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Abstract—With growing concerns about user data collection,
individualized privacy has emerged as a promising solution to
balance protection and utility by accounting for diverse user
privacy preferences. Instead of enforcing a uniform level of
anonymization for all users, this approach allows individuals
to choose privacy settings that align with their comfort levels.
Building on this idea, we propose an adapted method for
enabling Individualized Differential Privacy (IDP) in Federated
Learning (FL) by handling clients according to their personal
privacy preferences. By extending the SAMPLE algorithm from
centralized settings to FL, we calculate client-specific sampling
rates based on their heterogeneous privacy budgets and integrate
them into a modified IDP-FedAvg algorithm. We test this method
under realistic privacy distributions and multiple datasets. The
experimental results demonstrate that our approach achieves
clear improvements over uniform DP baselines, reducing the
trade-off between privacy and utility. Compared to the alternative
SCALE method in related work, which assigns differing noise
scales to clients, our method performs notably better. However,
challenges remain for complex tasks with non-i.i.d. data, primar-
ily stemming from the constraints of the decentralized setting.

Index Terms—differential privacy, federated learning, privacy-
preserving machine learning, user privacy, personalization

I. INTRODUCTION

With the adoption of Machine Learning (ML) in everyday
life and the increasing demand for representative training
data, concerns about data security and privacy for contributing
individuals have become more significant [1]–[4]. In this
context, decentralized training algorithms, such as Federated
Learning (FL), which ensure that data remains on devices
(e.g., smartphones), and provable privacy guarantees, such as
Differential Privacy (DP), are gaining prominence [5]–[8].

FL addresses the issue of centralizing training data but does
not inherently guarantee data privacy, as attacks on model
parameters remain possible [9]. To mitigate this, proposed
modifications provide DP guarantees by introducing noise into
clients’ model updates [10]. However, DP introduces a trade-
off between privacy and model utility, where optimizing this
trade-off is critical for usability [11]. Since individuals gen-
erate data with varying sensitivity levels and privacy require-
ments, Individualized Differential Privacy (IDP) has emerged
as a promising approach, allowing users to select privacy levels
(e.g., low, medium, or high) [12]. This enables models to learn

more effectively from data with lower privacy requirements,
rather than applying the strictest privacy guarantees uniformly.

Existing IDP algorithms in FL focus on local DP [13],
impose additional restrictions [14], or adjust noise multipli-
ers [15]. However, such approaches have shown suboptimal re-
sults in centralized DP training [16]. Instead, findings suggest
that individualized sampling rates, which alter the probability
of including data in a training step, offer better performance.

We propose an approach to leverage individualized client
sampling rates in FL, enabling personalized privacy guarantees
for clients. To transfer the sampling method from centralized to
federated settings, we introduce an updated training algorithm
that determines client participation based on their privacy
requirements. Additionally, we address challenges such as the
realistic distribution of training data and privacy budgets across
clients in our experiments. Our results show that individual
guarantees, applied through our sampling techniques improve
the privacy-utility trade-off of standard DP and also outper-
form the alternative technique of noise multiplier scaling [15].

Section II provides an overview of the fundamentals, while
Section III reviews related work. Section IV introduces our
algorithm, and Sections V and VI present the experimental
setup and results, respectively. Finally, we discuss and sum-
marize our findings in Sections VII and VIII.

II. BACKGROUND

A. Federated Learning

Federated Learning (FL) [17] is a decentralized ML ap-
proach that enables multiple participants, referred to as clients,
to collaboratively train a shared model without transferring
their local data to a central server. Instead, each client performs
training locally, and only model updates, such as gradients
or parameters, are shared for aggregation. The most common
approach is FedAvg [17] that averages across client gradients
to update the global model. This process ensures that raw data
remains on device, addressing privacy concerns and reducing
the risks associated with data centralization [5].

B. Differential Privacy

Differential Privacy (DP) [18] is a mathematical framework
to provide formal privacy guarantees when analyzing or shar-
ing data. It ensures that the inclusion or exclusion of a single
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individual’s data in a dataset has a limited impact on the
output of an algorithm, thereby protecting individual privacy.
A mechanism M satisfies (ε, δ)-DP if, for datasets D1 and D2

differing in at most one element, and for all output subsets S:

Pr[M(D1) ∈ S] ≤ eε · Pr[M(D2) ∈ S] + δ,

where the privacy loss ε controls the strength of the privacy
guarantee, with smaller values indicating stronger privacy.
Parameter δ accounts for the probability of privacy failing.

