of 0.07, while only incurring a negligible utility
loss of less than 0.2% accuracy.

We summarize our contributions as follows:
• We expand current PIAs for the black-box setting

by enabling our meta-classifier to use an arbitrary
attack dataset, which is indepedent from the tar-
get’s original data distribution.

• For this meta-classifier, we frame our property in-
ference as a regression problem that is able to ex-
tract a more realistic range of sensitive property
distributions compared to the predefined distribu-
tions of a classification task.

• As a new defense mechanism we propose an ad-
verserial training scheme that hides the actual
property distribution from attacks by guiding the
model during training to produce more balanced
outputs, while preserving model utility. In con-
trast to defense schemes in related work, our
method generalizes well, i.e., defends against a
whole class of PIAs instead of defeding against
a single adversary instance.

For organizing this work, Section 2 provides an
introduction to important related work on PIAs and

possible defense mechanisms. Section 3 describes
our methodology for conducting black-box PIAs and
framing these attacks as a regression problem. Sec-
tion 4 then outlines the proposed countermeasures for
mitigating PIAs. In Section 5, we present our experi-
mental setup, including the datasets used, the models
evaluated, and the metrics for assessing the success of
attack and defense. Section 6 discusses the results of
our experiments, demonstrating the effectiveness and
limitations of our approaches, and suggests future re-
search directions. Finally, Section 7 concludes with a
summary of our findings.

1.1 Performance metrics

Since we model the adversarial task as a regression
problem, we measure the adversary’s success with the
coefficient of determination (R²). A dummy regressor
always outputting the expected value of the trained la-
bels would yield an R² of 0, while an ideal regressor’s
predictions would amount to an R² of 1.

In our evaluation, we use boxplot graphs, since
they capture multiple characteristics of a distribution:
the average is plotted as a diamond, while a line
within the box is the mean of the distribution. The
upper and lower line of the boxes capture the first and
third quantile, while the whiskers below and above the
box imply the range of values outside the two main
quantiles. Outliers are plotted as points above or be-
low the whiskers.

2 RELATED WORK

The task of property inference, also known as dis-
tribution inference, is first introduced by (Ateniese
et al., 2015) who describe attack patterns on tradi-
tional machine learning models. The current state-
of-the-art white-box PIA by (Ganju et al., 2018) is
based on permutation-invariant networks and adapts
earlier PIAs with a focus on fully connected neural
networks. Their solution has since found successful
adoption to other ML models and is the main focus
for evaluating white-box PIAs (Hartmann et al., 2023;
Suri and Evans, 2022). In the same vein, we find
the first approach for black-box attacks introduced by
(Zhang et al., 2021) to form the basis for the current
implementations of black-box PIAs in these works.
Their attack method uses a set of shadow models each
trained on data exhibiting different distributions of the
attacked property. They then train a meta-classifier
that learns to predict the property of interest based on
the shadow models’ outputs on a query dataset. Dur-
ing execution, the attacker queries the target model



with the attack query set, feeds the outputs to the
meta-classifier, and obtains a prediction of the sen-
sitive property in the data. The standard attack set-
ting for PIAs is a binary classification over two prede-
fined distribution values to infer to which of them the
dataset property conforms. For a more realistic case
of continuous distribution values like for the gender
ratio, other works extend the inference task from bi-
nary to a larger set of possible distributions (Zhang
et al., 2021; Zhou et al., 2022; Suri and Evans, 2022).

For defending against PIAs, (Hartmann et al.,
2023) try to evaluate the fundamental reasons for why
models leak sensititve information about their distri-
bution. They come to believe that three factors play
an intervening role in enabling such exploits. As so-
lutions they conversly suggest to reduce the model’s
memorization about the expected label given the fea-
tures of adversary interest, optimizing model architec-
ture against wrong inductive bias, and increasing the
amount of training data. While these mitigations may
help, they each come at a cost. Reducing memoriza-
tion impacts model performance, optimizing model
architecture requires prior assumptions, and collect-
ing more training data is not always feasible.

