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Abstract: Privacy-Preserving Record linkage (PPRL) is an essential component in data integration
tasks of sensitive information. The linkage quality determines the usability of combined datasets
and (machine learning) applications based on them. We present a novel privacy-preserving protocol
that integrates clerical review in PPRL using a multi-layer active learning process. Uncertain match
candidates are reviewed on several layers by human and non-human oracles to reduce the amount
of disclosed information per record and in total. Predictions are propagated back to update previous
layers, resulting in an improved linkage performance for non-reviewed candidates as well. The data
owners remain in control of the amount of information they share for each record. Therefore, our
approach follows need-to-know and data sovereignty principles. The experimental evaluation on
real-world datasets shows considerable linkage quality improvements with limited labeling effort and
privacy risks.
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1 Introduction

Record linkage, also known as entity resolution, aims at identifying different representations
of the same real-world entity, such as a person. It is a crucial step in many data integration
tasks in order to combine multiple data sources allowing enhanced data analysis. Typically,
unique record identifiers are not available which would enable a join-like operation.
Therefore, records are compared pairwise based on their identifying attributes, such as first
name, last name and date of birth, and classified as match or non-match.

However, record linkage may potentially harm the privacy of individuals by combining
information that can be used against their interests. As a consequence, the conduction of
such a linkage is subject to many legal and organizational constraints [CRS20]. Privacy-
preserving record linkage (PPRL) methods aim for enabling such linkages without sharing
sensitive plaintext information between the data owners or with a third party. To protect the
identifying data, the data owners encode it before sending it to an independent linkage unit
which performs the matching on the encoded data only. A variety of such perturbation-based
encoding techniques have been proposed, but the most popular and a quasi-standard is
based on Bloom filters [Gk21]. An attribute-level application of such techniques results
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in exploitable frequency patterns in the encoded data. It allows to rather simply reidentify
at least some plaintext values, e.g., by aligning the most common last name to the most
common Bloom filter value [Vi22]. The usage of such encodings is thereby limited to data
linkages with lower privacy requirements.

The selection and parameter optimization of record linkage approaches typically require
training data with information on known matches and non-matches. In practical linkage
applications there is generally no such ground truth data available though [CRS20]. Linkage
on plaintext data can reliably achieve high linkage quality by manually reviewing (uncertain)
classifications. Such partial ground truth from clerical review also allows to evaluate and
adapt the chosen linkage algorithm. When linking sensitive data, however, a clerical review
on plaintext data is usually not feasible. As a consequence, data custodians may have
concerns against the use of PPRL due to its uncertain and potentially lower linkage quality.

There is limited work investigating a privacy-preserving clerical review (PPCR) system for
record linkage where attribute values are gradually disclosed and displayed using (visual)
masks [Ku14; Ku19; Ra18]. However, these masks are applied for display only and the
reviewing institution still receives full plaintext data. Moreover, the approach does not aim
at reducing the labeling effort or improving an automatic classification model based on
labeled samples.

We therefore propose a protocol for PPRL that uses active learning to achieve high-
qualitative and reliable linkage results with a low labeling effort. Our linkage protocol
employs perturbation-based encodings and uses multiple layers to gradually disclose limited
information only if needed. First, the linkage is conducted on record-level encodings where
all attributes are combined in a single encoding for each record. These encodings are
more secure but do not permit sophisticated classification approaches. Therefore, an active
learning process is initiated where uncertain match candidates are iteratively resolved by
(re-)classification using attribute-level encodings or ultimately by a masked clerical review.
In contrast to a linkage solely based on attribute-level encodings the resistance against
reidentification attacks is greatly improved by using pair-specific keys for those encodings
and thereby avoiding exploitable frequent bit patterns.

In particular, we make the following contributions:

• We present a novel multi-layer active learning protocol that combines automatic
privacy-preserving record linkage and manual masked clerical review while minimiz-
ing the amount of shared sensitive data.

• We analyze the implications of our protocol with regard to reidentification attacks.

• We conduct experiments on real-world data to evaluate the performance of our
protocol in terms of labeling effort, linkage quality improvement and privacy risk.



2 Background and related work

In the last decades, a variety of methods for privacy-preserving record linkage has been
proposed [CRS20]. Some protocols based on secure multiparty computation provide formal
security guarantees. However, they typically have very high communication and computing
requirements which make them unsuitable for the linkage of large datasets. Other PPRL
methods are based on perturbation techniques where the data owners encode the plaintext,
often using some form of cryptographic hashing, before sharing it with a semi-trusted
third party for linkage. The parameters for the encoding, in particular the cryptographic
hashing key, are kept secret to the data owners. Thus, the so-called linkage unit cannot
revert the encoding and get access to the plaintext values. This approach is very efficient
as it requires low communication costs. The linkage unit can employ blocking techniques
to reduce the number of match candidates. In standard blocking, only records that share a
certain blocking key, e.g., the same phonetic Soundex code [OR18] of first and last name,
are compared. Such PPRL methods have been used in multiple real-world linkage projects
for health research, such as [Co21; Pr22]. Therefore, we focus on the most popular of those
encoding techniques based on Bloom filters. In the following, we describe the technical
background from related work and derive requirements for our multi-layer PPRL protocol.

2.1 Bloom filter based PPRL

Bloom filter encodings were proposed for PPRL by Schnell et al. [SBR09]. They became
the de-facto standard for practical PPRL on large datasets due to their straightforward
implementation as well as their fast and error-tolerant comparison. A Bloom filter (BF) is a
bit vector of fixed size 𝑚 where initially all bit positions are set to zero. The input data is
split into overlapping substrings of length 𝑞 (q-grams). Then, a set of ℎ cryptographic hash
functions H = {𝐻0, 𝐻1, . . . , 𝐻ℎ−1} is applied to each q-gram resulting in bit positions set
to ’1’. Given that identical q-grams are mapped to the same bit positions, a high overlap
of q-grams leads to similar Bloom filters making them suitable for determining the record
similarity using set similarity functions, e.g., the Dice coefficient. This transformation is
not reversible due to collisions where multiple features are hashed to the same position.

However, Bloom filter encodings were shown to be susceptible to certain types of at-
tacks [Vi22]. Published attacks initially focused on exploiting frequency information of
plaintext and encoded attributes as well as pattern mining. Recent work uses graph-based
attacks to align encoded and plaintext entities by exploiting their similarities to other
entities [Vi20]. However, the underlying attack scenario requires an equal or at least very
similar plaintext dataset, limiting its practical relevance. Different encoding techniques to
hamper frequency-based attacks have been proposed in the last years. Most importantly,
attribute-level encodings that transform each attribute of a record separately should be
avoided to prevent an alignment of frequent encoded attribute values to frequent plaintext
values [Ch19]. Instead, multiple or all attributes are combined in a single encoded represen-
tation. Additional hardening techniques can be applied to further distort bit patterns in such



record-level Bloom filters [Fr21]. A simple but effective approach in terms of utility-privacy
trade-off is XOR-folding, where the Bloom filter is split in half and both parts are combined
using a bit-wise XOR operation [SB16].