C. Differentially Private Stochastic Gradient Descent

In DP-compliant algorithms, the core idea is to introduce
controlled noise into the computation to obscure the contribu-
tion of single data points at the cost of overall utility. Differ-
entially Private Stochastic Gradient Descent (DP-SGD) [19] is
an optimizer adaptation that ensures that ML training satisfies
DP. It works by first clipping individual gradients to a fixed
norm, which limits their influence on the model updates. Then,
random noise is added to the aggregated gradients to obscure
contributions before finally updating the model parameters.

III. RELATED WORK

This section reviews the state-of-the-art through relevant
previous work in the context of FL with DP and IDP.

In general, IDP allows for varying privacy budgets across
users, which may improve utility due to not applying the
strictest setting to everyone, while still respecting user-specific
privacy requirements. For centralized settings, Boenisch et
al. [16] propose two methods, SAMPLE [20] and SCALE [21],
where SAMPLE adjusts sampling probabilities for data points,
while SCALE focuses on varying the added noise per data
point. In their evaluation, they show that SAMPLE slightly
outperforms on differing privacy budget distributions for their
user group simulations, which are inspired by earlier studies
on user behavior [22], [23]. Both studies underscore the
gap between users’ stated privacy concerns and their actual
behaviors, highlighting the need for accessible mechanisms.

While FL as a decentralized learning setup inherently re-
duces privacy risks by avoiding direct data sharing, it remains
vulnerable to attacks such as membership inference and recon-
struction attacks [9]. DP provides a robust defense against such
threats and McMahan et al. [10] thus extend the aggregation of
client weights with a private DP-FedAvg variant by clipping
client gradients and adding Gaussian noise.

Shifting FL to IDP mainly shifts the view from data points
to a client-level privacy perspective. As in central settings,
IDP enables better model utility through allowing user-specific
privacy requirements. [13] and [14] propose methods for
local DP with individualized budgets, which leads to noising
gradients already outside of aggregation and limits potential
performance. In [14] they additionally rely on limiting the
ε-DP guarantee to a range τ . [24] focuses on reducing com-
munication costs by projecting private client updates through
gradient projection. They combine this notion with standard
DP-SGD but halt training for clients once their privacy budgets
are exhausted. Aldaghri et al. [15] implement individualized

noise multipliers for clients, which is evaluated at two privacy
levels and translates the SCALE method of [16] to FL.

Our method should be free of additional restrictions from
local DP and thus favors a global approach with central ag-
gregation steps for orchestration, different from [13] and [14].
Our closest related work in FL [15], already implemented a
comparable solution to the SCALE method from the central
setting. However, [16] found that SAMPLE performed on par or
better in their central evaluation. We thus elevate the SAMPLE
approach from the central to the FL scenario, and thereby
from data point-level privacy to client-level privacy. For this
we revise the DP-FedAvg algorithm to an IDP-FedAvg
variant. We further extend the evaluation from [15] through
more realistic privacy distributions from user studies [22], [23].

IV. CLIENT SAMPLING ALGORITHM

In this section, we develop the IDP-FedAvg algorithm to
train ML models with heterogeneous privacy guarantees in FL.
The algorithm implements IDP through customized sampling
rates within DP-FedAvg, inspired by the non-FL methods
in [16], [20]. The main algorithm consists of two steps:

1) Privacy Step: Compute the noise multiplier and indi-
vidualized sampling rates for each client, as described
in Algorithm 1. Sampling rates are derived from client-
specific privacy budgets using the SAMPLE algorithm
by [16]. We adapt this procedure by mapping epochs to
FL rounds and training samples to clients, transitioning
guarantees from data point-level to client-level privacy.

2) Training Step: In Algorithm 2, training is performed
using DP-FedAvg aggregation with adaptive clip-
ping [25]. However, clients are sampled based on their
individualized sampling rates before a global noise mul-
tiplier is applied uniformly across all sampled clients.

In [16], the authors demonstrate that training with individ-
ualized sampling rates derived from a user’s specified privacy
budget may achieve better results than individual scaling of
noise multipliers or clipping norms. Their algorithm for the
central training scenario samples data points with differing
probabilities while maintaining the expected value per epoch
and applying a constant noise multiplier.