Other methods for protecting against PIAs also
have shown only limited effectiveness in reliably pre-
venting their success. In contrast to membership in-
ference attacks, differential privacy techniques are not
effective at mitigating inference risks related to data
distributions as tested by (Ateniese et al., 2015). This
is because differential privacy focuses on obfuscat-
ing the contributions of individual records, whereas in
the PIA setting, the adversary is able to uncover sta-
tistical properties of the underlying data distribution
on a population level. Another approach by (Zhang
et al., 2021) tries to remove sensitive attributes from
datasets, which has also proven ineffective, as the
correlations between different attributes still prevails.
(Ganju et al., 2018) propose a defense using scaling
transformations applied in models with ReLU activa-
tions that hide their learned distributions in the inter-
nal weights. However, this technique does not offer
any protection against black-box attacks. (Zhou et al.,
2022) suggest alterations to the training data with re-
spect to the target property before training the model.
This can be done in two ways: either by removing
records or by adding new records. By this, the ratio of
a property should reach a predetermined fixed value,
such as 0.5, regardless of the original ratio. However,
this strategy would either strive for acquiring new data
or removing records from the dataset to balance the
property ratio, leading to expensive data acquisition
or a potential reduction in training data. In (Stock
et al., 2023), they test property unlearning as a de-

fense mechanism against white-box attacks. It uses
an adversarial classifier to identify the model parame-
ters that leak information about a property. They then
use backpropagation to modify them into unlearning
the property. Experiments show this can be effec-
tive against a specific white-box adversary, but has
limitations in generalizing and can therefore not pro-
tecting against black-box or different white-box PIAs
targeting a certain property. In summary, the cur-
rently available defences against property inference
still have significant limitations and do not provide
reliable protection across various attack scenarios.

To address the limitiations stemming from related
work, we first take the black-box PIA approach by
(Zhang et al., 2021) and shift the attack set to be in-
dependent from the original data distribution to fur-
ther reduce the burden of pre-requisites on black-box
PIAs. We further adopt the suggestion by (Suri and
Evans, 2022) and take property inference as a logistic
regression problem to directly infer specific property
ratios through our meta-classifier, where others only
consider a definite set of distributions and formulate
the adversarial task as a classification problem. For
defending against black-box PIAs, we adapt an ad-
versarial learning strategy introduced by (Grari et al.,
2020), where they directly include an adverserial loss
term during model training to influence its memoriza-
tion regarding specific properties. In their work they
utilize this training framework to achieve fairness in
decision tree models. Transitioning this process to
PIA defense, we use a PIA adversary during training
to punish a model, when it memorizes a distribution
too much, leading to an increased adversary loss term.
Using this process, we can dictate a model to learn a
specific distribution output, and to hide its true dis-
tribution, regarding a sensitive property. Our goal in
defending is comparable to the proposition by (Zhou
et al., 2022) but is applicable without actively remov-
ing training samples and we instead just reduce their
influence to steer the property exposure.

3 REGRESSION PROPERTY
INFERENCE ATTACKS

Given a trained target model, the overall aim of a PIA
is to recover sensitive information about the model’s
training data. In contrast to other attacks, PIAs are
not directed at properties of an individual data sample
but rather at global properties of the training dataset.
Examples for such critical properties include the gen-
der ratio (male to female) in a dataset or the status
of security patches in log files used by an intrusion
detection system (Ganju et al., 2018). While some



properties are binary, this work focuses on the more
difficult problem of extracting continuous properties.
Hence, we introduce PIAs as a regression problem, as
proposed in (Suri and Evans, 2022).

3.1 Black-box attacker model

In this work, we focus on a black-box attacker model,
in which an attacker does not have access to the tar-
get model itself, but can choose input values and ob-
serve the target model’s output. This is a realistic sce-
nario for many applications in which machine learn-
ing models are deployed as a service. In real-world
applications, the internal model weights are often
hidden from clients and only API-access is granted,
meaning that requests are forwarded to the model in-
ternally and clients only receive its output. This helps
the model owner to stay in control, and attacks such as
model stealing (Tramèr et al., 2016) can be prevented
more easily.

The attacker has some information about the target
model’s training data or can access parts of it. This is
an assumption also made for previous defense strate-
gies (Nasr et al., 2018; Song and Mittal, 2021; Tang
et al., 2021; Stock et al., 2023). Otherwise, informa-
tion about the training data can also be reconstructed
with separate attacks (Shokri et al., 2017), which is
just as effective (Liu et al., 2022).

3.2 Attack Description

For our black-box PIA execution, we adapt the tech-
niques from (Zhang et al., 2021) for our scenario. The
attack can be split in four steps, as described below
and depicted in Figure 1.

