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Abstract
Wearables are widely used for health data collection due to their

availability and advanced sensors, enabling smart health applica-

tions like stress detection. However, the sensitivity of personal

health data raises significant privacy concerns. While user de-

identification by removing direct identifiers such as names and

addresses is commonly employed to protect privacy, the data it-

self can still be exploited to re-identify individuals. We introduce

a novel framework for similarity-based Dynamic Time Warping

(DTW) re-identification attacks on time series health data. Using

the WESAD dataset and two larger synthetic datasets, we demon-

strate that even short segments of sensor data can achieve perfect

re-identification with our Slicing-DTW-Attack. Our attack is in-

dependent of training data and computes similarity rankings in

about 2 minutes for 10,000 subjects on a single CPU core. These

findings highlight that de-identification alone is insufficient to pro-

tect privacy. As a defense, we show that adding random noise to

the signals significantly reduces re-identification risk while only

moderately affecting usability in stress detection tasks, offering a

promising approach to balancing privacy and utility.

CCS Concepts
• Security and privacy→ Usability in security and privacy;
Privacy protections; • Human-centered computing→ Ubiq-
uitous and mobile devices.
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1 Introduction
The Internet of Things (IoT) is growing rapidly, finding widespread

success in the area of wearable devices such as smartwatches. Sales

of smartwatches already amounted to 165 million units worldwide

in 2023, while 209 million smartwatches are forecast to be sold

in 2028 [43]. Wrist-worn smartwatches are used for a variety of

activities, including general productivity, but also tracking and

recording personal health data, such as sleep, exercise, and stress.

For the purpose of health monitoring, smartwatches are equipped

with various high-quality sensors that make it possible to record a

person’s sensitive health data over the long term. While suitable

devices are becoming more and more widespread and the amount

of data collected is increasing rapidly as a result, the issue of data

protection is becoming increasingly important and user awareness

is growing. Serious threats to such data are paramount, when look-

ing at the various possible attacks on smart devices surveyed by

Sikder et al. [39]. Ernst and Ernst [10] also found that the perceived

data protection risk has a direct influence on device acceptance

and could ultimately prove to be a decisive factor for interested

users. In addition to general privacy concerns regarding personal

data, there is also a direct correlation between perceived risk and

trust in a data owner’s privacy promise. The primary reason for

this may be the fact that as soon as a user’s data is collected, the

responsibility for privacy protection is completely transferred to

the collecting institution, which is why the users should be fully

informed about threats and defensive measures.

De-identification is currently the common mechanism for pre-

serving privacy in such scenarios, with the aim of guarding a user’s

personal identity. For example, the privacy policy of a smartwatch

distributor states that they “... may share non-personal information

that is aggregated or de-identified so that it cannot reasonably be

used to identify an individual” [15, 16]. At first glance, this may

conceal the identity through metadata removal, but it does not

remove the inherent characteristics of an individual encoded into

their health data. For this reason, de-identification may not be an

effective protection against identity inference [8].

To demonstrate this risk, we apply similarity-based re-identification

attacks that solely use a short time series of a target user’s health

data to reconnect their de-identified data samples within a dataset.

Our attacks are based on the distance measure Dynamic TimeWarp-

ing (DTW) [27] to compare the time series with each other and

exploit the common characteristics of the provided multimodal
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Figure 1: DTW distance heatmap for the 15 WESAD dataset
subjects, where smaller scores indicate stronger similarity.

sensor data. Figure 1 shows a matrix with calculated DTW dis-

tances between 15 subjects of the WESAD dataset [35], where the

diagonal line compares each subject’s sample with itself. Inside the

matrix, distances between subjects vary constantly. However, our

proposed attacks show that even the often only small differences in

distance, offer the potential to distinguish the original individuals.

We find our re-identification approach to be effective in breaking

de-identification, especially in our example scenario in which insti-

tutions collect and leverage health data from smartwatches, which

is why we emphasize stricter privacy measures.

Our contributions are:

• We propose a framework for novel re-identification attacks

based on DTW distances in time series health data. Unlike

previous works, our approach does not rely on training data.

• We are the first to evaluate data-specific optimization strate-

gies that exploit the multimodal and biological characteris-

tics of the underlying health data.

• Our results expose inherent biometric re-identification threats

in personal health data collected from smartwatches.

• Our findings have practical relevance to smartwatch data

collection scenarios, where user privacy is currently being

implemented at scale through breakable de-identification.

In Section 3 we briefly review the relevant background before

focusing on related work in Section 4. Section 5 briefly describes

our attack and introduces the example smartwatch scenario for our

experiments. These experiments and their outcomes are then out-

lined as our attack framework in Sections 6 and 7, respectively. The

following Section 8 is centered around discussing the implications

of our results, which is divided into answering research questions

and limitations regarding our approach. Finally, we provide both a

concise summary of our findings and an outlook into future work

in the conclusive Section 9.

2 Problem Statement
We first give fundamental notations and definitions for our attack.

Definition 2.1 (Attack Sample and Target). Let a sequential time

series of multimodal sensor data points be generated from a sub-

ject’s (𝑠) device, with𝑀 giving the set of sensor modalities. Function

∫ maps a sample to its originating subject. An attack sample is such

a time series 𝐴 of subject ∫(𝐴) collected by an adversary, who aims

to match it to the correct target time series 𝑇𝐴 of the same subject

∫(𝐴). All target time series 𝑇 stemming from subject ∫(𝑇 ) are part

Table 1: Symbols and notations for our problem.

Notation Meaning

𝑀 set of available sensor modalities

𝐴 known attack sample time series 𝐴 ∈ D𝐴

D𝐴 dataset of known attack samples

𝑇 de-identified target time series 𝑇 ∈ D𝑇

D𝑇 dataset of de-identified targets

∫ : 𝐴,𝑇 → 𝑆 maps time series to their original subjects

𝑇𝐴 correct target 𝑇 matching sample 𝐴

𝑇𝐴 ⇐⇒ ∫(𝑇 ) = ∫(𝐴)
M : D𝐴 → D𝑇 secret function that maps correct matches:

M(𝐴) = 𝑇𝐴 or ∅ if 𝑇𝐴 ∉ D𝑇

S(𝐴,D𝑇 ) similarity attack on D𝑇 using 𝐴

returns similarity ranking R over ∀𝑇 ∈ D𝑇

of the de-identified dataset D𝑇 . Any 𝑇 ∈ D𝑇 is a target but may

only be 𝑇 = 𝑇𝐴 if ∫(𝑇 ) = ∫(𝐴).
Definition 2.2 (Re-identification). Let 𝑇 be a target time series

from a subject ∫(𝑇 ). Then,D𝑇 is the de-identified dataset of targets.

Let 𝐴 be an attack sample time series from a subject ∫(𝐴) known
to the adversary. Then, D𝐴 is the dataset of attack samples from

known subjects. Then the correct matching target 𝑇𝐴 for attack

sample𝐴 originally stemming from the same subject 𝑠 ∈ 𝑆 is defined
as: 𝑇𝐴 = 𝑇 ∈ D𝑇 such that ∫(𝐴) = ∫(𝑇 ). There exists a secret

matching function (unknown to the adversary)M : D𝐴 → D𝑇 that

maps known attack samples to their correct targets:M(𝐴) = 𝑇𝐴 .

M may be partial if ∃𝐴 ∈ D𝐴∀𝑇 ∈ D𝑇 : ∫(𝐴) ≠ ∫(𝑇 ), then
𝑇𝐴 ∉ D𝑇 andM(𝐴) = ∅. The adversary does not knowM but is

successful at re-identification for subject ∫(𝐴), when identifying

the corresponding𝑇𝐴 for their sample𝐴 based on a similarity attack

ranking: first(S(𝐴,D𝑇 )) =M(𝐴).

3 Background
In this section we focus on introducing fundamental concepts.

Dynamic TimeWarping.DTW [13, 44] measures the similarity

between temporal sequences by aligning them. It minimizes the

differences between corresponding elements by accommodating

temporal distortions through warping or stretching one sequence

to better match another. This overcomes the limits of Euclidean

distance, which solely compares data points at the same index [20].

Although there are various other distance measures, Euclidean

distance is the most common choice [13]. DTW keeps distances

between similar time series low, even when they have different

lengths, distortions, or noise.

To compute the distance between two time series𝑄 (𝑞1, 𝑞2, . . . , 𝑞𝑛)
and 𝐶 (𝑐1, 𝑐2, . . . , 𝑐𝑚) of lengths n and m, an 𝑛 ×𝑚 matrix is con-

structed, containing distances between all data points in each series.

The best alignment is then found using a warping path that mini-

mizes the overall distance [20]. Formally, DTW is represented as

the minimization problem [13, 20, 42]:

DTW(𝐶,𝑄) = min

𝜙
(
∑︁
𝑖, 𝑗∈𝜙

𝑑 (𝑐𝑖 , 𝑞 𝑗 )), (1)

where the distance between𝐶 and𝑄 is minimized along thewarping

path 𝜙 , that sums up all the distances over 𝜙 .



Slice it up: Unmasking User Identities in Smartwatch Health Data Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

In standard DTW, 𝑛×𝑚 distances must be calculated, resulting in

time and space complexity of𝑂 (𝑛 ×𝑚) or more general𝑂 (𝑛2) [20].
However, through optimization strategies [31], the amortized costs

of DTW can be reduced to an average complexity of less than

𝑂 (𝑛). For our DTW𝜃 variants on multimodal time series, we add a

dimension over the set of signal modalities𝑀 (Section 6.5).