This implementation can be directly adapted to calculate
sampling rates for clients, as shown in Algorithm 1. Clients
are grouped into P groups according to their respective
privacy budgets, where |P | is the number of unique values.
The function GetGroupSamplingRates outputs a uni-
form noise multiplier σSAMPLE and individualized sampling
rates {q1, . . . , qP }, which describe the probability of selecting
each client for a training round. To determine these values,
the algorithm starts with an initial σSAMPLE and calculates
the corresponding intermediate {q1, . . . , qP } needed to satisfy
each client’s ε using this multiplier. As a condition, the
expected sampling rate q is based on the number of clients
participating in training each round. The initial multiplier σ
corresponds to the strictest privacy budget ε1. If the resulting
average sampling rate across clients does not satisfy q, the
noise multiplier is too large for the given privacy budget



Algorithm 1: GetGroupSamplingRates: calcu-
lating per-group sampling rates regarding privacy bud-
gets, as presented in Algorithm 2 [16, p.6] but
adapted to clients instead of data points. Subroutine
getSampleRate translates DP noise multipliers to
sampling rates as in Algorithm 4 [16, p.17].

Input: Per-group target privacy budgets {ε1, . . . , εP },
target δ, iterations I , sampled clients per round
c, total number of clients N , per-privacy group
clients {|G1|, . . . , |GP |}

Output: Sampling noise multiplier σSAMPLE, sampling
rates {q1, . . . , qP }

q ← c
N ;

σSAMPLE ←getNoise (ε1, δ, q, I);
foreach p ∈ [P ] do

qp ← getSampleRate(εp, δ, σSAMPLE, I);
end
while q ̸≈ 1

N

∑P
p=1 |Gp|qp do

scaling factor si ⋖ 1: σSAMPLE ← siσSAMPLE;
foreach p ∈ [P ] do

qp ← getSampleRate(εp, δ, σSAMPLE, I);
end

end
return σSAMPLE, {q1, . . . , qP };

distribution. The noise multiplier is then iteratively reduced
using a scaling factor si⋖1 (slightly smaller) until the resulting
rates comply. getSampleRate originally uses a modified
PyTorch Opacus function that ensures that privacy budgets
are exhausted after I iterations of sampling. We translate that
to the dp-accounting library for our Tensorflow version. [16]
prove that their sampling algorithm satisfies ({ε1, . . . , εP }, δ)-
DP, extending their DP guarantees to groups of data points
with heterogeneous sampling rates at constant noise.

The training in Algorithm 2 uses a modified version of
standard DP-FedAvg with adaptive clipping by [25]. But
instead of uniformly sampling the client subset S for each
training round, the calculated sampling rate for each client
from Algorithm 1 is used. Each client thereby acquires only
the noise needed for their respective individual privacy guar-
antee. We focus on global aggregation and do not include
hyperparameters e.g. for client training in this representation.

V. EXPERIMENTAL SETUP

In this section, we detail how we conduct our experiments.

A. Implementation Environment

Reference code is available from our repository at https:
//github.com/luckyos-code/flidp. We use Python 3.10 with
Tensorflow for creating ML models. The Tensorflow Federated
library supports our simulations regarding FL, while our DP
implementations use Tensorflow Privacy. For hardware we run
our experiments on a cluster using an NVIDIA RTX 2080 Ti
GPU, 64GB of memory, and an AMD EPYC 7551P CPU.

Algorithm 2: IDP-FedAvg: implements FedAvg
with individualized DP, incorporating client sampling
rates into DP-FedAvg with adaptive clipping [25].
Input: Per-client target privacy budgets {ε1, ..., εN},

target δ, rounds IFed, clients C with |C| = N ,
sampled clients per round c, client learning rate
ηC , server learning rate ηs, clipping quantile γ,
clipping learning rate ηC , global model θ

Output: Updated model θ′, clipping quantile γ′

Groups: EG ← Unique({ε1, ..., εN});
σSAMPLE, QG ← GetGroupSamplingRates(EG , δ,
c, |C|, group sizes of EG);
{q1, ..., qN} ← for each client i ∈ C: get its sampling

rate qi regarding their privacy group from QG ;
foreach round of training in IFed do