Requirement R1. Attribute-level encodings must not be used with the same parameters for
all records to mitigate the risk of successful frequency attacks.

Unfortunately, such record-level encodings impose limitations that can affect the linkage
quality. The encoding parameters are chosen based on assumptions about dataset properties
that might be inaccurate. In particular, attribute weights are typically determined by the
attributes’ value frequencies and error rates. The latter are not known to the data owners prior
to the linkage and must be estimated. Commonly, encoding techniques use fixed weights
to ensure that all records are encoded in the same way and are thus comparable. Recent
work showed that value-specific weights, e.g., based on the respective value frequency,
can be applied in the PPRL context as well, to increase the linkage quality and robust-
ness [Ro23]. Nevertheless, weighting schemes are still limited for record-level encodings,

Tab. 1: Quality issue of record-level encodings:
Matching and non-matching pairs might have the
same record similarity score, when they have either
multiple slightly different attributes (in A1 and B2) or
a single replaced attribute (A3 and B3). Attribute-level
similarities and masked clerical review with limited
information disclosure enable better classification.

ID First Last Birth Date City

Pl
ai

na

A1 PAULA SMITH 1976/09/07 RALEIGH

B2 PAUL SMITH 1974/06/07 RALEIGH

A3 PETER COHEN 1976/09/07 LELAND

B3 PETER COHEN 1976/09/07 RALEIGH

Re
c.

-le
ve

l A1 0.82
A3 0.82
B3

A
ttr

.-l
ev

el A1 0.8 1.0 (freq.) 0.7 1.0
B2

A3 1.0 1.0 (rare) 1.0 0.2
B3

M
as

ke
d A1 ****A

✓(freq.) ***$/*@/**
✓

B2 **** ***%/*$/**

A3
✓ ✓(rare) ✓ ✗

B3

a Please note that the full plaintext records are only known
to their respective data owners and are displayed here in
subsequent rows for better comparability by the reader.

in particular since weight adaption cannot
be restricted to agreeing attributes as the
similarity is not known at the time of
the weight application during encoding.
Furthermore, missing values in one record
of a pair result in lowered similarity scores
even for secondary attributes that could
be treated as optional in an attribute-level
comparison and classification process.

Typically, the linkage unit computes a
single similarity score for each pair of
encoded records and classifies it based
on a threshold. The selection of an appro-
priate threshold is therefore essential for
a high linkage quality. Moreover, record-
level encodings conceal whether a certain
difference originates from one or multiple
attributes. Tab. 1 shows an example where
the linkage unit cannot differ between two
non-matching records (A1 and B2) that
have similar but different first names and
dates of birth, and two matching records
(A3 and B3) where these attributes are
equal but the city is very different, e.g.,
because the person moved. A threshold-
based classifier that should classify the
second pair as a match will therefore mis-



classify the first pair (and vice versa) due to the equal overall similarity score. A classifier
with access to attribute-level similarities would be able to distinguish these cases.

2.2 Privacy-preserving Clerical Review (PPCR)

Tuning linkage parameters, such as the threshold, requires the availability of (partial)
ground truth data which is generally not available in practical linkage projects. Ground
truth labels can be determined in a clerical review process where potential matches are
decided upon manually. During clerical review, record pairs and potentially additional
information are presented to an oracle, typically a human. The display of such information
in plaintext obviously does not preserve privacy and is therefore not applicable to sensitive
data. However, systems with a masked display were proposed for manual clerical review
that conceal the plaintext by default, present categorical value frequencies, and gradually
disclose selected information [Ku14; Ku19; Ra18]. The studies showed that the masking
had only little impact on the error rate of the labeling using the incremental disclosure
approach in [Ku19] and moderate impact depending on the level of disclosure in [Ra18].
Tab. 1 (bottom) shows an example of such a masked display. Attributes that are identical
or very dissimilar are replaced by respective (dis)agreement symbols. Attributes with a
medium similarity are displayed partially either by showing the differing plaintext characters
(here: first name) or placeholders (here: birth date). Although the data is shown only partially
disclosed, the responsible institution for the clerical review has access to the full plaintext
records in the backend services. They are used to determine appropriate masks depending
on the attribute similarities. However, to enable such a privacy-preserving clerical review
(PPCR), the system requires merely selected plaintext based on the information whether an
attribute pair is equal, dissimilar, or somewhat similar. Only in the latter case, the attribute
values are needed to determine replaced or swapped characters (groups). Based on these
observations, we derive the following requirements for our protocol:

Requirement R2. The protocol must determine attribute-level similarities.

Requirement R3. The facility responsible for the (masked) clerical review should only
have access to those plaintext attributes that are displayed (partially).

The risk to conduct a successful re-identification attack on an encoded dataset increases
when more information is disclosed (see below in Section 3.3). While some data owners
might be willing and allowed to provide more information to improve the linkage quality,
others might not. From this assumption, we derive another requirement:

Requirement R4. Data owners must have control over the amount of information they
share for each record.

For example, the provision could be limited by a restrictive or missing consent of some
persons. In such a linkage scenario with heterogeneous consents, it would be beneficial to
use additional information from records with less strict consent to improve the classification
performance for all other records.



2.3 Active Learning

We aim to use the partial ground truth from clerical review to improve the classification
performance for non-reviewed record pairs. Our protocol is similar to active learning
approaches that strive to minimize manual labeling, which in the PPRL context is based on
sensitive data. In pool-based active learning, samples are selected from a set of unlabeled
instances using a query strategy and labeled by an oracle. The labeled samples are then
used to train a classification model. This process is repeated until an exit condition is met,
e.g., by reaching a budget of allowed queries.

The most important component is the query strategy. A variety of techniques was pro-
posed [Pa21b]. Some, such as heuristic-based methods using the feature vectors of unlabeled
instances, are not suitable for record-level encodings, as only a single similarity score feature
is available. Margin-based strategies are applicable and select the most uncertain instances,
typically close to the decision boundary, i.e., the threshold.

While many studies on active learning assume the (human) oracle to be flawless [PBK20],
this is not a reasonable model for our protocol due to the restricted access to the data for
enhanced privacy. A lack of handling label noise could lead to poor models when used
for training. Crowd-based approaches could be used where the output label is determined
collectively, e.g., by a majority vote [Ca20]. However, in our privacy-sensitive setting,
additional queries and oracles would increase the privacy risk. We therefore consider only a
single human oracle.

