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Abstract: With Knowledge Graphs (KGs) at the center of numerous applications such as recommender
systems and question-answering, the need for generalized pipelines to construct and continuously
update such KGs is increasing. While the individual steps that are necessary to create KGs from un-
structured sources (e.g., text) and structured data sources (e.g., databases) are mostly well researched
for their one-shot execution, their adoption for incremental KG updates and the interplay of the
individual steps have hardly been investigated in a systematic manner so far. In this work, we first
discuss the main graph models for KGs and introduce the major requirements for future KG con-
struction pipelines. Next, we provide an overview of the necessary steps to build high-quality KGs,
including cross-cutting topics such as metadata management, ontology development, and quality
assurance. We then evaluate the state of the art of KG construction with respect to the introduced
requirements for specific popular KGs, as well as some recent tools and strategies for KG construction.
Finally, we identify areas in need of further research and improvement.

Keywords: Knowledge Graphs; data integration; data science

1. Introduction

Aggregated machine-readable information in the form of Knowledge Graphs (KGs)
serves as the backbone of numerous data science applications nowadays, ranging from
question-answering [1] through recommendation systems [2] to predicting drug–target
interactions [3]. The ever-changing nature of information necessitates the design of a
KG construction pipelines that are able to continuously incorporate new information. In
developing such a system, knowledge engineering teams must address various challenges,
from tackling scalability and heterogeneous data sources to tracking data provenance.
Given the usually large volume of data that need to be integrated, such pipelines have to
be automatized as much as possible while aiming at a high degree of data quality.

Knowledge graphs generally integrate heterogeneous data from a variety of sources
with unstructured and semi-structured data of different modalities (e.g., pictures, audio,
text) as well as structured data such as databases or other KGs in a semantically rich way.
Therefore, constructing a KG encompasses a multidisciplinary effort requiring expertise
from research areas such as natural language processing (NLP), data integration, knowledge
representation, and knowledge management.

Knowledge graphs are at the center of numerous use cases for data analysis and
decision support. In the clinical setting, enriching patient data with medical background
knowledge enables improved clinical decision support [4]. Sonntag et al. [5] argue that
properly aligning the semantic labels attached to patient data with medical ontologies is
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crucial in creating meaningful access to heterogeneous patient data. Knowledge graphs
are also used to organize the relevant information for fast-emerging global topics, such
as pandemics (e.g., COVID-19) or natural disasters [6]. Machine learning also benefits
from KGs as a source of labeled training data or other input data [7,8], thereby supporting
the development of knowledge- and data-driven AI approaches [9]. KGs can further
be combined with Large Language Models (LLMs) to improve factual correctness and
explanations in question-answering, e.g., with ChatGPT, thereby promoting quality and
interpretability of AI decision-making [10–12].

Improving the pipelines that build such Knowledge Graphs and enabling them to
efficiently keep current and semantically meaningful aggregated knowledge is, therefore,
an effort that benefits a wide range of application areas [13,14]. However, KGs are often
created in a batch-like manner so that the respective pipelines are unfit to incorporate
new incoming facts into a KG without the full re-computation of the individual tasks.
Furthermore, different pipeline steps often require manual intervention, thereby limiting
the scalability to large data volumes and increasing the time required to update a KG.

There are a growing number of surveys about Knowledge Graphs, especially on their
general characteristics and usage forms [7–9]. An excellent tutorial-style overview of the
construction and curation of KGs is provided in [15] with a focus on integrating data
from textual and semi-structured data sources such as Wikipedia. Other surveys focus
on KG construction with specific technologies [16,17] or only a single domain such as for
geographical data [18]. We discuss related surveys on KG construction in Section 7 and
contrast them with our approach.

This survey article provides a concise yet comprehensive entry into the current state
of the art in KG construction for readers new to the topic, as well as contributing guidance
for researchers, engineers, and experts by highlighting existing solution approaches and
tools and identifying open gaps in the areas. We first outline the main requirements for
the construction and continuous maintenance of KGs distilled from the literature, as well
as our experience and reasoning. Next, we give an overview of the concrete subtasks of
KG construction and current solution approaches. Furthermore, we select 27 KG-specific
construction approaches, as well as generic toolsets based on the criteria discussed in
Section 5 and evaluate and compare them with respect to the requirements introduced in
Section 3. Finally, we identify open challenges and current limitations and, thus, areas for
further research.

Our survey builds on previous studies for KG construction but differs in essential
aspects, as will be explained in detail in Section 7. In contrast with most other surveys,
we explicitly specify the main requirements for KG construction and use these as a guide-
line for evaluating current solutions and identifying open challenges. We are also more
comprehensive in several important aspects as we cover different graph data models (RDF
and property graphs) and deal with incremental KG construction and data integration,
including incremental entity resolution in much more detail. We also provide a comparison
between many carefully selected KG-specific construction approaches and toolsets and
identify open challenges that go beyond those discussed in previous surveys.

The structure of the remainder of this survey is as follows: Section 2 deals with KG
aspects and includes a definition of KGs, a discussion of graph data models for KGs,
the distinction between domain-specific and general KGs, with the impact of the final
use case on the construction methods, and the relevancy of dynamic adaptations in the
pipeline. Furthermore, In Section 3, we introduce and categorize the general requirements
for incremental KG construction. In Section 4, we provide an overview of the main tasks
in incremental KG construction pipelines and proposed solution approaches for them.
We then investigate and compare existing construction efforts for selected KGs as well as
within recent tools for KG construction with respect to the requirements introduced earlier.
This also allows us to identify tasks that are not yet supported well. Section 6 discusses
open challenges for KG construction. Section 7 contains a more in-depth comparison with
the related work. Finally, we provide concluding remarks and a summary.
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2. Prerequisites

We first outline the notion of Knowledge Graph (KG) used in this paper and differenti-
ate between domain-specific and general KGs. We then briefly introduce and compare the
two most popular graph data models for KGs, namely RDF and property graphs. Finally,
we outline the main requirements or desiderata for largely automatic construction and
maintenance of KGs.

2.1. Knowledge Graph

KGs typically realize physical data integration, where the information from different
sources is combined in a new graph-like representation (while we will focus on the pre-
dominant physical data integration of KGs, there are also some virtual data integration
approaches, e.g., to keep data sources more autonomous [19,20]). KGs are schema-flexible
and can thus easily accommodate and interlink heterogeneously structured entities. This is
in contrast to the use of data warehouses as a popular approach to physical data integration.
Data warehouses focus on integrating data within a structured (relational) database with a
relatively static schema optimized for certain multi-dimensional data analyses. Schema
evolution is a manual and tedious process, making it difficult to add new data sources
or new kinds of information not conforming to the schema. KGs are less restricted and
can better deal with heterogeneous information derived from semi- and unstructured data
from potentially many sources.

Although the term Knowledge Graph goes back as far as 1973 [21], it gained pop-
ularity through the 2012 blog post (https://blog.google/products/search/introducing-
knowledge-graph-things-not/ (accessed on 15 August 2024)) about the Google KG. After-
ward, several related definitions of Knowledge Graphs were proposed, either in research
papers [8,15,22–24] or by companies using or supporting KGs (OpenLink, Ontotext, Neo4J,
TopQuadrant, Amazon, Diffbot (https://blog.diffbot.com/knowledge-graph-glossary/ (ac-
cessed on 15 August 2024)), Google). Ehrlinger et al. [23] give a comprehensive overview of
KG definitions and provide their own: “A Knowledge Graph acquires and integrates infor-
mation into an ontology and applies a reasoner to derive new knowledge”. Hogan et al. [25]
argue that this definition is very specific and excludes various industrial KGs that helped
popularize the concept.

We, therefore, define KGs more inclusively as a graph of data consisting of semantically
described entities and relations of different types that are integrated from different sources.
Entities have unique identifiers. KG entities and relations can be semantically described by
an ontology [26]. A KG’s ontology defines the concepts, relationships, and rules governing
the semantic structure within a KG of one or several domains that also include the types
and properties of entities and their relationships. To structure data in a KG, common
ontology relationships such as is-a and has-a are used to represent taxonomic hierarchies
and possessive relations between entities.

Furthermore, a KG ontology combined with reasoning engines can infer new implicit
knowledge from the explicitly represented information in the KG [27–29]. These sources
cover hidden connections or knowledge that can be logically deduced from the given data

Figure 1 visualizes a simplified KG example with integrated information from several
domains where ontological information such as types or is-a relations are dashed. There
are ten entities of the following eight types: Country (Ireland), City (Limerick), Artist (Aphex
Twin), Album (Selected Ambient Works 85-9), Record Label (R & S), Genre (Techno, Ambi-
ent Techno), Song (Xtal, Ageispolis), and Year (1992). Ontological is-a (sub-class) relations
interrelate City and Country with Place, Artist with Person, Album with Music Release
Type, and Record Label with Organisation. The domain is further described by the named
relationships: country, birthPlace, artist, label, writtenBy, yearReleased, founded, broader,
genre, yearProduced, partOf. Based on the given relationships and typing, further informa-
tion is inferable. For example, Aphex Twin’s broader birthplace is Ireland, the song Xtal is
also of the genre Techno, and Aphex Twin being of the type Artist means this instance is
also of the type Person (for readability, not all possible inferences are denoted).

https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.diffbot.com/knowledge-graph-glossary/
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Figure 1. Simplified Knowledge Graph (KG) example demonstrating integrated information from
five domains, showcasing ten entities of eight types connected by twelve relationships (two distinct
is-a relations). Dashed lines indicate semantic structures (ontology or graph schema), such as entity
types. Inferences can be made based on the relationships and typing, revealing additional information
such as the broader birthplace of Aphex Twin being Ireland and Xtal belonging to the Techno genre
(Not all possible inferences are shown for clarity).

2.2. Importance of Application Domain and Use Cases

KGs can vary significantly in their domain scope, ranging from those encompassing
a broad spectrum of general, open-world knowledge, integrating insights from multiple
disciplines, to specialized domain-specific KGs that focus on the nuanced details of a specific
application domain or area of interest [13,30]. This diversity in scope reflects the varied
applications of Knowledge Graphs and the importance of tailoring the ontology to meet
the specific needs of its intended use case. Domain-specific KGs use specialized ontology
terminology, often curated by experts in the targeted domain, whereas general KGs provide
a broader view and connect multiple domains with a typically shallow representation of the
individual fields. Use cases of open-world KGs include the building of search engines [31],
general question-answering [32], or recommendation systems [33]. Use cases of domain-
specific KGs range from healthcare [34,35] and medical diagnosis support [36], financial
analysis and risk management [37,38] to customer insights [39] and products [40].

Different use cases require distinct KG requirements, influencing its design and con-
struction to meet specific needs [30]. A KG’s purpose significantly impacts the applied
methods and steps during construction, with domain-specific data necessitating tailored
approaches for effective integration. For instance, a medical KG employs different methods
and tools compared to a geographical or financial KG. For example, in the biomedical
domain, specialized machine learning models are designed to extract entities, such as gene
names, protein interactions, or medical terminologies, from scientific publications [41].
Similarly, entity-matching algorithms can be customized for domain-specific data [42], such
as geographical entities [43,44]. This targeted approach ensures that the KG is optimized
for its intended purpose, providing more accurate and relevant insights.

Further, when constructing KGs, it is essential to consider the specific data require-
ments of the intended methods or applications. For example, temporal graphs are essential
for incremental recommendations [45], tracking event types and user interactions, medical
diagnoses and treatments [34], and fraud-detection systems relying on real-time transaction
data and user behavior patterns [38,46]. Other applications may require including metadata
such as entity origin [47] or spatial information [18]. These examples highlight how specific
requirements influence the design and data composition of knowledge graphs.
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Understanding the targeted application domain and intended use cases is crucial in
constructing a Knowledge Graph. This understanding guides the selection of appropriate
methods and tools, ensuring the KG meets the specific needs and requirements of its
intended application. A tailored approach not only enhances the effectiveness of the KG
but also maximizes its utility across various applications.

2.3. Graph Models

To represent and use KGs as informally defined above, a powerful graph data model
is needed that supports entities and relations of different types, as well as their ontological
description and organization [48]. Moreover, the graph data model should provide a
comprehensive query language and possibly more advanced graph analyses or mining
capabilities, e.g., for clustering of similar entities or determining graph embeddings for
machine learning tasks. Support for integrity constraints is also desirable to automatically
control the consistency and, therefore, quality of graph data to some extent. Moreover,
the model should allow for the annotation of metadata for KG entities, such as information
about their origin and transformations during KG construction. It should also support
temporal analysis, enabling the representation of the KG’s evolution over time. This can be
achieved through a temporal graph data model that includes temporal metadata for each
entity and relation, along with temporal querying capabilities to determine previous states
of the KG or identify changes within specific time intervals. The temporal development of
a KG might alternatively be reflected in a versioning concept where new KG versions are
periodically released. Finally, the graph data model should facilitate the KG construction
process and its different tasks for acquiring, transforming, and integrating heterogeneous
data from different sources. This can be supported by suitable formats to seamlessly
exchange data of the chosen graph model between different steps and processing nodes of
a KG construction pipeline.

The most common graph models used for KGs are the Resource Description Frame-
work and the Property Graph Model. Both offer pros and cons for specific use cases. In the
following, we briefly describe both and discuss how they meet the introduced desiderata.
Table 1 summarizes some of the key differences between the two models. At the end, we
also contrast the different terminology of the models and specify the terms used in the rest
of this paper.

Table 1. Comparison of RDF and property graphs.

Resource Description Framework (RDF) Property Graph Model (PGM)

base constructs triples <subject, predicate, object> labeled vertices and edges and their properties
entity identity IRI-based local (implementation-specific)
node classification rdf:type triples type labels
ontology support RDFS, OWL2 vocabularies limited, e.g., schema graph
reasoning/inference supported, RDFS/OWL-based and other languages limited, custom queries and procedures
integrity constraints SHACL, SHEX PG-Keys, PG-Schema
query language SPARQL(-Star) Cypher, Gremlin, G-Core, PGQL
exchange format N-Triples, N-Quads, (RDF/XML, JSONLD) application specific e.g., PGEF, GDL
meta information reification, singleton-property, (RDF-Star) dedicated properties

Resource Description Framework (RDF) is a framework or data model to present
data in a graph-like fashion and was initially developed to describe metadata of web
resources (namely the Semantic Web) [49]. Today, the W3C proposes many technologies
around RDF that help build and use Knowledge Graphs either as part of the Linked Data
Cloud or in an encapsulated environment. KGs are represented by a set of <subject,
predicate, object> triples that uniformly represent named relations (predicates) of entities
(subjects) to either attribute values (literals) or other entities (objects). Entities are usually
assigned an IRI (Internationalized Resource Identifier) that can refer to either a global or
local namespace. In addition to IRIs, entities can be identified by a blank node identifier
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that is only unique inside an RDF dataset. Sets of triples may also be grouped within
named graphs to aggregate more information by extending the triple structure to quads of
the form <subject, predicate, object, named-graph>. Standard RDF does not support edge
properties, although the RDF-Star extension (https://www.w3.org/2022/08/rdf-star-wg-
charter/ (accessed on 15 August 2024)) includes a similar feature, where single triples are
usable in the subject or object part of another triple.

The RDF standard also defines vocabularies such as the RDF Schema (RDFS) to further
express semantic structure by allowing the definition of classes, properties, and their
hierarchies. An RDF resource’s type (or entity class) is assigned by using the standard
RDF vocabulary (http://www.w3.org/1999/02/22-rdf-syntax-ns# (accessed on 15 August
2024)) to define triples of the form <s rdf:type o>, where o is the class (type) of the
resource. In addition to RDFS, a widely used approach for defining ontologies is the Web
Ontology Language (OWL), more specifically, the current version OWL 2, which adds
semantics to the data using a variety of axioms.

RDF KGs using vocabularies like RDFS, OWL2 and SWRL [50], when used alongside
reasoning engines [51–54], enable the deduction of new knowledge by inferring implicit
relationships from explicitly stated data [27–29]. Further, reasoning engines allow for
consistency checking and classification. Custom rule languages like Datalog [55] and SPIN
(SPARQL Inferencing Notation) enable rule-based inferencing in RDF data, with SPIN
specifically using SPARQL queries for flexible and dynamic reasoning.

Besides syntax validation (triples/quads, URIs, datatypes) RDF triple stores do not
provide a standard method to define and validate graph data integrity or shape constraints
(similar to the relation database schemata). Therefore, overlaid solutions such as SHACL
(Shape Constraint Language [56]) or ShEx (Shape Expressions [57]) are developed, which
can be used to validate the semantic correctness of the graph structure, node or property
constraints, cardinalities, and other constructs.

While some RDF stores or triple stores are built from scratch to optimize the manage-
ment of RDF triples, others might use existing SQL or NoSQL systems in the underlying
database processing layer. The primary query language for RDF (moreover, the Semantic
Web) is the standardized language SPARQL (https://www.w3.org/TR/sparql11-overview/
(accessed on 15 August 2024)), with an extended version for RDF-Star called SPARQL-Star.
Standard exchange formats for RDF are N-Triples, N-Quads, Turtle, or adapted syntax
formats like RDF/XML and JSON-LD.

Different methods exist for assigning metadata to entities, relations, and properties,
such as using RDF-Star or named graphs, as discussed and evaluated in [58,59]. How-
ever, incorporating support constructs for metadata management generally increases the
complexity of the graph structure and queries, which can potentially lead to increased
processing time.

There is some work around the representation, querying storage, and other aspects of
temporal information in RDF [60]. The investigated methods focus on different temporal
granularity and dimensions, including approaches that target querying single snapshots
and time windows or inspect the evolution of temporal graphs.

As many Knowledge Graphs are in RDF, several frameworks have been developed to
perform graph analytics, algorithms, or mining tasks using RDF as input [61].