Sample client subset S according to {q1, ..., qN};
foreach client i ∈ S do

Local: ∆i ← LocalUpdate(i, ηC);
Norm of update: ∥∆i∥;
if ∥∆i∥ > γ then

Clip: ∆i ← ClipUpdate(∆i, γ);
end

end
Aggregate: ∆ ← AggregateUpdates(S);
Noise: ∆ ← AddNoise(∆, σSAMPLE);
Global: θ′ ← UpdateGlobalModel(θ, ∆, ηs);
γ′ ← AdjustClippingNorm(γ, ηC);

end
return θ′, γ′;

B. Federated Datasets

We test on common benchmarking datasets from related
work: FMNIST [26], CIFAR-10 [27], and SVHN [28]. Since
CIFAR-10 and SVHN are focused on central scenarios, we
have to transform them into FL-conform counterparts that are
split across clients. For this, we also have to consider creating
i.i.d. and non-i.i.d. versions to address both paradigms. In FL,
i.i.d. refers to samples that are independent (do not influence
another) and identically distributed at clients. In contrast, non-
i.i.d. data lacks these properties, with dependencies between
samples and varying distributions, as in real-world scenarios.

The Federated MNIST (FMNIST) dataset contains about
380.000 grayscale images of handwritten digits and is an non-
i.i.d. Extended MNIST version, where the digits are grouped
by their respective authors across 3,383 clients. For an i.i.d.
setup, we randomly distribute samples across clients.

CIFAR-10 focuses on 60,000 color images divided into 10
classes of vehicles and animals. To adapt this dataset to FL, we
follow the CIFAR-100 sibling, which has an non-i.i.d. variant.
Thus, we sample data for each of the 500 clients using the
Pachinko Allocation Method [29], which unevenly distributes
classes. For i.i.d., we use the same method as for FMNIST.

The SVHN dataset features over 600,000 color images of

https://github.com/luckyos-code/flidp
https://github.com/luckyos-code/flidp
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Fig. 1. Examples of label distribution on clients for our datasets (non-i.i.d.).

Fig. 2. CNN model architecture used in our experiments.

house numbers extracted from Google Street View. However,
there is no non-i.i.d. federated version and we therefore only
assume our random i.i.d. distribution over 725 clients. But as
shown in Fig. 1, we still see some skew due to some labels
being overrepresented in SVHN. We can also expect a very
difficult task from CIFAR-10 due to its uneven distribution.
On a final note, we use the original test sets for each dataset.

C. Training Parameters

Our ML model is a simple Convolutional Neural Network
(CNN) with 14 layers as presented in Fig. 2. For FL server
hyperparameters, we generally train for 420 rounds, sample
30 clients each round, and use a server learning rate of 1.0
for all datasets. At the clients, we use a batch size of 128 and
learning rate of 0.0005 over 15 epochs. For adaptive clipping
we use the standard parameter setup from [25].

D. Privacy Distributions

Regarding the evaluated privacy distributions, we incorpo-
rate real-world IDP, as well as, standard DP and non-DP
settings. For simulating these distributions, we create three pri-
vacy groups of differing ε-values like ε : 1-2-3 and assign them
across clients accordingly. As in [16], we also rely on existing
user studies for our realistic privacy distributions, which are
34%-43%-23% [23] and 54%-37%-9% [22]. We further also
include the strictest 100%-0%-0% and most relaxed 0%-0%-
100% DP settings using only the respectively ranked ε from
the privacy groups. To put these differentially-private results
into context we also train federated models without privacy
restrictions 0%-0%-0% (non-private) as our last distribution.

TABLE I
ACCURACIES (%) OF THE MODEL SETUPS ON ALL DATASETS

ε-distribution
FMNIST SVHN CIFAR-10
ε : 1-2-3 ε : 10-20-30 ε : 10-20-30

i.i.d. non i.i.d. non i.i.d. non
0%-0%-0% 98.2 97.0 86.6 – 61.0 44.2
0%-0%-100% 96.5 95.1 80.9 – 50.1 30.1
34%-43%-23% 95.9 94.6 79.3 – 44.6 26.5
54%-37%-9% 95.4 93.5 78.2 – 41.9 25.4
100%-0%-0% 93.9 90.7 76.5 – 38.4 16.8