Requirement R5. The model update process must not expect the oracle labels to be
error-free as its predictions are based on limited information.

3 Methodology

In the following, we present our multi-layer active learning PPRL protocol based on the
requirements listed above.

3.1 Overview

Our protocol follows the need-to-know principle : The protocol is comprised of multiple
layers of classification with increasing levels of disclosure. The data owners share only
as much information for each record as needed for a classification decision with high
probability. While the majority of pairs are classified with high certainty in the top layer,
some pairs require additional information. The underlying assumption is that the accuracy
of the classification benefits from such disclosure.
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Fig. 1: PPRL protocol with three linkage lay-
ers: Initially, data owners provide record-level en-
codings (R). Uncertain pairs are reviewed using
keyed attribute-level encodings (A) and finally with
masked disclosure of selected attributes only (C).

Without loss of generality, we focus on a
protocol with three layers (see Fig. 1). First,
in 𝐿𝑅, encodings with a higher focus on
privacy protection are used to determine
certain matches and certain non-matches,
e.g., record-level encodings 𝐸𝑅. Batches
of uncertain match candidates are selected
for review by the next layer 𝐿𝐴. To deter-
mine attribute similarities (R2) attribute-
level encodings 𝐸𝐴 are necessary. A pair-
specific secret key is used to ensure that
each record pair is encoded differently (R1).
These keyed attribute-level encodings serve
two purposes: (i) Classify uncertain record
pairs with a higher probability for an unam-
biguous match decision than with record-
level encodings and thus ideally make fur-
ther clerical review unnecessary and (ii)
Determine attributes that have an interme-
diate similarity score and should be visually
masked in clerical review (R3). The masked
clerical review is the last layer 𝐿𝐶 to resolve
remaining uncertain match candidates. For
each batch, the revised labels are reported
to the upper layer and used to update the
model. Non-revised pairs are reclassified with the updated model. Predictions can change in
subsequent iterations and are propagated again upwards in order to hamper learning from
erroneous labels (R5). After each batch, the first layer holds the best possible result that is
achieved based on the given information. A protocol with 𝑖 layers uses 𝑖 − 1 active learning
processes. Our three-layered protocol consists of AL𝑅 and AL𝐴. In AL𝑅, the classifier 𝑀𝐴

of layer 𝐿𝐴 is used as an oracle to label instances and train the classification model 𝑀𝑅

from layer 𝐿𝑅. In AL𝐴, a human oracle provides the labels for layer 𝐿𝐴 and its model 𝑀𝐴.

The protocol is implemented so that data owners actively have to provide additional
information via their respective encoding component (R4). They retrieve batches of requests
for further information on selected records from the linkage unit. However, the data owners
may limit the level of disclosure independently for each record. If no additional information
is provided at all by the data owners to layers 𝐿𝐴 and 𝐿𝐶 , the protocol is equivalent to
the common single-provision setting of a PPRL process utilizing a record-level encoding.
If no plaintext attributes are provided, no labeled instances are available for training the
attribute-level model. Using a pre-trained model (trained on a sufficiently similar dataset)
the protocol could be run in a basic configuration with a single active learning process
based on the upper two layers.



3.2 Components

Encoding. Given a record 𝑟 with a set of attributes A = {𝑎0, 𝑎1, . . . , 𝑎𝑖−1}, we define the
encoding function E = encode(𝑟,P), where P denotes the set of encoding parameters and
the output E is the encoded record consisting of one or more encoded parts. Record-level
encoding functions result in |E| = 1, whereas attribute-level encoding functions produce
|E| ≥ 𝑖 encoded parts, each corresponding to one attribute. The encoding parameters P
are known only to the data owners (see Section 2). Without loss of generality, we focus on
Bloom filter encodings, as described in Section 2.1. For these encodings the parameters
comprise at least the length of the Bloom filter 𝑚, the q-gram length 𝑞 and the set of
ℎ hash functions H. The hash functions should be independent, e.g., by using Random
Hashing [Ni14]. We use a pseudo random number generator (PRNG) to generate ℎ values
in the range [0, 𝑚 − 1]. The PRNG is initialized with a seed 𝑠 that is constructed by a keyed
cryptographic hash function HMACSHA256 ( 𝑓 , 𝑘𝑒𝑦𝑑𝑜) → 𝑠, where 𝑓 is the feature (q-gram)
to be hashed and 𝑘𝑒𝑦𝑑𝑜 is a secret key as part of the parameters P known only to the data
owners.

For the first layer any error-tolerant record-level encoding technique can be used, e.g.,
record-level Bloom filters as proposed by Durham et al. [Du14] or Cryptographic Longterm
Keys (CLK) as proposed by Schnell et al. [SBR11]. Error tolerance means that the encoded
entities must be comparable with approximate similarity functions. For the second layer
attribute-level encodings are used, e.g., keyed attribute-level Bloom filter (KABF). For
each attribute 𝑎𝑖 a secret key is constructed as concat(𝑘𝑒𝑦𝑑𝑜, 𝑘𝑒𝑦𝑝𝑎𝑖𝑟 , 𝑎𝑛𝑖) → 𝑘𝑒𝑦𝑖 where
𝑘𝑒𝑦𝑑𝑜 is the secret key known to the data owners only, 𝑘𝑒𝑦𝑝𝑎𝑖𝑟 is a pair-specific key and 𝑎𝑛𝑖
is the name of the attribute. 𝑘𝑒𝑦𝑑𝑜 is necessary to prevent dictionary attacks by the linkage
unit. 𝑘𝑒𝑦𝑝𝑎𝑖𝑟 is a random key generated by the linkage unit individually for each uncertain
record pair. It ensures that these specific encoded records are created using the same hash
functions and thereby are comparable. The inclusion of the attribute name 𝑎𝑛 is called
attribute salting and leads to different hash functions for each attribute of a record [Fr21].
Thus, the same q-grams from different attributes are hashed to different bit positions which
hampers frequency analysis. The masked clerical review in the third layer requires selected
plaintext attributes without any obfuscation. Visual masking depends on the paired records
and therefore has to be applied at 𝐿𝐶 .