Step 1: Training shadow models

Since the ultimate goal of an adversary A is to pre-
dict a property for a target model, A trains on the
output of models with known property values – the
shadow models. Hence, the first step in a PIA is to
train multiple shadow models for different property
values, i.e., shadow models are trained on training
datasets with the respective property values. Since
the adversary A is modeled as a regressor, we first cre-
ate auxiliary training datasets with the property values
x ∈ [0.1,0.2, . . . ,0.8,0.9], i.e., each auxiliary training
dataset DSx

aux features ratio x regarding a predefined
property. As an example, the property might be de-
fined over the ratio of men to women in a dataset.
To create an auxiliary dataset DSx

aux in our experi-
ments, we use the original training dataset and delete
records until property value x is reached. This pro-
cess is repeated for all x ∈ [0.1,0.2, . . . ,0.8,0.9], such

that the resulting 9 auxiliary training datasets DSx
aux

can be used to train shadow models. On each DSx
aux, k

shadow models are trained. For the datasets we have
used in our experiments, k = 200 has proven useful.
While a higher number for k might increase the utility
of the advesary, it comes with higher computational
costs.

By basing the auxiliary datasets on the original
training datasets, we create worst-case adversaries,
i.e., the strongest possible adversaries: Since the
distribution of the DSx

aux is as close as possible to
the original training data distributions, the adversary
learns the behaviour of very similar models to the at-
tacked model. This is especially helpful when model
owners defend their models during training. Since
original training data must be available to the model
owner during the training process, this prerequisite is
easily fulfilled.

Step 2: Generating output from shadow models

The focus of this work is on a black-box attacker
model, meaning that the adversary A does not have
access to a target model itself but can only survey its
output on a chosen input. Therefore, after training the
9*200 shadow models, they are each queried with the
same input. This input can be arbitrary, as long as
it yields a meaningful output when used as input to
the shadow models. Since this input is an essential
part of the black-box attack, we call it attack dataset
DSatt. The output of the shadow models, labeled with
the according property values [0.1,0.2, . . . ,0.8,0.9], is
then stored as the training dataset for the adversary A .
The same process of training and generating output
on shadow models is repeated on equally sized and
non-overlapping auxiliary test datasets. For creating a
test dataset for the adversary, we use 50 shadow mod-
els per property value, i.e., in total there are 9*200
shadow models to generate the meta training set and
9*50 shadow models to generate the meta test set.

Step 3: Training adversary on shadow model
output

The adversary A , or meta-classifier, is modeled as
a simple deep neural network (DNN). The training
dataset of the adversary (meta training set) consists of
the outputs of the trained shadow models on the cho-
sen input data, paired with the property values of their
respective training datasets. The hyperparameters of
the adversary such as neurons per layer and batch size
are optimized via the framework keras-tuner1. The
optimizer Adam is used to fit the model and early

1https://keras.io/keras tuner/

https://keras.io/keras_tuner/
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Figure 1: Black-box PIA in three steps: Train shadow models, generate output and train adversary.

stopping is applied to avoid overfitting. After approx-
imately 65 epochs, the meta-classifier A reaches its
peak test R² value and the training stops.

Step 4: Attacking target model

After training the adversary A , a target model m can
be attacked by querying it with the attack dataset
DSatt. The output of m then serves as the input
for the adversary to infer the sensitive property, i.e.,
A(m(DSatt)) = x, where x is the value of the sensitive
property inferred by the adversary A .

3.3 White-Box Benchmark PIA

In order to benchmark our novel black-box regres-
sion adversaries described above, we train white-box
advesaries on the same datasets for comparison. In
principle, we follow the work of (Ganju et al., 2018),
which is also based on shadow models. Hence, step
1 in Section 3.2 is identical in the white-box setting.
Step 2 (generating output from shadow models) is
not necessary, since the adversary is trained on the
shadow model weights and biases itself – constituting
the final step of training a white-box adversary. The
white-box attack is carried out by directly using the
weights and biases of a target model as input to the
trained adversary.

4 DEFENDING BLACK-BOX PIA

To defend against black-box PIAs, we propose a form
of adversarial training. We borrow the technique
of (Grari et al., 2020), originally intended to make
models fair, in the sense of making decisions indepen-
dent from pre-specified sensitive characteristics in the
data. Grari et al. design an adversary with the task of
deducing the sensitive data property from the model
output for Gradient Boosted Trees (GBTs). Using this
adversary during training, they create additional gra-
dients for the trained model – to minimize the success

of the adversary, i.e., to minimize the influence of the
sensitive property on the model’s output. A parameter
λ is introduced which controls the tradeoff between
the two competing training goals model performance
and property suppression.