VI. RESULTS

We gather our experimental results in Table I, where we
give the percentage accuracy values for the respective models
regarding the different privacy distributions. We test on all
three datasets with their i.i.d. and non-i.i.d. versions. With our
results, we confirm the effectiveness of our adapted algorithm.
This can be derived from the stepwise change in accuracies
between the privacy distributions, where 0%-0%-0% poses the
least strict (non-private) and 100%-0%-0% the strictest. While
the strictest DP level gives the lowest performance outcomes,
our individualized methods put the realistic distributions in
between and closer to the relaxed DP assumption of the
weakest ε-group. In non-individualized real-world scenarios
we would have to choose the strictest level at all times but
with individual privacy groups through our client sampling
method, we see an average advantage of 2.2% for our i.i.d. and
5.7% for our non-i.i.d. datasets, when assuming a 54%-37%-
9% distribution. With the slightly less strict 34%-43%-23%,
we see further average improvement by 1.5% and 1.1%.

We however also see how differently DP effects our
datasets. Even with loosened privacy requirements of ε :
10-20-30 for SVHN and CIFAR-10, there is a significant
performance hit already when going from the non-private
models to the most relaxed DP models in CIFAR-10. At
ε : 1-2-3, private models failed for both datasets, resolving
to random guessing accuracies. FMNIST on the other hand,
shows to be less impacted overall. This is comparable to
other existing work, where CIFAR-10 clearly showed to be
a more difficult FL task that might ask for a higher privacy
budget [30]. Additionally DP shows to have an even greater
trade-off in FL than in central settings due to the smaller client
datasets and resulting larger impact of noise on the global
model [31]. With CIFAR-10 being substantially smaller than
the others, we can confirm this phenomena in our results. The
non-private models are still able to achieve good performance
levels but especially the non-i.i.d. version poses a challenge.

Regarding related work, we can compare our results for non-
i.i.d. FMNIST to [15], who used the SCALE variant of IDP
and only two privacy groups: a non-private and a private group
(ε = 0.6). Their non-private group constitutes only 5% of
their clients and we therefore create another run to match their
setup: ε : 0.6-∞-∞ at 95%-0%-5%. They achieved 86.9%
under these conditions, while we climbed up to 90.8% using
the SAMPLE strategy. This supports that the advantage from
the central setting carries over to FL by a larger margin.



VII. DISCUSSION

Our experimental results demonstrate that individualized
client sampling within FL can bridge the gap between strict
privacy requirements and model utility. By successfully lever-
aging client-level sampling rates derived from privacy budgets
(SAMPLE), our adapted IDP-FedAvg algorithm achieves
significant accuracy improvements over uniform DP-FedAvg
setups under realistic privacy distributions. We further confirm
the advantage of individualizing sampling rates over noise
scales in FL through our 3.9% lead on FMNIST compared to
related work in [15]. However, our results also highlight the
limitations of incorporating DP in FL for smaller and more
complex datasets like CIFAR-10. These datasets suffer from
higher sensitivity to the noise introduced by DP.

As others, we do not consider limitations for this approach
regarding some common practical issues in FL, such as
device heterogeneity and client availability or dropout during
training in our experiments. For a more holistic and realistic
view, removing our optimistic assumption would make reliable
sampling of clients harder for the central server.

The proposed method has several practical implications.
Allowing users to define their privacy levels addresses a key
concern in privacy-preserving systems: trust. By enabling per-
sonalized privacy budgets, users retain control over their data
while contributing at a level that aligns with their comfort. This
flexibility incentivizes participation, as users are not forced to
adhere to uniform and potentially insufficiently strict privacy
guarantees. Instead, they can balance their privacy preferences
with their willingness to support collaborative learning efforts.
From the perspective of ML practitioners, IDP in contrast to
traditional approaches enables to benefit from higher-quality
updates of users with more relaxed privacy settings. A key
challenge for this aspect of IDP is the increased complexity for
the user, which necessitates effective and fair communication
of privacy risks to enable users to make informed assessments.

VIII. CONCLUSION

We present an adaptation of the IDP SAMPLE algorithm for
FL, introducing individualized client sampling to enable het-
erogeneous privacy guarantees. Our IDP-FedAvg approach
demonstrates significant utility improvements under realistic
privacy distributions compared to traditional DP-FedAvg. As
in central settings, the sampling method is able to outperform
noise parameter scaling. However, the results also highlight
the challenges of applying DP in federated settings, particu-
larly for non-i.i.d. datasets and complex tasks. Future work
could explore incorporating IDP through sampling rates into
alternative aggregation mechanisms beyond FedAvg, which
may better handle non-i.i.d. and noisy data distributions.
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