Blocking, comparison and classification. For each layer a separate linkage strategy is
used. First, pairs of encoded records are generated. We use standard blocking to reduce
the number of pairs in the first layer. For lower layers, no further blocking is required
as the match candidates have been identified already. For each pair the corresponding
encoded parts in E are compared which results in a similarity vector sim. We use the Dice
coefficient to compare Bloom filters and compute normalized similarity scores in the range
[0, 1] [Di45]. The classification model is a function classify(sim) → (𝑔, 𝑝), where 𝑔 is
the binary classification target ({Non-match, Match}) and 𝑝 is the probability of that target
([0.5, 1]). We denote the classification model of layer 𝐿𝑅 as 𝑀𝑅 (Record-level) and the



model of 𝐿𝐴 as 𝑀𝐴 (Attribute-level). Arbitrary classification methods utilizing similarities
are applicable. In the first layer, a simple threshold-based classification model is used. For
record-level Bloom filter additional features, e.g., based on the bit vector fillrate, could
be computed. Some hardening techniques distort these features though, so for the sake of
generalizability we use only the minimal available feature. In the second layer, we use an
evolving Random Forest model as suggested by [PBK20]. The classifier is updated gradually
by adding and replacing trees as explained below.

Query strategy. The aim of the query strategy in Active Learning is the selection of
samples that are most important for the training. We consider uncertainty sampling which
selects those samples where the probability of the model prediction is low. For a binary
threshold-based classification these are typically the record pairs whose similarity is close
to the threshold value. However, a sampling strategy considering only the minimal distance
to the threshold potentially results in homogeneous samples for training. Therefore, we use a
bucket-based strategy to select pairs with varying similarities. We divide the samples where
𝑝 < 𝑝𝑡 into 𝑥 buckets of equal width (𝑝𝑡 − 0.5)/𝑥, where 𝑝𝑡 is the probability threshold. In
multiple iterations, a random sample is selected from each of the buckets ordered by the
lower bound of that bin. For each selected pair we generate a pair-specific secret 𝑘𝑒𝑦𝑝𝑎𝑖𝑟
and push both records to a queue of oracle requests (wishlist). According to R4 the data
owners retrieve a batch of their respective wishlist and may or may not provide the requested
record representations to the next layer. The batch size depends on the overall size of the
datasets as well as on the expected response rate of the data owners. A larger batch size is
required to gather a sufficient number of pairs if the response rate of the data owners is low
(as the data owners’ responses are independent of each other). In AL𝐴, we again apply this
query strategy, based on the probabilities 𝑝 that are calculated by 𝑀𝐴.

Oracle. The oracle assigns a (preliminary) ground truth label to a record pair. In 𝐴𝐿𝑅, the
attribute-based 𝑀𝐴 is used as the oracle based on attribute similarities, whereas in 𝐴𝐿𝐴 a
human assigns the label based on the visually masked display. Both oracles have limited
information and therefore may assign wrong labels with a non-negligible error rate. We
denote the error rate of the masked clerical review as 𝑒𝑟𝑟 . As the oracle in the intermediate
layer 𝐿𝐴 evolves with more updates from the lower layer, the oracle may revise its prediction
as explained in the next Section.

Update and back-propagation. Predictions of the oracle are reported from that lower layer
and used to update the model. The updated model is then used to reclassify all non-reviewed
instances. After that, all instances with changed outcomes (𝑔, 𝑝) are reported again to the
next upper layer. The update is based on all labeled instances (also from previous iterations).
This is due to the fact that instances may be reported multiple times from the lower layer if
the prediction has been revised by the reclassification in the lower layer.

The classifier for record-level encodings 𝑀𝑅 uses a single threshold 𝑡. We implement a
straightforward threshold optimization algorithm as follows : The reported labeled pairs
with their similarity are classified using various thresholds. The threshold for which the



quality measure 𝑞 is optimized is selected as the new threshold. We consider only thresholds
within a maximal distance 𝑑𝑡 to the initial threshold because we presume an approximately
suitable default value. We also restrict the maximal shift per update (𝑑𝑡𝑠𝑡𝑒𝑝) in order to
prevent selecting thresholds where few labeled samples are available yet. For attribute-level
encodings initially a Random Forest model is bootstrapped based on the predictions from
𝑀𝑅. On update, another small temporary Random Forest model is trained based on all
labeled instances. The trees are added to the larger Random Forest model. If the number of
trees exceeds a limit, the oldest trees are removed. Thereby, the model gradually adapts to
the current set of labeled instances and previous potentially erroneous samples are forgotten.
In both layers, the instances are weighted based on their probabilities 𝑝. The weights of
instances labeled by 𝐿𝐶 are doubled as they are assumed to be more reliable.

3.3 Protocol privacy analysis

Perturbation-based PPRL protocols such as ours are commonly based on the Honest-but-
curious adversary model [LP09]. It is assumed that each party follows the protocol but tries
to learn as much as possible about the other parties based on the data it receives. Moreover,
the linkage unit is assumed to not collude with any data owner. Otherwise a data owner
could share the encoding function including its parameters, such a 𝑘𝑒𝑦𝑑𝑜, with the linkage
unit that could transform various possible records 𝑟 , e.g., from a public source, and thereby
conduct a dictionary attack to assign individuals to (encoded) records.

Attribute-level BF have been shown to be vulnerable to frequency attacks [Ch18; Ch19].
These attacks determine frequencies of BF encodings and align these with plaintext value
frequencies (see step 4 and 5 in Fig. 2). A sufficient number of records with the same
encoding is required for gathering meaningful frequency information. We therefore use
compound secrets where the linkage unit provides distinct secret shares for each record
pair as described in Section 3.2. Thus, at most two records are encoded the same way and
frequencies cannot be determined for the complete dataset. Nevertheless, attacks based on
similarity graphs [Vi20] are still possible in principle. For each attribute a corresponding
similarity graph could be constructed. However, as only a subset of the full graph of the first
layer is compared on the attribute-level, it is rather unlikely that an attacker could construct
a sufficiently similar graph based on plaintext values.

Additional attack scenarios arise in our protocol when multiple linkage layers are conducted
by the same linkage unit. In the following, we analyze possible attacks by combining
different (encoded) representations of the same records from multiple layers.

Attack record-level encodings with KABF. Durham et al. proposed an encoding method
where first attribute-level BF are generated from which bits are sampled according to the
respective attribute weights to construct a record-level BF (RBF) [Du14]. In Fig. 2, we
outline an attack on those RBFs when attribute-level similarities are known. That would be
the case if a single organization is responsible for 𝐿𝑅 and 𝐿𝐴. This attack is possible because



each bit position in the record-level Bloom filter corresponds to exactly one attribute. The
bit positions of a certain attribute can be identified using a set of pairs where all but this
attribute are equal.

1 0 1 0 0 0 1 0 1 1 0 1

F L D D L D L F D F L D

1 1 1 0 1 0 1 0 1 1 0 1

0 0 1 1 0 0 0 1 0 0 1 0
0 0 1 1 0 0 1 1 0 0 0 0

1 1 1 0 1 0 1 0 1 0 0 1
1 0 1 0 1 0 1 0 1 0 0 1

P
ai

r 0
P

ai
r 1

P
ai

r 2

0 0 1 0
1 1 1 0

0 0 0 1
0 0 1 0

1 1 1 0
0 1 1 0

2 3

... ...