Property Graph Model (PGM) [62]. The property graph data model, also called
Labeled Property Graph (LPG), supports the flexible definition of graph structures with
heterogeneous nodes (vertices) and directed edges to represent entities of different kinds
and the relationships between them. Both nodes and edges can have multiple (type) labels
expressing their role in the modeled domain, e.g., User as a node label and follows as
an edge label. Additionally, properties (in the form of key–value pairs) can be assigned
to both nodes and edges. Further, in the most common implementations, vertices and
edges are specified by a unique identifier. While label and property names represent some
schema-like information, there is intentionally no predefined schema to allow the flexible
incorporation of heterogeneous entities and relations of different kinds (although a schema

https://www.w3.org/2022/08/rdf-star-wg-charter/
https://www.w3.org/2022/08/rdf-star-wg-charter/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/TR/sparql11-overview/
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graph can be inferred from the type information [63]). There is no built-in support for
ontologies, e.g., to provide is-a relations between entity categories. Embedded metadata can
be relatively easily maintained for entities and relationships by using dedicated properties,
e.g., for provenance or time annotations.

In contrast to RDF, the PGM, with its vertices, edges, and properties, is more related to
graph models in graph theory, thereby contributing to their good understandability. As
there is not yet a global (defacto) standard for PGM, its capabilities highly depend on its
implementation. The PGM is increasingly popular in research and practice and supported
by several graph database systems, such as Neo4j [64], JanusGraph [65] or TigerGraph [66],
and processing frameworks, such as Oracle Labs PGX [67] or Gradoop [68]. It is further the
base data model for several graph query languages [69], such as G-Core [70], Gremlin [71],
PGQL [72], and Cypher [73], as well as SQL/PGQ and GQL [74], the upcoming ISO stan-
dard language for property graph querying. Efforts on a standardized PGM serialization
format comprise the JSON-based Property Graph Exchange Format (PGEF) [75], YARS-
PG [76], and the Graph Definition Language (GDL) (https://github.com/dbs-leipzig/gdl
(accessed on 15 August 2024)).

While most PGM engines do not natively support reasoning in the way RDF systems
do with OWL ontologies, they can perform pattern matching, traversal-based reasoning,
and inferencing through custom queries and procedures. In Neo4J, the neosemantics plu-
gin (https://neo4j.com/labs/neosemantics/4.0/inference/ (accessed on 15 August 2024))
offers RDF-like reasoning capabilities and an extension to Janusgraph allows reasoning in
the Gremlin query language [77].

Similar to RDF stores, the data integrity of PGM databases is generally limited to
syntax or basic value constraints. A first effort about the aspects of property graph key
constraints is proposed by Angles et al. [78] by identifying four natural key types: identifier,
exclusive mandatory, exclusive singleton, or exclusive. Additionally, PG-Schema offers a
robust formalism for specifying property graph schemas [79].

There are several extensions to the PGM for supporting temporally evolving graph
data [68,80] and graph streams [81], often with advanced analysis capabilities for graph mining.

Discussion. The intensive use of RDF in the Semantic Web and Linked Open Data com-
munities has led to its widespread application for KGs; in fact, most KGs we will consider in
Section 5 use RDF. The triple-based graph representation of RDF is quite flexible and allows
a uniform representation of entities and relationships. But it is also hard to understand
without additional processing or inference as the information of an entity is distributed over
many triples. While RDF-Star greatly improves the formal meta-expressiveness of RDF,
specific cases are still not presentable as in PGM without utilizing support constructs. In the
PGM, we can have two relations with the same name that can be addressed independently.
Each relation has its own distinct properties. However, in RDF-Star, relations (triples) are
identified based on their associated elements <<s1,p1,o1>,p2,o2>, and it is not possible
to attach different sets of information to equally named relations (triples) without causing
incorrect connections or relying on support constructs (e.g., singleton properties) [82].
While RDF is older and has gone through extensive standardization during the last 25
years, the PGM has become increasingly popular for advanced database and network
applications, such as graph traversal and network analysis [83].

Besides RDF (direct graphs) or property graphs, in some cases, custom models or spe-
cial high-arity representation could be used to cover specific features, such as access levels,
temporal information, or multihop relations in one record (node–edge–edge–node) [84].
However, the usage of such custom models will lower interoperability with existing tools
(requiring transformation) and complicate its own reusability by others.

The decision between RDF or PGM (or a custom data model) depends on the targeted
application or use case of the final Knowledge Graph. Lassila et al. [82] conclude that both
formats are qualified to meet their challenges, and neither of the two is perfect for every
use case. They thus recommend increasing interoperability between both models to reuse
existing techniques of both approaches. Various efforts to address this problem have been

https://github.com/dbs-leipzig/gdl
https://neo4j.com/labs/neosemantics/4.0/inference/
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made in recent years. The Amazon Neptune (https://aws.amazon.com/en/blogs/aws/
amazon-neptune-a-fully-managed-graph-database-service/ (accessed on 15 August 2024))
database service allows users to operate PGM and RDF interchangeably. Hartig et al. [85]
and Abuoda et al. [86] discuss transformation strategies between RDF and PGM to lower
usage boundaries. GraphQL (https://graphql.org/ (accessed on 15 August 2024)) provides
a unified approach to query both RDF and the PGM, although with fewer features compared
to query languages dedicated to these graph formats. GraphQL-LD [87] aims at simplifying
querying Linked Data via GraphQL.

Terminology

Due to the different communities around PGM and RDF, many similar but differently
named terms are used. Table 2 lists some of the terms that we will use synonymously in this
paper with the underlined ones used preferably. Furthermore, we refer to the smallest unit
of information as statement or fact. For RDFm this would describe a triple; for PGM, this
can be assigning a property (value), adding a type label to an entity, or adding a relation
between two nodes.

Table 2. Synonymously used KG terms in RDF and PGM.

Terms Description

entity, instance, subject and object and resource (RDF), individual KG nodes that represent a specific real-world or abstract thing
relation, property (RDF) A relationship (edge, link) between two KG entities.

type, class, label, concept
Identifier that represents the same kind or group of entities or
relations.

property (PGM), attribute (RDF) An entity feature identifier pointing to a value
property value, literal, attribute value Any value that is not referable to as an entity.

2.4. Dynamic Adaptations in Knowledge Graph Construction

Understanding the dynamic nature of Knowledge Graph (KG) construction is cru-
cial for developing robust and scalable systems. This section focuses on the potential
changes that can occur in data sources, target domains, and integration methods over time
and emphasizes the interplay and dependencies among these changes. For example, the in-
troduction of new data sources might necessitate changes in integration methods, and shifts
in target domains could require updates to both data sources and integration techniques.

• Source Changes. Data can be updated continuously or regularly. Sources, like
relational databases, can receive regular updates, enriching their content with new
entries and revisions. Platforms like Wikipedia and various websites continually
expand their repositories with fresh information. At the same time, new forms of
social or multimedia, such as text, image, and video posts, contribute to the vast
amount of continuously populated data. Beyond traditional datasets, new sources
emerge with different structures, access methods, and specialized domains. These
changes broaden the scope of available information and require fitting methods for
integrating diverse and evolving sources into knowledge graphs.

• Target Changes. The domain or ontology is often precipitated by shifts in organiza-
tional priorities, advancements in knowledge within a particular field, or emerging
trends in application requirements. These changes can be driven by evolving business
strategies that necessitate a reevaluation of the scope and focus of the domain. External
factors such as regulatory changes or market dynamics shifts can also influence ontol-
ogy adjustments, ensuring alignment with current standards and practices. Ultimately,
the dynamic nature of the target domain or ontology reflects an ongoing effort to adapt
and refine knowledge representation to best serve the evolving needs of stakeholders
and the broader environment in which the system operates.
For example, initially centered on company data, Knowledge Graphs may later in-
corporate geographical information or delve into other specialized domains. Each

https://aws.amazon.com/en/blogs/aws/amazon-neptune-a-fully-managed-graph-database-service/
https://aws.amazon.com/en/blogs/aws/amazon-neptune-a-fully-managed-graph-database-service/
https://graphql.org/
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new source brings unique opportunities and complexities, demanding flexible ap-
proaches to integration that can accommodate diverse data structures and formats.
The evolution of data sources necessitates corresponding changes in the final data
representation and ontology within Knowledge Graphs. As the scope of domains
shifts, adjustments to the ontology become imperative to accurately reflect the under-
lying data. Ontologies can range from predefined structures that provide a consistent
framework to flexible frameworks that evolve semi-automatically based on incoming
data. This adaptability ensures that Knowledge Graphs remain relevant and effective
in capturing and organizing the intricacies of evolving datasets.

• Method Changes. Integrating heterogeneous data sources into a Knowledge Graph
involves a series of critical steps: extraction, resolution, fusion, completion, and quality
assurance. Changes in these integration steps are essential to accommodate updates in
both source data and the target domain Knowledge Graph to improve the KG quality.
Methods may need to be adjusted or augmented to handle new data sources effectively.
Specific steps may be introduced to enhance the integration process, ensuring that the
Knowledge Graph remains robust and up-to-date amidst evolving data landscapes.
For instance, if the domain of the Knowledge Graph shifts to a specialized area like
biomedical data, it might be necessary to incorporate a different method or tool for
text extraction. In the biomedical field, specific techniques are often required to extract
entities accurately, such as gene names, protein interactions, or medical terminologies.
Additionally, as advancements in machine learning continue, updating the integration
pipeline with more powerful algorithms can significantly enhance the quality and
efficiency of the Knowledge Graph. For example, a new deep-learning model for
entity recognition in biomedical texts could replace an older model to achieve better
precision and recall.

By understanding and managing these dynamic adaptations, KGs can remain relevant,
accurate, and effective over time. This section sets the stage for understanding the essential
dynamic adaptations, while the following section provides requirements on data processing
methods to handle these changes effectively.

3. Requirements

The development and maintenance of KGs encompass several steps to integrate
relevant input data from different sources. While the specific steps depend on the input
data to be integrated and the intended usage forms of the KG, it is generally desirable
that the steps are executed within pipelines with only a minimum of manual interaction
and curation. However, a completely automatic KG construction is not yet in reach since
several steps (e.g., identification of relevant sources, development of the KG ontology),
as we will see, typically require human input by individuals, expert groups, or entire
communities [88].

The KG construction process should result in a high-quality KG based on an expressive
KG data model, as discussed above. The quality of a KG (and data sources) can be measured
along several dimensions such as correctness, freshness, comprehensiveness, and succinct-
ness [89,90]. The correctness aspect is crucial to the validity of information (accuracy) and
implies that each entity, concept, relation, and property is canonicalized by having a unique
identifier and being included exactly once (consistency) [15]. The freshness (timeliness)
aspect requires continuously updating the instances and ontological information in a KG to
incorporate all relevant changes in data source. The comprehensiveness requirement asks
for good coverage of all relevant data (completeness) and that complementary data from
different sources are combined [90]. Finally, the succinctness criterion asks for a high focus
in the data (e.g., on a single domain) [8] and the exclusion of unnecessary information,
which also improves resource consumption and scalability of the system (availability). A
Knowledge Graph that meets high standards in these areas can be considered a confident
and reliable resource (trustworthiness) [91].
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Below, we discuss requirements for KG construction and maintenance in more detail,
as they should guide the realization of suitable implementation approaches. We group
these requirements into four aspects related to (1) input consumption, (2) incremental
data processing capabilities, (3) tooling/pipelining, and (4) quality aspects, whereas some
essential prerequisites can affect multiple parts of the workflow (e.g., supportive metadata).
Please note that we outline the desired functionality for defining arbitrary KG pipelines
and that, depending on its purpose, only a subset of it is typically needed for a specific
KG project.

3.1. Input Data Requirements

Integrating a large number of data sources and a high amount of data (data scalability)
should be possible. There should also be support for heterogeneous and potentially low-
quality input data of different kinds, such as structured, semi-structured, and multimodal
unstructured data (textual documents, web data, images, videos, etc.). As a result, KG
construction requires scalable methods for the acquisition, transformation, and integration
of these diverse kinds of input data. The processing of semi-structured and unstructured
data introduces the need for Knowledge Extraction methods to determine structured
entities and their relations, as well as their transformation into the KG graph data model.
Data integration and canonicalization involve methods to determine corresponding or
matching entities (entity linking, entity resolution) and their combination into a single
representation (entity fusion), as well as matching and merging ontology concepts and
properties. For incremental KG construction, the input is not limited to the new data to be
added but also includes the current version of the KG and reusable data artifacts, such as
previously determined mappings specifying how to transform input data into the format
of the KG graph model.

3.2. Support for Incremental KG Updates

It should be possible to process the input data in a batch-like mode, where all (new)
input data are processed at the same time, or in a streaming manner, where new data
items can continuously be ingested. The initial version of the KG is typically created in a
batch-like manner, e.g., by transforming a single data source or by integrating several data
sources into an initial KG. After the initial KG version has been established, it is necessary
that the KG be updated to incorporate additional sources and information. A simple
approach would perform these updates by a complete recomputation of the KG with the
changed input data, similar to the creation of the initial KG. However, such an approach
would result in an enormous amount of redundant computation to repeatedly extract and
transform the same (unchanged) data and to perform data integration and the removal
of inconsistencies again, possibly with repeated manual interactions. These problems
increase with the number and size of input sources and thus limit or prevent scalability.
Hence, we require support for incremental KG updates that can either periodically be
performed in a batch-like manner or in a more dynamic, streaming-like fashion. The batch
approach would not require completely rebuilding the KG but focus on adding the new
information without reprocessing previously integrated data. A given KG can also be
continuously updated with new data in a streaming manner to always provide the most
current information for high data freshness. Batch- and stream-oriented updates may also
be applied in combination [84]. As a result, several pipelines may be needed for the creation
of the initial KG, the integration of sources with heterogeneous structures, and different
forms of incremental KG maintenance. While incremental KG maintenance is important in
general, specific KG use cases, such as research projects, may only need a one-time or batch
creation of a KG. Hence, the posed requirement would not apply in such cases.

3.3. Pipeline and Tool Requirements

It should be easy to define and run powerful, efficient, and scalable pipelines for
creating and incrementally updating a KG. This requires a set of suitable methods or tools
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for the different steps (discussed in the next section) that should have good interoperability
and a good degree of automation but still support high customizability and adapt to new
domain requirements. While using a uniform KG data model (or serialization) can lower
the workflow’s debugging complexity, reusing existing toolsets might require transforma-
tion/mapping between data formats and processing steps. Moreover, a pipeline tool should
be provided that can integrate the different tools and manage intermediate results and
common metadata, e.g., about provenance. The pipeline tool should further provide admin-
istration functionality to design and execute pipelines, support error handling, performance
monitoring and tuning, etc. Pipeline processes should scale horizontally as new input data
are ingested and the KG’s size increases over time. Modular processing workflows with
transparent interfaces can increase the reusability of alternative tools (implementations).

3.4. KG Quality Requirements

Quality assurance is a cross-cutting topic that plays an important role throughout the
whole KG construction process. Quality problems in the KG can be multifaceted and relate
to ontological consistency, the data quality of entities and relations (comprehensiveness),
or domain coverage. The coverage aspect may focus on the inclusion of relevant data
and the exclusion of unnecessary data. In some scenarios, the timeliness of data can play
a critical role in real-time-oriented use cases. If not handled, quality problems might
aggravate over time due to the continuous integration of additional data. Therefore,
methods are needed to evaluate the quality of each step of the construction pipeline
and of the resulting KG. A specific quality aspect is to validate the KG’s data integrity
concerning its underlying semantic structure (ontology). Another relevant criterion could
be to optimize data freshness to guarantee up-to-date results in upstream applications.
Debugging capabilities based on sufficient metadata are helpful in locating the exact points
in the construction pipeline where quality problems arise. Methods are then required for
fixing or mitigating the detected quality issues by refining and repairing the KG.

4. Construction Tasks

We give an overview of the main tasks for Knowledge Graph construction with a focus
on (semi-)automatic and incremental solutions. In particular, we cover the following tasks
that often involve several subtasks:

• Metadata Management: The acquisition and management of different kinds of meta-
data, e.g., about the provenance of entities, structural metadata, temporal information,
quality reports, or process logs.

• Data Acquisition and Preprocessing: The selection of relevant sources, acquisition,
and transformation of relevant source data, and initial data cleaning.

• Ontology Management: The creation and incremental evolution of a KG ontology.
• Knowledge Extraction (KE): The derivation of structured information and knowledge

from unstructured or semi-structured data using techniques for named entity recogni-
tion, entity linking, and relation extraction. If necessary, this also entails canonicalizing
entity and relation identifiers.

• Entity Resolution (ER) and Fusion: Identification of matching entities and their fusion
within the KG.

• Knowledge Completion: Extending a given KG, e.g., by learning missing type infor-
mation, predicting new relations, and enhancing domain-specific data (polishing).

• Quality Assurance (QA): Possible quality aspects, their identification, and repair
strategies for data quality problems in the KG.

Figure 2 illustrates a generic pipeline to incrementally incorporate updates from
several sources into a KG that may result in a sequence of distinct KG versions. It is
important to note that a construction pipeline does not necessarily follow a fixed execution
order for the individual tasks and that not all steps may be required depending on the
KG use case. This is also because the required tasks depend on the type of source input.
Knowledge extraction is commonly applied to unstructured data inputs like text and
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may not be needed for structured data, e.g., from databases or other Knowledge Graphs.
Furthermore, the entity linking part of Knowledge Extraction can make an additional entity
resolution step unnecessary. As a result, there may be different KG construction pipelines
for different use cases and data sources. The steps of Quality Assurance and KG completion
to improve the current version of the KG are not needed for every KG update but may be
executed asynchronously, e.g., within separate pipelines (although QA actions such as data
cleaning also apply to individual tasks). Furthermore, data and metadata management play
a special role compared to the other tasks since they are necessary throughout the entire
pipeline, therefore representing a cross-cutting task, as indicated by the central position of
metadata management in Figure 2.

Figure 2. Incremental knowledge graph construction pipeline.

In the following overviews of the different tasks, we will discuss the major solution
approaches. We will also refer to some of the recent methods in ML, including Large
Language Models (LLMs) that show promise in some relevant areas, such as for data
integration [92,93]. However, the use of LLMs for KG construction is still at an early stage
and a topic for further research, as discussed in Section 6.

