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Abstract: Privacy-Preserving Record linkage (PPRL) is an essential component in data integration
tasks of sensitive information. The linkage quality determines the usability of combined datasets
and (machine learning) applications based on them. We present a novel privacy-preserving protocol
that integrates clerical review in PPRL using a multi-layer active learning process. Uncertain match
candidates are reviewed on several layers by human and non-human oracles to reduce the amount
of disclosed information per record and in total. Predictions are propagated back to update previous
layers, resulting in an improved linkage performance for non-reviewed candidates as well. The data
owners remain in control of the amount of information they share for each record. Therefore, our
approach follows need-to-know and data sovereignty principles. The experimental evaluation on
real-world datasets shows considerable linkage quality improvements with limited labeling effort and
privacy risks.
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1 Introduction

Record linkage, also known as entity resolution, aims at identifying different representations

of the same real-world entity, such as a person. It is a crucial step in many data integration

tasks in order to combine multiple data sources allowing enhanced data analysis. Typically,

unique record identifiers are not available which would enable a join-like operation.

Therefore, records are compared pairwise based on their identifying attributes, such as first

name, last name and date of birth, and classified as match or non-match.

However, record linkage may potentially harm the privacy of individuals by combining

information that can be used against their interests. As a consequence, the conduction of

such a linkage is subject to many legal and organizational constraints [CRS20]. Privacy-

preserving record linkage (PPRL) methods aim for enabling such linkages without sharing

sensitive plaintext information between the data owners or with a third party. To protect the

identifying data, the data owners encode it before sending it to an independent linkage unit

which performs the matching on the encoded data only. A variety of such perturbation-based

encoding techniques have been proposed, but the most popular and a quasi-standard is

based on Bloom filters [Gk21]. An attribute-level application of such techniques results
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in exploitable frequency patterns in the encoded data. It allows to rather simply reidentify

at least some plaintext values, e.g., by aligning the most common last name to the most

common Bloom filter value [Vi22]. The usage of such encodings is thereby limited to data

linkages with lower privacy requirements.

The selection and parameter optimization of record linkage approaches typically require

training data with information on known matches and non-matches. In practical linkage

applications there is generally no such ground truth data available though [CRS20]. Linkage

on plaintext data can reliably achieve high linkage quality by manually reviewing (uncertain)

classifications. Such partial ground truth from clerical review also allows to evaluate and

adapt the chosen linkage algorithm. When linking sensitive data, however, a clerical review

on plaintext data is usually not feasible. As a consequence, data custodians may have

concerns against the use of PPRL due to its uncertain and potentially lower linkage quality.

There is limited work investigating a privacy-preserving clerical review (PPCR) system for

record linkage where attribute values are gradually disclosed and displayed using (visual)

masks [Ku14; Ku19; Ra18]. However, these masks are applied for display only and the

reviewing institution still receives full plaintext data. Moreover, the approach does not aim

at reducing the labeling effort or improving an automatic classification model based on

labeled samples.

We therefore propose a protocol for PPRL that uses active learning to achieve high-

qualitative and reliable linkage results with a low labeling effort. Our linkage protocol

employs perturbation-based encodings and uses multiple layers to gradually disclose limited

information only if needed. First, the linkage is conducted on record-level encodings where

all identifying attributes are combined in a single encoding for each record. These encodings

are more secure but do not permit sophisticated classification approaches. Therefore, an

active learning process is initiated where uncertain match candidates are iteratively resolved

by (re-)classification using attribute-level encodings or ultimately by a masked clerical

review. In contrast to a linkage solely based on attribute-level encodings the resistance

against reidentification attacks is greatly improved by using pair-specific keys for those

encodings and thereby avoiding exploitable frequent bit patterns.

In particular, we make the following contributions:

• We present a novel multi-layer active learning protocol that combines automatic

privacy-preserving record linkage and manual masked clerical review while minimiz-

ing the amount of shared sensitive data.

• We analyze the implications of our protocol with regard to reidentification attacks.