Generative Adversarial Networks. Abundant training data

is essential for machine learning, but in health data, creating such

datasets is challenging due to limited subjects, ethical concerns, fi-

nancial constraints, and privacy issues [19]. Generative Adversarial

Networks (GANs) [14] offer a solution through synthetic data.

GANs consist of two neural networks: a generator (𝐺), which

creates synthetic samples from random noise, and a discriminator

(𝐷), which classifies samples as real or synthetic. These networks

are trained adversarially, with 𝐺 improving its outputs to deceive

𝐷 , and 𝐷 refining its ability to distinguish real from synthetic data.

Extensions of the original GAN architecture, such as conditional

GANs (CGAN)[28] and DoppelGANger (DGAN)[25], are also able

to reflect the class structure of the original dataset.

De-identification and Identity Inference. De-identification is

an anonymization technique that removes direct identifiers such as

names, locations, or other metadata to protect individuals when sen-

sitive data is collected or released publicly. However, re-identification

still frequently occurs, especially with health data [8]. In attacks

categorized as identity inference, adversaries infer identities or link

records to specific individuals, undermining the de-identification.

Henriksen-Bulmer and Jeary [17] reviewed such attacks from 2009

to 2016, finding that 72.7% were successful, highlighting the need

for improved mitigation strategies. Membership inference [36] as a

related attack paradigm, only aims to determine whether a target

is present in a dataset, rather than identifying specific individuals.

4 Related Work
The increasing use of wearable devices leads to the easy genera-

tion and sharing of data collected from individuals. Chikwetu et al.

[3] reviewed 72 studies about re-identification methods based on

collected data from wearable devices to estimate the risk that an in-

dividual is re-identified within a data collection. The risk estimation

allows us to derive potential consequences regarding data-sharing

policies in the context of data privacy and FAIR principles. The study

observed that most methods require very little data to re-identify

an individual highlighting the risk of revealing information.

In the biomedical domain, various methods [32, 48] utilize elec-

troencephalogram (EEG) and electrocardiogram (ECG) data. The

work of Zhang et al. [48] builds a certain classification model for

each individual based on manually defined features. Randazzo et al.

[32] train a neural network based on ECG-derived data where each

individual or similar ones represents one class. Due to the require-

ment of individual classification models, these approaches are not

feasible for a large amount of data.

In addition to biomedical signals, accelerometry data, and gyro-

scope data can be used for re-identifying individuals [33, 45] or to

predict the location of metro riders [18]. The work of Saleheen et al.

[33] uses accelerometry data from 353 participants being recorded

for 190,078 hours (70 days with at least 8 hours per day) resulting

in 51.3 billion data points. The attack aims to determine the trace

from an anonymized database regarding an available trace where

the user is known. The approach computes similarities between the

anonymized and known time series. Therefore, the traces are split

into smaller segments to build meaningful features using a neural

network. The network consists of convolutional layers and gated

recurrent units to address the time aspect. Moreover, the base model

classifies resulting features if the segment from the known user

corresponds to the anonymized one. The authors suggest various

aggregation strategies to determine the similarity between traces

based on the segment similarities.

In contrast to this approach, we do not utilize a supervised fea-

ture extraction and classification model where the performance

depends on training data, which is rarely available. Our proposed

method can be evaluated for each available individual because we

do not split the data into training and test datasets. Moreover, we

consider various sensor data types and thus not only focus on

accelerometry data. In contrast to our evaluation, the work only

considers the true matching rate which restricts the attacker from

a more differentiated view though taking the top k results.

Methodologically, our method is also related to similarity-based

attacks on encoded data utilizing the preservation of similarities in

the original data space and the encoded data space.

In the domain of authentication, biometric images such as fin-

gerprints are used as keys to log in to systems or applications.

The original images are encoded to templates using, e.g., Bloom

filter, neural networks, etc. [34]. Due to the preservation of the

similarity between original images and templates, similarity-based

attacks aim to construct an image where the encoded template is

similar to the target template. Therefore, similarity-based attack

methods [6, 47] compare a fake template with a target template

and iteratively optimize the construction process to obtain a new

image for generating a new template.

In summary, most of related work formulates re-identification

as a multi-class problem where each individual is characterized

by a certain class [32, 45] or as an authentication problem where

each individual is represented by its model [45, 48]. Moreover, the

approaches require a feature engineering step based on manually

defined features [32, 45, 48] or supervised learned ones [33].

5 Attack Scenario
In our scenario, the attacker uses their attack data samples 𝐴 ∈
D𝐴 with anonymized records within the dataset D𝑇 . The attacker

performs a similarity-based attack S(𝐴,D𝑇 ), ranking individuals
by their DTW distances to re-identify the correct target time series

𝑇𝐴 , thus undermining data privacy promises. Figure 2 illustrates

the attack scenario involving three actors:

Device Owner. An individual using a smartwatch to record

health data, which is transferred to apps and cloud storage.

Data Owner. An entity separate from the device owner collect-

ing data from smart devices and using it to enhance services. The

data is anonymized by de-identification to ensure privacy.

Attacker. An adversary with a data sample of the device owner,

aiming to break de-identification. This might be an insider on the

data owner side or the data owner themselves, trying to break their

privacy promise. Another possibility would be a third party seeking

out sensitive information about the device owner for personal gain.
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Figure 2: The attack scenario consists of a device owner, a
data owner, and an attacker. The device owner sends time
series data via his device to the data owner, who anonymizes
and stores it in a dataset for analysis. The attacker aims to
retrieve the device owner’s data from this dataset utilizing a
known data sample of the device owner.

The device owner is the targeted user in our attack. They gener-

ate health data on a smartwatch that is forwarded to the data owner

in de-identified form, i.e., with all directly identifying information

removed and replaced by unique IDs. However, the data itself is

passed on unchanged to keep the usability for analysis by the data

owner. The data owner stores this and other subjects’ data in an

aggregated dataset 𝐷𝑇 . Our DTW-based attacks enable an attacker

to find the original identity of such target data (𝑇 ) in the dataset

(𝐷𝑇 ) containing all device owners as subjects. The only prereq-

uisite is access to a (short) attack data sample (𝐴) of the device

owner. The attacker might as well possess a set of attack samples

(D𝐴) targeting multiple individuals. The attacker then carries out a

similarity-based attackS(𝐴,D𝑇 ) by calculating the DTW distances

between an attack sample 𝐴 ∈ D𝐴 and the anonymized targets

𝑇 ∈ D𝑇 . By performing a ranking on these distances, they may

identify the target 𝑇 having the highest similarity, i.e., lowest dis-

tance to 𝐴. This target is the most likely to be the device owner, i.e.,

the correct target 𝑇𝐴 . If correctly re-identified, any promised data

privacy guarantees are negated and user privacy would be broken

irreparably, rendering the anonymization of the device owner use-

less. It does not matter if data is stored or just processed, since the

attack can also be executed directly on any arriving data samples.

While an insider on the device owner’s side would have the eas-

iest access to an attack sample, there are various other scenarios in

which the attacker could gain access to the device owner’s sample:

Self-publication by device owner. The device owner (acciden-
tally) publishes the data. This could be through a fitness app synced

with the smartwatch [33]. The owner may publicly share data via

the app, making it available to potential attackers.

Leak by data owner. Smart devices offer cloud storage for ac-

cessing data across devices. However, the security of these services

depends on the data owner and might not be communicated to

users. Cloud data can be vulnerable backdoor exploits, as well as,

insecure authentication systems leading to data breaches [4].

Security vulnerabilities. Software or hardware vulnerabilities
in smart devices or apps are an issue due to the lack of security

features, such as secure authentication, PINs, and data encryp-

tion [4, 26, 2]. If an attacker steals or replaces a device, they may

access on-device data. Additionally, the Bluetooth connection for

data transfer to smartphones could be intercepted through man-in-

the-middle attacks using sniffers [2, 4, 40]. Malware and phishing

attacks targeting can also lead to unauthorized data acquisition.

6 Attack Framework
Figure 3 illustrates the eight-stage attack framework for our ex-

periments, where we favored a modular design for allowing the

integration of datasets and methods using interfaces: (1) Select a

target datasetD𝑇 for the re-identification attack. (2) Preprocess the

dataset to ensure data consistency. (3) Apply optional complexity

reduction. (4) If no external attack sample is provided, the data

model takes care of creating a D𝐴 simulation, cutting attack data

out of D𝑇 . (5) We offer different DTW attack (S) strategies based
on DTW𝜃 variants for calculating the distance scores. (6) If DTW𝜃

produces multiple results, we offer aggregation methods. (7) The

attack evaluation uses a three-stage rank-based evaluation pipeline

for incorporation classes, sensor modalities, and attack window

sizes. (8) A result overview for the various evaluation results.

6.1 Datasets
We employ two kinds of data in our experiments, with the first

being real lab data from the relatively small WESAD dataset. The

second type is synthetic data generated from training GANs on the

WESAD data for testing our attacks on larger synthetic datasets.

WESAD. The WESAD dataset (WEarable Stress and Affect De-

tection) was introduced by Schmidt et al. [35] and has since been

widely used for stress detection research [5, 9, 12, 22, 24, 38]. It

includes multimodal data from two wearable sources: a chest-worn

RespiBan and a wrist-worn Empatica E4, which both track divers

signal modalities at varying sampling rates.