4.1. Metadata Management

Metadata describe data artifacts and are important for the findability, accessibility, in-
teroperability, and (re-)usability of these artifacts [18,94,95]. There are many kinds of meta-
data in KGs, such as descriptive metadata (content information for discovery), structural
metadata (e.g., schemas and ontologies), and administrative metadata concerning technical
and process aspects (e.g., provenance information and mapping specifications) [96–98].
It is thus important that KG construction supports the comprehensive representation,
management, and usability of the different kinds of metadata. From the perspective of
KG construction pipelines, this includes metadata for each data source (schema, access
specifications), each processing step in the pipeline (inputs including configuration and
outputs including log files and reports), intermediate results, and, of course, the KG and
its versions. Moreover, for each fact (entity, relation, property) in the KG, there can be
metadata such as about provenance, i.e., information about the origin of data artifacts.
Such fact-level provenance is sometimes called deep or statement-level provenance. Examples
of deep provenance include information about the creation date, confidence score (of the
extraction method), or the original text paragraph from which the fact was derived. Such
provenance can help to make fact-level changes in the KG without re-computing each step
or to identify how and from where wrong values were introduced into the KG [95].

Metadata can be created either manually by human users (e.g., to specify a license
for data usage or a configuration of a pipeline step) or by a computer program based on a
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heuristic or an algorithm [97]. In the latter case, the results may be exact or only approx-
imate. For example, data profiling computes accurate statistical information (e.g., about
the distribution of values), while the use of machine learning (e.g., for type recognition)
usually does not provide perfect accuracy. Advancements in LLMs for data management
have shown capabilities in extracting specific values for given documents or generating
code snippets of functions to perform this kind of task [99,100].

4.1.1. Metadata Repositories

To use metadata effectively for KG construction, it is beneficial to maintain a meta-
data repository (MDR) to store and organize the different kinds of metadata in a uni-
form and consistent way [94]. Either the MDR can be separate from the sources and
the KG with reference to data artifacts, or combined solutions can be provided for both
the data and their metadata. While several metadata repositories may exist for the dif-
ferent sources and processing steps, a central solution can simplify access to all KG-
relevant metadata. In contrast, using multiple metadata solutions might allow more
flexibility in selecting specialized solutions that suit specific needs or types of meta-
data. This approach can also introduce complexity or inconsistencies and hinder the
process of discovery and exploration due to information being scattered across various
repositories. Specific implementations of MDRs are CKAN (https://ckan.org/ (accessed
on 15 August 2024)), Samply [101], or the DBpedia Databus [102], all using specific vo-
cabularies, standard query languages, and databases to implement their relevant fea-
tures. Concerning metadata exchange, the Open Archives Protocol for Metadata Har-
vesting (https://www.openarchives.org/OAI/openarchivesprotocol.html (accessed on
15 August 2024)) framework also allows the acquisition of structured metadata.

4.1.2. Graph Embedded Metadata

Fact-level or annotation metadata in the KG can be stored either together with the
data items (embedded metadata) or in parallel to the data and referenced using unique IDs
(associated metadata) [98]. For example, fact-level metadata can support the selection of
values and sub-graphs [103] or the compliance with licenses used in target applications.
Such annotations are also useful for other kinds of metadata. Temporal KGs can be realized
by temporal annotations to record the validity time interval (the period during which a
fact was valid) and transaction time (the time when a fact was added or changed) [68,80].
The possible implementations for fact-level annotations depend on the used graph data
model (see Section 2.3). From another perspective, provenance metadata can also capture
the steps of the applied schema and data transformations in the pipeline [104,105].

While some RDF stores or triple stores are built from scratch to optimize the manage-
ment of RDF triples, others might use existing SQL or NoSQL systems in the underlying
database processing layer. The primary query language for RDF (moreover, the Semantic
Web) is the standardized language SPARQL (https://www.w3.org/TR/sparql11-overview/
(accessed on 15 August 2024)), with an extended version for RDF-Star called SPARQL-Star.
Standard exchange formats for RDF are N-Triples, N-Quads, Turtle, or adapted syntax
formats like RDF/XML and JSON-LD. There are different possibilities to assign metadata
to entities, relations, and properties, like using RDF-Star or named graphs as explained and
evaluated in [58,59]. The usage of support constructs for metadata management generally
increases the complexity of the graph structure and queries and can possibly increase
processing time.

The PGM natively allows for adding properties to entities or relations, mostly as key–
value pairs, which makes it easy to add additional metadata. In some implementations,
the values of these fields can also contain nested data structures, such as JSON, allowing
for expressing and querying complex metadata objects.

https://ckan.org/
 https://www.openarchives.org/OAI/openarchivesprotocol.html
https://www.w3.org/TR/sparql11-overview/
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4.1.3. Versioning

Versioning is a highly relevant concept for incremental Knowledge Graph construc-
tion, as it helps to identify specific states and queries between versions of the KG after
each change and incremental update. Previous works distinguish three different version
concepts [106,107]:

Independent Copies in Knowledge Graph (KG) management captures the entire KG
at regular intervals (daily, weekly, or monthly). Each snapshot represents the KG at a
specific timestamp, providing clear versioning and aiding in audits and historical analysis.
However, this approach can be resource-intensive, especially for large KGs with frequent
updates, requiring significant storage capacity for multiple versions. Efficient storage
management and retrieval strategies are crucial to reduce overhead.

A simple solution is to store each snapshot in a file system and keep version infor-
mation separately [108]. Another option is to store the entire graph (edges and nodes or
triples) as tables with an added column for the version [109].

Change-based or differential (diff) versioning captures and stores only the changes
(additions, updates, deletions) between successive KG versions. This method saves storage
by maintaining only deltas, with each new version derived from its predecessor through
these changes. While storage-efficient, it requires robust mechanisms for computing and
applying changes. As changes accumulate, retrieving specific versions can become complex,
needing careful version history management and efficient querying strategies.

Example systems supporting change-based revisions are R43ples [110] and Star-
dog (http://stardog.com (accessed on 15 August 2024)) Further, QuitStore [111] uses the
Git version control system, a triple-based diff algorithm, and fragmentation to incorporate
version capabilities for collaborative RDF editing.

Timestamp-based solutions use additional metadata representation or native tem-
poral graph models, where versioning information is integrated into the KG structure
through annotations on entities, relationships, or the entire KG. Each part is tagged with
version details (timestamps or version numbers), allowing detailed queries and analyses
based on metadata. This approach requires careful management to maintain metadata
consistency and may require additional processing to retrieve specific versions, balancing
enhanced version control with the complexity of managing metadata integrity. Examples of
implementations are Dydra [112] for RDF and the TPGM [80] model of Gradoop for PGM.

There is some work around the representation, querying storage, and other aspects of
temporal information in RDF [60]. The investigated methods focus on different temporal
granularity and dimensions, including approaches that target querying single snapshots
and time windows or inspecting the evolution of temporal graphs. Similar work was
performed for PGM to support temporal capabilities natively [68,113].

4.2. Data Preprocessing

Building a Knowledge Graph (KG) involves meticulous planning and strategic decision-
making when selecting and integrating data sources. This section delves into the critical
initial phases of KG construction: Source Selection and Filtering, Data Acquisition, Data
Transformation, and Data Cleaning.

4.2.1. Source Selection and Filtering

In order to integrate data into a KG, relevant sources must first be identified. Further-
more, relevant subsets of a data source have to be determined as it is generally unnecessary
to integrate all information of a source for a given KG project. For example, for a pandemic-
specific KG, only health-related parts of existing KGs, such as DBpedia, may be needed.
If the system is not supposed to integrate data sources in their entirety, it can determine
a relevant subset by the quality or trustworthiness of a source [114], as well as the im-
portance of single entities [84]. Formulating the quantification [115] of all these criteria
alongside computing the cost of integrating a source leads to saving a considerable amount
of unnecessary effort while producing a high-quality KG.

http://stardog.com
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Selecting relevant data sources and their subsets is typically a manual step, but data
catalogs describing metadata about sources and their contents can support this process.
Common approaches to determine such metadata are to employ techniques for data pro-
filing, topic modeling, keyword tagging, and categorization [116,117]. In [15], it is recom-
mended to start KG construction with large curated (“premium”) data sources such as
Wikipedia and other KGs such as DBpedia. Then, further data sources should be identified
and integrated to cover additional entities and their relations, especially rather special
entities in the “long tail” (e.g., less prominent persons). Given that sources can differ enor-
mously in size and quality, the order in which sources (and their updates) are integrated
can have a strong influence on the final quality [118–120]. Especially for creating the initial
KG, these choices are often crucial. To limit these effects, it is advisable to first integrate the
sources of the highest quality [118] such as the mentioned premium sources. Nevertheless,
ideally, the integration order should not matter in a high-quality pipeline.

4.2.2. Data Acquisition

A KG’s data sources may be in many different data formats, such as CSV, XML, JSON,
or RDF, to meet the requirements of different originating environments and applications.
Furthermore, there are different technologies to exchange or acquire data artifacts by
providing downloadable files, deploying databases, or individual application program
interfaces (APIs). Hence, KG construction has to deal with these heterogeneous data
formats and access technologies to acquire the data to be integrated. A common access
approach is the use of an adapter component for each source dataset. Such an adapter
approach is typical for data integration, and there are also supporting tools for use in KG
management [121–123].

In addition, KG construction has to deal with continuously changing sources, which
necessitates the recognition of such changes and possibly maintaining snapshots of al-
ready acquired versions of source data. Possible solutions for change detection include
manual user notifications over email, accessing a change API using publish–subscribe
protocols [124], or computing diffs by repeatedly crawling external data and comparing
them with a previously obtained snapshot.

For RDF stores, several strategies for maintaining versions of extracted data have
been proposed. With full materialization, complete versions (snapshots) of source data
are maintained [125]. With the delta-based strategy, only one full version of the dataset
needs to be stored, and for each new version, only the set of changes or deltas has to be
kept [110,126,127]. The annotated triples strategy is based on the idea of augmenting each
triple with its temporal validity [128]. Hybrid strategies have also been considered [129,130].
Another approach to synchronize changes in a data source is Linked Data Event Streams
(LDESs) [131]. Van Assche et al. [132] use LDES to continuously update a KG with changes
from the underlying data sources.

Other KGs are important sources for data acquisition. However, only a limited number
of KGs provide a queryable interface, and such interfaces can be expensive to host at high
availability [133–135]. To address this problem, recent proposals suggest decentralization,
either of the data themselves or of the query processing tasks. Decentralization (distribu-
tion) of the data across multiple sources [136–138] can increase their availability but tends
to provide less efficient query processing compared to centralized servers or approaches
that provide full data dumps to powerful clients for local processing. Alternatively, re-
cent studies [133,139–142] have focused on decentralizing the query-processing tasks by
dividing the processing workload between servers and clients. WiseKG is a system to
dynamically distribute the load between servers and clients based on a cost model [143].

4.2.3. Transformation and Mapping

A KG construction pipeline has to transform the input data into the final KG data
format, such as RDF or a property graph format. Furthermore, the different pipeline steps
may consume and produce different formats, so additional data format transformations or
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conversions may become necessary. For example, knowledge-extraction methods typically
process document data such as HTML or Unicode-encoded text, while an entity resolution
task may require input data in CSV or JSON format.

Data transformations have especially been addressed for (semi-)structured data,
and many tools exist for this purpose [144]. Depending on the required input format,
the transformation can be performed automatically using generic approaches or requires
the manual specification of mappings. Mapping languages allow the specification of
complex and reusable mappings, for example, to transform relational databases (RDBs)
into an equivalent RDF representation, e.g., using the R2RML language [145]. RML [146]
(RDF Mapping Language) extends R2RML and allows defining mappings not only from
RDB but also from other semi-structured data formats such as XML, TSV/CSV, and JSON.
Systems implementing such mapping languages include SDM-RDFizer [147] for RML and
Karma [148] for an R2RML alternative called K2RML. Relatively little work has so far inves-
tigated the transformation of structured data into property graphs [149,150], although the
conversion between RDF and property graphs has received some attention [85,86,151]. In
the case of an existing RDF-based KG as input, a simple solution for RDF to RDF mappings
is to use SPARQL-CONSTRUCT (https://www.w3.org/TR/rdf-sparql-query/#construct
(accessed on 15 August 2024)) queries, which return a single RDF graph by substituting
variables of a given graph pattern with the results of the SPARQL query. As an exten-
sion of SPARQL, SPARQL-Generate supports the transformation of streaming and binary
data sources [152]. The graph query language GQL will support a similar feature for the
PGM [74]. An extensive survey on state-of-the-art RDF mapping languages for schema
transformation, data transformation, and systems was conducted by Van Assche et al [20].
A major issue the authors point out is the lack of tools supporting the (semi-)automatic
definition of mappings. In their survey, only 3 out of 30 analyzed systems support the
semi-automatic definition of mappings (including human-in-the-loop methods) [153–155].

4.2.4. Data Cleaning

Data cleaning deals with detecting and removing errors and inconsistencies from data
in order to improve the quality of data. Whenever possible, data quality problems within
the input sources should be handled already during the import process to avoid wrong
or low-quality data being added to the KG. Data cleaning has received a large amount
of interest, especially for structured data, in both industry and research, and there are
numerous surveys and books about the topic, e.g., [156–159].

Various types of data errors and quality problems, ranging from structural to semantic,
need to be handled. Dealing with structural problems requires consolidating different
data structures and formats and ensuring consistent naming conventions for entities and
attributes. For instance, if “USA”, “United States”, and “U.S.” are all used to represent
the same country, they should be standardized into a single form. Semantic data cleaning
focuses on addressing issues related to the meaning and relationships within the data.
One example is handling conflicting or contradictory information present in the dataset.
For instance, if one source indicates that a person was born in 1980 while another source
suggests 1985, this inconsistency needs to be resolved. Another example is handling entities
either in one source or different sources that represent the same real-world object, e.g., a
certain customer or product.

Data cleaning typically involves several subtasks to address these problems. These
include data profiling to identify quality issues [160], data repair to correct identified
problems, data transformation to standardize data representations, and data deduplication
to eliminate duplicate entities. Outlier detection is an important aspect of data profiling,
aiming to identify data errors based on the assumption of specific “normal” data values.
For instance, it is highly unlikely that an individual born in the mid-19th century would
still be alive in the year 2020.

Rule-based methods are classic techniques used for data cleaning. These methods
handle errors that violate integrity constraint rules, such as functional dependencies

https://www.w3.org/TR/rdf-sparql-query/#construct
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(FDs) [46,161–164], conditional functional dependencies (CFDs) [163,165–167], and denial
constraints (DCs) [163,167–171]. While rule-based methods can handle data that violate
predefined rules, their effectiveness is limited by the challenge of obtaining sufficient and
correct rules. Statistical cleaning methods repair errors based on probabilistic distributions
within the data [46,169,171–174].

User interaction cleaning methods involve human knowledge to enhance the quality
of cleaning results while minimizing the effort required [172,173,175–180]. The use of
machine learning for data cleaning has gained prominence in recent years, as it simplifies
the configuration of various subtasks. For example, HoloClean [171] employs observed
data to build a probabilistic model for predicting unknown data values. Sudowoodo [181]
uses contrastive learning to train a representation model that matches cells with possible
corrections, enabling data cleansing and error correction. Other applications of machine
learning for data cleaning are covered in [158,182].

If there is already a KG version to be extended, the KG information can be leveraged
to identify and handle data errors. For instance, KATARA [176] employs crowdsourcing
to verify whether values that do not match the KG are correct or not. Hao et al. [183]
introduce detective rules (DRs) that can make actionable decisions on relational data by
building connections between a relation and a KG. KGClean [184] is an initial attempt at a
KG-driven cleaning framework utilizing Knowledge Graph embeddings.

LLMs can be effective for data imputation and error detection, utilizing prompts to
infer missing data points or identify errors in attribute–value pairs [92].

Techniques for ensuring KG quality are discussed in Section 4.7. Approaches for
identifying duplicates across data sources (entity matching) are outlined in Section 4.5. It is
advantageous to remove duplicates within a source early on to simplify the deduplication
process across sources.

4.3. Ontology Management

A KG’s ontology defines concepts, relationships, and rules for the semantic structure
within domains, using relationships like is-a and has-a to represent hierarchies and relations,
enabling inference of new knowledge. RDF uses vocabularies like RDFS and OWL 2 to
define classes, properties, hierarchies, and rules for semantic expression. In the Property
Graph Model (PGM), ontologies are implemented as an overlay with nodes, relationships,
labels, properties, and rules, utilizing tools like APOC in Neo4J for advanced functionalities

Ontology Management is the incremental process of creating, extending, and maintain-
ing an ontological knowledge base [185]. KG construction requires developing an ontology
for the initial KG and incrementally updating it to incorporate new kinds of information.
As of today, ontology development and curation are still broadly manual or crowdsourced,
although some semi-automatic approaches are also proposed. Semi-automatic ontology
development tasks share a great overlap with methods from Knowledge Extraction, entity
resolution, quality assurance, and knowledge completion. Creating the initial ontology
can be derived from a single source that ideally provides already some useful ontology
to build on. Public web wikis, catalogs, APIs, or crowdsourced databases are valuable
starting sources as they may already contain a large amount of (semi-)structured data
on general or domain-specific topics. However, cleaning and enrichment processes are
required to ensure sufficient domain coverage and quality to build an initial Knowledge
Graph structure from these existing data. For example, if Wikipedia is used as a primary
source, its category system can be a good start to derive the most relevant classes for the KG
by some NLP-based “category cleaning” [15]. Semi-automatic approaches mostly focus on
learning an ontology from single sources, i.e., transforming a source into an ontology or KG.
These individual ontologies or KGs can then be integrated into a previous version of the
overall KG. A key prerequisite for this kind of ontology integration is the step of ontology
and schema matching to determine respective ontology and schema elements (classes,
properties). After discussing semi-automatic approaches for ontology learning, we discuss
ontology/schema matching and conclude with approaches for ontology integration.
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4.3.1. Ontology Learning

Ontology learning has two main subfields: extracting ontologies from unstructured
text and from structured data like relational databases. For unstructured text, linguistic and
machine learning approaches aid in semi-automatic ontology construction. In relational
databases, reverse engineering and mapping techniques are used for transformation. Al-
though fully automatic construction remains challenging [186–188], recent advancements,
including the use of Large Language Models (LLMs), have improved semi-automatic
methods in both areas.

Al-Aswadi et al. [186] give a state-of-the-art overview of ontology learning from un-

structured text, where the goal is to identify the main concepts and their relations for the
entities in a document collection. The approaches [186–188] can be grouped into linguis-
tic approaches (using NLP techniques such as part-of-speech tagging, sentence parsing,
syntactic structure analysis, and dependency analysis methods) and machine learning ap-
proaches. The latter include statistic-based methods (e.g., utilizing co-occurrence analysis,
association rules, and clustering) and logic-based approaches using either inductive logic
programming or logical inference. Al-Aswadi et al. [186] argue that there is a need to move
from shallow to deep learning approaches for deeper sentence analysis and improved
learning of concepts and relations.