0 0 1 0 2500

Reconstruct
ABFL

Identify bit positions of L 
where values are different 4 Compute ABFL 

frequencies

1 1 1 0 1800

0 1 1 0 1750

1 1 0 0 1600

0 1 1 1 1500
...

...

0.0125

0.0094

0.0087

0.0084

0.0073

...

Smith

Williams

Jones

Johnson

Brown

5 Reidentify plaintext by 
frequency alignment

1 Select pairs where all 
attributes but L are equal

Fig. 2: Example of a reidentification attack for an attribute L(astname) based on RBF encodings and
known attribute similarities

In CLK, tokens from different attributes are hashed directly into a joint Bloom filter and
therefore can be mapped to the same bit positions [SBR11]. These collisions have the effect
that bit positions cannot be assigned unambiguously to attributes. Thus, the attack on RBF,
as described above, is not applicable, in particular if CLK with hardening techniques are
used, e.g., with record-specific salting or xor-folding [Fr21].

Attack KABF with plaintext. An attacker with access to a plaintext attribute pair (from
𝐿𝐶) and a KABF pair (from 𝐿𝐴) can presume which bit positions correspond to which
token, similar to the attack on RBFs described above. However, as distinct hashing secrets
are used for each attribute as well as for each record pair, the attacker cannot infer any
information about other encoded records.

Attack record-level encodings with plaintext. The most hazardous scenario arises when an
attacker has access to plaintext attributes and a record-level encoding of the same record(s)
which would be the case when a single (malicious) organization is conducting 𝐿𝑅 and 𝐿𝐶 .
Similar to the attacks with KABF above, the attacker may infer correspondences of bit
positions/patterns and use this information to attack all other record-level encodings.

To prevent those scenarios, the first layer should be conducted by a different independent
organization than the other layers. It receives only the classification outputs of pairs from
lower layers.

Membership inference. Furthermore, the query strategy may leak information to the data
owners and allow them to infer the membership of some of their records in other databases.
This could already reveal sensitive information if the other linkage participants and some
common characteristics of the records in their databases are known. For example, the
knowledge that there is a duplicate of a known person in a cancer registry leaks private



information. However, the data owners do not learn the classification outcome of their
records and thereby cannot tell whether a re-encoding request corresponds to a certain
match, a certain non-match or an uncertain match candidate.

4 Experimental evaluation

We evaluate our proposed protocol with regard to the linkage quality improvements, the
labeling effort and privacy implications.

4.1 Goals and measures

Quality. The proposed protocol aims to enhance the overall linkage quality by using labeled
instances from clerical review. The improvement is achieved in two ways: (i) The original
uncertain labels are replaced by those from lower layers, which are likely more accurate due
to the additional available information. (ii) The labeled samples are also used to update the
classification models and improve the labels of non-reviewed record pairs by reclassifying
them.

To evaluate linkage quality we use the F1 score, which is the harmonic mean of recall and
precision. Recall measures the proportion of detected true matches from all true matches.
Precision measures the proportion of detected true matches from all detected matches.
The quality assessment is repeated after each batch of reviewed pairs with subsequent
post-update reclassification in the first layer.

Privacy risk. We focus on quantifying the privacy risk of lower layers as the top record-level
layer is not directly affected by our protocol with regard to feasible attacks. There is
no universal privacy measure for perturbation-based PPRL as the risk depends on the
considered attack types and background knowledge as outlined above. For Bloom filter
based encodings several privacy risk scores have been proposed [Fr21]. We report the
Gini coefficient (G) as well as the Jensen-Shannon divergence (JSD) for measuring the
dissimilarity of the bit frequency distribution with a uniform distribution. The notion of
these measures is that the risk of frequency attacks is reduced if all bit positions have the
same likelihood of being set to ’1’. The scores of both measures range from 0 (identical, low
privacy risk) to 1 (maximal different, highest privacy risk). As the chances of successful
attacks rise in general with more accessible information, we also consider the number of
available pairs/records in 𝐿𝐴 and 𝐿𝐶 .

For the lowest layer with masked clerical review, we report the share of attributes that have
been provided (on request) by the data owners as some attributes are more relevant for
the privacy risk than others. However, reidentifications are mostly feasible using attribute
combinations as this may allow to unambiguously map partial records with (uncommon)
values to their original representation. We therefore also report the k-Anonymized Privacy



Risk (KAPR) score which has been proposed for measuring the privacy risk based on the
revealed information in masked display [Li19]. The normalized risk score in [0, 1] is higher,
the more plaintext of the records is disclosed and the lower the number of records that are
indistinguishable based on the level of disclosure. For each record 𝑖 the number of possible
records (𝑘𝑖) is determined based on the available information. The overall KAPR score
is computed using an adapted function from [Li19]: 𝐾𝐴𝑃𝑅 = 1

𝑁𝐷

∑2𝑛−1
𝑖=0

𝑑𝑖
𝑘𝑖

where 𝑁 is
the total number of records (in this layer), 𝐷 is the total number of attributes and 𝑑𝑖 is
the number of provided attributes of record 𝑖 in this layer. The original formula includes
the proportion of disclosed characters, but our KAPR variant measures the risk based on
the data available to the reviewing institution instead of based on the information that is
displayed.

4.2 Setup

Datasets. We use personal records from the North Carolina voter register (NCVR) as
provided by Panse et al. [Pa21a]. The database contains multiple snapshots of the register
and thereby real-world errors of matching records, e.g., due to people moving or changing
their names. Ground truth data is available based on unique voter IDs. We use the attributes
first name (FN), middle name (MN), last name (LN), year of birth (YOB), CITY, ZIP code
and place of birth (POB) for linkage. We derive multiple datasets with two sources with 50𝑘
records each that overlap by 10% (S), 20% (M) and 30% (L). The duplicates are selected
by randomly sampling records from snapshot ’2021-01-01’ and using a duplicate from a
different snapshot where at least one (E1) or two (E2) of the attributes FN, MN, LN, POB,
(CITY+ZIP) are non-equal. Our datasets therefore do not contain any perfect matches as
those are trivial to match. Apart from that, the records are not synthetically modified. These
dimensions of dataset variation – overlap of data sources and disparity of duplicates – have
been chosen as they represent dataset characteristics that typically are not known prior to
linkage. The datasets names are composed of their error rate (E1, E2) and overlap (S, M, L).