• We conduct experiments on real-world data to evaluate the performance of our

protocol in terms of labeling effort, linkage quality improvement and privacy risk.
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2 Background and related work

In the last decades, a variety of methods for privacy-preserving record linkage has been

proposed [CRS20]. Some protocols based on secure multiparty computation provide formal

security guarantees. However, they typically have very high communication and computing

requirements which make them unsuitable for the linkage of large datasets. Other PPRL

methods are based on perturbation techniques where the data owners encode the plaintext,

often using some form of cryptographic hashing, before sharing it with a semi-trusted

third party for linkage. The parameters for the encoding, in particular the cryptographic

hashing key, are kept secret to the data owners. Thus, the so-called linkage unit cannot

revert the encoding. This approach is very efficient as it has low communication costs. The

linkage unit can employ techniques to reduce the number of match candidates. In standard

blocking, only records that share a certain blocking key, e.g., the same phonetic Soundex

code [OR18] of first and last name, are compared. Such PPRL methods have been used in

multiple real-world linkage projects for health research, such as [Co21; Pr22]. Therefore,

we focus on the most popular of those encoding techniques based on Bloom filters. Related

approaches such as [Sm17] or [RCS20] are applicable as well. In the following, we describe

the technical background from related work and derive requirements for our protocol.

2.1 Bloom filter based PPRL

Bloom filter encodings were proposed for PPRL by Schnell et al. [SBR09]. They became

the de-facto standard for practical PPRL on large datasets due to their straightforward

implementation as well as their fast and error-tolerant comparison. A Bloom filter (BF) is a

bit vector of fixed size < where initially all bit positions are set to zero. The input data is

split into overlapping substrings of length @ (q-grams). Then, a set of ℎ cryptographic hash

functions H = {�0, �1, . . . , �ℎ−1} is applied to each q-gram resulting in bit positions set

to ’1’. Given that identical q-grams are mapped to the same bit positions, a high overlap

of q-grams leads to similar Bloom filters making them suitable for determining the record

similarity using set similarity functions, e.g., the Dice coefficient. This transformation is

not reversible due to collisions where multiple features are hashed to the same position.

However, Bloom filter encodings were shown to be susceptible to certain types of at-

tacks [Vi22]. Published attacks initially focused on exploiting frequency information of

plaintext and encoded attributes as well as pattern mining. Recent work uses graph-based

attacks to align encoded and plaintext entities by exploiting their similarities to other

entities [Vi20]. The underlying attack scenario requires an equal or at least very similar

plaintext dataset, limiting its practical relevance. Different encoding techniques to hamper

frequency-based attacks have been proposed in the last years. Most importantly, attribute-

level encodings that transform each attribute of a record separately should be avoided to

prevent an alignment of frequent encoded attribute values to frequent plaintext values [Ch19].

However, the computation of the frequency distribution depends on the availability of a
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reasonably sized set of consistently encoded records.

Requirement R1. Attribute-level encodings must not be used with the same parameters for

all records to mitigate the risk of successful frequency attacks.

Instead, multiple or all attributes are combined in a single encoded representation. Addi-

tional hardening techniques can be applied to further distort bit patterns in such record-

level Bloom filters [Fr21]. A simple but effective approach in terms of utility-privacy

trade-off is XOR-folding, where the Bloom filter is split in half and both parts are com-

bined using a bit-wise XOR operation [SB16]. Unfortunately, such record-level encod-

ings impose limitations that can affect the linkage quality. The encoding parameters are

chosen based on assumptions about dataset properties that might be inaccurate. In par-

ticular, attribute weights are typically determined by the attributes’ value frequencies

and error rates. The latter are not known to the data owners prior to the linkage and

must be estimated. Commonly, encoding techniques use fixed weights to ensure that all

records are encoded in the same way and are thus comparable. Recent work showed that

Tab. 1: Quality issue of record-level encodings:

Matching and non-matching pairs might have the

same record similarity score, when they have either

multiple slightly different attributes (in A1 and B2) or

a single replaced attribute (A3 and B3). Attribute-level

similarities and masked clerical review with limited

information disclosure enable better classification.

ID First Last Birth Date City

P
la

in
a

A1 PAULA SMITH 1976/09/07 RALEIGH

B2 PAUL SMITH 1974/06/07 RALEIGH

A3 PETER COHEN 1976/09/07 LELAND

B3 PETER COHEN 1976/09/07 RALEIGH

R
ec

.-
le

v
el A1 0.82

B2

A3
0.82

B3

A
tt
r.
-l

ev
el A1 0.8 1.0 (freq.) 0.7 1.0

B2

A3
1.0 1.0 (rare) 1.0 0.2

B3

M
as

k
ed

A1 ****A
✓(freq.)