With advancements in the field of Large Language Models (LLMs), there has been
increasing interest in utilizing these models for ontology learning. Giglou et al. [189] inves-
tigate, among other tasks, the capability of several families of LLMs to deduce taxonomical
information between types. Their results show that with an increasing number of parame-
ters, the models perform better in the zero-shot paradigm (which means performing this
task without having seen annotated examples). With finetuning, they could, in some cases,
improve the results considerably. Funk et al. [190] have shown that OpenAI’s GPT 3.5 [191]
can be used to construct concept hierarchies for a given domain. While the resulting hierar-
chies are not perfect, the authors argue that this study demonstrates the possibility of utiliz-
ing LLMs in ontology construction. Recent developments present LLM-based user-guiding
agents to create ontologies from competency questions. For instance, a semi-automatic
pipeline employing LLMs generates and populates ontologies from competency questions
extracted from scientific publications, highlighting the necessity of human validation and
evaluation [192]. The OntoChat framework leverages LLMs to facilitate collaborative
ontology engineering by guiding users in creating user stories, extracting and analyzing
competency questions, and testing previous ontology versions via prompting [193]. Addi-
tionally, advanced LLMs with various prompting techniques are used to fully automate
the generation of capability ontologies from natural language descriptions, focusing on
developing robust quality assessment methods [194].

Ma et al. [195] give a survey of methods for learning ontologies from relational

databases with a focus on methods for reverse engineering or the use of mappings to
transform a relational database (schema) into an ontology or Knowledge Graph. Reverse
engineering allows one to derive an entity–relationship diagram or conceptual model from
the relational schema. Here, additional considerations are needed to deal with trigger and
constraint definitions to avoid a semantic loss in the transformation. For the mapping
techniques to transform RDBs to KGs, the authors differentiate between template-based,
pattern-based, assertion-based, graph-based, and rule-based mapping approaches. The
resulting mappings should be executable on instance data in order to generate a graph
structure from a relational database [196,197].

An existing ontology can also be extended by inferring and making implicit knowledge
explicit (as exemplified in Figure 1). Reasoners like Pellet [51] can be used to address this
task in an efficient manner. Furthermore, an ontology can also be used to learn rules from
it. For example, a learning algorithm can be used to refine or generalize the description of a
class [198]. A comprehensive system that incorporates reasoners and learning algorithms is
DL-Learner [199].
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4.3.2. Ontology/Schema Matching

Consolidating and integrating information from multiple heterogeneous sources re-
quires harmonizing the ontologies and/or schemas of the sources. The main step for
such a data integration is ontology and schema matching, which is the task of identify-
ing corresponding ontology and schema elements, i.e., matching ontology concepts and
matching properties of concepts and entities. For example, to integrate a new source into
a KG it is necessary to perform a matching of the source ontology/schema with the KG
ontology to identify which source elements are already existing in the KG ontology and
which ones should be added. Property matching is also important for entity resolution and
entity fusion in order to determine matching entities based on the similarity of equivalent
properties and to combine equivalent properties to avoid redundant information. In some
cases, known entity matches can be used to aid in the ontology matching step [200]. Some
tools also perform entity resolution and ontology matching in combination [201].

There is a huge amount of previous research on schema and ontology matching,
although mostly outside the context of Knowledge Graphs, and there are numerous sur-
veys and books about the topic [202–206]. The matching approaches typically rely on
determining the similarity of elements using different strategies, such as the similarity of
concept/property names or the similarity of instance values. Structural information can
also be beneficial in the matching process, e.g., by looking at the concepts in the graph
neighborhood. Matching systems commonly rely on a combination of different match
strategies in order to achieve high-level match quality [207].

While string similarity can be a strong signal for a match decision, semantically
similar words are often used that are dissimilar on the character level. Dictionaries or
pre-trained word embeddings are, therefore, helpful for capturing this semantic similarity.
Zhang et al. [208] investigated how word embeddings (using Word2Vec [209]) can be used
for the task of ontology matching. They found a hybrid approach that performed the
best. This approach takes the maximum of either edit-distance-based or word embedding
similarity for each entity pair. Another approach that relies on word embeddings but also
on meta-information about properties’ names and their values as input for a dense neural
network is LEAPME [210]. This system trains a classifier based on already labeled property
pairs. This trained model can then decide whether unlabeled property pairs and their
similarity scores constitute a match. Graph embeddings have also seen some attention in
ontology matching, as they can capture structural information of an ontology. For example,
Portisch et al. [211] use a variation of RDF2Vec [212], which is a walk-based embedding
technique similar to Word2Vec, to encode both ontologies and then use a rotation matrix to
align the embeddings. Qiang et al. [213] investigate how LLMs can be incorporated into
the ontology matching task. They present an LLM-based agent system, wherein the LLM
functions as a control center that utilizes different modules via prompt engineering. Falsely
generated content of the LLM is mitigated by employing in-context learning and storing
useful information in a searchable database, acting as short- and long-term memory for the
inherently stateless LLMs. Their system performs comparably to state-of-the-art matchers.
Hertling and Paulheim [214] study what design choices improve the results when utilizing
LLMs in the matching process. Among other results, they find that presenting these models
with a binary decision (match/no-match) leads to better results than a multiple-choice
scenario. The few-shot paradigm leads to competitive results and is preferable to the
zero-shot scenario.

There are some tailored ontology matching approaches for KGs, such as for mapping
categories derived from Wikipedia to the Wordnet taxonomy with the goal of achieving an
enriched KG ontology [15]. Other specific approaches have been developed to address the
integration of RDBs with ontologies that go beyond the mapping languages described in
Section 4.2.3. KARMA [148] provides a semi-automatic approach to link a structured source,
such as an RDB, with an existing ontology. The process consists of assigning semantic
types to each column, constructing a graph of all possible mappings between the source
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and the ontology, refining the model based on user input, and finally generating a formal
specification of the source model.

4.3.3. Ontology Integration

Merging new ontology or schema data into the existing KG ontology is a subtask
of ontology or schema integration. This topic has achieved some attention where recent
approaches utilize the mapping result of a match (alignments) to combine multiple on-
tologies/schemas [215–217]. If the match mapping is automatically determined, it must
first be manually validated and possibly corrected to provide a valid basis for the merge
step. Osman et al. [217] give a comprehensive and recent summary of ontology integration
techniques, which can handle the merging of ontology and entity data using respective
alignments. The authors distinguish the following merging strategies:

• Simple Merge. Imports all input ontologies into a new ontology and adds bridging
constructs between equivalent entities, like defining OWL equivalentClass or equivalent-
Property relations.

• Full Merge. Imports all source ontologies into a new ontology and merges each cluster
of equivalent entities into a new unique entity with a union of all their relations,
leaving equivalent classes untouched.

• Asymmetric Merge. These approaches import source ontologies into a preferred target
ontology, preserving all its concepts, relations, and rules by merging matching entities
into existing target entities or else by creating new ones.

Figure 3 visualizes each of the three strategies, where (a) also shows the source and
target data that are merged. From the three merging strategies, the authors favor the last
and mention it as a good solution for incremental ontology integration. The reason for this
preference is that the asymmetric merge strategy preserves the target ontology during the
integration and only adds new elements from a source ontology if necessary. This can also
be seen in Figure 3c, where the target data are left unchanged, and only a new entity E6 is
added, which is connected to E3 from the target data. An example approach for asymmetric
ontology merging focusing on is-a relations is proposed in [216].
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Figure 3. Ontology and entity merging strategies.

4.4. Knowledge Extraction

Knowledge extraction is a process to obtain structured, more computer-readable data
from unstructured data such as texts or semi-structured data, like web pages and other
markup formats. The extraction methods of semi-structured data often use a combination
of data cleaning (Section 4.2.4) and rule-based mappings (Section 4.2.3) to transform the
input data into the final KG, targeting already defined classes and relations of the existing
ontology. Most of the work focuses on Knowledge Extraction from text, sometimes addi-
tionally considering images and figures within the text. Recently, there has been increased
interest in creating multi-modal Knowledge Graphs (i.e., KGs with not only text but also
other modes of data, such as images), necessitating appropriate methods of Knowledge
Extraction. The detailed discussion of such methods lies outside the scope of this paper,
but we refer the interested reader to the following survey by Zhu et al. [16]. The main
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steps of text-based knowledge representation are named-entity recognition, entity linking,
and relation extraction. These steps are discussed in the following and allow the extraction
of entities and relations from text for inclusion into a KG. An example of this process is
shown in Figure 4.

Richard David James
returned in 2014 with the
album Syro.

Named
Entity

Recognition 
Richard David James
returned in 2014 with the
album Syro.

dbr:Richard_David_James

dbr:Richard_D._James_(scientist)
...

Disambiguation

Relation
Extraction 
& Linking 

dbr:Richard_David_James dbo:wikiPageRedirects dbr:Aphex_Twin . 
dbr:Syro dbp:artist dbr:Aphex_Twin .
dbr:Syro rdf:type dbo:Album .

Figure 4. Knowledge extraction steps for an example sentence linking entities and relations to the
DBpedia KG. Recognized named entities are highlighted in green.

4.4.1. Named Entity Recognition

Named entity recognition (NER) refers to demarcating the locations of entity mentions
in an input text. In the most widely used scenarios, mentions of only a handful of types
(persons, places, locations, etc.) are determined. However, KGs usually contain hundreds
or thousands of types. Furthermore, off-the-shelf NER tools do not provide canonicalized
identifiers for the extracted mentions. A second step is therefore necessary to link entity
mentions either to existing entities in a KG or with new identifiers.

A relatively reliable and simple way to detect entity mentions in a text is the use
of a dictionary (also referred to as lexicon or gazetter), which maps labels of desired en-
tities to identifiers in the KG. In addition to its simplicity, such an approach already
provides recognized entities in a text with the right link to the KG (i.e., solving the tasks
of named-entity recognition and entity linking in one step). However, these dictionaries
are usually incomplete. A simple way to increase the coverage of such dictionaries is to
utilize disambiguated aliases in high-quality sources [15]. Wikipedia redirects or DBpe-
dia’s dbo:alias property would be a simple way to enhance an entity dictionary. For
example, https://en.wikipedia.org/wiki/Richard_D_James from the example redirects
to https://en.wikipedia.org/wiki/Aphex_Twin. To make dictionary lookups efficient,
different data structures have been proposed. For example, prefix tries or inverted indexing
have shown to be a scalable solution for large Web search engines and are used in the NER
approaches AGDISTIS [218], TagME [219], and WAT [220].

Machine learning methods have become increasingly popular for tackling NER. These
methods are especially useful for finding “emerging entities”, i.e., entities that are unknown
to the knowledge base. The machine learning models for entity recognition generally
fall into the task of sequence labeling. A widely successful method for this task is known
as conditional random fields (CRFs), which uses an undirected graph connecting input
and output variables and models the conditional probability of output given the input.
Generally, these graphs form a linear chain (e.g., in the Stanford CoreNLP package [221]),
which means that for a prediction, only the immediate neighbors are relevant in a sequence.
While CRFs require extensive feature engineering, Deep Neural Networks have become
highly popular in recent years for the task of NER since they do not necessitate this
amount of human interaction. For example LSTM networks (long short-term memory),
which are a specific case of recurrent neural networks (RNNs), have become a prevalent
choice for NER tasks [222]. The memory cells contained in this architecture are able to
deal with long-term dependencies, which was previously a major pain point for RNNs.
Deep learning-based approaches for NER are surveyed in [223]. BERT [224] (Bidirectional

https://en.wikipedia.org/wiki/Richard_D_James
https://en.wikipedia.org/wiki/Aphex_Twin
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Encoder Representations from Transformers) is another machine learning model for natural
language processing, leveraging a bidirectional Transformer to contextualize words. When
integrated with LSTM and CRF layers, it becomes tailored for tasks like NER and relation
extraction. It has specialized adaptations like BioBert [41,225] for specific domains such
as biomedicine. Given a specified schema, SPIRES [226] utilizes LLMs to perform NER
and relation extraction. For NER, this approach relies on the LLM’s zero-shot learning
capabilities and interrogates them with specific prompt engineering. Using the specific
context in the prompt greatly improves the LLM’s capabilities to perform this task compared
with simply asking the LLM for a specific identifier for a term.

As multi-modal data become increasingly popular, e.g., on social media platforms,
several recent studies focus on multi-modal NER (MNER) [227,228], where the goal is
to leverage the associated images to better identify the named entities contained in the
text. Furthermore, there are first approaches [229–231] that address MNER for KGs. They
aim to correlate visual content with textual facts. One typical solution parses images and
texts to structured representations first and grounds events/entities across modalities.
However, intra-modal relation extraction and cross-modal entity linking are still largely
unresolved problems.

4.4.2. Linking

If named entities are recognized in a text, they need to be linked to the knowledge
base or KG. This is called entity linking (EL) or named entity disambiguation (NED). Given a
set of candidates from the knowledge base, an EL algorithm needs to decide which entity a
mention belongs to. In Figure 4, this can be seen, where Richard David James is linked to
the DBpedia entity dbr:Richard_David_James.

EL algorithms can rely on a variety of features. Based on the mention itself, the confi-
dence of the used NER tool can be used, how similar the mention and the entity are, or how
much overlap exists across mentions [232]. The context of the extracted mentions can be
valuable. Keyword-based similarity can be used by relying on TF-IDF scores, where rare
keywords used in the mention’s context, which connect to a candidate entity, can give hints
for linkage [233,234]. Words that occur frequently in the same context can also help in the
disambiguation process. Here, pre-trained word embeddings can prove especially useful
since they encode semantic similarity in a latent space. Furthermore, already disambiguated
mentions can be used to aid in the linking of entities that occur in the same paragraph.

Holistic entity linking [232,235] approaches leverage background information in the
decision process that exceeds merely using the similarity between mention and entity.
Popularly, the graph structure of Wikipedia links can be used to determine commonness
and relatedness. Commonness refers to the probability that an entity mentions links to the
respective Wikipedia article of the given candidate entity. Relatedness measures how many
articles in Wikipedia link to the articles on both candidates. Using such background knowl-
edge, unambiguous mentions can aid in the correct linkage of ambiguous mentions [236].

Entity linking approaches furthermore need to address specific challenges such as
coreference resolution, where entities are not consistently referred to by their names, but with
indirect references such as pronouns [232], and deal with emerging entities, i.e., entities that
are recognized but not yet existing in the target KG. For example, Hoffart et al. [237] keep a
contextual profile of emerging entities, and when this profile contains enough information
to infer the semantic type of the mention, it can be added to the KG with its type.

Generally, entity linking and the later-discussed entity resolution (Section 4.5) share
similarities in aiming to connect the same entities in and across data sources. entity
linking and entity resolution are sometimes jointly discussed under the term entity canon-
icalization [15]. While entity resolution typically deals with at least semi-structured data
sources, there have been some efforts to address cases with unstructured sources, where
deep-learning-based approaches are advantageous [238]. However, there are some key
differences not only in the characteristic modality of the data sources but also in the signals
that lead to a linking decision. For example, in the entity-linking scenario, if one has already
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linked the mention “Richard James” to the entity dbr:Richard_David_James, seeing the
mention “James” in close context makes it likely that it also refers to the same entity. By
contrast, in the entity resolution scenario, if one has already confidently matched two
entities, it is unlikely that a similar unmatched entity from one data source will also be
matched with the already matched entity from the other data source. This is because
matching can often focus on 1 − 1 correspondence between two data sources under the
assumption of deduplicated or clean data sources. However, it could be worthwhile to
investigate how well entity-resolution approaches for dirty sources (where multiple entities
may match with the same KG entity) can be utilized for entity linking and vice versa.

4.4.3. Relation Extraction

Given the identified entities in a text, relation extraction aims to determine the relation-
ship among those entities. In Figure 4 we see this, for example, when the text snippet album
Syro becomes the triple dbr:Syro rdf:type dbo:Album, i.e., when the type relation for
entity dbr:Syro is determined.

The first techniques use rule-based approaches to extract relations, e.g., by relying on
Hearst patterns to find hyponym (is-a) relations [239] or involving regex expressions [240,241].
In order to improve coverage, different ways to enhance such patterns were devised. The hu-
man involvement in these techniques, however, is a limiting factor. To address these short-
comings, statistical relation-extraction models were devised. Feature-based methods rely
on lexical, syntactic, and semantic features to use as input for relation classifiers. Similarly,
kernel-based methods [242] rely on specifically designed kernel functions for SVMs to mea-
sure the similarity between relation candidates and text fragments. Graph-based methods
further integrate known relations between entities and text in order to correctly identify
relations [15].

While such methods can be incredibly useful to obtain relatively simple relations with
high accuracy, they are limited in terms of their recall or at least require a high degree
of additional human involvement for feature engineering, the design of kernel functions,
or the discovery of relational patterns [243,244]. Neural relation-extraction methods aim
to close this gap. The input text is transformed via (pre-trained) word embeddings and
position embeddings into a format that is suitable for the neural networks that are trained
for relation extraction. Instead of devising hand-crafted features, this area focuses on
investigating various neural network architectures, such as recurrent neural networks,
convolutional neural networks, and LSTMs. The bottleneck for these approaches lies
in the availability of training data. A common approach to address this is via distant
supervision. Statements from a given data source (for example, Wikipedia) are used to
train the given model. In particular, the use of pre-trained language models has pushed the
state of the art to new heights [245,246]. Han et al. [247] provide a more in-depth overview
of these methods and identify the main challenges in the ability to utilize more data,
creating more efficient learning schemes, handling more complex contexts (e.g., relational
information across sentences), and detecting undefined relations in new domains. With
the rising popularity of LLMs, Giglou et al. [189] benchmark several model families on
the task of relation extraction (among other tasks). They achieve the best results with the
open-source model Flan-T5-XL [248] and can improve the performance of this model even
further with finetuning. During the fine-tuning process, the prompts for the LLMs can be
optimized by injecting semantic information into the prompts, leveraging already existing
information [249].