Encoding. We use CLK encodings with 𝑚 = 1024 and ℎ = 12 for the first layer (𝐸𝑅).
Additionally, we test an encoding variant where the XOR-folding hardening technique is
applied to these CLK. As attribute-level encodings 𝐸𝐴 we use KABF with 𝑚 = 256 and
attribute-specific ℎ (see Table 2), following the encoding procedure described in [Ro23].

Tab. 2: Number of hash functions h for the
Keyed Attribute-level Bloom filter encodings

FN MN LN YOB CITY ZIP POB

h 18 21 17 26 13 21 43

Both, CLK and KABF, have an approximate av-
erage fill rate (proportion of 1-bits) of 40%. For
𝐿𝐴 and 𝐿𝐶 , data owners also provide approx-
imate frequency information for the attributes,
together with the attribute-level encodings. Pos-
sible values are: ’1’ if the value is in the top 1%
most frequent values, ’2’ in top 5% and ’3’ if it is rarer. Those frequency labels are used as
additional features for 𝑀𝐴 when the corresponding attributes of a pair are equal, otherwise
the value is set to ’0’.



Linkage. We conduct the following blocking strategy in 𝐿𝑅 to generate candidate record
pairs: For each record we derive multiple blocking keys at the data owners based on the
plaintext attribute combinations FN+YOB, LN+YOB and Soundex(FN)+Soundex(LN) and
encode each of them using a cryptographic one-way hash function. These hashed blocking
keys are transmitted together with the encoded records to enable standard blocking at the
linkage unit. This procedure ensures that the same candidate pairs are generated during the
initial batch matching on the first layer even with different encoding techniques.

Query strategy and models. We select the parameters 𝑝𝑡 = 0.8 and 𝑥 = 10 for our
uncertainty-bucket-based query strategy. The prediction probability 𝑝 of 𝑀𝑅 is computed
for a similarity 𝑠𝑖𝑚 and the threshold 𝑡 as 0.5 ∗ (1 + 𝑚𝑖𝑛(1, 𝑎𝑏𝑠(𝑠𝑖𝑚 − 𝑡)/𝑑) → 𝑝 with
𝑑 = 0.05 for 𝑠𝑖𝑚 < 𝑡 and 𝑑 = 0.1 for 𝑠𝑖𝑚 >= 𝑡. For 𝑀𝑅, we apply the threshold shift
approach (see Section 3.2) with accuracy as the quality measure. For 𝑀𝐴, we use the shifting
Random Forest classifier based on the RF implementation from the WEKA library [FHW16]
using the options P 70 -I 10 -J 10 -N 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1 -depth
6" where -I, -J, -N determine the initial, added and maximum number of trees. The model
is bootstrapped using the initial batch of prelabeled pairs from 𝐿𝑅. In each iteration the
model is updated with all samples and their respective predictions, either from 𝐿𝑅 or 𝐿𝐶 .

Test protocol. Initially, a batch matching on the first layer is conducted. Afterwards, our
iterative protocol is composed of two phases: First, 5 smaller batches of 100 uncertain record
pairs from the first layer are selected for review by the second layer. After classification
based on attribute-level encodings with 𝑀𝐴, 2 batches of uncertain pairs on that layer are
reviewed by the final oracle (PPCR). After each reviewed batch, the model is updated based
on the revised predictions and all non-reviewed record pairs are reclassified based on the
revised model. The batch size in AL𝐴 is computed as 𝑏

10 . After this warm-up phase, the
budget is reached and the clerical review layer is omitted. Consequently, 𝑀𝐴 is not updated
anymore. The batch size is increased to 1000 pairs per iteration for 4 additional batches to
study the performance of the trained 𝑀𝐴.

Evaluation procedure. We evaluate different scenarios with regard to the PPCR layer:
We vary the simulated error rate 𝑒𝑟𝑟 = {0.0, 0.1, 0.2} and the clerical review budget
𝑏 = {100, 200, 300}. For each dataset, we determine the top-level threshold 𝑡𝑜𝑝𝑡 that
optimizes the F1 score given the global ground truth. Each scenario is evaluated using the
initial thresholds range(𝑡𝑜𝑝𝑡 − 0.05, 𝑡𝑜𝑝𝑡 + 0.05, 0.01) to study the performance of the
protocol with regard to threshold optimization. We repeat each experiment three times and
report the micro average F1 score as well as the minimum-maximum range.

Baselines. In the following figures, grey-dotted vertical lines mark the end of the
warm-up phase and green dashed horizontal lines represent the F1 score with op-
timal threshold for the respective dataset without any revised labels as a base-
line. Furthermore, orange-doted horizontal lines refer to the optimal F1 scores
achieved using a linkage strategy solely based on attribute-level encodings. Attribute
similarities are aggregated to a record similarity using a weighted mean average.



Tab. 3: Attribute weights w used for the baseline
linkage solely based on (non-keyed) attribute-level
Bloom filters.

FN MN LN YOB CITY ZIP POB

w 12.04 15.15 5.12 6.58 8.23 10.95 6.63

Weights are determined based on a proba-
bilistic approach [FS69], using the default
average value frequencies and error rates of
the Epilink Matcher based on a German can-
cer registry [Ro21]. For missing attributes,
the corresponding similarity scores are ex-
cluded from the aggregation.

4.3 Results

Dataset E1M. Fig. 3 (left) shows the results for dataset E1M with 𝑏 = 100 and varying
𝑒𝑟𝑟. The worst initial F1 score is 0.791 for the threshold 𝑡𝑜𝑝𝑡 + 0.05. The F1 score for
𝑡𝑜𝑝𝑡 is 0.863 and the average initial F1 score over all thresholds is 0.838. As expected, the
linkage quality improves with growing number of reviewed pairs. After reviewing 4500
pairs on the top layer, average F1 scores reach 0.899 (𝑒𝑟𝑟 = 0.0), 0.888 (𝑒𝑟𝑟 = 0.1) and
0.881 (𝑒𝑟𝑟 = 0.2). The final results of the best runs are very similar with a F1 score of
0.910 ± 0.002. The worst runs lead to F1 scores between 0.832 (𝑒𝑟𝑟 = 0.2) and 0.863
(𝑒𝑟𝑟 = 0.0). Hence, higher error rates of the PPCR oracle lead to higher outcome variability.
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Fig. 3: Linkage quality development for dataset E1M with fixed budget 𝑏 = 100 and varying error
rates (left) and varying budget 𝑏 and fixed error rate of 𝑒𝑟𝑟 = 0.2 (right).