We utilize only Empatica E4 data, targeting privacy risks in

smartwatches. The watch collects blood volume pulse (BVP, 64Hz),

electrodermal activity (EDA, 4Hz), skin temperature (TEMP, 4Hz),

and 3-axis accelerometer (ACC[x,y,z], 32Hz) and the dataset in-

cludes recordings from 15 subjects (12 males, 3 females; mean age:

27.5) across 36 minutes each. The study had five phases covering

different affective states: baseline (20 min of neutral state), amuse-
ment (6.5 min of humorous video clips), stress (Trier Social Stress
Test), meditation (7 min of guided breathing), and recovery (final

debriefing), which are commonly simplified to stress and non-stress.
Synthetic. Since the 15 subjects in the WESAD dataset are a

rather small testing sample and without other sources publicly

available, we want to approximate our scalability regarding attack

success and runtime using generated data. For creating synthetic

data, we leverage existing work [23], which employed CGAN and

DGAN models to augment the WESAD dataset with comparable

synthetic subject data. We denote synthetic datasets using the for-

mat GAN
#subjects

, where the number indicates the dataset size. For

example, a dataset with 15 synthetic subjects generated by the

CGAN is referred to as CGAN15. We always include the same sub-

jects for the same size, and larger datasets are created by adding

subjects in the same fixed order. The authors [23] ensured their
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(a) WESAD-CGAN15
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(b) WESAD-DGAN15

Figure 4: DTWdistance heatmaps between the subjects of the
WESAD dataset (1-15) and the CGAN15 or DGAN15 dataset
(16-30). Distance values are averaged over sensors and the
same subjects are matched on the diagonal.

synthetic data mirrors the original properties, maintaining simi-

lar signal correlations and overall structure. When we compare

DTW distance variations between subjects in the synthetic datasets

and the original WESAD data, ideally, the distance distribution

across subjects should be consistent between datasets. However, as

shown in Figure 4, when comparing 15 real WESAD subjects to 15

synthetic subjects from CGAN and DGAN, we observe that the syn-

thetic data exhibits significantly less variation in DTW distances.

The WESAD dataset, shown at the top left of the matrices, displays

substantial variation in distances, whereas the GAN datasets at the

bottom right show uniformly low distances among subjects.

When comparing WESAD data to the synthetic datasets (seen in

the lower left and top right corners of the matrices), distances are

high for both, with CGAN showing slightly lower overall scores.

While this might seem like a drawback, it can actually be advanta-

geous. The higher distances from the original data introduce desired

diversity, and the uniformly low distances within the CGAN and

DGAN datasets create a more challenging re-identification task

compared to the WESAD dataset, where subjects are less similar.

Therefore, we use CGAN and DGAN data to test the scalability of

our approach to larger subject numbers, expecting a slightly lower

success rate than with the original data, which might provide a

conservative lower bound when compared to real data.

6.2 Signal Preprocessing
For the preprocessing stage (2), we largely adopt the signal pre-

processing of Gil-Martin et al. [12], which consists of three steps:

signal resampling, relabelling, and normalization. As described in

Section 6.1, the sensors of the Empatica E4 track signals at different

sampling rates. We therefore resample them to a consistent 64 Hz

sampling rate by applying a fast Fourier transform, which ensures

a time series with exactly one data point per signal at each point

in time. In the second step, we adjust the labels of the resampled

signal data. The original labels available in the WESAD dataset are

divided into baseline, amusement, stress, meditation and recovery.
For supporting a binary stress detection task, we want to consoli-

date the labels into stress and non-stress. We thus initially drop the

very few data points labelled meditation and recovery, and combine

the labels baseline and amusement into non-stress. This leads to an

average of 70% non-stress and 30% stress data per subject. Third, we
perform a min-max normalization in the [0, 1] range to remove the

scaling difference between signal modalities, which speeds up cal-

culations, as well as, increasing the signal comparability of different

subjects in our similarity ranking. Our preprocessing is adapted to

our expected data in the targeted database but can be changed to

fit different data sampling and labels.

6.3 Complexity Reduction

Figure 5: Example results of our complexity reduction meth-
ods on subject s2 of the WESAD dataset.

For large databases we find notable performance pre-requisites

for our DTWattacks, which leads us to the integration of complexity

reduction methods, as shown in stage (3) of Figure 3. We discuss the

methods of downsampling, DBA, and PCA in detail below. Their

results are exemplified in Figure 5, where we apply DBA and PCA

after downsampling the signals for reducing noise.

Downsampling. Downsampling is our baseline step for com-

plexity reduction and reduces the sampling rate of our signals by a
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Algorithm 1 External Mode (external 𝐴 input)

1: Input: D𝑇 : Set of 𝑛 targets 𝑇 , 𝐴: Attack sample

2: Output: 𝑇 : Most similar target 𝑇 ∈ D𝑇 to 𝐴

3: D𝑇 , 𝐴 := Preprocess(D𝑇 , 𝐴) ⊲ Section 6.2

4: D𝑇 , 𝐴 := Complexity(D𝑇 , 𝐴) ⊲ Optional, Section 6.3

5: R = S(𝐴,D′𝑇 ) ⊲ Section 6.5

6: 𝑇 ← first(R) ⊲ First ranked target

7: return T ⊲ Successful re-identification if 𝑇 = 𝑇𝐴

Algorithm 2 Simulation Mode (no 𝐴 input)

1: Input: D𝑇 : Set of 𝑛 targets 𝑇 , 𝑇 : Attacked target 𝑇 ∈ D𝑇

2: Output: P: Set of p@k scores regarding 𝑇𝐴 ranking

3: D𝑇 := Preprocess(D𝑇 ) ⊲ Section 6.2

4: D𝑇 := Complexity(D𝑇 ) ⊲ Optional, Section 6.3

5: D′𝑇 , 𝐴𝑛𝑜𝑛 , 𝐴𝑠𝑡𝑟𝑒𝑠𝑠 = Cut(D𝑇 , 𝑇 ,𝑤 ,𝑤
adj

) ⊲ Section 6.4

6: R𝑛𝑜𝑛 = S(𝐴𝑛𝑜𝑛,D′𝑇 ) ⊲ Section 6.5

7: R𝑠𝑡𝑟𝑒𝑠𝑠 = S(𝐴𝑠𝑡𝑟𝑒𝑠𝑠 ,D′𝑇 )
8: 𝑇𝐴 ←M(𝐴𝑛𝑜𝑛) ⊲ Correct target for 𝐴𝑛𝑜𝑛/𝐴𝑠𝑡𝑟𝑒𝑠𝑠

9: 𝑟𝑛𝑜𝑛 ← getRank(R𝑛𝑜𝑛,𝑇𝐴) ⊲ Rank of 𝑇𝐴 in R
10: 𝑟𝑠𝑡𝑟𝑒𝑠𝑠 ← getRank(R𝑠𝑡𝑟𝑒𝑠𝑠 ,𝑇𝐴)
11: 𝑃 =W𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (𝑛, 𝑟𝑛𝑜𝑛, 𝑟𝑠𝑡𝑟𝑒𝑠𝑠 ) ⊲ Get p@k scores, Section 6.7.1

12: return 𝑃 ⊲ Successful re-identification if 𝑝@1 = 1

set downsampling factor (DSF) to shorten the signals. For example,

a downsample factor of 𝐷𝑆𝐹 = 1000 reduces 136,000 to 136 data

points. This enhances runtimes and smooths signals, reducing noise

while retaining the original course, as seen in Figure 5.

Dynamic Time Warping Barycenter Averaging. DBA [29]

averages sequences over their multimodal signals to reduce the

overhead from multiple modalities and thereby improves our run-

times. It uses an heuristic strategy that iteratively refines an initial

arbitrary average sequence to minimize the sum of squared DTW

distances from the average sequence to the overall set of sequences.

When applied on our downsampled signals in Figure 5, we can

notice how DBA focuses on just a few deflections in the signals.

Principal Component Analysis. PCA [46] projects data into

lower dimensions, while retaining its significant variance. Using

the first PC, we simplify our data representation, facilitating faster

computations. Figure 5 clearly shows the differences between PCA

and DBA, with substantial changes in PC amplitudes between labels.

6.4 Data Model
The correct data model in stage (4) is a key factor in simulating our

attack scenario and has two different modes, the external and the

simulation mode. These two modes determine which data is used

as the attack sample for the re-identification attacks.

External.The external mode offers an realistic in-practice attack,

where the attacker owns an attack sample𝐴 that is used as external

input for the attacks. The method is described in Algorithm 1 and

may be repeated for multiple 𝐴 ∈ D𝐴 if the attacker posses a set.