***$/*@/**
✓

B2 **** ***%/*$/**

A3
✓ ✓(rare) ✓ ✗

B3

a Please note that the full plaintext records are only known

to their respective data owners and are displayed here in

subsequent rows for better comparability by the reader.

value-specific weights, e.g., based on the

respective value frequency, can be applied

in the PPRL context as well, to increase

the linkage quality and robustness [Ro23].

Nevertheless, weighting schemes are still

limited for record-level encodings, in par-

ticular since weight adaption cannot be

restricted to agreeing attributes as the

similarity is not known at the time of the

weight application during encoding. Fur-

thermore, missing values in one record of

a pair result in lowered similarity scores

even for secondary attributes that could

be treated as optional in an attribute-level

comparison and classification process.

Typically, the linkage unit computes a

single similarity score for each pair of

encoded records and classifies it based

on a threshold. The selection of an appro-

priate threshold is therefore essential for

a high linkage quality. Moreover, record-

level encodings conceal whether a certain

difference originates from one or multiple

attributes. Tab. 1 shows an example where

the linkage unit cannot differ between two

non-matching records (A1 and B2) that

have similar but different first names and
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dates of birth, and two matching records (A3 and B3) where these attributes are equal but

the city is very different, e.g., because the person moved. A threshold-based classifier that

should classify the second pair as a match will therefore misclassify the first pair (and vice

versa) due to the equal overall similarity score. A classifier with access to attribute-level

similarities would be able to distinguish these cases.

2.2 Privacy-preserving Clerical Review (PPCR)

Tuning linkage parameters, such as the threshold, requires the availability of (partial)

ground truth data which is generally not available in practical linkage projects. Ground

truth labels can be determined in a clerical review process where potential matches are

decided upon manually. During clerical review, record pairs and potentially additional

information are presented to an oracle, typically a human. The display of such information

in plaintext obviously does not preserve privacy and is therefore not applicable to sensitive

data. However, systems with a masked display were proposed for manual clerical review

that conceal the plaintext by default, present categorical value frequencies, and gradually

disclose selected information [Ku14; Ku19; Ra18]. The studies showed that the masking had

only little impact on the error rate of the labeling using the incremental disclosure approach

in [Ku19] and moderate impact depending on the level of disclosure in [Ra18]. Tab. 1

(bottom) shows an example of such a masked display. Attributes that are identical or very

dissimilar are replaced by respective (dis)agreement symbols. Attributes with a medium

similarity are displayed partially either by showing the differing plaintext characters (here:

first name) or placeholders (here: birth date). Although the data is shown only partially

disclosed, the responsible institution for the clerical review has access to the full plaintext

records in the backend services. They are used to determine appropriate masks depending

on the attribute similarities. However, to enable such a privacy-preserving clerical review

(PPCR), the system requires merely selected plaintext based on the information whether an

attribute pair is equal, dissimilar, or somewhat similar. Only in the latter case, the attribute

values are needed to determine replaced or swapped characters (groups). Based on these

observations, we derive the following requirements for our protocol:

Requirement R2. The protocol must determine attribute-level similarities.

Requirement R3. The facility responsible for the (masked) clerical review should only have

access to those plaintext attributes that are displayed (partially).

The risk to conduct a successful re-identification attack on an encoded dataset increases

when more information is disclosed (see below in Section 3.3). While some data owners

might be willing and allowed to provide more information to improve the linkage quality,

others might not. From this assumption, we derive another requirement:

Requirement R4. Data owners must have control over the amount of information they

share for each record.
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For example, the provision could be limited by a restrictive or missing consent of some

persons. In such a linkage scenario with heterogeneous consents, it would be beneficial to

use additional information from records with less strict consent to improve the classification

performance for all other records.

2.3 Active Learning

We aim to use the partial ground truth from clerical review to improve the classification

performance for non-reviewed record pairs. Our protocol is similar to active learning

approaches that strive to minimize manual labeling, which in the PPRL context is based on

sensitive data. In pool-based active learning, samples are selected from a set of unlabeled

instances using a query strategy and labeled by an oracle. The labeled samples are then

used to train a classification model. This process is repeated until an exit condition is met,

e.g., by reaching a budget of allowed queries. The most important component is the query

strategy. A variety of techniques was proposed [Pa21b]. Some, such as heuristic-based

methods using the feature vectors of unlabeled instances, are not suitable for record-level

encodings, as only a single similarity score feature is available. Margin-based strategies are

applicable and select the most uncertain instances, typically close to the decision boundary,

i.e., the threshold.