In the following, we set the error rate 𝑒𝑟𝑟 to 0.2 which is in line with the empirical studies
based on visual disclosure in [Ku19; Ra18]. As depicted in Fig. 3 (right), higher budgets
𝑏 = 200 and 𝑏 = 300 improve the performance considerably. The final average F1 scores are
0.903 (+0.065) and 0.909 (+0.071) which is comparable to the best runs with lower budget.
Higher budgets also improve the reliability of the results, as even the worst runs achieve F1
scores of 0.884 and 0.896. The range of outcomes is reduced from 0.072 to 0.031 (𝑏 = 200)
and 0.017 (𝑏 = 300). Furthermore, F1 scores rise already with a low number of reviews
in the top layer. In our setup, the optimal threshold can be reached from the worst starting
condition (𝑡𝑜𝑝𝑡 ± 0.05) after three iterations due to the shift limit 𝑑𝑡𝑢𝑝𝑑 = 0.02. For 𝑏 = 300
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Fig. 4: Linkage quality development for datasets E1S and E1L (left) and E2S and E2M (right) with
varying budget 𝑏 and fixed error rate of 𝑒𝑟𝑟 = 0.2.

the average F1 score reaches the baseline in three to four rounds (90 − 120 manual reviews)
whereas for 𝑏 = 100 it is not achieved at all during the warm-up phase despite a comparable
number of manual reviews. Therefore, the quality improvements with larger budgets in that
phase are mostly the result of the threshold shift algorithm.

Datasets E1S and E1L. Experiments using dataset variants with lower and higher overlap
show enhancements of the average F1 scores from 0.786 by 0.101 (E1S, 𝑏 = 300) and from
0.862 by 0.048 (E1L, 𝑏 = 300), see Fig. 4 (left). The minimal F1 score is increased from
0.727 by 0.131 (E1S, 𝑏 = 300) and from 0.802 by 0.083 (E1L, 𝑏 = 300). The range of
outcomes is reduced from 0.094 to 0.046 (E1S, 𝑏 = 300) and from 0.083 to 0.033 (E1L,
𝑏 = 300). The final results for 𝑏 = 200 are comparable, but the improvements are achieved
later and with higher variance in the process.
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Fig. 5: Linkage quality development for datasets
E1S, E1M and E1L with XOR hardened CLK
encodings, fixed 𝑏 = 300 and 𝑒𝑟𝑟 = 0.2.

BF Hardening. The experimental out-
comes based on 𝐸𝑅 with XOR hardening
(see Fig. 5) are comparable in terms of the
average F1 scores, which improve by 0.108
(E1S-XOR), 0.076 (E1M-XOR) and 0.049
(E1L-XOR). However, the linkage quality is
in general slightly lower as a trade-off for the
improved privacy of the encodings, which
is illustrated, e.g., for E1M-XOR compared
to E1M by decreases of G from 0.224 to
0.095 and JSD from 0.172 to 0.079.

Datasets E2S and E2M. Finally, we study
the results for datasets E2S and E2M (see
Fig. 4 (right)). In general, the linkage quality



is lower due to the higher dissimilarity of duplicates. The average F1 score is raised by
0.109 (E2S, 𝑏 = 300) and 0.048 (E2M, 𝑏 = 300), which is comparable to the E1 datasets.
However, the progress is less stable, leading to a larger range of outcomes and for some
runs even quality losses (E2S, 𝑏 = 200).

For most of the datasets the respective reference results solely using (non-keyed) ABF
encodings (orange lines) are not reached on average. Please note, though, that the baseline
results are reported for an optimized classification threshold. Nonetheless, the distances of
the final average F1 scores are rather small: −0.008 (E1S), −0.003 (E1M), −0.008 (E1L),
0.012 (E2S) and −0.026 (E2M) (all results for 𝑏 = 300 and 𝑒𝑟𝑟 = 0.2).

Privacy. Table 4 compares the privacy measures of these ABF baselines with our approach
using keyed attribute-level Bloom filters. The number of available encodings in 𝐿𝐴 is
decreased from up to 100.000 (total number of records in the dataset) to up to 9.000 (two
times the number of record pair review requests by 𝐿𝑅). For some attributes, in particular
middle name and place of birth, the counts are lower due to missing values. Both Bloom
filter privacy measures are heavily reduced from 0.147− 0.388 (G) and 0.114− 0.299 (JSD)
to at most 0.01. For attributes with a high variety of values, in particular name components,
the decreasements are the lowest. The largest improvements are achieved for the year of
birth attribute, likely due to very frequent bigrams such as ’19’ which are reflected in
having very frequent corresponding bit positions in conventional ABF. This illustrates the
privacy-enhancing effect of the pair-specific hashing secrets in our protocol.
Tab. 4: Privacy measures in 𝐿𝐴 for Keyed Attribute-level Bloom filter (KABF) compared to the
baseline approach using only ABF-based linkage for linkage of E1M. The given values for KABF are
the mean over all experimental runs for that dataset.

Enc. FN MN LN YOB CITY ZIP POB

Number of encoded attributes ABF 100𝑘 92.2𝑘 100𝑘 100𝑘 100𝑘 99.9𝑘 80.8𝑘
KABF 9𝑘 8.4𝑘 9𝑘 9𝑘 9𝑘 9.0𝑘 7.6𝑘

Gini coefficient (G) ABF 0.171 0.157 0.147 0.388 0.212 0.330 0.373
KABF 0.010 0.009 0.010 0.010 0.009 0.009 0.010

Jensen-Shannon diverg. (JSD) ABF 0.132 0.121 0.114 0.299 0.162 0.251 0.296
KABF 0.008 0.007 0.007 0.008 0.007 0.007 0.008

Fig. 6 shows the distributions of the privacy measures in 𝐿𝐶 for datasets E1M and E2M
based on the final states of the runs with 𝑏 = 200 and 𝑒𝑟𝑟 = 0.2. Each measure is computed
for three attribute selection methods: No restrictions refers to the baseline where all attributes
of uncertain pairs in 𝐿𝐴 are provided to 𝐿𝐶 . In No equal attributes the data owners are
asked to provide all attributes whose similarity is below 1, whereas in the last setting, an
additional filter is applied to exclude very dissimilar attributes (𝑠𝑖𝑚 < 0.4) as well. In the
first setting, the results represent the availability of the attributes in the plain dataset. With
stronger restrictions, the share of attributes that have been requested and provided decreases
for most attributes. While all attributes of E1M apart from MN and POB are available for
(nearly) all records in the unrestricted setting, the average sharing rate is reduced to a high



(FN, YOB) or moderate (LN, CITY) degree using the proposed selection strategies. The
ZIP code, however, is still available in plaintext for most records (median ≈ 83%). For E2M
the availability of the location-related attributes is even higher, close to 100% for the ZIP
code. While the median scores are otherwise comparable to E1M, the results show a lower
variance. The KAPR score for both datasets is reduced from above 0.9 to below 0.4 and 0.2
using the two filtering methods.
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Fig. 6: Comparison of the privacy measures in 𝐿𝐶 for datasets E1M (left) and E2M (right) using
different attribute selection strategies. All measures to the right of KAPR refer to the availability of
the respective attribute in this layer.