Neural approaches can suffer from catastrophic forgetting [250], where previously
learned information is lost in favor of recently introduced knowledge. The specific field
of Continual Relation Extraction aims to mitigate this problem by employing techniques
from Continual Learning. For example, Hu et al. [251] jointly train a classification and
contrastive network, where, in the latter, contrastive learning is used with prototypical
samples. Similarly, Zhao et al. [252] replay representative samples from previous iterations
while also minimizing distributional shifts in the already-learned embeddings.
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A special case of relation extraction aims to extract relations freely without a pre-
defined set of relations. This is known as Open Information Extraction (OpenIE). While this
can be a good way to increase the variety of information contained in the KG, a secondary
step is necessary to canonicalize the extracted relations in order to deduplicate and possibly
even link them to already contained synonymous relations in the KG [253].

Several tools exist for the entire process of Knowledge Extraction, with some tools
focusing on specific aspects. For example, DBpedia Spotlight [254] mainly aims at perform-
ing named entity extraction and links those mentions to the DBpedia KG. The dstlr [255]
tool extracts mentions and relations from text, links those to Wikidata, and furthermore
populates the resulting KG with more facts from Wikidata. OpenNRE [256] provides an
extensible framework for neural relation extraction, with trainable models; however, this
approach would necessitate an independent linking step afterward.

Analogously to NER, there are also efforts to use images as information sources for
relation extraction. These can range from rule-based approaches [257], which, for example,
verbalize detected spatial relations of recognized entities in an image, to learning-based
techniques, which encode visual features of detected objects as well as textual features
into distributed vectors used to predict relations between given objects. For example,
MEGA [258] aligns information contained in the syntax tree and word embeddings of the
textual data and the scene graph obtained from the image. A scene graph connects detected
objects in an image via their visual relations. After the alignment process, the respective
representations are concatenated and sent to a Multilayer Perceptron (which is a fully
connected feed-forward neural network) to predict the relation.

4.5. Entity Resolution

Entity resolution (ER), also called entity matching, deduplication, or link discov-
ery, is a key step in data integration and for good data quality. It refers to the task of
identifying entities either in one source or different sources that represent the same real-
world object, e.g., a certain customer or product. An enormous amount of research has
dealt with the topic as evidenced by numerous surveys and books [259–264]. In addi-
tion to several research prototypes, there are also many commercial solutions such as
IBM’s InfoSphere Identity Insight (https://www.ibm.com/products/infosphere-identity-
insight (accessed on 15 August 2024)) or SAP’s Master Data Governance Platform (https:
//www.sap.com/products/technology-platform/master-data-governance.html (accessed
on 15 August 2024)). Most known approaches tackle static or batch-like entity resolution,
where matches are determined within or between datasets of a fixed size. The more recent
of these approaches deal with multi-source big data entity resolution [265,266], relying on
Deep Learning [238,267] or KG embeddings [268,269], with the neural methods having
seen more scrutiny recently after an era of relative hype [270]. Further, there are data-
and domain-specific entity-resolution algorithms, like ORCHID, for matching geospatial
entities [44].

For KG construction, however, we need incremental approaches that build on previous
match decisions and determine whether new entities are already represented in the KG
or whether they should be added as new entities. Furthermore, for streaming-like data
ingestion into a KG, a dynamic (real-time) matching of new entities with the existing KG
entities should be supported. Entity resolution results are fed to the step of entity fusion,
which fuses matching entities to combine and thus enrich the information about an entity
in a uniform way.

In the following section, we discuss proposed approaches first for incremental ER and
then for entity fusion.

4.5.1. Incremental Entity Resolution

Entity resolution is challenging due to the often limited quality and high heterogeneity
of different entity descriptions. It is also computationally expensive because the number
of comparisons between entities typically grows quadratically with the total number of

https://www.ibm.com/products/infosphere-identity-insight
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entities. The standard approach for entity resolution uses a pipeline of three succeeding
phases called blocking, linking/matching, and clustering [119,271]. While there is growing
interest in utilizing KG embeddings for the incremental setting [272] this research is still
in its infancy, and we will therefore focus on the more prevalent approaches. The main
step is to determine the similarity between pairs of entities to determine candidates for
matching. This matching step often results in a similarity graph where nodes represent
entities and edges link similar pairs of entities. The preceding blocking phase aims at
drastically reducing the number of entity pairs to evaluate, e.g., based on some partitioning
so that only entities of the same partition need to be compared with each other (e.g., persons
with the same birth year or products of the same manufacturer). After the match phase,
there is an optional clustering phase that uses the similarity graph to group together all
matches. This phase can typically improve the quality of entity resolution by relying
on a more holistic perspective on entity similarities when compared to myopic pairwise
matching. The clustering step also assists the succeeding step of entity fusion to fuse the
matching entities into one representative entity for the KG.

For incremental ER, the task is to match sets of new entities from one or several sources
with the current version of the KG, which is typically very large and contains entities of
different types. It is thus beneficial to know the type of new entities from previous steps
in the KG construction pipeline so that only KG entities of the same or related types need
to be considered. Figure 5 illustrates a high-level workflow for incremental ER. The input
is the current version of the KG with the already integrated entities (previous clusters in
Figure 5), as well as the set of new entities to be integrated. This requires the development
of incremental versions for blocking, matching, and clustering phases that focus on the new
entities. To allow better match decisions for incremental ER, it is generally advantageous
to retain the entities of the previously determined clusters (and their match similarities)
and not only the fused cluster representatives. Some incremental clustering schemes can
also use this to identify previous match mistakes and to repair existing clusters for new
entities [119,273]. Some approaches [274] and tools [275] also support executing incremental
ER in parallel on multiple machines to improve execution times and scalability to deal with
large KGs.
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Figure 5. Incremental entity-resolution workflow.

Blocking for incremental or streaming ER requires identifying for the new entities all
other entities in the KG that need to be considered for matching. Given the typically high
and growing size of the KG, it is important to limit the matching to as few candidates as
possible, and the determination of the candidates should also be fast. As mentioned above,
blocking and entity resolution should be limited to entities of the same (or most similar)
entity type, and one can apply the same blocking approach for the new entities as for the
previously integrated entities, e.g., by using some attribute-based blocking key such as
the birth year for persons or the manufacturer for products. Several works [263,264] have
proposed further improvements over such a base approach for specific cases and blocking
approaches. One approach [276–278] is to keep the blocking keys in a data structure with
efficient data access to make comparisons among entities faster. Another method to speed
up the computation is the use of so-called summarization techniques [278]. One such
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approach summarizes (divides) larger blocks into multiple sub-blocks with a representative
and directs a new record (query) to the sub-block with the most similar representative.
This enables a constant number of comparisons for each new record, which is valuable for
both incremental and streaming ERs. While most blocking approaches rely on domain or
schema knowledge, there are also so-called schema-agnostic blocking schemes for highly
heterogeneous data where entities of a certain type can have different sets of attributes.
Hence, schema-agnostic approaches consider most or all attribute values and their com-
ponents (e.g., words or tokens), regardless of the associated attribute names. While there
are many schema-agnostic blocking approaches for non-incremental ER [263,264], schema-
agnostic blocking approaches for incremental or streaming ER have only recently been
proposed [274,279,280]. The use of deep learning for blocking has gained significant atten-
tion in recent years. One of the pioneering frameworks in this domain is DeepBlock [281],
which introduced the use of embeddings for blocking. Building on this concept, Auto-
Block [282] utilizes labeled data to position record embeddings within the embedding
space, employing locality-sensitive hashing to identify the nearest neighbors for candidate
set construction. Further advancements were made by DeepBlocker [283], which delved
into deep self-supervised learning for blocking. This work presented two state-of-the-art
methods: one based on auto-encoding (Auto) and the other on cross-tuple training (CTT).
More recently, Sudowoodo [181] has been proposed, leveraging self-supervised learning
alongside a transformer model to enhance blocking performance.

The matching step of incremental ER is limited to the new entities and involves a
pair-wise comparison with the existing KG entities determined by the preceding incre-
mental blocking step. The main goal is to determine all similar entities as potential match
candidates as input for the final clustering step, where it is decided whether the new entity
is added to an existing cluster or whether it should form a new cluster. Pairwise matching
can be performed for batch-like ER and is based on the combined similarity between two
entities derived from property values or related entities. The matching approach can be
configured manually, e.g., together with some similarity threshold that should be exceeded
for match candidates or by applying a supervised machine learning model [263]. If the
pairwise match relationships between previously integrated KG entities are maintained
in a similarity graph spawning the previous clusters, this graph can be extended by the
new entities and links to the newly determined match candidates as input for incremental
clustering [275].

While there are many approaches for batch-like entity clustering [284,285], the incre-
mental maintenance of entity clusters for new entities has received comparatively little
attention. A straightforward approach is to either simply add a new entity to the most
similar existing cluster or to create a new cluster if there is no previous cluster with a high
enough similarity exceeding some predefined similarity threshold [286]. However, this
approach typically suffers from a strong dependency on the order in which new entities are
added. In particular, wrong cluster decisions, e.g., due to data quality problems, will not
be corrected and can lead to further errors when new entities are added. A more sophis-
ticated incremental approach based on correlation clustering is proposed in [273], which
maintains previous clusters within a similarity graph. The updated similarity graph is
used not only to determine the clusters for new entities but also to repair previous clusters,
e.g., by splitting and merging clusters or by moving entities among clusters. The incre-
mental approaches in [118,119] support optimized clustering decisions for duplicate-free
(sometimes called clean) data sources from which at most one entity can participate per
cluster of matching entities. In this case, an effective clustering strategy is the so-called
“max-both” approach, where an entity s from a set of new entities is only then added to the
most similar cluster c when there is no other new entity that is more similar to c than to s.
The approach of [119] also supports a lightweight cluster repair called n-depth reclustering,
where only entities close to new entities in the updated similarity graph are considered for
changing clusters.
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Recent advancements in entity resolution leverage transformers and Large Language
Models (LLMs) to achieve state-of-the-art performance [287–289]. Notably, Refs. [181,289]
employ contrastive learning to enhance accuracy, distinguishing similar and dissimi-
lar entity pairs and optimizing entity representations. Other studies explore graph-
based methods [290,291] and the application of domain adaptation techniques for entity
matching [42,292].

Several works utilize LLMs’ natural language capabilities to improve entity resolution
on tabular data [92], while another study [293] explores foundational models for generic
entity resolution by evaluating various prompt types on domain-specific datasets. Au-
toAlign [294] adapts zero-shot approaches for Knowledge Graph entity alignments by
creating similarity graphs for matching properties and entities.

Novel methods further enhance entity alignment in Knowledge Graphs. One ap-
proach [295] integrates visual and textual information, another [296] uses BERT’s multi-
lingual capabilities for temporal Knowledge Graphs, and a hybrid attention model [297]
addresses structural bias. Furthermore, a geospatial entity-resolution method specifically
designed for handling spatial data has been introduced, providing a tailored approach for
resolving entities in geospatial Knowledge Graphs [43].

4.5.2. Fusion

Merging multiple records of the same real-world entity into a single, consistent,
and clean representation is referred to as data fusion [298]. This is an important step in data
integration as it combines information from several entities into one enriched entity. Data
fusion still entails resolving inconsistencies in the data. First, the records may disagree on
the names of matching attributes so that one preferred name has to be chosen that should be
consistent with the attribute names of other entities of the same type to facilitate querying.
Furthermore, the matching records can disagree on the values of an attribute. There are
three main strategies to handle such attribute-level inconsistencies or conflicts [298]:

• Conflict Ignorance: The conflict is not handled, but the different attribute values may
be retained, or the problem can be delegated to the user application.

• Conflict Avoidance: It applies a unique strategy for all data. For example, it prioritizes
data from trusted sources over others.

• Conflict Resolution: It considers all data and metadata before making a decision to
apply a specified strategy, such as taking the most frequent, the most recent, or a
randomly selected value.

Such techniques were first applied for relational data but also found use for Linked
Data fusion [299]. A valuable strategy is to combine multiple value-scoring functions.
Mendes et al. [300] combine two methods named TrustYourFriends (prioritizing data from
the trusted source) and KeepUpToDate (using the latest value) for conflict avoidance and
resolution. Moreover, they apply input quality assessment metrics to filter out the val-
ues below a threshold or keep the values with the highest quality assessment. Other
techniques, such as computing the average, minimum, and maximum or taking the most
frequent values, are provided by their data-integration framework. Dong et al. [301] com-
bine TrustYourFriends with a Weighted Voting (most frequent or similar values) approach,
whereas the former source’s ranking score is calculated based on a statistical approach.
Similarly, Frey et al. [103] applied a median-based approach for Linked Data fusion. They
distinguish functional properties (a functional property is specified to have a maximum
cardinality of one; e.g., a person entity should only have one value for the date of birth)
and assign a single value to them. Non-functional properties can be assigned multiple
different values.

4.6. Completion

Knowledge Graph completion involves adding new entries (nodes, relations, proper-
ties) to the graph using existing relations. Paulheim [22] surveys KG completion approaches
as well as evaluation methods. He also distinguishes internal from external methods, espe-
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cially for determining missing entity type information and relations. Internal approaches
solely rely on the KG as input, whereas external methods incorporate additional data like
text corpora and, in a broader context, human knowledge sources like crowdsourcing.
The survey concludes that current approaches for KG completion typically limit themselves
to a single task, such as determining missing type information, missing relations (link
prediction), or missing attribute values (literals). Holistic solutions to improve the quality
of KGs simultaneously in several areas are thus currently missing.

4.6.1. Type Completion

Type completion refers to the task of assigning types to nodes without type infor-
mation. In the case of PGM, it is in most cases not allowed to have nodes without type
information [62]. Since there is limited standardization in the realm of PGM [302], and the
possibility to label nodes with unknown type with a dummy label, type completion can still
be seen as a relevant KG completion task. In this case, node classification approaches can
be used to predict classes of unlabeled nodes. For example, Neo4j provides a specific node
classification pipeline (https://neo4j.com/docs/graph-data-science/current/machine-
learning/node-property-prediction/nodeclassification-pipelines/node-classification/) (ac-
cessed on 15 August 2024), although the resulting predictions are added as node properties
necessitating a post-processing step to redefine the label.

The traditional way of determining missing type information in RDF datasets involves
the use of logical reasoning. However, this approach is limited since it relies on already
consistent facts and existing rdf:type information in the knowledge base [303]. To address
this shortcoming, statistical approaches use the distribution of relations between entities
to predict missing type information. For example, SDType [304] uses a weighted voting
approach based on the statistical distribution of the subject and object types of properties.
Similarly, StaTIX [305] relies on weighted statistics of multiple properties of entities as input
for their clustering approach.

Recently, there has been some attention on leveraging KG embeddings to infer type
information. For example, ConnectE [306] incorporates two mechanisms, with one relying
on local typing knowledge and the other on global triple knowledge. The first relies on the fact
that entities close in the embedding probably share the same type. Relying on relationship
information, the second mechanism learns entity type embeddings by replacing the subject
and object entity in a triple for their corresponding type. Finally, for entity type prediction,
a composite score of the two mechanisms is used.

4.6.2. Link Prediction

The task of link prediction aims to find missing relations in a KG. In the example
presented in Figure 1, we see that while there is a writtenBy relation between the song Xtal
and the artist Aphex Twin, there is no relation between the song Ageispolis and Aphex Twin.
Predicting this missing writtenBy relation would be a goal of link prediction.

Based on [22], a common method for the prediction of a relation between two en-
tities is distant supervision [307–310] using external resources. This method starts with
linking entities of the Knowledge Graph to the text corpus using NLP approaches and
then tries finding patterns in the text between entities. Another approach [311] uses the
same methodology but considers the whole Web as the corpus. Lange et al. [312] learn
patterns on Wikipedia abstracts using Conditional Random Fields [313]. Blevins et al. [314]
propose a similar approach but on entire Wikipedia articles. Another line of research uses
semi-structured data such as tables [315,316] or list pages [317] in Wikidata for predicting
missing relations.

In recent years, considerable research has been devoted to investigating KG em-
beddings for link prediction. These methods encode entities and relations of a KG as
low-dimensional vectors in an embedding space. The existing triples in a Knowledge
Graph can be used to train such models, and their performance can be evaluated on a held-
out set of triples. For example, TransE [318] encodes relations as translations from subject to

https://neo4j.com/docs/graph-data-science/current/machine-learning/node-property-prediction/nodeclassification-pipelines/node-classification/)
https://neo4j.com/docs/graph-data-science/current/machine-learning/node-property-prediction/nodeclassification-pipelines/node-classification/)
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object entity of a triple (subject, predicate, object). (In the link-prediction literature, triples
are usually signified as (head, relation, tail). In favor of consistent nomenclature, we use
the triple signifiers commonly used for RDF.) This is achieved by minimizing the distance
between s + p and o, where s, p and o are the embeddings of subject, predicate and object,
respectively. A variety of approaches have been devised to address the problems of TransE
to model 1 − n or n − n relations by, e.g., encoding relations in a separate hyperplane [319]
or operating in the hyperbolic space [320]. For a broad overview and benchmark study, we
refer to [321].

The described embedding-based link prediction methods rely on shallow embeddings,
which means all embeddings are stored in an entity/relation matrix, and obtaining the
respective embedding for an entity or relation is completed by using a lookup table. These
approaches are unable to deal with unseen entities. The study of inductive link prediction
aims to address this shortcoming. GraIL [322] relies on Graph Neural Networks (GNNs) to
achieve this. This approach samples the subgraph enclosing the link to be predicted and
labels the nodes in this subgraph based on their distance to the target nodes (i.e., the nodes
to which the link would connect). The labeled subgraph is then used in a GNN to score
the likelihood of a triple. NodePiece [323] can perform inductive link prediction via a
compositional representation for entities. Relations around a node are sampled in order to
create a node hash, which is passed through an encoder to obtain the final entity embedding.
Being able to create entity representation for unseen entities but known relations permits
NodePiece to then use any scoring function (e.g., TransE) for the link prediction task.

A special type of link prediction aims to discover identity links (e.g., owl:sameAs
relations) [8], which connect nodes that refer to the same entity. This task serves the same
goal as entity resolution (discussed in Section 4.5).