Simulation. By contrast, in simulation mode, the attack sam-

ple 𝐴 is cut out of the given target dataset D𝑇 itself. This mode

is needed for determining the performance of our DTW attacks

in experiments, since we have to know the correct target 𝑇𝐴 for

each sample. The simulation abides to three key parameters for

Algorithm 3 (Threshold) DTW Re-identification Attack

1: Input: D𝑇 : Set of 𝑛 targets 𝑇 , 𝐴: Attack sample, 𝓉: Threshold

2: Output: R: Distance-based ranking or ∅
3: function S(𝐴,D𝑇 , 𝓉) ⊲ For standard functionality 𝓉 = ∞
4: 𝑅 ← ∅ ⊲ Initialize

5: for 𝑖 = 1 to 𝑛 do
6: 𝐷 ← DTW𝜃 (𝐴,𝑇𝑖 ) ⊲ Calculate distances, Section 6.5

7: 𝑑 ← Agg(𝐷,𝑊 ) ⊲ Aggregate over signals, Section 6.7.2

8: if 𝑑 ≤ 𝓉 then ⊲ Test distance threshold, Section 6.8

9: 𝑅.append((𝑇𝑖 : 𝑑)) ⊲ 𝑇 -Distance pairs, Section 6.6

10: end if
11: end for
12: if 𝑅 = ∅ then ⊲ No similar target for threshold

13: R← ∅ ⊲ No target found, Definition 2.2

14: else
15: R← Rank(sort(𝑅)) ⊲ Rank targets 𝑇 on 𝑑 , Section 6.6

16: end if
17: return R
18: end function

cutting attack samples from the original data. The first is the at-
tack window size 𝑤 , which reflects the length of an attack sample

𝐴, i.e., the number of windows cut out of the target’s signal. The

second parameter is called adjacent windows 𝑤
adj

and determines

how many additional adjacent windows are cut from the signals

at the edges of the sample, which prevents accidental alignment

due to adjacent similar data points. By default, we use𝑤
adj

= 1000

adjacent windows for the experiments, which changes in relation

to downsampling. With a 𝐷𝑆𝐹 = 1000, we just remove one adjacent

window (𝑤
adj

= 1). The classes (stress or non-stress) constitute
our third parameter. For a realistic result and evaluating the possi-

bly differing threat levels, we always attack using both stress and

non-stress data—further explained in Section 6.7.1.

As detailed in Algorithm 2, we first select the target 𝑇 ∈ D𝑇

as the attacked subject. When creating an attack sample 𝐴 for a

target 𝑇 ∈ D𝑇 (i.e., a subject), we first take the time series 𝑇 and

split it into its non-stress and stress segments. We then cut out a

sample of length 𝑤 from the middle of each segment, while also

cutting the additional adjacent windows𝑤
adj

that are thrown away.

We now have 𝐴𝑛𝑜𝑛 and 𝐴𝑠𝑡𝑟𝑒𝑠𝑠 for 𝑇 , and the rest of the cut-up

time series is simply merged at the new borders, again creating one

continuous time series 𝑇 ′. This can lead to jumps in the signals,

which, however, already commonly exist in the original data due

to measurement errors and dropping the meditation and recovery

labels in our preprocessing. In fact, random signal jumps potentially

make similarity-based re-identification more difficult.

To ensure that our attack sample creation has no influence on

our re-identification results, we also cut samples out of all other

𝑇 ∈ D𝑇 using the same process. We thereby remove the potential

influence of our cuts and especially the signal lengths on the DTW

distances. Otherwise, the remaining data for 𝑇𝐴 would be shorter

than other target data, which leads to an underestimation of DTW

distance solely based on less data points comparisons.

Finally, we evaluate the resulting similarity rankings for 𝐴𝑛𝑜𝑛

and 𝐴𝑠𝑡𝑟𝑒𝑠𝑠 regarding the targets 𝑇 ∈ D𝑇 after our attack by deter-

mining p@k scores as detailed in Sections 6.6 and 6.7.1.
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6.5 DTW-Attacks
This section presents our four DTW-based re-identification attacks

that an adversary may use for comparing an attack sample 𝐴 to

entries 𝑇 in a target dataset D𝑇 regarding their similarity. The

overall attack follows Algorithm 3 in its standard variation for

given inputs𝐴 andD𝑇 . Here, we focus on the computation of DTW

distances using custom DTW𝜃 variants as in Line 6 of Algorithm 3.

Single-DTW-Attack. This is our baseline that calculates stan-
dard DTW alignments over a set of signal modalities 𝑀 between

an attack sample 𝐴 and an entry 𝑇 ∈ D𝑇 using Equation (1):

DTW
Single

(𝐴,𝑇 ) = {DTW(𝐴𝑚,𝑇𝑚) |∀𝑚 ∈ 𝑀}, (2)

Since we have multimodal time series, we create individual dis-

tance scores between the same modalities𝑚 ∈ 𝑀 . This results in a

𝑛 ×𝑚 distance matrix, with 𝑛 = |D𝑇 | and𝑚 = |𝑀 |, where smaller

distances indicate higher similarity.

Multi-DTW-Attack. The Multi-DTW-Attack divides the attack

sample𝐴 into multiple subsets of equal length based on a predefined

factor (multi), which defaults to 3 for our experiments. DTW
Single

alignments are then calculated between each subset 𝐴𝑖 and target

𝑇 , leading to a variation from Equation (2) for𝑚𝑢𝑙𝑡𝑖 > 1:

DTW
Multi
(𝐴,𝑇 ) = ★multi

𝑖=1 DTW
Single

(𝐴𝑖 ,𝑇 ),
where ★ ∈ {min, avg},

𝐴𝑖 = 𝐴

[ ⌊
(𝑖 − 1) · |𝐴|

multi

⌋
:

⌊
𝑖 · |𝐴|
multi

⌋ ]
,

𝐴[𝑥 : 𝑦] represents a segment from index 𝑥 to 𝑦

(3)

This produces the same matrix structure as DTW
Single

but ag-

gregated over all subsets 𝐴𝑖 . By dividing into smaller time frames,

we reduces the signal deviations caused by variations inside longer

time series possibly leading to a shorter but better alignment.

Slicing-DTW-Attack. In the Slicing-DTW-Attack, we invert the
idea of the Multi-DTW-Attack and instead divide the signals of

target 𝑇 into slices matching the length of the attack sample 𝐴.

For this approach we assume |𝐴| ≤ |𝑇 | . For better coverage, we
create an overlap of 50% between slices using a sliding window.

We can then perfectly align the resulting target slices with the

same length attack sample for calculating the DTW
Single

distance

between the signals, which removes length-related differences and

better focuses on the similarity of specific moments in the time

series. Distances are calculated incorporating Equation (2):

DTW
Slicing

(𝐴,𝑇 ) = ★slices
𝑗=1 DTW

Single
(𝐴,𝑇𝑗 ),

where ★ ∈ {min, avg}, slices =
⌈
2 · |𝑇 |
|𝐴|

⌉
,

𝑇𝑗 = 𝑇

[ ⌊
( 𝑗 − 1) · |𝐴|

2

⌋
:

⌊
( 𝑗 − 1) · |𝐴|

2

+ |𝐴|
⌋ ]

,

𝑇 [𝑥 : 𝑦] represents a segment from index 𝑥 to 𝑦

(4)

This again generates the same matrix structure as DTW
Single

but aggregated over all slices 𝑇𝑗 .

Multi-Slicing-DTW-Attack. Finally, the Multi-Slicing-DTW-
Attack combines the Multi-DTW-Attack and Slicing-DTW-Attack.

Thus, the attack sample 𝐴 is divided into subsets as in Equation (3)

and the dataset signals are sliced using Equation (4), resulting in:

DTW
Multi-Slicing

(𝐴,𝑇 ) = ★multi
𝑖=1 DTW

Slicing
(𝐴𝑖 ,𝑇 ),

where ★ ∈ {min, avg},

𝐴𝑖 = 𝐴

[ ⌊
(𝑖 − 1) · |𝐴|

multi

⌋
:

⌊
𝑖 · |𝐴|
multi

⌋ ]
,

𝐴[𝑥 : 𝑦] represents a segment from index 𝑥 to 𝑦

(5)

We aggregate slices𝑇𝑗 and subsets 𝐴𝑖 , keeping the 𝑛 ×𝑚 matrix.

Aggregation. For step (6) in our attack framework from Figure 3,

we focus on the aggregation function★ from Equations (3) to (5). In

these equations, we state that ★ ∈ {min, avg}, which is needed due

to the multiple scores per target returned by our multi and slicing

strategies. For our ranking, these scores are combined into a single

value per sensor modality𝑚 ∈ 𝑀 using one of two methods: avg,

which computes the mean distance score for each modality, or min,

which selects the minimum distance score for each modality. For

Multi-Slicing-DTW-Attacks, we need to decide on a combination

between these methods. Our tuning experiments show that the

avg best suits the Multi-DTW-Attack, the min excels for Slicing-

DTW-Attack, and min-min for Multi-Slicing-DTW-Attack, as can

be seen in our results in Appendix A Table 2. We therefore use

these methods in further experiments. We address the aggregation

of multiple sensor modalities in Section 6.7.2.

6.6 Rank-based Evaluation
We want to define a rank-based metric that allows us to assess

attack success beyond direct re-identification, such as retrieving

the correct target 𝑇𝐴 within the top five distance scores. Correctly

putting a target into the top ranking spots might still pose a privacy

risk, due to reducing the search space for further exploits.

We convert the DTW distances between an attack sample 𝐴

and targets D𝑇 , where each target 𝑇 ∈ D𝑇 gets associated with a

single distance score 𝑑 . These (𝑇 : 𝑑) pairs are sorted in ascending

order based on 𝑑 in the list 𝑅, assigning ranks based on the smallest

distance.We employ realistic rank selection for ties based on Berren-

dorf et al. [1]. With 𝑅 and 𝛼 = 𝑑𝑇𝐴 , where (𝑇𝐴 : 𝑑𝑇𝐴 ) ∈ 𝑅 is the

distance score of the correct target𝑇𝐴 , the realistic rank is the arith-

metic mean of the optimistic rank (𝑟𝑎𝑛𝑘+ (𝑅, 𝛼) = |{𝛽 ∈ 𝑅 | 𝛽 >

𝛼}| + 1) and the pessimistic rank (𝑟𝑎𝑛𝑘− (𝑅, 𝛼) = |{𝛽 ∈ 𝑅 | 𝛽 ≥ 𝛼}|),
resulting in: 𝑅𝑎𝑛𝑘 (𝑅, 𝛼) = 1

2
(𝑟𝑎𝑛𝑘+ (𝑅, 𝛼) + 𝑟𝑎𝑛𝑘− (𝑅, 𝛼)).