We have extended the strategy of (Grari et al.,
2020) for GBTs to defend DNNs against PIAs. For
defending a target DNN during training, we can sim-
ply modify its loss function. To be precise, we define
two terms within the loss function: A first term pun-
ishing the model if its prediction deviates from the
labels of the training data, and a second term pun-
ishing the model if the PIA adversary infers another
value than the predefined target distribution from the
model’s output. As in the work of (Grari et al., 2020),
the two terms are weighted with (λ−1) and λ, allow-
ing to find an optimal tradeoff between model opti-
mization and PIA defense.

When computing the loss ℓ as a mean squared er-
ror (mse), this yields

ℓ=(1−λ)∗mse(ytrue,ypred)+λ∗mse(advtar,advpred)

for training data labels ytrue and model predictions
ypred, the adversary’s target distribution advtar and the
adversary’s current prediction advpred) based on the
model’s output.

5 EXPERIMENTS

We perform our experiments on the three datasets
Adult, UTKFace and CIFAR-10. We have performed
our experiments on linux machines using Python 3.10
and the latest versions of TensorFlow and keras. The
defense experiments have been performed on 10 tar-
get models per property value and dataset. The tar-
get models are trained on a different portion of the
datasets than the shadow models (i.e., the auxiliary
test datasets as described in Section 3.2, Step 2) to
avoid side effects.



5.1 Datasets

Adult is a dataset consisting of 32,561 records from
the US census (Kohavi et al., 1996). The 14 at-
tributes include information about the individual gen-
der, work hours per week and education level. The
machine learning task is to predict whether an individ-
ual earns more than 50k dollars per year. For this tab-
ular dataset, we use random forest classifiers, reach-
ing an accuracy of 85%.

As the sensitive attribute, we choose the attribute
gender in the adult dataset, i.e., the adversary’s goal
is to predict the ratio of male:female records in the
training dataset. For the attack dataset which the ad-
versary uses to generate output from target models,
we generate a synthetic dataset with 10,000 records
based on Adult using a conditional generative adver-
sarial network (CTGAN) (Xu et al., 2019).

UTKFace consists of 20,000 color images with
annotations of age, gender and ethnicity (Zhang et al.,
2017). We choose the ML task of inferring the correct
gender from an image. Deep neural networks with
convolutional layers are used for recognizing the im-
ages, reaching a test accuracy of 90%.

We define our sensitive property over the age at-
tribute, i.e., the property is defined by the distribution
of old to young instances in the data. For simplicity,
we consider all age labels above 59 as old. Our at-
tack dataset is based on the Labeled faces in the wild
dataset (Huang et al., 2008), containing 13,233 im-
ages of 5,749 different people.

CIFAR-10 contains 60,000 color images for im-
age recognition tasks with 32x32 pixels each (Alex,
2009). The dataset is grouped into 10 classes, such as
airplane, horse and truck. For the target and shadow
models, we use deep neural networks with the same
architecture as for UTKFace above, reaching accura-
cies of 70% (random guessing would amount to 10%
accuracy).

The sensitive attribute we define in this dataset is
the amount of animals in the training dataset, i.e., the
adversary’s task is to predict the ratio of animal:non-
animal images in the training dataset of the target
model. The attack dataset which the adversary uses
to generate output from the target model is based on
the CIFAR-100 dataset (Alex, 2009). We randomly
select 5,040 samples of 21 CIFAR-100 classes, which
share similarities with CIFAR-10 classes, e.g., images
of the CIFAR-100 class lion have similar features as
the CIFAR-10 class cat.

Access white-box black-box
Defense none none λ = 0.15

Adult – 0.72 –
UTKFace 0.86 0.63 0.070
CIFAR-10 0.60 0.64 0.069

Table 1: Adversary performance measured as R² on test
data, comparison black-box and white-box. Both the white-
box attack and the black-box defense are not applicable to
the tree-based models for the Adult dataset.
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Figure 2: Performance of black-box adversaries, mean ad-
versary output on test data for different distributions (resp.
property values).

5.2 Regression PIA results

The results of our attack experiments are summarized
in the first two columns of Table 1. Following the
regression approach explained in Section 3, we have
trained PIA adversaries both in white-box and black-
box scenarios2. The black-box adversaries reach R²
values from 0.63 (UTKFace) to 0.72 (Adult). Their
performance is visualized in Figure 2: An ideal ad-
versary would infer all property values correctly, as
shown by the dotted red line. It is apparent that all
three adversaries perform best in the mid-ranges of
property values (0.2–0.7), where their predictions are
closest to the ideal. For CIFAR-10, the largest devi-
ation is at property value 0.1, where the mean pre-
diction amounts to 0.38. The smallest deviations are
observed for property value 0.6, where all three ad-
versaries’ mean predictions deviate less than 5% from
the correct value.