4.6.3. Data Enrichment

Concerning aspects of domain coverage and succinctness, additional processes are ap-
plicable to increasing the final quality of the KG. In addition to type and relation prediction,
domain knowledge could possibly be extended by loading completing entity information
from external (open accessible) knowledge bases. This approach is different from the pro-
cess of integrating an entire external data collection but only focuses on loading necessary
domain information that relates to the already integrated entities. For enhancing KG data
with additional relevant domain entities, information from external knowledge bases can be
requested based on extracted (global) persistent identifiers (PIDs). For example, extracted
ISBN numbers, DOIs, or ORCIDs allow one to request additional external information from
Wikidata, or Gene and Protein data are accessible based on their symbols in public bio-
chemical databases, like the National Library of Medicine (https://www.ncbi.nlm.nih.gov/
(accessed on 15 August 2024)). Paulheim surveys approaches that exploit links to other
KGs in order to not only verify information but also to find additional information to fill
existing gaps [22].

Rule mining is used to discover rules that generate new information. When dealing
with Knowledge Graphs, it is important to consider that missing facts are not necessarily
false but rather indicate an incomplete graph (Open World Assumption). Approaches
have to be, therefore, specifically tailored towards the Open World Assumption, which is,
for example, achieved by the rule mining approach AMIE [324]. Neuro-symbolic techniques
are also used to learn logical rules, enriching a KG by combining neural methods’ ability to
learn complex patterns with the interpretability of logical rules. Cheng et al. [325] propose
a neural compositional rule-learning model that samples paths from KGs as compositional
rules, breaking them into atomic components. A recurrent attention unit merges these
components to infer the rule head, achieving state-of-the-art results and enabling inductive
relational reasoning, including inferring missing relations with more hops than seen during
training. Another important task accomplished with reasoning is entity classification,
which involves automatically determining the most specific classes for instances within an
ontology using defined classes, properties, and logical rules [326,327].

https://www.ncbi.nlm.nih.gov/
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Research on LLMs and KGs has largely focused on knowledge completion. KG-
BERT [328] treated triples as textual sequences, taking entity and relation descriptions to
classify triples and predict links and relations. Using LLMs to fill in missing information in
knowledge bases by prompting them with partially masked inputs of partial statements
in the KG can lead to high accuracy in certain areas, significantly cutting down the need
for costly manual data verification. [329,330]. Omeliyanenko et al. [331] propose a novel
approach for automated Knowledge Graph completion by integrating trainable adapters
with capsules from the field of continual learning, showing significant advantages in low-
resource situations, particularly in the task of link prediction. NLP saw a paradigm shift
from “pre-train, fine-tune”, where a pre-trained language model is adapted to downstream
tasks, to “pre-train, prompt, predict” [332], which reformulates downstream tasks to look
more like the tasks encountered during pre-training. Inspired by this new learning pattern,
research attention has been devoted to adapting this to the graph neural network domain.
Here, the pre-training task is usually link prediction, with, e.g., node classification being
a downstream task. Node classification is then reformulated as a link prediction task
(which is carried out by the graph prompting function) [333]. Newer work generalizes the
pre-training task to graph-level learning objectives and is able to perform well on multiple
downstream tasks, ranging from node-level and edge-level to graph-level [334].

4.7. Quality Assurance

The quality of a KG is crucial for its credibility and, therefore, its usability in appli-
cations [335]. Quality assurance is the task of maintaining a high KG quality despite the
continuous evolution of the KG. It comprises quality evaluation to assess the quality and
detect quality issues, as well as quality improvement to fix or mitigate quality issues by
refining, repairing, and completing the KG. We already discussed knowledge completion
separately in the previous Section 4.6, due to its unique nature of adding data to the KG
rather than improving or removing existing information. Quality assurance is important
not only for the resulting KG as an outcome of the KG construction process but also within
the different construction tasks, such as selecting good-quality sources (Section 4.2.2), data
cleaning for acquired data, Knowledge Extraction, ontology evolution, or entity fusion. The
data cleaning approaches mentioned in Section 4.2.4 can also be applied to the KG, e.g., to
identify outliers or contradicting information. Metadata such as provenance information
is also important for quality assurance, for example, to explain and maintain KG data
concerning the context and validity of conflicting values [15].

Assessing the quality of a KG is extremely challenging since there are many valid ways
to structure and populate KGs, and even subproblems such as evaluating the quality of a
KG ontology are already difficult [336,337]. In general, evaluating the quality depends on
the scope of a KG and should be easier for domain-specific KGs than for very large KGs cov-
ering many domains for which completeness may not be possible. Moreover, the intended
KG use cases influence the quality needs of the KG and should thus be considered for KG
construction and KG evaluation. For example, e-commerce KGs such as the Amazon Prod-
uct Graph [40] should provide up-to-date and reliable product information, demanding
the enforcement of quality criteria such as accuracy and timeliness. Applications such as
financial risk analysis also need accurate and trustworthy information from KGs such as
the Bloomberg Knowledge Graph [38]. On the other hand, there may also be use cases for
which approximate answers—and thus reduced KG quality—may be sufficient, e.g., for
obtaining recommendations (similar products, related literature) or to receive aggregated
information (e.g., about the relative average income in different countries).

We begin our overview of quality assurance by identifying and describing important
quality dimensions. Then, we explore various evaluation methods to measure these di-
mensions. Next, we investigate correction methods to improve and rectify quality issues.
Finally, we present quality evaluation frameworks and benchmark datasets that facilitate
quality assessment.
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4.7.1. Quality Dimensions

KG evaluation typically involves analyzing various quality dimensions, and the rel-
evance of the dimensions typically depends on the intended kinds of KG usage. Quality
dimensions can be correlated and possibly impact each other positively or negatively; for
example, completeness can negatively affect accuracy. Wang et al. identified and sur-
veyed in [91] six main quality dimensions (accuracy, consistency, timeliness, completeness,
trustworthiness, and availability) for use in KG evaluation:

• Accuracy indicates the correctness of facts in a KG, including type, value, and rela-
tion correctness. It can be separated into syntactic accuracy, assessing wrong value
datatype/format, and semantic accuracy, assessing wrong information.

• Consistency ensures coherency and uniformity of the data within the graph. A consis-
tent KG follows logical rules, avoids contradictions, and maintains coherence among
entities, relationships, and attributes. Inconsistencies arise from conflicting informa-
tion, duplicates, or rule violations.

• Timeliness in the context of KGs refers to the currency and freshness of the information
present in the graph. KG timeliness can be influenced by the chosen integration ap-
proach, which may involve batch processing at specific intervals or real-time updates.

• Completeness captures and reflects knowledge coverage within a specific domain.
Completeness is also a goal for KG completion as it involves generating new values or
data to augment the current KG.

• Trustworthiness indicates the confidence and reliability of the KG and depends on
source selection and the applied construction methods. It is strongly related to the
quality dimensions of completeness, accuracy, and timeliness.

• Availability is the extent to which knowledge is convenient to use. In other words, it
refers to how easily and quickly the knowledge of KGs can be retrieved concerning
query complexity and data representation.

4.7.2. Evaluation Methods

A common approach involves crowdsourcing techniques or expert knowledge in eval-
uating Knowledge Graphs. During the validation phase, curators can spot errors or verify
facts. Using an iterative human-in-the-loop process allows for continuous improvement
and refinement, enhancing the overall reliability and trustworthiness of the graph’s data.
One conventional approach is to evaluate the accuracy of the KG against a manually labeled
subset of entities and relations [22]. However, this is costly, so those manually labeled gold
standards are usually small. Other approaches use statistical methods such as distance-
based, deviation-based, and distribution-based methods [338]. Acosta et al. [339] leverage
the wisdom of the crowds in two ways. They launched a contest targeting an expert crowd
in order to find and classify erroneous RDF triples and then published the outcome of
this contest as paid microtasks on Amazon Mechanical Turk (MTurk) in order to verify
the issues spotted by the experts. Their empirical evaluation on DBpedia shows that the
two styles of crowdsourcing are complementary and that crowdsourcing-enabled quality
assessment is a promising and affordable way to enhance data quality. Paulheim et al. [22]
define retrospective evaluation as a method in which the human judges the correctness of the
KG. The reported quality metric is accuracy or precision. Since KGs are often voluminous,
the retrospective approach is typically restricted to a KG sample.

Another method to evaluate quality is statistical analysis, identifying outliers, inconsis-
tencies, or abnormal data distributions based on patterns and the data structure, including
clustering, correlation analysis, or anomaly detection techniques [340].

Further, semantic reasoning and inference allow for the validation of the KG’s consis-
tency based on the given ontology or individual structural constraints. One method is to
calculate disjoint axioms by identifying wrong types of statements based on existing rela-
tions (e.g., domain and range checks or disjoint classes) [341]. Earlier reasoners optimized
methods [27,51], while recent approaches use distributed frameworks for scalability [52–54].
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Data profiling and cleaning techniques can also be applied to find erroneous values
based on their distribution. Duplicate detection, schema matching, or entity resolution can
be used to identify and resolve inconsistencies, redundancies, or errors (format errors).

Another method of quality evaluation relies on aligning and comparing the KG’s
entities with external knowledge and reference sources. Li et al. [342] investigate the
correctness of a fact by searching for pieces of evidence in other knowledge bases, web
data, and searching logs. Similarly, ref. [343] suggests the individual checking of a single
fact in different datasets in order to detect inaccurate facts. This is also useful for yielding
larger-scale gold standards, but it has two sources of error: errors in the target Knowledge
Graph and errors in the linkage between the two. Tuefek et al. [344] present a recent method
using Large Language Models to translate requirements texts into SPARQL queries for
KG validation.

Finally, rule-based analysis is a common solution for detecting quality issues based on
manually generated constraints, such as value restrictions or allowed/wanted properties
for a specifically typed entity. For RDF, besides syntax validation (triples/quads, URIs,
datatypes), RDF triple stores do not provide a standard method to define and validate
graph data integrity or shape constraints (similar to relation database schemata). Therefore,
overlaid solutions such as SHACL (Shape Constraint Language [56]) or ShEx (Shape
Expressions [57]) are developed, which can be used to validate the semantic correctness
of the graphs structure, node or property constraints, cardinalities, and other constructs.
Similar to RDF stores, the data integrity of PGM databases is generally limited to syntax or
basic value constraints. A first effort about the aspects of property graph key constraints is
proposed by Angles et al. [78] by identifying four natural key types: identifier, exclusive
mandatory, exclusive singleton, or exclusive. Additionally, PG-Schema offers a robust
formalism for specifying property graph schemas [79].

4.7.3. Quality Improvement

Quality improvement aims to optimize the KG, making it more reliable, useful,
and valuable for its intended purpose and domain. This includes and combines several
task areas discussed in the former sections. Data cleaning (Section 4.2.4) addresses errors,
inconsistencies, and redundancies in the graph. Error-correction techniques eliminate
incorrect or outdated information and adjust inconsistent data entries. Outlier detection
identifies and handles data points deviating significantly from the norm. Entity resolution
(Section 4.5) methods merge or link entities referring to the same real-world entity. Data
fusion (Section 4.5.2) integrates information from multiple sources to enhance overall data
quality. Continuous ontology development (Section 4.3) refines and expands the graph’s
underlying ontology to accommodate new knowledge and evolving requirements.

Instead of filling in missing data, it may be preferable to remove irrelevant entities that
do not pertain to the intended domain. This will prevent the KG from being unnecessarily
bloated. Applying automatic approaches can cause irrelevant information to be extracted
and requires manual techniques or techniques leveraging known information from external,
already structured databases.

In KG, quality assurance, versioning, and rollback mechanisms are crucial for manag-
ing errors and maintaining data integrity. By implementing version control mechanisms,
changes in the KG can be tracked, allowing for easy rollback in the event of errors or quality
issues. This ensures that previous versions of the KG can be restored, providing a safety
net for data consistency. Furthermore, maintaining an audit trail of changes and ensuring
traceability supports data governance and reproducibility. Section 4.1.3 discusses various
approaches to versioning that can be applied in this context.

4.7.4. Frameworks and Benchmarks

The importance and complexity of KG quality assessment and improvement demand
powerful frameworks and tools to support these tasks. A quality evaluation framework
incorporates metrics and processes to evaluate quality dimensions, ensuring a clear under-
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standing of the graph’s quality aligned with specific applications or use cases. Further, such
a framework can already support mechanisms and techniques for quality improvement,
either requiring a human-in-the-loop approach or applying automatic error correction.

Chen et al. [345] give an overview of the requirements of KG evaluation frameworks,
focusing on specific domains. A special requirement is the scalability of such a framework
to be applicable to a huge amount of data. Considering the degree of automation, using
human-in-the-loop approaches might require KG sampling to only evaluate sub-graphs of
the entire KG.

Several frameworks and tools for KG quality evaluation and benchmarking already
exist. TripleCheckMate [346] is a crowdsourcing tool that allows users to evaluate single
resources in an RDF KG by annotating found errors with 1 of 17 error classes. Another
human-in-the-loop approach was proposed by NELL, where a user validated learned
extraction patterns after a certain number of iterations [347]. RDFUnit [348] is an evaluation
tool for validating and testing RDF graphs against predefined quality constraints and
patterns. It can assess the quality and compliance of RDF datasets concerning schema
definitions, vocabulary usage, and data integrity (supporting SHACL). The tool enables
the automatic generation of tests by analyzing the structure of schemata, like ontologies or
vocabularies, and generating test cases based on defined rules or patterns. Additionally,
the tool allows users to define custom validation rules or include existing vocabularies and
ontologies for validation purposes.

Hobbit [349] (Holistic Benchmarking of Big Linked Data) is a platform that facilitates
the benchmarking of Linked Data systems and components. It provides a standardized
framework for evaluating and comparing algorithms and approaches used in processing
linked datasets. Key features include configuring benchmarking workflows, evaluating
performance metrics, visualizing results, and supporting reproducibility and the sharing
of benchmarks.

Benchmark datasets exist for specific subtasks of KG construction, such as entity reso-
lution (e.g., Gollum [350]) and knowledge completion (e.g., CoDEx [351]). While there are
several benchmark datasets available that focus on specific subtasks of the construction
process, there is a lack of widely used end-to-end benchmark datasets, and researchers often
create custom datasets or use subsets of existing datasets to evaluate their construction
pipeline. Recent works utilize LLMs to generate synthetic datasets for benchmarking a wide
range of data integration tasks [352]. Text2KGBench [353] is a benchmark encompassing
two datasets to evaluate LLM-driven KG generation from text and ontologies. LLMKG-
Bench [354] is an extensible framework to benchmark LLM-assisted knowledge engineering
for syntax and error correction, fact extraction, and KG generation. More LLM-related
quality assurance approaches are discussed in Section 4.6 about knowledge completion.

5. KG Systems

We now investigate and compare construction pipelines for existing KGs and for KG
construction toolsets with respect to the KG requirements and construction steps introduced
in the previous sections. The KG-specific approaches focus on integrating data from a
rather fixed set of data sources for a single KG, while the toolsets (or strategies) are more
generic and can be applied to different sources and KGs. Overall, we consider 16 KG-
specific approaches (with a focus on ten semi-automatic and open implementations) and
eleven toolsets. In the first subsection, we give an overview of the different approaches,
including data statistics for the respective KGs and characteristics of the data sources and
their construction pipelines. This overview aims at providing a good assessment of the
current state of the art.

Given the enormous and growing number of KGs, we had to restrict ourselves to a
small amount of effort. In our selection, we try to cover popular KGs such as DBpedia and
Yago, as well as more current approaches for either a single domain or several domains
(cross-domain). Most importantly, we focus on KG projects described in peer-reviewed
articles and discuss closed KGs only briefly as their data are not publicly accessible, and the
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techniques used are not verifiable. Such closed KGs are typically developed and used in
companies such as company-specific enterprise KGs [355] and the KGs of big web and IT
companies such as Google [31], Amazon [40], Facebook, Microsoft [356], Tencent, or IBM.
However, open and easy-to-use KG toolsets are still in their infancy. Here, we tried to
include recently described approaches that have already been applied to create several
KGs, including those for a specific domain or a single data type.

In order to obtain a representative sample of the state-of-the-art, we employed a
keyword-based search on the DBLP dataset in academic search online engines (e.g., Se-
manticScholar) and Github to gather all papers and approaches (systems and toolsets)
that might fit our criteria. We also relied on existing surveys to gather potentially missed
approaches. After a manual selection process via the paper titles and abstracts and com-
parison with our requirements, we created a list of candidate systems. This methodology
is in line with other surveys [20]. After closer inspection with respect to the coverage of
our requirements and filtering the approaches by age and availability of documentation or
publication, we were left with the 21 works that are described in detail here. We expect that
our comparison criteria and methodology will also be useful in evaluating KG-specific and
more generic construction approaches not covered in this paper.

5.1. Specific KGs

Table 3 summarizes general characteristics of the selected KGs, which are grouped
into closed and open access KGs and in each group ordered by their year of announcement
or first publication. The table also displays the KG’s targeted domain, number of data
sources processed, underlying data model, graph size (number of entities, relations, entity
types, and relation types), number of versions, and year of last update. Table 3 excludes
the toolset projects as these are not restricted to a single KG. The values in this table were
obtained from the most recent available version, either from the publication or directly
from the dataset. The date of this version is denoted in the “Update” column in the table.

Table 3. Overview of selected KGs. “*” in the first column indicates manually curated (crowd-sourced)
KGs. “?” means unknown/undisclosed values. The statistics include the KG’s year of announcement,
targeted domain, processed number of data sources, KG data model, graph size, number of versions,
and year of last update. Domain abbreviations: Cross = cross-domain, MLang = multi-lingual data.

Year Domain Srcs. Model Entities Relations Types R-Types Vers. Update

Closed KG
Google KG [31] 2012 Cross, MLang >>>1 Custom, RDF 1B >100B ? ? ? ?
Diffbot.com 2019 Cross >>>1 RDF 5.9B >1T ? ? ? ?
Amazon PG [40] 2020 Products >1 Custom 30M 1B 19K 1K ? ?