Based on these ranks, we calculate the precision@k (p@k) scores

regarding the correct target 𝑇𝐴 and |max(𝑘) = D𝑇 |, which quanti-

fies𝑇𝐴 among top-k ranks. Thus a p@1 gives our success for direct

re-identification by ranking the correct target at the top. We also

consider a higher k-value in p@5, since even if we are not able to

rank the target first, we might still be able to significantly narrow

down the list of candidates to the top five.

6.7 Evaluation Pipeline
For tuning our DTW attack to the optimal parameters in each run,

we go through a pipeline comprising three evaluation phases: class

ranking, sensor aggregation, and attack window sizes (see (7) of

Figure 3). But before starting our evaluations for attack hyper-

paramters, we need to consider the simulation strategy regarding

target selection. We aim to adhere to an attack scenario in which
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we individually target a subject for whom we have obtained a sam-

ple 𝐴 and their corresponding target data 𝑇𝐴 within the dataset

D𝑇 . However, we average our results over multiple subjects in

our target datasets for a subject-based cross-validation approach.

Thus, e.g., using the WESAD dataset of 15 subjects as D𝑇 , each

individual subject is a target 𝑇 and attacked once in a simulation

from Algorithm 2. Thus, |D𝐴 | = |D𝑇 |. The returned p@k value

lists 𝑃 for each simulation are averaged over the resulting set of

attack samples D𝐴 for an overall evaluation: 𝑃D𝑇
=

∑
𝐴∈D𝐴 𝑃𝐴

| {𝐴∈D𝐴 } | .
Our synthetic datasets with the same size (CGAN15 andDGAN15)

also get the same handling. The bigger datasets are evaluated by

adding subjects to D𝑇 but keeping the same 15 targets for D𝐴 ,

which can lead to |D𝐴 | < |D𝑇 |. So e.g., for evaluating a CGAN100,

we would take the same 15 targets from the CGAN15 but add an-

other 85 synthetic subjects to increase the retrieval difficulty.

For our standard case we assume the worst case ∀𝐴 ∈ D𝐴 :

𝑇𝐴 ∈ D𝑇 , i.e., the correct target𝑇𝐴 for an attack sample𝐴 is always

included in the target dataset D𝑇 . In Section 6.8, we loosen that

assumption to also adhere to the partialM from Definition 2.2.

6.7.1 Classes. First, we consider the influence of classes on our

attack. We start by evaluating the potential for stress detection to

enhance our precision, since models reliably classify both classes

in our data [12, 23]. With the assumption that we can classify the

attack sample and the target regarding the two classes, we can

try and optimize by comparing only the same types. In tuning

experiments on the WESAD dataset, we evaluated this scenario and

found the non-stress data to have an average advantage of almost

29% over stress data for re-identification in all attacks except the

Slicing-Attack, where we found no difference since both classes hit

the maximum. See Table 3 of Appendix A for the detailed results.

For our general attack results, however, we want to give a more

realistic view without such classification pre-requisites, for which

we have to equally consider both classes in our datasets.With a class

distribution of 70% non-stress and 30% stress inside the data, we gen-

erally perform two separate attacks using corresponding attack sam-

ples cut from each class as described in the simulation mode from

Section 6.4. We then combine their p@k scores using a weighted

mean to reflect the class prevalence:W𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (𝑛, 𝑟𝑛𝑜𝑛, 𝑟𝑠𝑡𝑟𝑒𝑠𝑠 ) =
(0.7 · p@k(𝑟𝑛𝑜𝑛) + 0.3 · p@k(𝑟𝑠𝑡𝑟𝑒𝑠𝑠 ) |𝑘 ∈ (1, 2, ..., 𝑛)), where 𝑛 =

|D𝑇 | and 𝑟𝑛𝑜𝑛, 𝑟𝑠𝑡𝑟𝑒𝑠𝑠 the ranks of the correct target𝑇𝐴 returned by

the attacks for each class. With this approach we remove potential

over- or undervaluation of the attack results based on the class

ratio or type of class inside the the attack sample.

6.7.2 Sensor Aggregation. For the subsequent second stage, we

identify the best aggregation method for the multiple sensor-level

distance scores into our ranking from Section 6.6.

Naive Sensor Aggregation. This basic approach assumes a "naive"

attacker who aggregates all sensor distances without selecting spe-

cific sensors. We calculate the mean across all sensor modalities

𝑀 ={BVP, EDA, TEMP, ACC} in the DTW distance matrix 𝐷 as:

𝐴𝑔𝑔(𝐷) =
∑

𝑚∈𝑀 𝐷𝑚

|𝑀 | , to obtain a general overview of attack perfor-

mance, independent of individual sensors. However, this simple ap-

proach does not account for potential differences in re-identification

effectiveness across sensor combinations.

Informed Sensor Aggregation.With knowledge about the under-

lying data, DTW attacks can be enhanced by adapting the ranking

to the importance of available sensor modalities. As an estima-

tion, an attacker might create a priori sensor rankings based on

the anonymized dataset, evaluating the most effective sensors by

assuming random subject identifiers for each sample and splitting

data as in the simulation mode (Section 6.4). Another option is to

use synthetic data, allowing the attacker to identify and apply an

informed sensor combination to the real dataset.

Thus, to move beyond the naive approach, we evaluate each sen-

sor and their combinations, averaging their combined distance

scores as before. We evaluate all permutations of 𝑀 regarding

𝐴𝑔𝑔(𝐷) and select the one with the best p@1 score; if this is not

possible, a random choice is made. In Table 4 of Appendix A, we

present these permutation results for the WESAD dataset. The

Single-, Multi-, and Multi-Slicing-Attacks strongly favor BVP, while

the Slicing-Attack shows just minimal performance differences be-

tween combinations. We can see how averaging all sensors also

gives a rough average of sensor combinations but just sub-optimal

re-identification, except for the Slicing-Attack. Overall, BVP and

ACC seem to pose the highest re-identification risks.
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Figure 6: Radar charts illustrating the best sensor weight-
ings for the Single-DTW-Attack, Multi-DTW-Attack and
Multi-Slicing-DTW-Attack (left) and the Slicing-DTW-Attack
(right). We layered all weightings delivering the best results.

Weighted Sensor Aggregation. We further determine optimal sen-

sor weightings through grid search. Instead of equally weighted

transmutations, we find specific weights𝑤 for each sensor to derive

a weighted mean: 𝐴𝑔𝑔(𝐷,𝑊 ) =
∑

𝑚∈𝑀 𝑤𝑚𝐷𝑚∑
𝑚∈𝑀 𝑤𝑚

, for a set of weights

𝑊 = {𝑤𝑚 |𝑚 ∈ 𝑀}. Using equal or single weights leads to the

naive and informed methods, respectively. In Figure 6, the highest

weightings still favor BVP and ACC, but now also EDA, in all but

the Slicing-Attack, which shows no clear preference. We find:

𝑊𝑜𝑝𝑡 = {𝑤BVP : 0.4, 𝑤EDA : 0.2, 𝑤TEMP : 0.2, 𝑤ACC : 0.2}, (6)

as the only optimal weighting that applies across WESAD, CGAN15,

DGAN15, all DTW-Attacks, and both classes. However, this scenario

represents a worst-case for our multimodal attack and requires prior

knowledge on the target data, so we consider it separately.

6.7.3 Attack Window Sizes. We test varying window sizes𝑤𝐴 for

our attack sample 𝐴 to assess the impact on re-identification per-

formance. For Single-DTW- and Slicing-DTW-Attacks, we evaluate

window sizes from 1,000 (1) to 36,000 (36) data points, while the

Multi-DTW-Attacks take the same maximum but split them into

three separate windows of up to 12,000 (12) each. One window
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translates to ≈16 seconds. In a first test on the WESAD dataset (see

Figure 11 in Appendix A), we find that lower sizes are generally bet-

ter in all attacks except the Slicing-Attack, where we find the same

results for all sizes. We even observe that additional window size

does hinder performance, especially for the Multi-Slicing-Attack.

The advantage of less windows in our other attacks is an intuition

that also motivates the slicing approach by suggesting that compar-

ing shorter time series further enhances individual assignment and

re-identification performance on our data. For our attack results, we

test all window sizes and then select the smallest best performing

size for each attack to measure the worst-case.

6.8 In-Out Threshold Scenario
As described in Section 6.7, we have until now retrieved correct

targets for attack samples under the optimistic assumption that

they are always included in the target dataset: ∀𝐴 ∈ D𝐴 : 𝑇𝐴 ∈ D𝑇 .

This approach allowed us to focus on varying the retrieval difficulty

by adjusting the size of D𝑇 but represents an upper limit of our

re-identification risk. However, to create a more realistic picture of

attack performance, we also consider an "in-out" attack scenario.

In this scenario, only a fraction of available attack samples may

have corresponding targets within the dataset: ∀𝐴 ∈ D𝐴 : 𝑇𝐴 ∈
D𝑇 ∨𝑇𝐴 ∉ D𝑇 . Consequently, the attacker does not know whether

the correct target for an attack sample is present or not.