5 Discussion

In general, the results show that the proposed protocol achieves its aim of improving the
linkage quality with a limited amount of manual labeling.

Quality. While higher error rates of the masked clerical review naturally are detrimental to
the overall performance, it can be observed from Fig. 3 (right) and Fig. 4 (left) that protocol
runs with increased budgets achieve F1 score improvements by approximately 5 − 10%
on average. Both aspects, clerical reviews as well as the model updates, contribute to that.
The tuned threshold of 𝑀𝑅 is largely responsible for improvements in early iterations with
few reviewed instances. F1 scores above the green reference lines represent results that
are beyond the optimal initial threshold configuration and therefore could not have been
achieved without clerical review based on additional data in 𝐿𝐴 and 𝐿𝐶 . In addition, the
range of possible outcomes is reduced substantially. This means that data custodians can
expect a high linkage quality, less depending on the initial classification threshold choice.

This also applies to the E2 dataset variants in principle, however, a higher budget is required
for stable results. As the oracle error rate is identical to the E1 experiments, the cause must
be the training of 𝑀𝐴 and 𝑀𝑅. The high availability of the residence attributes and the low
variance of other attributes in 𝐿𝐶 (Fig. 6) indicates that the reviewed pairs are fairly similar,
leading to a biased and poor 𝑀𝐴. In consequence, the performance of 𝑀𝑅 also deteriorates.



In our setup, the warm-up phase with AL𝐴 in the first five iterations determines the
performance of 𝑀𝐴, because the training will be stopped as soon as the clerical review
budget 𝑏 is reached. 𝑀𝐴 serves as the bridge between the more secure comparison of the
majority of records based on record-level encodings and the masked clerical review for a
small set of uncertain match candidates. For this functionality, it is not necessary that 𝑀𝐴

performs better than 𝑀𝑅. In fact, the protocol would even work without the model when
(𝑔, 𝑝) of 𝑀𝑅 is reused in this layer. In that scenario, the computed attribute similarities
based on the attribute-level encodings would merely serve to restrict the requested plaintext
data for the subsequent clerical review to non-equal attributes.

In order to achieve higher quality improvements, an increased number of reviews is required,
because 𝑀𝑅 cannot be improved much due to its privacy-induced simplicity with a single
feature. However, the number of manual reviews should be kept as low as possible. Therefore,
it is important that 𝑀𝐴 has a high predictive performance to provide the majority of corrected
links. In our evaluation setup we used a fixed budget of 4500 reviews by 𝐿𝐴, analogous
to the clerical budget 𝑏 in 𝐿𝐶 . In principle, additional reviews are possible and may raise
the linkage quality even further. However, the likelihood that pairs having similarities with
larger distance to the threshold in 𝑀𝑅 are wrongly classified declines, deteriorating the ratio
of corrected to reviewed links.

A possible approach to improve our setup could be a more sophisticated query strategy in
𝐿𝑆𝐴 based on the available feature vector instead of the probability score only. Furthermore,
it could be beneficial using a pre-trained 𝑀𝐴 instead of bootstrapping it based on the initial
predictions of 𝑀𝑅. Such an approach requires a sufficiently similar reference dataset with a
given ground truth for training though.

The ABF baseline results are higher than the RBF baselines as they make use of attribute
weights and weight redistribution in case of missing values, even with weights determined
on an independent dataset (German cancer registry). The experiments show that our protocol
achieves only slightly lower linkage quality compared to this baseline linkage approach.
However, the risk of reidentification attacks based on frequent patterns in the underlying
attribute-level encodings is greatly reduced, as illustrated by Table 4.

Privacy. The majority of reviews is handled automatically by the intermediate layer without
plaintext access while only a small fraction is reviewed manually based on partial display.
After the warm-up, 𝑏

500 = 20/40/60% of the uncertain pairs from the initial layer have
been reviewed using PPCR, the remainder by 𝑀𝐴. At the end, the proportion is reduced to
𝑏

4500 = 2/4/7%. We studied basic filtering approaches for lowering the number of requested
plaintext attributes based on the attribute similarity. The observed reductions vary between
the attributes. In particular, the effect for the numerical ZIP code attribute is comparatively
low, because it has a high similarity on average due to the records being from the same
US state. As a consequence, it is requested for a high share of pairs. This problem may be
addressed in future work by using a dynamic data-driven approach where the lower bound
is determined by the average similarity of each attribute in 𝐿𝐴.



The KAPR scores are drastically decreased due to the attribute selection. Fewer persons can
be uniquely reidentified based on the remaining attributes. This is also illustrated by the
observation that the availability is particularly reduced for strongly identifying attributes
like name and year of birth. Nevertheless, malicious reviewers could still target certain
persons, e.g., with rare attribute combinations. The data owners may implement their own
selection rules to protect their high profile records.

We want to point out that although our protocol was described and evaluated using Bloom
filter encodings due to their popularity, any perturbation technique is applicable that supports
record-specific keys and approximate similarity computation. As the experimental results
using hardened Bloom filter encodings (see Fig. 5) suggest, the overall linkage quality might
be lower though, despite comparable improvements.

6 Conclusion

By their very nature, privacy-preserving classification problems are difficult to parameterize
in practice due to the lack of labeled training data, e.g., from clerical review. In privacy-
preserving record linkage, record-level Bloom filter encodings are frequently used to
improve resistance against reidentification attacks but suffer from potential quality issues
and the need for a well-selected classification threshold. We presented an active learning
based protocol that enables increased and more stable linkage quality using multiple layers
of clerical review. Merely a low number of masked manual reviews is required because
the majority of uncertain pairs can be classified automatically with higher accuracy based
on attribute-level features with the trained models. Sharing additional information with
the linkage unit increases the risk of reidentification. We therefore employ record-specific
salting and attribute selection to hamper such attacks. Furthermore, data owners still remain
in full control of the information they are willing to share for each record.

We sincerely hope that the increased reliability of the linkage outcome leads to a wider
adoption of PPRL methods in practical applications. Our proposed multi-layer clerical
review is also applicable in incremental linkage, e.g., for pseudonymous patient registries,
and would allow monitoring of the linkage quality over time. In future work, we will
investigate whether the suitability of record-level encoding parameters can be assessed based
on the ability of the record-level model 𝑀𝑅 to reproduce labels from the attribute-level
model 𝑀𝐴, and how optimal weights can be determined based on attribute agreements of
selected match candidates.
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