Open Access KG
* Freebase [357] 2007 Cross >>1 RDF 22M 3.2B 53K 70K >1 2016
DBpedia [108] 2007 Cross, MLang 140 RDF 50M 21B 1.3K 55K >20 2023
YAGO [358,359] 2007 Cross 2–3 RDF(-Star) 67M 2B 10K 157 5 2020
NELL [347] 2010 Cross ≥1 Custom, RDF 2M 2.8M 1.2K 834 >1100 2018
* Wikidata [360] 2012 Cross, MLang >>>1 Custom, RDF 100M 14B 300K 10.3K >100 2023
DBpedia-EN Live [361] 2012 Cross 1 RDF 7.6M 1.1B 800 1.3K >>>1 2023
Artist-KG [362] 2016 Artists 4 Custom 161K 15M >1 18 1 2016
* ORKG [363] 2019 Research >>1 RDF 130K 870K 1.3K 6.3K >1 2023
AI-KG [364] 2020 AI Science 3 RDF 820K 1.2M 5 27 2 2020
CovidGraph [35] 2020 COVID-19 17 PGM 36M 59M 128 171 >1 2020
DRKG [34] 2020 BioMedicine >7 CSV 97K 5.8M 17 107 1 2020
VisualSem [365] 2020 Cross, MLang 2 Custom 90K 1.5M (49K) 13 2 2020
WorldKG [366] 2021 Geographic 1 RDF 113M 829M 1176 1820 1 2021

The table includes three manually curated projects based on crowdsourcing, namely
the well-known Freebase and Wikidata approaches, as well as the newer Open Research
Knowledge Graph (ORKG). Freebase [357,367] was one of the first collaboratively built
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and versioned KGs and, after its shutdown in 2016, became a popular source for creating
several other KGs, like Wikidata [360]. Wikidata supports entity annotation with key–value
pairs, including validity time, provenance, and other metadata, such as references [368]. It
facilitates semi-automatic curation involving both bots and human curators. As a project
of the Wikimedia Foundation, full data dump snapshots are released twice a month. The
ORKG [363] focuses on publications where manually uploaded papers are automatically
enriched with metadata. The platform provides tools to extract information such as ta-
bles and figures from publications and to help find and compare similar publications
of interest.

Most of the considered KGs are based on RDF, while some use a property graph
or custom graph data model (fifth column in Table 3). Regarding the covered domains,
the selected KGs either integrate sources from different domains (cross-domain) or focus on
a single domain, such as research, biomedicine, or COVID-19. A possible limitation of cross-
domain KGs, especially for smaller-sized ones, is that they can miss domain-specific details
or expert knowledge. Some KGs contain and connect multilingual information (MLang) by
providing descriptive entity values in different languages. These translations are mostly
taken directly from one of the sources (e.g., Wikipedia or BableNet), instead of generating
their own translations during the construction process. There are large differences among
the KGs regarding the number of integrated source datasets (from 1 to 140) and the size
of the KGs in terms of number of entity and relation types and the number of entities and
relations. With the highest number of sources, DBpedia independently extracts 140 sources
(Wikipedias), with equivalent entities being interlinked by the extracted sameAs connections
contained in the page articles. The closed KGs are by far the largest, with up to almost
6 billion entities and more than a trillion relations (Diffbot.com). Wikidata is the largest
open-source KG with about 100 million entities of 300K entity types and 14 billion relations
of 300K relation types. The smallest KGs have less than 1 million entities or relations.
In general, open KGs are rather limited in the number and diversity of the data sources,
while closed approaches such as Google KG aim to integrate information at the web scale.
Only a few of the KG projects continuously release updated versions of their KG, while
most projects only release data once or irregularly every few years. This underlines that
the continuous maintenance of KGs is not yet commonplace. With over 1100 dumps
(http://rtw.ml.cmu.edu/rtw/resources (accessed on 15 August 2024)) NELL features the
highest number of continuously and incrementally generated KG versions.

5.2. KG Frameworks

We now turn to a closer inspection of the KG construction processes of the individual
KGs and toolsets. Table 4 summarizes the corresponding information for the 10 open-
access KGs with semi-automatic construction, as well as for 11 toolsets/strategies for KG
construction. We derived the concrete set of comparison criteria from our previously
specified KG requirements in Section 3, such as support for incremental updates and
different input data. Other criteria relate to the individual construction tasks from Section 4
that are necessary to meet the requirements, e.g., to support certain kinds of input data
(e.g., Knowledge Extraction or entity resolution tasks) or to meet the requirement of quality
assurance (tasks of input cleaning, quality assurance, and knowledge completion).

In Table 4, we weighted the criteria with regards to their fulfillment/presence in a
specific solution by indicating strong approaches (considering automation, quality, and flex-
ibility), with a full circle, and weaker approaches, with an open circle symbol, compared to
the other approaches. We also provide information on the year of the considered version
(publication) and indicate whether the approach offers an open implementation. We see
that the pipeline/toolset implementations for two of the open-access KGs (NELL, AI-KG)
and even five of the eleven toolsets are closed-source, including the approaches from
Amazon (AutoKnow) and Apple (SAGA).

Diffbot.com
http://rtw.ml.cmu.edu/rtw/resources
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Table 4. Comparison of KG construction approaches with respect to Consumed Data, generated
Metadata, and Performed Construction Tasks. The construction tasks are rated as simple/manual # or
sophisticated/semi-automatic  . ‘?’ indicates mentioned but unclear implementation. Each criterion can
cover multiple subtasks and implementations. However, due to the importance of fusion, we display
it separately from entity resolution, indicated by the asterisk ’*’.
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Dataset Specific
DBpedia 2019 ✓ ✓ ✓ ✓ ✓ ✓ #  #  #

YAGO4 2020 ✓ ✓ ✓ ✓ ✓ ✓ # #   

DBpedia-Live 2012 ✓ ✓ ✓ ✓ ✓ ✓ #  # #

NELL 2011 ✓ ✓ ✓ ✓ ✓ #   #  

Artist-KG 2016 ✓ ✓ ✓ # #    

AI-KG 2020 ✓ ✓ ✓ ✓ #  # ?
CovidGraph 2020 ✓ ✓ ✓ ✓ ✓ ✓ ? # ? #  # #

DRKG 2020 ✓ ✓ ✓ ✓ ? # # #  

VisualSem 2020 ✓ ✓ ✓ ✓ ✓ #   

WorldKG 2021 ✓ ✓ ✓    #

Toolset/Strategy
FlexiFusion [103] 2019 ✓ ✓ ✓ ✓ ✓ # #  

dstlr [255] 2019 ✓ ✓ ✓ #  # # ?
XI [88] 2020 ✓ ✓ ? ? ? #  ? ?
AutoKnow [40] 2020 ✓ ✓ ✓ #     

HKGB [369] 2020 ✓ ✓ ✓ ✓    ? #  #

SLOGERT [47] 2021 ✓ ✓ ✓ ✓ #  ? # ?
SAGA [84] 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ?  #       

Plumber [370] 2023 ✓ ✓ ✓ #  

Image2Triplets [371] 2023 ✓ ✓ ✓ # #  

SAKA [109] 2023 ✓ ✓ ✓ # # ? #

Helio [372] 2024 ✓ ✓ ✓ ✓ ? ? # # # ? ? ?

5.3. Comparison

In the following, we describe and discuss the further criteria considered that fall
into three groups regarding the consumed input data, the generated metadata, and the
construction tasks performed.

Consumed Data. For the input data, we differentiate the supported kind of data
(unstructured, semi-structured, structured) and consider support for stream input data and
supplementary input data for further processing steps (e.g., metadata, mappings, but ex-
cluding tool configurations).

As Table 4 shows, populating KGs from semi-structured data is most common, while
only about half of the considered solutions or toolsets support the import from unstructured
or structured data. Scientific publications are a common unstructured data source (AI-KG,
CovidGraph, DRKG, XI) as well as other forms of text (dstlr, SAGA, AutoKnow, Plumber).
Several popular KGs (DBpedia, YAGO, NELL) integrate information from Wikipedia and
use it as a premium source of valuable knowledge. Open accessible databases such as
WordNet, ImageNet, or BabelNet are also frequent starting points for KG construction
(e.g., YAGO or VisualSem). Only two of the projects (DBpedia Live and SAGA) support
the continuous consumption of event streams. NELL continuously crawls the web for
new data but updates the KG in a batch-like manner. Several approaches can ingest data
from multiple modes, such as images (VisualSem, Image2Triplets) or audio (SAKA). Most
approaches integrate supplementary data, especially mapping rules (DBpedia, DBpedia-



Information 2024, 15, 509 37 of 61

Live, YAGO, VisualSem, FlexiFusion, SAGA, Helio), training data (NELL), or quality
constraints like SHACL shapes (YAGO).

Collected Metadata. We consider whether deep or fact-level provenance, temporal
information (e.g., validity time), and additional metadata such as aggregated statistics,
process reports, or descriptive and administrative information are collected and added to
the KG or a separate repository.

The acquisition of provenance data is the most common kind of metadata support
and ranges from simple source identifiers and confidence scores up to the inclusion of the
original values. Several systems maintain temporal metadata, while further metadata are
hardly supported or at least not described. In the case of the toolsets, the generation of
additional metadata is possible in XI but depends on the use case and resulting pipeline.
In general, support for metadata is thus limited and has room for improvement.

DBpedia, YAGO, AI-KG, and NELL store versions as single downloadable dumps.
SLOGERT delegates and assigns the log timestamps through the pipeline for each con-
structed entity, and SAGA keeps timestamps for added, deleted, and updated entities. For
SAKA, the system uses Neo4j to store and dynamically update Knowledge Graphs (KGs)
while managing metadata in a relational database (SQLite). The relational database schema
includes tables for KGs, entity types, and relations, ensuring each KG is uniquely identified
and linked to its metadata. This combination allows for flexible updates and comprehensive
management, including viewing, updating, and deleting KGs along with their associated
data. In the DRKG, the final entity IDs contain the originating source, thereby supporting
backtracking the origin of facts in the KG. CovidGraph contains provenance information
about the originating paper, and nodes have modification timestamps.

Both the DBpedia release and the FlexiFusion Framework utilize the DBpedia Databus
platform to maintain data artifacts using the DataID vocabulary. In addition to version
information, they include information about the author and dataset descriptions. While the
former only deploys intermediate or final results, FlexiFusion also accesses the Databus to
consume the source data. For most of the other Frameworks or Datasets, it was unclear
how intermediate data artifacts are managed. However, for the final KG, common Graph
or RDF databases were utilized with some custom extensions at times.

Construction Tasks. In this group, we consider to what degree the construction tasks
introduced in the previous section are supported.

• KG Initialization. Here, a common strategy is to manually create the initial KG either
by developing it from scratch or by reusing existing KGs (ontologies). There may
also be a complex pipeline to construct the initial KG by processing semi-structured
data from catalogs, wikis, or category systems. All projects start with building or
using some initial KG data. Most of the approaches reuse or sample existing KGs and
ontologies as the initial target KG. WorldKG and HKGB semi-automatically build an
initial ontology and are, therefore, more advanced than manual ontology construction.
For DRKG, SAGA, and SAKA, it is unclear how the initial KG (ontology) was derived.

• Data Preprocessing. These are access methods and support the filtering, normaliza-
tion, or correction of noisy input data. We exclude here NLP/text pre-processing as
this is normally part of Knowledge Extraction. We tried to highlight the incorporation
of multiple of these steps with the filled circle.
Some approaches apply a filtering step to integrate only entities of relevant types into
the KG. This functionality is not always provided (or documented) and is often based on
manually defined rules and filter definitions, e.g., to select properties and relationships for
certain entity types. Artist-KG links entities in the data source to the current Knowledge
Graph to identify entities of relevant target types. VisualSem filters out nodes of images
that do not meet the inclusion criteria, like valid images, near duplicates, and non-
photographic images. YAGO filters low-coverage entities and accepts entities and their
types that are transitively connected to one of the initial classes via sub-class relations,
resulting in the final taxonomy of 10k classes (taxonomy enrichment).
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Many of the investigated tools use a custom mapping approach to convert semi-
structured data into a KG representation (DBpedia, YAGO, etc.) The flexible frame-
work Helio requires providing an RDF mapping framework implementation. World
KG maps and constructs RDF data based on the key–value pair-based tag system
of Open Street Map. The FlexiFusion uses externally calculated entity and relation
alignments and transforms the sources into an intermediate KG meta representation
with IDs in the same namespace, keeping the initial source IDs as provenance. SAGA
transforms input into a format in which the source, trust score, and one-hop relation
information are extended to a triple. SAKA employs a generic mapping approach to
convert key–value pairs from the source data into RDF and then allows the assignment
of entity and relation types.
Lastly, some solutions also apply normalization steps during preparation, e.g., to unify
date or number representations. In the case of DBpedia(-Live), the implementation
recognizes value types and employs data parsers to normalize them into the same
units or representations.

• Ontology Management. Most approaches have at least some basic (manual) support
for evolving the KG ontology and schema data for newly structured input data.
In DBpedia, the KG ontology (and data mappings) can be changed manually and
need to be loaded before running a new batch update. The more freshness-oriented
approach of DBpedia Live continuously watches ontology changes and immediately
schedules affected entities for re-extraction. More advanced approaches rely on
semi-automatic ontology evolution or enrichment. In particular, some systems can
identify new entities and relation types in the input data to add to the ontology after
manual confirmation (NELL, HKGB). Image2Triplets can fully automatically add
newly recognized entities or relations to the KG but reserve human intervention for
specific edge cases where the system alone cannot decide the manner of integration.
ArtistKG uses Karma for ontology matching. While merging is mentioned, it is unclear
what procedure is used. While WorldKG, for example, relies on an unsupervised ML
approach for ontology alignment, most approaches still perform ontology alignment
and merging manually. SAGA’s ingestion component requires mappings from new
data to the internal KG ontology. This step only requires predicate mappings, as the
subject and object fields can remain in their original namespace and are linked later in
the process. CovidGraph performs the mapping of biomedical ontology terms based
on their IDs.

• Knowledge Extraction. Many solutions use rule-based methods to extract entities and
relations from semi-structured sources (DRKG, VisualSem). Some tools use machine
learning approaches for extraction (AI-KG, AutoKnow, CovidGraph, dstlr, SLOGERT,
NELL). For entity linking, different approaches are used, such as dictionary-based
approaches relying on gathered synonyms (e.g., AI-KG), the use of human interaction
(XI), or the application of entity resolution (e.g., HKGB). Plumber selects approaches
from a combination of 33 different methods for NER, RE, and EL using an ML approach
on dataset samples and provided metadata. A few approaches have a multi-modal
domain of extraction. Image2Triplets and VisualSem extract information from images.
Image2Triplets uses computer vision techniques to extract visual relationships from
images. They also determine human–object interaction in images, detecting novel
objects and actions through zero-shot learning. VisualSem, on the other hand, only
allows pre-defined relations. SAKA first segments audio files based on speakers and
removes non-speech segments. They then transform this audio into text and then
perform Knowledge Extraction on it. Given the focus on semi-structured data sources,
Knowledge Extraction techniques are generally relatively advanced compared to other
steps in KG construction. This has also been made possible by the frequent use of
existing Knowledge Extraction tools, such as Stanford CoreNLP, as will be seen in the
discussion of the approaches in the next subsections.
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• Entity Resolution. This task is supported by only a few approaches, and the pipelines
that do employ ER tend to use sophisticated methods like blocking to address scalabil-
ity issues (ArtistKG, SAGA), and machine-learning-based matchers (SAGA). HKGB’s
description of their ER solution is too vague to make a definite statement, and for
SLOGERT, it is mentioned that in some cases, ER might be necessary but should
be performed with an external tool. Similarly, Helios could enable any ER method,
but they only briefly mention this possibility in their requirements through the un-
derlying plugin architecture. CovidGraph relies on string similarities and global
identifiers to identify matches. For textual data, the identification and matching of
entities to KG elements are already covered by entity linking in the Knowledge Extrac-
tion step (Section 4.4). Only SAGA and ArtistKG use blocking methods to scale the
matching process.

• Entity Fusion. This is the least supported task among the considered solutions. None
of the dataset-specific KGs perform classical (sophisticated) entity fusion, consoli-
dating possible value candidates and selecting final entity IDs or values. Instead,
the final KG often contains a union of all extracted values, either with or without
provenance, leaving final consolidation/selection to the targeted applications. The
DRKG project uses a simple form of entity fusion to normalize entity identifiers. Even
for the discussed toolsets, this task’s coverage is relatively low. FlexiFusion allows the
application of specific fusion functions, leverages provenance information, and per-
forms a stable ID assignment for entity and property clusters. SAGA refers to the
usage of truth-discovery- and source-reliability-based fusion methods.

• Quality Assurance. Human-in-the-loop strategies have been applied to varying
degrees, with some solutions, such as HKGB or XI, relying heavily on user interaction.
In contrast, others require only final user approval of the correctness of extracted
values or patterns, like NELL. In the World, the KG approach manually verifies all
class and predicate matches to the external ontologies.
Further, SAGA tries to detect potential errors or results of vandalism automatically. It
quarantines them for human curation, where changes are treated directly in the live
graph and later applied to the stable graph. AI-KG bases the validity of a triple on
the trustworthiness of the extraction tool, the frequency of that triple being extracted
reaching a certain threshold, or a specifically trained classifier deciding that it is valid.
DBpedia and YAGO perform an automatic consistency check. The Helio paper men-
tions that in a specific use case, their approach was extended to use a validation
mechanism, which they do not specify in more detail. Additionally, YAGO guarantees
ontological consistency by applying a logical reasoner, and DBpedia checks for dataset
completeness and measures quality against the former version.
In our study, only dstlr supports validating extracted facts against an external knowl-
edge base.

• Knowledge Completion. DBpedia attaches additional entity-type information based
on current ontology and relation data. Three approaches (DRKG, HKGB, SAGA)
presented ML-based link prediction on graph embeddings to find further knowledge.
In the case of the DRKG and HKGB approaches, it is unclear if the newly predicted
information flows back into the KG or is stored separately. AutoKnow uses a learning-
based approach to categorize product types.
Regarding enrichment with external knowledge, dstlr links entities to Wikidata and
fetches stored properties from this external source. However, SLOGERT only adds
links to external information based on previously extracted identifiers (PIDs).

Incremental Solutions. Some approaches mention incremental KG generation but do
not describe it in detail. AI-KG mentions the generation of updated versions, but the steps
are unclear. CovidGraphs’ dockerized approach allows for ingesting new data sources into
the KG; however, a direct solution for this has not been explained. For dstlr, the authors
mention the ability to track document changes via Apache Solr, but they do not specify any
ways to deal with such changes. The same is true for SLOGERT, as the authors only mention
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that update mechanisms will be addressed in future work. In the case of the XI pipeline,
support for this feature was considered in the final implementations. Helio’s versioning
concept allows for comparing different KG versions and building new increments, but its
pipeline implementation is not entirely clear as it depends on task-specific implementations
such as mapping, matching, and fusion.