To achieve a simulation of this partition, we use two separate

datasets: D𝐴 (attack subjects) and D𝑇 (target subjects), each with

the same number of subjects (|D𝐴 | = |D𝑇 |). We define a percent-

age overlap as the Dice coefficient 𝐷𝑆𝐶 =
2· |D𝐴∩D𝑇 |
|D𝐴 |+|D𝑇 | between the

datasets, representing the proportion of possible correct matches.

The remaining subjects are non-overlapping and should not be

matched. For the WESAD dataset, which contains 15 subjects, the

lowest possible overlap is 1 subject, translating to 𝐷𝑆𝐶𝐿 = 12.5%,

defining our low overlap setting. We also employ a medium overlap

of 𝐷𝑆𝐶𝑀 = 50% and a full overlap, or 𝐷𝑆𝐶𝐹 = 100%, which repre-

sents our standard scenario. For synthetic GAN datasets, we apply

these overlaps to larger dataset sizes of |D𝐴 | = |D𝐴 | = 120, filling

them according to each overlap requirement.

For adapting our attacks to the "in-out" problem, we introduce

an additional threshold stage based on the DTW distances. This

stage determines whether a returned subject is sufficiently close in

distance to the attack sample to potentially be the correct target. For

incorporating this threshold 𝓉 into our attack, we have to revise

Algorithm 3 to its threshold variation, which now also fits the

partial setting ofM from Definition 2.2.

We can evaluate our threshold attack utilizing the same simula-

tion techniques (Section 6.4) as before by treating D𝐴 and D𝑇 as

D𝐴 and D𝑇 . We track the correct and incorrect matches between

D𝐴 and D𝑇 using p@1, recall@1 (r@1), and their combined F1@1-

score (F@1) across various thresholds (𝓉). Our F1 translates to F@1,

since our evaluation is not limited to deciding between "in" and

"out" but instead also considers if the found match is correct or not.

6.9 Mitigating DTW-Attacks
To thoroughly assess our attacks, we also test the effectiveness

of defense mechanisms against them. As noted in Section 1, data

owners commonly use de-identification for privacy protection. Our

Figure 7: Example effects of adding random noise using the
Laplace distribution with 𝜎 = 0.1 to subject s2 of the WESAD
dataset, which was downsampled using a 𝐷𝑆𝐹 = 1000.

attacks, however, target de-identified health data without metadata,

underscoring the need for additional data-centric defenses.

One common approach is noise injection, as seen in Differential

Privacy (DP) [7], which is able to obscure biometric features while

preserving analytical utility. This method adds random noise to

the original data, which is drawn from a Laplace distribution [21].

For our time series data, we inject noise by varying the scale pa-

rameter 𝜎 , or noise multiplier, which controls the magnitude. A

larger 𝜎 introduces more noise to data points, potentially reducing

susceptibility to attacks but also impacting data utility. Figure 7

illustrates how noise affects WESAD data, revealing significant

signal distortion even at low noise levels (𝜎 = 0.1).

To evaluate the privacy-utility trade-off, we conduct a binary

stress detection, employing a convolutional neural network model

andmethodology from previous work [12, 23].We apply noise levels

ranging from 𝜎 = [0, 15] to the WESAD dataset creating noisy

versions, where 𝜎 = 0 represents no noise. We then run our attacks

and the stress detection model on the noised data, however not

adding noise to the attack samples. Attack performance is measured

using p@1, while the utility of the stress detection is given by F1-

score via leave-one-out cross-validation. Both metrics are averaged

over 10 repetitions to account for the introduced randomness. Our

goal is to find a noise level that provides protection against our

attacks, while still allowing for meaningful data analysis.

7 Evaluation
In this section, we present the results of our propsoed experiments.

7.1 Standard DTW-Attack Results
In this first evaluation, we focus on main attack scenario (Sec-

tion 6.7) using the different sensor aggregation from Section 6.7.2.

We focus on the mean over all signals (naive) and picking sensor

combinations (informed) as the realistic cases, since finding opti-

mized weights (weighted) requires more detailed a priori knowledge

by the attacker. The naive approach allows for comparing the gen-

eral re-identification potential of our attacks, while the informed

variation reflects a more pessimistic threat level, and the weighted

version represents the worst-case scenario.

Complexity Reduction. To evaluate the complexity reduction

methods from Section 6.3, we compare the average results across

all naive attacks and the WESAD, CGAN15, and DGAN15 datasets.

Our focus is on the usability of the reduced data for our attacks.

Detailed results are located in Table 5 of Appendix A.
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Figure 8: Our attack results (p@1, p@5) in the standard evaluation setting. We test our four DTW attacks on the WESAD dataset
and on synthetic datasets of sizes 15 and 10,000, all using a 𝐷𝑆𝐹 = 1000. Results that are effectively giving zero are indicated
with red crosses, which in these cases translates to random guessing. Additional details, including the attack window size𝑤
and the best-performing sensors for informed aggregation, are provided in Table 6 of Appendix A.

For downsampling, we test 𝐷𝑆𝐹 s ranging from 1× (no downsam-

pling) to 1000× reduction. We observe a linear relationship, where

a higher 𝐷𝑆𝐹 leads to lower runtimes and improved results, even

compared to the original data. This improvement is likely due to

signal smoothing, which may aid DTW alignment. From𝐷𝑆𝐹 = 1 to

𝐷𝑆𝐹 = 1000, we see an average 21% increase in p@1 across datasets.

DBA and PCA are evaluated on datasets downsampled with the

optimal 𝐷𝑆𝐹 = 1000. While both methods reduce execution time,

they significantly decrease re-identification success. Compared to

downsampling alone, DBA results in an average p@1 loss of 30%,

and PCA results in a 65% loss.

Naive Aggregation. Our attack results are summarized in Fig-

ure 8, where we first focus on the naive aggregation method. The

Slicing-DTW-Attack consistently performs best across all datasets,

achieving perfect scores for both WESAD and the synthetic dataset

with 15 subjects, and even for the larger 10,000-subject datasets.

No other attack produced results better than random guessing

(1/10000 ≈ 0.01%) on these large datasets. When comparing the

attacks on 15-subject datasets, Single-DTW performed the worst,

followed by the Multi-Attack. The Multi-Slicing variant performed

better than both and came close to the Slicing variant, achieving 89%

on WESAD. Outside of the Slicing-Attack, we observe that CGAN

poses a more challenging task than WESAD, with DGAN being

even harder for most attacks, except for the Multi-Slicing, where

the trend is reversed. Despite this, all attacks exceeded the random

guessing baseline of 1/15 ≈ 6.7% for p@1. When considering p@5

results, our attacks are significantly stronger, effectively reducing

the candidate pool to the top five. In Table 6 of Appendix A, we

provide additional details, including the attack window sizes 𝑤 .

Notably, Slicing-DTW uses the smallest window size of𝑤 = 1 for

the 15-subject datasets (16 seconds), while nearly maximizing the

size for the larger datasets at𝑤 = 34 and𝑤 = 32 (about 9 minutes).

Informed Aggregation. Our informed sensor aggregation of-

fers a more refined approach to handle multimodal data in our

attacks, as certain sensors may be more effective for specific at-

tacks. Selecting sensor combinations proves highly effective on

the WESAD dataset, with all attacks achieving maximum p@1, ex-

cept for Multi-Slicing, which closely follows at 99%. While Single-

and Multi-Attacks don’t show significant improvements on the

GAN datasets (1%). Notably, Multi-Slicing-DTW surpasses random

guessing on these datasets and significantly improves its p@5 score

on CGAN15. For the Slicing-Attack, we do not observe a distinct

advantage with the informed aggregation, as it already achieved

perfect results using the naive approach. The selected sensor com-

binations are detailed in Table 6 of Appendix A. While Single-,

Multi-Attack, and Multi-Slicing favor BVP, the Slicing-Attack per-

forms well across most combinations, particularly excluding the

sole use of BVP.

Weighted Aggregation. Compared to the naive and informed

aggregations, the weighted aggregation represents a worst-case

scenario due to the significant a priori knowledge required to de-

termine optimal sensor weights. Using the optimal weighting𝑊𝑜𝑝𝑡

from Equation (6), we observe substantial improvements across

all attacks, particularly on the smaller synthetic datasets. On the

15-subject GAN datasets, we find an average p@1 increase of 12%

for the Single-, Multi-, and Multi-Slicing attacks compared to the

naive approach. While WESAD had already achieved maximum

p@1 for all attacks except Multi-Slicing, this method now reaches

the maximum as well. However, we cannot surpass our informed

results on the 10,000-subject datasets. The Slicing-Attack again sees

no offers no noticeable improvement with weighted aggregation

due to its already maxed out results.

Runtime. For discussing runtime scalability, we focus on one

attack run using one attack sample under the external mode from

Section 6.4 and use our parameters from the best naively aggre-

gated attack results. The scalability is particularly supported by

the 𝐷𝑆𝐹 = 1000. We use the Python package DTAIDistance with

the distance_fast method by Meert et al. [27]. Since we do not rely

on early stopping optimizations from e.g., Rakthanmanon et al.

[31], we only achieve a DTW time complexity of 𝑂 (𝑛2) regarding
the length of the compared time series. Since DTW runtime scales

with the time series lengths, it is independent of our general attack

framework and instead fully dependent on the underlying data.