Focusing on the first column of Table 1, we can
see that the white-box adversary for UTKFace out-
performs its black-box counterpart (R² of 0.86 com-

2The white-box approach was not applicable to the
GBTs of the adult dataset, since the proposal in (Ganju
et al., 2018) is designed for neural networks.
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Figure 3: Performance of white-box adversaries, mean ad-
versary output on test data for different distributions (resp.
property values).

pared to 0.63), while the performance of the white-
box adversary for CIFAR-10 is worse than the black-
box version (R² of 0.60 opposed to 0.64). The great
performance of the white-box UTKFace adversary is
also reflected in Figure 3, where the plotted deviations
from the ideal predictions (dotted red line) are small
or even not existing in the case of property value 0.1.
At the same time, the CIFAR-10 white-box adversary
performs worst at property value 0.1, its mean pre-
diction deviating even more from the truth than its
black-box counterpart in Figure 2. Interestingly, the
CIFAR-10 white-box adversary obtains its best pre-
dictions for property value 0.9, contrary to the UTK-
Face white-box adversary.

5.3 Regression black-box PIA defense
results

We have implemented the defense strategy of Sec-
tion 4 and conducted experiments for different values
of λ. To recapitulate, the higher the value of λ, the
more the trained model is defended against a PIA ad-
versary, hence λ = 0 implies a regular training with-
out any defense mechanisms. All experiments were
run with the target property value 0.5.

To show the effect of our adversarial training,
we plot the adversarial outputs after defending target
models with λ = 0.15 in Figure 4: The plot is very
different from the original adversary performance in
Figure 2, with mean adversary outputs close to the
target 0.5 for target models with all property values.
This underlines the results in the third column of Ta-
ble 1 with anadversary R² of 0.07 on defended models
for both datasets UTKFace and CIFAR-10.

More detailed results for different values of λ are
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Figure 4: Black-box adversary outputs for target models de-
fended with λ = 0.15 and target property value 0.5.
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Figure 5: UTKFace: Accuracy of defended models for dif-
ferent values of lambda (black) and absolute divergence
from target 0.5 of the adversary for defended models
(green).

presented in Figure 5 for UTKFace and Figure 6 for
the CIFAR-10 dataset. The green boxplots at the bot-
tom of both figures represent the distance of adversary
outputs to the target value 0.5 – as λ increases along
the x-axis, this distance decreases. The black box-
plots at the top of the figures show the accuracies of
the defended models. For both datasets, we can ob-
serve practically no accuracy decrease: The mean ac-
curacy even increases for the UTKFace models from
86.19% (λ = 0) to 86.60% (λ = 0.15), before it de-
creases slightly to 84.91 for λ = 0.2. For CIFAR-10,
the accuracy decreases slightly from 67.46% (λ = 0)
to 67.33% (λ = 0.25).

6 DISCUSSION

Regarding the attack success rates, the black-box and
white-box adversaries are in the same range of 0.6 to
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Figure 6: CIFAR-10: Accuracy of defended models for
different values of lambda (black) and absolute divergence
from target 0.5 of the adversary for defended models
(green).

0.86 R². While the age property for the UTKFace
dataset is easily extracted in the black-box scenario
(highest R²: 0.86), the animal property of CIFAR-10
seems to be harder to extract for an adversary, espe-
cially for property values below 0.3 (both in the black-
box and white-box scenarios). The reasons behind
this are guesswork; one hypothesis could be that as
long as the share of animal images during CIFAR-10
training is below a certain threshold, the neural net-
work does not account for typical animal features to
an extend which is inferrable for an adversary.

In general, the attack success rates are hard to
compare to related work, since PIAs are only con-
sidered as a classification problem, not covering the
more natural continuous value range of property dis-
tributions. To the best of our knowledge, (Zhang
et al., 2021) is the only work with a similar PIA ex-
periment. In reference to their “fine-grained” attack
using 5 classes for the property gender in the Adult
dataset, we calculate approximate accuracy values for
our attackers by classifying our adversary outputs into
4 classes across the range 0–1. The value from (Zhang
et al., 2021) is the average value of the rightmost col-
umn in Table 7, i.e., the average accuracy across the
5 classes. The results (see Table 2) exhibit similar
accuracy rates across all adversaries (39.8%–67.6%),
although Zhang et al.’s work seems to outperform our
black-box attacks. The two white-box attacks show
significantly higher accuracy rates than the black-box
attacks. However, we need to stress that the accu-
racy values are extracted from our regression outputs
and that our adversaries have not been optimized to
achieve high accuracies in a classification task.