Few approaches describe manual or straightforward update strategies for changes
in sources or ontology. For instance, DBpedia-Live continuously integrates Wikipedia
changes into a live graph, but it only retains the latest version and lacks quality control.
Extending the HKGB with new data and sources about additional diseases involves several
manual steps, including collecting synonyms, checking candidates, annotating concepts,
annotating disease-related concepts and relations from unstructured data, and creating
mapping and extraction rules.

Only three of the frameworks evaluated have a good approach with respect to im-
plementing a maintainable incremental process. NELL is truly focused on providing an
incremental solution for KG construction from unstructured web text. It provides a con-
tinuous learning method and a human-in-the-loop approach for the quality assurance of
learned extraction patterns. ArtistKG allows for the integration of new sources iteratively,
adding one source at a time. SAGA maintains a continuous live graph and a batch KG,
with delta computation and source provenance. It combines automatic and manual quality
assurance but is closed-source, making its approach not fully transparent or verifiable.
Overall, from these pipelines, SAGA provides the most advanced incremental solution. It
offers an extendable multi-source approach capable of handling various heterogeneous
data updates. This includes combining Knowledge Extraction and entity resolution with
fusion capabilities while still supporting continuous quality assurance.

6. Discussion and Open Challenges

Our study of existing solutions for KG construction showed that there are many
different approaches not only for building specific KGs but also in the current toolsets. This
underlines the inherent complexity of the problem and the dependency on different criteria,
such as the major kinds of input data and the intended use cases. The requirements we
posed in Section 3 are also not yet met to a larger degree, indicating the need for more
research and development efforts. This is also because there are inherent tradeoffs between
the goals of high data quality, scalability, and automation [15] that ask for compromise
solutions. So while it is possible to have a large degree of automation for individual
construction tasks, human interaction generally tends to improve the quality significantly.
On the other hand, such human interaction can become a limiting factor toward scalability
to many sources and high data volume.

Below, we discuss open challenges and areas for future work on KG construction.
The focus is on broader issues rather than specific limitations in individual steps.

Incremental KG Construction. We observed that most of the construction pipelines for
specific KGs and in toolsets do not yet support incremental KG updates but are limited to a
batch-like re-creation of the entire KG. As already discussed in Section 3, this approach has
significant limitations and prevents scalability to many data sources and high data volume.
We, therefore, need better support for incremental KG updates, especially in toolsets.
Such a capability has to provide solutions to a variety of issues. As already discussed in
Section 4.2, it must be detected if there are changes in the input data, and if so, it must be
determined what has changed. The changes to be dealt with are not limited to adding new
information; deletions and updates in the sources have to be propagated to the KG as well.
Changes that impact the underlying ontology or the pipeline’s configuration also have to
be managed and may require manual interaction/confirmation. Inferred knowledge may
become inconsistent with newly introduced data. While there are incremental reasoning
approaches, that aim to address this problem, they need to be integrated with the KG
construction pipeline holistically [373,374].
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Support for a streaming-like propagation of source changes should also increase so
that KGs can provide the most recent information.

Lack of open tools. As we have seen in Table 4, most KG construction toolsets,
especially the more advanced ones, are closed-source and thus cannot be used by others for
creating a KG or for evaluating their functionality. Hence, there is a strong need for more
open-source toolsets to help improve the development of KGs and to advance the state of
the art in KG construction. Researchers and developers providing such an implementation
and associated publications could have a high impact [375].

Improved Extensibility and Modularization, Ease of Use. A toolset for KG con-
struction should be able to define and execute different pipelines depending on the data
sources to be integrated and specific requirements, e.g., for incremental updates. Hence,
an extensible and modular KG construction approach should be provided with alternate
implementations for the different KG construction tasks to choose from. This can be facili-
tated by using existing implementations, as has been carried out already for NLP tasks (e.g.,
Stanford CoreNLP) but not yet for other tasks such as entity resolution. From the projects
compared in Section 4, only a few addressed this problem, so more solutions are needed.

The definition of a KG construction pipeline should be relatively easy, supported
by a user-friendly GUI, and have a low effort for configuring the pipeline and its indi-
vidual tasks. The configuration can be simplified by providing default settings for most
parameters or even automatic approaches based on machine learning [370,376]. On the
other hand, a manual configuration should also be possible to achieve customizability
and support for special cases (e.g., a new entity type or input format). The extensibility
and modularization of a tool should not lead to a higher configuration effort for users.
For example, Helio [372] provides a flexible system but lacks a default configuration, still
requiring extensive manual configuration.

Data and Metadata Management. Good data and metadata management is vital in
an open and incremental KG process. Only a few solutions even mention an underlying
management architecture supporting the construction processes. Having uniform access
or interfaces to data and relevant metadata can drastically improve the quality of the
former [94] and increase the workflow’s replicability and possibilities for debugging. A
dedicated metadata repository can store used mappings, schemata, and quality reports,
improving the transparency of the entire pipeline process.

Metadata support is limited in current solutions, and only some pipeline approaches
acknowledge the importance of provenance tracking and debugging possibilities. We
found that the term provenance is rather vaguely used, mostly referring to tracking the
source of facts and the processes involved in their generation. Only a few approaches,
such as SAGA [84], also try to maintain the trustworthiness of facts. Metadata, such as
fact-level provenance, should be used more to support construction tasks. For example,
in data fusion, it can be used to determine final entity values. In general, there is a need
for maintaining more metadata, especially temporal information, that is also essential
for studying the evolution of KG information. Support for developing temporal KGs
maintaining historical and current data, compared to the common sequences of static KG
snapshot versions, is also a promising direction. Temporal KGs would then also enable the
possibility of temporal reasoning [377].

Data Quality. One of the main goals of KG construction is to achieve and maintain a
high-quality KG. The difficulty of this task grows with the rising number and heterogeneity
of data sources, especially if one relies on automatic data acquisition and data integration.
High-quality sources can provide a clean hierarchy of types and can serve as training
data to alleviate some data-quality issues that would be more difficult to address by
treating low-quality sources in isolation [15]. Lower-quality data sources often contain
a high degree of long-tail entities (which is the reason these data sources are valuable).
Nevertheless, corroborating the information from these sources with evidence from higher-
quality sources remains difficult and can reduce data quality. For example, the automatic
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fusion of conflicting entity values can easily introduce wrong information into a KG,
and even a restricted degree of human intervention is problematic on a large scale [217,378].

To achieve the best possible data quality, data cleaning should be part of all major
steps in the construction pipeline so that the degree of dirty or wrong information that
is entering the KG is limited. Moreover, the identification and repair of errors should be
a continuous task, especially in projects with large KGs [379]. To better address these
problems, more comprehensive data quality measures and repair strategies are needed that
minimize human intervention to retain high scalability for KG construction.

While one of KGs’ main strengths is its reasoning capabilities, it is intuitive that these
capabilities are strongly correlated with data quality. Heavily updated KGs could require
automatic consistency checks and mechanisms to resolve inconsistencies. The introduced
overhead of such data quality assurances would need to be balanced with the desired
timeliness of the KG.

Evaluation. The evaluation of complete KG construction pipelines is an open but
important problem to measure the performance and quality of current approaches and to
improve on them. So far, there are benchmarks for individual tasks such as Knowledge
Extraction [380–382], ontology matching [383], entity resolution [268,269,350,384] and KG
completion [351,385,386]. While these benchmarks, in some cases, still leave gaps, e.g., re-
garding scalability [263] or domain diversity [387], they are already quite complex and
indicate the great difficulty in defining a benchmark for the entire KG construction pipelines.

A benchmark could be based on similar settings to those used for the creation of
specific KGs discussed in Section 4, aiming at the initial construction and incremental
update of either a domain-specific or cross-domain KG from a defined set of data sources
of different kinds. The KG ontology and the KG data model (RDF or property graph) could
be predefined to facilitate the evaluation of the resulting KG. The size of the resulting
KG should be relatively large, and the construction should be challenging with the need
for Knowledge Extraction, entity linking/resolution, and entity fusion. Determining the
quality of the constructed KG is difficult, as it would ideally be based on a near-perfect
result (gold standard) for the initial KG and for its updated version(s). For all entity and
relation types in the given KG ontology, it has then to be determined to what degree they
could correctly be populated compared to the gold standard, which requires an extension to
known metrics such as precision and recall. Further evaluation criteria include the runtimes
for the initial KG construction, the incremental updates, and perhaps the manual effort to
set up the construction pipelines. Ideally, an evaluation platform could be established—
similar to other task-specific platforms like Hobbit [349]—for a comparative evaluation of
different pipelines with different implementations of the individual construction steps.

The whole is more than the sum of its parts. While the individual parts of KG
construction pipelines are well-established research problems with sometimes decades of
previous research, the complex interaction of the pipeline tasks is not well researched yet.
For example, the disambiguation strategies of the Knowledge Extraction task, especially
entity linking, are very similar to entity resolution. The use of background knowledge
and various inter-dependencies between different information is commonly summarized
as holistic entity linking. This approach has seen some research attention, and a survey
with future research directions was published by Oliveira et al. in a 2021 paper [388].
While such approaches go in the right direction, our pipeline scenario would invite an
even more holistic case, where named-entity linking and entity resolution approaches aid
each other in boosting their performance. Furthermore, data cleaning can be performed
independently in several tasks, but it would be beneficial to have a coordinated approach
to avoid duplicate efforts.

LLM for KG Construction. LLMs offer significant advancements in automating and
enhancing natural language understanding, which is helpful and promising for bridg-
ing the gap between users and KG construction tasks to reduce the amount of manual
involvement. Initial approaches showed that LLMs could support several KG construction
tasks, e.g., data transformation and cleaning, ontology development, entity resolution,
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and quality assurance and completion. The proposed approaches are mostly investigated
in isolation and not for KG construction specifically, so there is a need for solutions tailored
to KG construction [330]. LLMs also introduce complexities [389] such as their inherent
bias and limited domain-specific knowledge, which can hinder their effectiveness in cer-
tain areas and cause phenomena such as hallucination. Moreover, continuous operation
and interaction with LLMs is often cost- and time-intensive, potentially affecting overall
scalability. A promising approach is using LLMs as a decision support agent for pipeline
orchestration by choosing the correct function or tool for the next processing step based on
a given sample of data and source metadata [370]. Another solution would be to utilize
LLMs for generating configurations for tools and a given data source [390]. Furthermore,
the different LLM-enhanced construction tasks must be effectively combined within a
complete construction pipeline, requiring further research and development [12]. A more
general objective is the comprehensive combination of LLMs and KGs not only where
LLMs help in KG construction but also where KGs help to improve LLMs, e.g., to provide
up-to-date and verifiable information instead of hallucinated answers. Research in this
direction has already begun (for example, [391]). There are indications that the widely
praised performance of LLMs on various tasks can largely be attributed to memorization
rather than reasoning [392]. Here, the reasoning capabilities of KGs could be a valuable
complement to the generative abilities of LLMs.

7. Related Work

The construction of KGs uses technologies from different areas, and we have discussed
the tasks and surveys in these areas already in Section 4. Here, we therefore focus on related
surveys on the construction of KGs in general.

In almost 300 pages, Weikum et al. [15] give an extensive tour of the automatic
creation and curation of RDF-based knowledge bases or KGs, specifically from semi- and
unstructured sources. Their discussion of requirements is also concerned with the KG
itself, whereas our requirements are more focused on the KG construction process. We
also cover structured input data for KG construction, e.g., in the requirements on Input
Data and tasks such as entity resolution. Their article provides overviews about the open
Knowledge Graphs YAGO, DBpedia, NELL, and Wikidata, which are also discussed in our
work, as well as industrial Knowledge Graphs, which we only mention briefly due to the
limited amount of publicly available information. By contrast, we systematically compare
many further approaches with respect to our derived requirements, including general KG
construction toolsets. Furthermore, we have identified several new challenges for future
work, e.g., regarding incremental approaches, open toolsets, and benchmarks.

Hogan et al. [8] give a comprehensive introduction to KGs. Similar to ours, their
discussion includes multiple graph data models, and they present methods for dealing
with unstructured, semi-structured, and structured data. Serving as an introductory text to
KGs in general, their work provides a broad view on KGs, including tasks like learning
or publishing them. We are more focused on KG construction and cover many additional
aspects such as requirements for KG construction and maintenance, a more detailed discus-
sion of construction tasks, a systematic comparison of state-of-the-art approaches, as well
as open challenges for KG construction.

Ryen et al. [17] provide a systematic literature review on KG creation approaches
based on Semantic Web technologies. They survey and compare 36 approaches with respect
to their identified construction steps: ontology development, data preprocessing, data
integration, quality and refinement, and data publication. One of their findings was that
data quality appears to be a major blind spot. We more comprehensively investigate the
requirements, approaches, and open challenges of KG construction and maintenance and
also include other KG data models, such as the PGM.

Tamašauskaitė et al. [393] propose a KG development lifecycle consisting of six main
steps with several possible subtasks. Our work covers their construction tasks and feasible
solutions in more detail and complements them with other relevant main tasks, such as
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metadata management and the discussion of temporal aspects and versioning. Furthermore,
our survey and evaluation of KG construction approaches are based on a set of requirements
that led to the tasks not covered in their approach. We also provide a comparison of
many construction approaches and toolsets and identify open challenges not covered in
their work.

There are several papers on the construction of KGs for specific cases. Zhu et al. [16]
focus on the creation of multi-modal KGs, specifically combining the symbolic knowledge
in a KG with corresponding images. They comprehensively present the two directions in
which this task can be performed: visual Knowledge Extraction in order to label images
with information from the KG and discovering images that describe entities and relations
from the KG. In our work, we aim to discuss the KG construction process more broadly
and in a complementary manner, only briefly discussing multi-modal (image-related)
techniques. Xiaogang Ma reviews applications and construction approaches for KGs in the
geoscience domain [18]. The discussed KG creation methods range from mostly manual
approaches to processes relying on the data mining of crowdsourced data. Furthermore,
they discuss how KGs are used in geoscience data analysis, e.g., to enhance information
extraction for public health hazards. Şimşek et al. [394] give a high-level overview of the
KG construction process in the general context of a KG’s lifecycle. Their discussion of these
general steps is found alongside an in-use case study, where they provide the challenges
they encountered. While they give valuable insights into KG construction in the real world,
they do not include a systematic comparison of the state-of-the-art approaches regarding
the requirements of KG construction.

Abu Salih [13] conducted an extensive survey on over 140 papers focused on domain-
specific KGs. The work proposes a refined definition of domain-specific Knowledge
Graphs, categorizes the approaches into one of seven domains, and highlights the diversity
of methods used in constructing domain-specific KGs. As a result, the work identifies
limitations in current approaches and proposes future research to address research gaps in
this area.

In summary, our work focuses more on KG construction than previous KG surveys
and provides additional information in several areas related to KG construction. We are not
limiting ourselves to RDF-based KGs but also consider alternate graph data models such as
the PGM. Our study considers not only the acquisition and integration of unstructured and
semi-structured data but also of structured data, and we not only investigate the one-time
construction of KGs but also their incremental maintenance. In contrast to most previous
surveys, we explicitly specify the main requirements for KG construction and use these as
a guideline for evaluating and comparing many KG-specific construction approaches and
toolsets and identifying new open challenges.

8. Conclusions

This work presented the current state of Knowledge Graph construction, giving an
overview of the requirements and defining this area’s central concepts and tasks. We gave a
synopsis of techniques used to address individual steps of such a pipeline with a perspective
on how well the state-of-the-art solutions for these specific tasks can be integrated into an
incremental KG construction approach. We comparatively analyzed a selection of current
KG-specific pipelines and toolsets for KG construction based on a list of criteria derived from
our initial requirements. We found vast differences across these pipelines concerning the
number and structure of the input data, applied construction methods, Ontology Manage-
ment, the ability to continuously integrate new information, and the tracking of provenance
throughout the pipeline. The open KG-specific approaches are currently rather limited in their
scalability to many sources, support for incremental updates, and several steps regarding meta-
data, Ontology Management, entity resolution/fusion, and quality assurance. The considered
toolsets are generally better in terms of their functionality, but they are mostly closed-source
and thus not usable for new KG projects or research investigations.
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We identified several challenges to address for improved incremental KG construction.
These problems range from engineering questions, like the need for a flexible software
architecture, through numerous task-specific problems and the support for incremental
construction, to hurdles that must be addressed collectively by the research community, like
the development of open-source and modular toolsets for KG construction and benchmark-
ing and evaluation processes. Concerning the exploitation of new data sources, integrating
more multimodal data is of great potential but also requires more research to achieve effec-
tive solutions. Moreover, the use of Large Language Models for KG construction should
be investigated more and also optimized. Addressing the derived challenges promises
significant advances for future KG construction pipelines and a considerable reduction in
effort for creating and maintaining high-quality KGs.

Author Contributions: Conceptualization, M.H, D.O., A.S. and E.R.; Methodology, M.H., D.O.,
A.S. and E.R.; Investigation, M.H. and D.O.; Data Curation, M.H. and D.O.; Writing—original draft
preparation, M.H, D.O., H.K. and A.S.; Writing—review and editing, M.H, D.O., H.K., A.S. and
E.R.; Visualization, M.H., D.O. and A.S.; Supervision, E.R.; Project Administration, E.R.; Funding
Acquisition, E.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Federal Ministry of Education and Research of Germany
and by the Sächsische Staatsministerium für Wissenschaft Kultur und Tourismus in the program
Center of Excellence for AI-research “Center for Scalable Data Analytics and Artificial Intelligence
Dresden/Leipzig”, project grant identification number: ScaDS.AI.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Huang, X.; Zhang, J.; Li, D.; Li, P. Knowledge Graph Embedding Based Question Answering. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, WSDM 2019, Melbourne, VIC, Australia, 11–15 February 2019; ACM:
New York, NY, USA; pp. 105–113. [CrossRef]

2. Wang, X.; He, X.; Cao, Y.; Liu, M.; Chua, T. KGAT: Knowledge Graph Attention Network for Recommendation. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA,
4–8 August 2019; ACM: New York, NY, USA; pp. 950–958. [CrossRef]
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