Assuming similar time series lengths, as in our case, the attacks

itself scale linearly (𝑂 (𝑛)) with an increasing subject count in the

target dataset. The DTW calculations are the primary contribu-

tors to runtime, while the duration for ranking heavily depends

on dataset size, as detailed in Table 7 of Appendix A. Our most

effective attack, the Slicing-DTW-Attack, can target a dataset of

10,000 subjects, each with approximately 138,000 data points, in
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Figure 9: Evaluation of the "in-out" scenario on varying overlaps. The x-axis gives the applied distance threshold and the y-axis
shows the F@1-score for our Slicing-DTW-Attack. We highlight the optimal threshold range across the tested datasets.
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Figure 10: Evaluation of the privacy-utility trade-off from
noise injection into the WESAD data. The y-axis shows the
average attack p@1 and stress detection F1-score over 10
runs, with the x-axis giving the applied noise multiplier in
𝜎 = [0, 15] with steps of 0.1 between [0,1] and 1 thereafter.

about 2 minutes—a reasonable timeframe. The fastest attack, the

Multi-DTW-Attack, completes the same task in under 70 seconds.

For these results, we used a single core of an AMD EPYC 7551P

CPU, indicating potential for further speedup through paralleliza-

tion across multiple cores or machines. For multiple attack samples,

runtime scales quadratically (𝑂 (𝑛2)), as each sample requires an

attack on the dataset. Parallel computation should be preferred to

maintain feasible runtimes in such cases.

7.2 In-Out Threshold Results
The results of our "in-out" experiments, detailed in Section 6.8,

are shown in Figure 9. We use the Slicing-DTW-Attack, which

performed best in our standard evaluation (Section 7.1). For sensor

aggregation, we compare only the naive and informed methods,

as the weighted strategy requires excessive prior knowledge. Each

dataset’s F@1 score is presented across thresholds 𝓉 = [0, 0.7] for
two overlap settings: medium (𝐷𝑆𝐶𝑀 ) and low (𝐷𝑆𝐶𝐿). While 𝓉 =

0.7 is not themaximum threshold (since DTWdistance is uncapped),

the most critical results for our datasets occur at these thresholds.

Full overlap (𝐷𝑆𝐶𝐹 ) results are provided in Figure 12 in Appendix A,

as they align with the standard evaluation in Section 7.1 for 𝓉 ≥ 0.1

and 𝓉 ≥ 0 for the naive and informed settings, respectively.

Notably, the WESAD dataset consistently achieves maximum

F@1 at the minimum DTW distance threshold 𝓉 = 0. This behavior

is mirrored by the GAN datasets in the informed setting, although

they peak later than WESAD in the naive setting. A consistent

feature across all settings is that WESAD’s F@1 drops sharply for

𝓉 > 0, quickly stabilizing at a plateau relative to the overlap. The

GAN datasets, however, exhibit a broader optimal threshold range,

followed by a steady, less pronounced decline. Among these, the

DGAN dataset shows the best results across thresholds, indicating

that WESAD distances are significantly closer and better aligned

than the synthetic GAN datasets, which may explain the higher

difficulty in retrieving them in our attack evaluation (Section 7.1).

In terms of common threshold ranges, only the GAN datasets align

in the naive aggregation at 𝓉 = [0.1, 0.32]. In the informed case,

all three datasets reach optimal performance at 𝓉 = 0, after which

WESAD drops off, leaving the GAN datasets to maintain their range

until 𝓉 = 0.27 for 𝐷𝑆𝐶𝑀 and 𝓉 = 0.25 for 𝐷𝑆𝑀𝐿 . Overall, we iden-

tify thresholds that deliver optimal F@1 scores for each dataset

across all overlap and aggregation settings, highlighting the robust-

ness of our attack and ranking methodology, even in scenarios with

substantial non matches. However, a common threshold across all

datasets is only found with the informed aggregation strategy.

A limitation of the threshold-based approach is determining the

correct threshold without direct access to the dataset. However,

leveraging insights from the record linkage domain [11], we can

use a privacy-conscious a priori estimation of linkage quality to

guide threshold selection.

7.3 Mitigation Results
In our defense experiment, introduced in Section 6.9, we demon-

strate the effectiveness of noise injection in reducing re-identification

risk from DTW attacks while preserving data utility. This is ex-

emplified by a stress detection task on the WESAD dataset, which

showed especially prone to our attacks in Section 7.1. The results

are given in Figure 10, where utility is measured by the F1-score of

a stress detection model and privacy risk by the p@1 of our DTW

attacks, using naive and informed aggregations. Both metrics are

evaluated across noise multipliers 𝜎 = [0, 15].
Stress detection proves resilient to low noise levels, with the F1

decreasing just slightly from 0.88 (no noise, 𝜎 = 0) to 0.87 at 𝜎 = 0.5.

Utility then declines noticeably but stabilizes around 0.7 between

𝜎 = [2, 3]. Beyond this point, F1 continues to drop, eventually

converging to 0.3, the equivalent to random guessing stress labels.

In contrast, re-identification risk fromDTWattacks drops sharply

at low noise noise levels, across both aggregation methods. All at-

tacks show a steep initial decline up to 𝜎 = 1, after which p@1

gradually converges to under 0.16 at 𝜎 = 15. The Slicing-DTW-

Attack, the most effective from our evaluation (Section 7.1), drops

from perfect re-identification (p@1 = 1) to 0.21 (naive) and 0.42

(informed) at 𝜎 = 1, continuing to decline more rapidly than the
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Single- and Multi-DTW attacks. These latter attacks might be more

robust to noise, likely due to its disruption of smaller alignments,

diminishing the advantage of Slicing attacks. Further, both attacks

show to be significantly more threatening in the informed setting.

The key takeaway is that noise can significantly reduce re-

identification risk with relatively lower impact on usability. For

example, at 𝜎 = 2, stress detection retains a relatively high F1-score

of 0.71 (a 17% decrease), while the best attack’s p@1 drops to 0.25

in the naive (a 74% decrease) and 0.42 in the informed setting (a

58% decrease). However, we do not achieve complete prevention of

re-identification; at 𝜎 = 15, p@1 only drops to 0.12 for naive and

0.16 for informed, though stress detection becomes unusable. Still,

our defense is particularly effective against the Slicing approach

and generally suggests that noise injection in time series data can to

some extent balance privacy and utility in mitigating DTW attacks.

8 Discussion
We introduced a modular framework for DTW re-identification

attacks using novel approaches to enhance our success rates. In this

section, we discuss research questions (RQ) including limitations

regarding our approach and findings from Section 7.

RQ1: How severe is the actual threat from our DTW-Attacks?
In Section 7.1, we identify the Slicing-DTW-Attack as our most

powerful approach, delivering perfect re-identification on WESAD,

CGAN15, DGAN15, and even the larger 10,000-subject synthetic

GAN datasets. Advanced sensor aggregation methods are unnec-

essary here, as the attack already succeeds under the naive ag-

gregation strategy. While re-identification on the smaller datasets

requires only 16-second long attack samples, this increases to 9-

minute samples for the larger sets. Runtime stays at feasible levels

across all tested datasets. This severe threat level is unmatched

by other DTW attacks, although they still achieve high rates out-

side of the 10,000-subject cases. The p@k criterion further enables

to potentially reduce candidate lists. Re-identification improves

with informed aggregation and are highest in the weighted set-

ting, though obtaining the optimal weights is more complex than

selecting suitable sensors, making it a worst-case scenario.

Recognizing that realistic attacks must account for cases where

the target is not in the dataset, we testedDTWdistance thresholds to

distinguish true matches from non-matches in Section 7.2. We iden-

tified optimal thresholds across WESAD, CGAN, and DGAN data in

the naive setting, with informed aggregation revealing a common

threshold for all datasets. This enables perfect re-identification even

in scenarios with many non-matches.

RQ2: What are appropriate defenses against DTW-Attacks?
Our attacks demonstrate that de-identification alone is insuf-

ficient to protect health data due to similarity-based attacks. For

reducing their threat levels, we propose injecting random noise into

such time series. As shown in Section 7.3, this approach can sig-

nificantly reduce attack success by 58%, while in comparison only

mildly affecting usability for machine learning, with a 17% decrease

in performance. Despite this, we still consider de-identification a

crucial component of user privacy protection. A theoretical pri-

vacy guarantee could be achieved by applying noise with DP [7].

Alternatively, k-anonymity [41] could be considered, though its

application to time series data is complex and often unsuitable [37].

RQ3: To what extent can we adapt to other data and tasks?
While our study is to some extent limited to the smartwatch

stress detection use case, the DTWattacks are generally transferable

to other time series data, particularly when using naive aggregation.

The informed and weighted approaches may require some prior

data analysis but can still be adapted. Our results can also serve as

a pre-trained attack model with optimized parameters for similar

datasets, particularly those involving stress indicators [30].

Further, our similarity ranking has practical applications beyond

attacks. It can be used to link similar subjects, e.g. patients, enabling

related treatments such as medication adjustment. By identifying

similar individuals in a database, new subjects can benefit from tai-

lored recommendations based on their comparable health profiles.

RQ4: Limits of available and synthetic data for evaluation?
The main limitation of our DTW attack evaluation is the limited

availability of public health data, requiring us to rely on smaller

domain-specific datasets like WESAD. To address scalability issues,

we use synthetic GAN datasets, which help validate the perfor-

mance of our attacks on larger sets. As demonstrated by Lange et

al. [23], these GANs preserve key characteristics of WESAD with-

out directly replicating the original subjects. However, we observe

greater variance in GAN sensor signals and different DTWdistances

between subjects compared to WESAD, as discussed in Section 6.1.