While many studies on active learning assume the (human) oracle to be flawless [PBK20],

this is not a reasonable model for our protocol due to the restricted access to the data for

enhanced privacy. A lack of handling label noise could lead to poor models when used

for training. Crowd-based approaches could be used where the output label is determined

collectively, e.g., by a majority vote [Ca20]. However, in our privacy-sensitive setting,

additional queries and oracles would increase the privacy risk. We therefore consider only a

single human oracle.

Requirement R5. The model update process must not expect the oracle labels to be

error-free as its predictions are based on limited information.

3 Methodology

3.1 Overview

Our protocol follows the need-to-know principle: The protocol is comprised of multiple

layers of classification with increasing levels of disclosure. The data owners share only

as much information for each record as needed for a classification decision with high

probability. While the majority of pairs are classified with high certainty in the top layer,

some pairs require additional information. The underlying assumption is that the accuracy

of the classification benefits from such disclosure.
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Fig. 1: PPRL protocol with three linkage lay-

ers: Initially, data owners provide record-level en-

codings (R). Uncertain pairs are reviewed using

keyed attribute-level encodings (A) and finally with

masked disclosure of selected attributes only (C).

Without loss of generality, we focus on a

protocol with three layers (see Fig. 1). First,

in !', encodings with a higher focus on

privacy protection are used to determine

certain matches and certain non-matches,

e.g., record-level encodings �'. Batches of

uncertain match candidates are selected and

pushed to wishlists for review by the next

layer !�. To determine attribute similari-

ties (R2) attribute-level encodings �� are

necessary. A pair-specific secret key is used

to ensure that each record pair is encoded

differently (R1). These keyed attribute-level

encodings serve two purposes: (i) Classify

uncertain record pairs with a higher prob-

ability for an unambiguous match decision

than with record-level encodings and thus

ideally make further clerical review unnec-

essary and (ii) Determine attributes that

have an intermediate similarity score and

should be visually masked in clerical re-

view (R3). The masked clerical review is

the last layer !� to resolve remaining un-

certain match candidates. For each batch,

the revised labels are reported to the upper

layer and used to update the model. Non-revised pairs are reclassified with the updated

model. Predictions can change in subsequent iterations and are propagated again upwards in

order to hamper learning from erroneous labels (R5). After each batch, the first layer holds

the best possible result that is achieved based on the given information. A protocol with 8

layers uses 8 − 1 active learning processes. Our three-layered protocol consists of AL' and

AL�. In AL', the classifier "� of layer !� is used as an oracle to label instances and train

the classification model "' from layer !'. In AL�, a human oracle provides the labels for

layer !� and its model "�.

The protocol requires data owners to actively provide additional information through their

encoding component (R4). They retrieve batches of requests for further information on

selected records from the linkage unit. However, the data owners may limit the level of

disclosure independently for each record. If no additional information is provided at all by the

data owners to layers !� and !� , the protocol is equivalent to the common single-provision

setting of a PPRL process utilizing a record-level encoding. If no plaintext attributes are

provided, no labeled instances are available for training the attribute-level model. Using a

pre-trained model (trained on a sufficiently similar dataset) the protocol could be run in a

basic configuration with a single active learning process based on the upper two layers.
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3.2 Components

Encoding. Given a record A with a set of attributes A = {00, 01, . . . , 08−1}, we define the

encoding function E = encode(A,P), where P denotes the set of encoding parameters and the

output E is the encoded record. Record-level encoding functions result in |E| = 1, whereas

attribute-level encoding functions produce |E| ≥ 8 encoded parts, each corresponding to

one attribute. Attributes may have multiple encoded representations, e.g., for the value and

its frequency. The encoding parameters P are known only to the data owners (see Section 2).

Without loss of generality, we focus on Bloom filter encodings, as described in Section 2.1.