In our defense experiments, we have shown that
the adversarial approach, actively suppressing prop-
erty information in target model outputs, works well
and does not negatively affect the performance of de-

black-box white-box
related work ours ours

Adult 50.6% 39.8% –
UTKFace – 44.9% 67.6%
CIFAR-10 – 49.2% 62.4%

Table 2: Approximated accuracies for our attacks to estab-
lish comparability to related work. The value for related
work is extracted from (Zhang et al., 2021), Table 7.

fended target models. Across both datasets, λ = 0.15
has proven to create a reasonable tradeoff during
training, minimizing the adversary’s R² to 0.07 while
harming the target models’ performance by less than
0.2 percentage points on average. As Figure 5 ex-
hibits, using a higher λ than 0.15 is not necessary,
since the difference in adversary performance is neg-
ligible (R² of 0.067 for λ = 0.25 instead of R² of
0.069 for λ = 0.15) and two outliers imply possibly
unwanted behavior for higher values of λ. Another
notable observation from Figure 5 and Figure 5 is that
not only the accuracy values are stable, but also their
deviations do not increase for bigger values of λ.

For demonstration purposes, we have used 0.5
as the target property value across all defense ex-
periments. In practice, this value could be either
randomly chosen from the range 0–1 for each tar-
get model individually, or set to some other constant
value. Depending on the use case, one option might
make more sense than the other.

In (Stock et al., 2023), the authors have demon-
strated how it does not suffice to harden a target
model against a single white-box adversary to de-
fend a whole class of PIA adversaries. For black-
box adversaries, this is different, since the informa-
tion available to the adversary is a lot more sparse than
in white-box scenarios (model output vs. all trained
weights and biases). Therefore, adversaries cannot
circumvent the adversarial defense by focusing on an-
other part of available information, as has been shown
for the white-box case in Section 6 of (Stock et al.,
2023). We were able to confirm this experimentally
by validating that defending a target model against
one black-box adversary limits the capabilities of an-
other adversary with the same task at the same rate.
This shows that the defense mechanism in this work
generalizes well, in contrast to the white-box defense
presented in (Stock et al., 2023).

6.1 Future Work

Through our experiments, we have demonstrated the
feasibility of regression PIAs. Although this will not
prevent attackers from executing them, the process of
implementing the attack takes a lot of effort, entail-



ing the identification of a target model’s training data
distribution, creating shadow models, fine-tuning the
architecture of the adversary model, etc. Follow-up
work could investigate whether this effort could be
limited, while maintaining the success rates shown in
this work. Inspiration could be taken from (Li and
Zhang, 2021), where a “boundary attack” for mem-
bership inference is presented, which bypasses the
creation and usage of shadow models altogether.

Also, our defense mechanism could be transferred
to a hybrid scenario. Instead of using a static adver-
sary during the adversarial training of a target model,
the adversary is retrained on the modified output of
the target model in every epoch of the target model
training, as in (Grari et al., 2020). Such a hybrid
adversarial training could potentially further reduce
the leaked property information of a target model, al-
though further investigation is necessary.

Last but not least, the adversarial training for fair-
ness in (Grari et al., 2020) could have side effects
on the success rate of PIAs. Since Grari et al. train
their models to yield outputs independent from a sen-
sitive property p, it would be interesting to investi-
gate whether their approach could also defend a target
model against a PIA focussing on property p.

7 CONCLUSION

In this work, we have expanded upon existing black-
box PIAs by using an arbitrary attack dataset, which
can be based on other datasets than the training
dataset. As the natural fit for many ratio-based prop-
erties, we have modeled the PIAs in this work as
regression problems. We have explored a defense
mechanism based on adversarial training which hard-
ens a target model against black-box PIAs during its
training process. We have evaluated our approach on
three datasets, comparing the attack against white-box
benchmarks and related work. In our experiments, we
have shown our defense scheme to be both effective
(by decreasing the adversary’s performance from an
R² of 0.63–0.64 to 0.07) and practical, decreasing the
mean accuracy of target models by less than 0.2 per-
centage points.
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