There is a limit to how much a GAN can diversify from such a

small number of original subjects. Still, re-identification on the

GAN datasets appears to be more challenging, potentially leading

to an underestimation of the actual risk in real large-scale datasets.

They thus provide a conservative estimate of re-identification risk.

9 Conclusion
The collection of de-identified health time series data from smart

devices, particularly smartwatches, is a common practice. However,

such data contains biometric features that, despite the absence of

direct identifiers, enable re-identification attacks. Our DTW-based

attack methods demonstrate perfect re-identification by exploit-

ing these inherent characteristics. Our Slicing-DTW-Attack proves

especially effective, even on larger datasets. This confirms that

de-identification alone is insufficient for identity protection. We

further show that injecting random noise into the time series data

can effectively reduce the success of our attacks while maintaining

a reasonable utility-privacy trade-off for machine learning tasks.

Future work should focus on acquiring larger real-world datasets

and applying this approach to other domains and tasks.
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A Additional Results
In this appendix, we present two types of additional results that

support our experiments. First, for some of our methods we needed

to tune hyperparameters and pick the corresponding best attack

strategies for the framework from Section 6. These tuning results

are given in Tables 2 to 4 and Figure 11. As a second type, we also

offer further results that did not fit but are discussed in our results

section in Section 7. Those are found in Tables 5 to 7 and Figure 12.

Table 2: Evaluation of the avg and min methods for Multi-
and Slicing-DTW-Attacks as described in Section 6.5.

Multi WESAD CGAN15 DGAN15

average 0.360 0.277 0.154
minimum 0.360 0.219 0.133

Slicing WESAD CGAN15 DGAN15

average 0.953 1.000 1.000

minimum 1.000 1.000 1.000
Multi-Slicing WESAD CGAN15 DGAN15

average-average 0.460 0.200 0.154

minimum-minimum 0.893 0.296 0.343
average-minimum 0.367 0.211 0.159

minimum-average 0.500 0.200 0.154

1 6 11 16 21 26 31 36
attack window size (w)

0

0.2
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1
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Single
Multi
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Figure 11: Evaluating attack window sizes 𝑤 regarding the
p@1 scores of our attacks, used in Section 6.7.3. The sizes 1–36
were tested for the Single- and the Slicing-Attack, while the
sizes 1–12were tested for bothMulti-Attacks, which translate
to the same total lengths due to their tripartite division of
the attack data. We could however only evaluate every third
step and therefore see plateaus. The attacks were performed
on the WESAD dataset with a 𝐷𝑆𝐹 = 1000.

Table 5: Complexity reduction results for Section 7.1 regard-
ing our datasets with 15 subjects, where we average the p@1
over our attack types. We test downsampling factors (DSF)
and take the best (𝐷𝑆𝐹 = 1000) for evaluating DBA and PCA.

DSF WESAD CGAN15 DGAN15

1 0.551 0.372 0.340

10 0.593 0.440 0.391

100 0.625 0.436 0.372

1000 0.652 0.460 0.419
DBA 0.520 0.356 0.192

PCA 0.227 0.184 0.130
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Figure 12: The "in-out" scenario on full overlap for Section 7.2.
The x-axis gives the applied distance threshold and the y-axis
shows the F@1 for our Slicing-DTW-Attack. We highlight
the optimal threshold range across the tested datasets.
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Table 3: Results of our attacks using data from the non-stress or stress class as discussed in Section 6.7.1. The table shows the
p@k scores of the classes non-stress (non), stress (stress), and the weighted mean (𝑊𝑐𝑙𝑎𝑠𝑠 ), which balances the class influence in
our data. The attacks were performed on the WESAD dataset with a 𝐷𝑆𝐹 = 1000. Lower k-values are more important.

k

Single Multi Slicing Multi-Slicing

non stress W𝑐𝑙𝑎𝑠𝑠𝑒𝑠 non stress W𝑐𝑙𝑎𝑠𝑠𝑒𝑠 non stress W𝑐𝑙𝑎𝑠𝑠𝑒𝑠 non stress W𝑐𝑙𝑎𝑠𝑠𝑒𝑠

k=1 0.294 0.276 0.289 0.339 0.178 0.291 1.000 1.000 1.000 0.767 0.411 0.660

k=3 0.630 0.428 0.569 0.656 0.383 0.574 1.000 1.000 1.000 0.967 0.661 0.875

k=5 0.828 0.585 0.755 0.800 0.589 0.737 1.000 1.000 1.000 0.994 0.800 0.936

Table 4: Sensor combinations for BVP (B), EDA (E), TEMP (T) and ACC (A), and p@k attack results using informed aggregation
from Section 6.7.2. Attacks were performed on the WESAD dataset with a 𝐷𝑆𝐹 = 1000. Lower k-values are more important.

k

Single Multi Slicing Multi-Slicing

k=1 k=3 k=5 k=1 k=3 k=5 k=1 k=3 k=5 k=1 k=3 k=5

B 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 0.991 1.000 1.000

E 0.067 0.217 0.387 0.067 0.215 0.387 0.993 1.000 1.000 0.174 0.351 0.471

T 0.084 0.250 0.433 0.104 0.233 0.383 0.996 1.000 1.000 0.045 0.172 0.307

A 0.276 0.465 0.603 0.268 0.485 0.634 1.000 1.000 1.000 0.547 0.793 0.903

B+E 0.176 0.539 0.757 0.176 0.555 0.757 1.000 1.000 1.000 0.701 0.894 0.947

B+T 0.338 0.648 0.811 0.335 0.656 0.762 1.000 1.000 1.000 0.508 0.758 0.874

B+A 0.609 0.887 0.963 0.637 0.878 0.958 1.000 1.000 1.000 0.923 0.975 0.987

E+T 0.100 0.186 0.404 0.065 0.194 0.359 1.000 1.000 1.000 0.077 0.197 0.358

E+A 0.104 0.259 0.522 0.094 0.260 0.482 1.000 1.000 1.000 0.415 0.692 0.783

T+A 0.176 0.429 0.542 0.189 0.424 0.538 1.000 1.000 1.000 0.297 0.524 0.707

B+E+T 0.260 0.540 0.706 0.233 0.528 0.698 1.000 1.000 1.000 0.506 0.799 0.902

B+E+A 0.217 0.603 0.823 0.213 0.614 0.810 1.000 1.000 1.000 0.822 0.910 0.960

B+T+A 0.411 0.690 0.807 0.440 0.655 0.770 1.000 1.000 1.000 0.715 0.873 0.920

E+T+A 0.120 0.285 0.444 0.083 0.280 0.412 1.000 1.000 1.000 0.300 0.562 0.676

B+E+T+A 0.289 0.569 0.755 0.290 0.574 0.737 1.000 1.000 1.000 0.660 0.875 0.936

Table 6: For Section 7.1, we gather the best attack sample window sizes𝑤 and informed sensor combinations for BVP (B), EDA
(E), TEMP (T) and ACC (A) for the evaluated datasets and attacks: Single (S), Multi (M), Slicing (SL), Multi-Slicing (MS). Window
sizes for Multi-Attacks are given as their total over the three subsets.

WESAD CGAN15 DGAN15 CGAN10000 DGAN10000

S M SL MS S M SL MS S M SL MS S M SL MS S M SL MS

size𝑤 14 15 1 3 4 15 1 21 5 12 1 18 20 3 34 30 23 12 32 15

Sensors BVP (B), EDA (E), TEMP (T), ACC (A)

B ✓ ✓ ✓ ✓ ✓
E ✓ ✓
T ✓ ✓
A ✓ ✓ ✓ ✓ ✓
B+E ✓ ✓ ✓ ✓
B+T ✓ ✓ ✓
B+A ✓ ✓ ✓ ✓ ✓ ✓ ✓
E+T ✓ ✓ ✓ ✓ ✓
E+A ✓ ✓ ✓ ✓ ✓
T+A ✓ ✓ ✓ ✓ ✓

B+E+T ✓ ✓ ✓ ✓
B+E+A ✓ ✓ ✓ ✓ ✓ ✓
B+T+A ✓ ✓ ✓ ✓
E+T+A ✓ ✓ ✓ ✓ ✓

B+E+T+A ✓ ✓ ✓ ✓ ✓
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Table 7: Runtime results in seconds for our attacks on datasets with different sizes, given by their subject counts, as evaluated in
Section 7.1. We give separate times for the attack and ranking process, as well as, their total. We used the external setting from
Section 6.4 assuming a single attack. We used the maximum window sizes𝑤 for each attack from Table 6 in this Appendix A.

Scope

Single Multi Slicing Multi-Slicing

15 100 1k 10k 15 100 1k 10k 15 100 1k 10k 15 100 1k 10k

Attack 0.119 0.754 7.590 76.92 0.084 0.497 4.966 50.63 0.154 0.988 10.15 102.8 1.142 7.615 76.81 776.2

Ranking 0.001 0.005 0.157 18.47 0.001 0.006 0.161 19.06 0.001 0.005 0.160 19.11 0.001 0.006 0.162 18.89∑
0.12 0.759 7.747 95.39 0.085 0.503 5.127 69.69 0.155 0.993 10.31 121.9 1.143 7.621 76.97 795.1
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