For these encodings the parameters comprise at least the length of the Bloom filter <, the

q-gram length @ and the set of ℎ hash functions H. The hash functions should be independent,

e.g., by using Random Hashing [Ni14]. We use a pseudo random number generator (PRNG)

to generate ℎ values in the range [0, < − 1]. The PRNG is initialized with a seed B that is

constructed by a keyed cryptographic hash function HMACSHA256 ( 5 , :4H3>) → B, where

5 is the feature (q-gram) to be hashed and :4H3> is a secret key as part of the parameters P

known only to the data owners.

For the first layer any error-tolerant record-level encoding technique can be used, e.g.,

record-level Bloom filters as proposed by Durham et al. [Du14] or Cryptographic Longterm

Keys (CLK) as proposed by Schnell et al. [SBR11]. Error tolerance means that the encoded

entities must be comparable with approximate similarity functions. For the second layer

attribute-level encodings are used, e.g., keyed attribute-level Bloom filter (KABF). For

each attribute 08 a secret key is constructed as concat(:4H3>, :4H?08A , 0=8) → :4H8 where

:4H3> is the secret key known to the data owners only, :4H?08A is a pair-specific key and 0=8
is the name of the attribute. :4H3> is necessary to prevent dictionary attacks by the linkage

unit. :4H?08A is a random key generated by the linkage unit individually for each uncertain

record pair. It ensures that these specific encoded records are created using the same hash

functions and thereby are comparable. The inclusion of the attribute name 0= is called

attribute salting and leads to different hash functions for each attribute of a record [Fr21].

Thus, the same q-grams from different attributes are hashed to different bit positions which

hampers frequency analysis. The masked clerical review in the third layer requires selected

plaintext attributes without any obfuscation. Visual masking depends on the paired records

and therefore has to be applied at !� .

Blocking, comparison and classification. For each layer a separate linkage strategy is

used. First, pairs of encoded records are generated. We use standard blocking to reduce

the number of pairs in the first layer. For lower layers, no further blocking is required

as the match candidates have been identified already. For each pair the corresponding

encoded parts in E are compared which results in a similarity vector sim. We use the Dice

coefficient to compare Bloom filters and compute normalized similarity scores in the range

[0, 1] [Di45]. The classification model is a function classify(sim) → (6, ?), where 6 is

the binary classification target ({Non-match, Match}) and ? is the probability of that target

([0.5, 1]). We denote the classification model of layer !' as "' (Record-level) and the
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model of !� as "� (Attribute-level). Arbitrary classification methods utilizing similarities

are applicable. In the first layer, a simple threshold-based classification model is used. For

record-level Bloom filter additional features, e.g., based on the bit vector fillrate, could

be computed. Some hardening techniques distort these features though, so for the sake of

generalizability we use only the minimal available feature. In the second layer, we use an

evolving Random Forest model as suggested by [PBK20]. The classifier is updated gradually

by adding and replacing trees as explained below.

Query strategy. The aim of the query strategy in Active Learning is the selection of

samples that are most important for the training. We consider uncertainty sampling which

selects those samples where the probability of the model prediction is low. For a binary

threshold-based classification these are typically the record pairs whose similarity is close

to the threshold value. However, a sampling strategy considering only the minimal distance

to the threshold potentially results in homogeneous samples for training. Therefore, we use a

bucket-based strategy to select pairs with varying similarities. We divide the samples where

? < ?C into G buckets of equal width (?C − 0.5)/G, where ?C is the probability threshold. In

multiple iterations, a random sample is selected from each of the buckets ordered by the

lower bound of that bin. For each selected pair we generate a pair-specific secret :4H?08A
and push both records to a queue of oracle requests (wishlist). According to R4 the data

owners retrieve a batch of their respective wishlist and may or may not provide the requested

record representations to the next layer. The batch size depends on the overall size of the

datasets as well as on the expected response rate of the data owners. A larger batch size is

required to gather a sufficient number of pairs if the response rate of the data owners is low

(as the data owners’ responses are independent of each other). In AL�, we again apply this

query strategy, based on the probabilities ? that are calculated by "�.

Oracle. The oracle assigns a (preliminary) ground truth label to a record pair. In �!', the

attribute-based "� is used as the oracle based on attribute similarities, whereas in �!� a

human assigns the label based on the visually masked display. Both oracles have limited

information and therefore may assign wrong labels with a non-negligible error rate. We

denote the error rate of the masked clerical review as 4AA . As the oracle in the intermediate

layer !� evolves with more updates from the lower layer, the oracle may revise its prediction

as explained in the next Section.

Update and back-propagation. Predictions of the oracle are reported from that lower layer

and used to update the model. The updated model is then used to reclassify all non-reviewed

instances. After that, all instances with changed outcomes (6, ?) are reported again to the

next upper layer. The update is based on all labeled instances (also from previous iterations).

This is due to the fact that instances may be reported multiple times from the lower layer if

the prediction has been revised by the reclassification in the lower layer.

The classifier for record-level encodings "' uses a single threshold C. We implement a

straightforward threshold optimization algorithm as follows : The reported labeled pairs

with their similarity are classified using various thresholds. The threshold for which the
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quality measure @ is optimized is selected as the new threshold. We consider only thresholds

within a maximal distance 3C to the initial threshold because we presume an approximately

suitable default value. We also restrict the maximal shift per update (3CBC4?) in order to

prevent selecting thresholds where few labeled samples are available yet. For attribute-level

encodings initially a Random Forest model is bootstrapped based on the predictions from

"'. On update, another small temporary Random Forest model is trained based on all

labeled instances. The trees are added to the larger Random Forest model. If the number of

trees exceeds a limit, the oldest trees are removed. Thereby, the model gradually adapts to

the current set of labeled instances and previous potentially erroneous samples are forgotten.

In both layers, the instances are weighted based on their probabilities ?. The weights of

instances labeled by !� are doubled as they are assumed to be more reliable.

3.3 Protocol privacy analysis

Perturbation-based PPRL protocols such as ours are commonly based on the Honest-but-

curious adversary model [LP09]. It is assumed that each party follows the protocol but tries

to learn as much as possible about the other parties based on the data it receives. Moreover,

the linkage unit is assumed to not collude with any data owner. Otherwise a data owner

could share the encoding function including its parameters, such a :4H3>, with the linkage

unit that could transform various possible records A , e.g., from a public source, and thereby

conduct a dictionary attack to assign individuals to (encoded) records.

Attribute-level BF have been shown to be vulnerable to frequency attacks [Ch18; Ch19].

These attacks determine frequencies of BF encodings and align these with plaintext value

frequencies (see step 4 and 5 in Fig. 2). A sufficient number of records with the same

encoding is required for gathering meaningful frequency information. We therefore use

compound secret keys where the linkage unit provides distinct secret shares for each record

pair as described in Section 3.2. Thus, at most two records are encoded the same way and

frequencies cannot be determined for the complete dataset. Nevertheless, attacks based on

similarity graphs [Vi20] are still possible in principle. For each attribute a corresponding

similarity graph could be constructed. However, as only a subset of the full graph of the first

layer is compared on the attribute-level, it is rather unlikely that an attacker could construct

a sufficiently similar graph based on plaintext values.

Additional attack scenarios arise in our protocol when multiple linkage layers are conducted

by the same linkage unit. In the following, we analyze possible attacks by combining

different (encoded) representations of the same records from multiple layers.

Attack record-level encodings with KABF. Durham et al. proposed an encoding method

where first attribute-level BF are generated from which bits are sampled according to the

respective attribute weights to construct a record-level BF (RBF) [Du14]. In Fig. 2, we

outline an attack on those RBFs when attribute-level similarities are known. That would be

the case if a single organization is responsible for !' and !�. This attack is possible because
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each bit position in the record-level Bloom filter corresponds to exactly one attribute. The

bit positions of a certain attribute can be identified using a set of pairs where all but this

attribute are equal.
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Fig. 2: Example of a reidentification attack for an attribute L(astname) based on RBF encodings and

known attribute similarities

In CLK, tokens from different attributes are hashed directly into a joint Bloom filter and

therefore can be mapped to the same bit positions [SBR11]. These collisions have the effect

that bit positions cannot be assigned unambiguously to attributes. Thus, the attack on RBF,

as described above, is not applicable, in particular if CLK with hardening techniques are

used, e.g., with record-specific salting or xor-folding [Fr21].

Attack KABF with plaintext. An attacker with access to a plaintext attribute pair (from

!�) and a KABF pair (from !�) can presume which bit positions correspond to which

token, similar to the attack on RBFs described above. However, as distinct hashing secrets

are used for each attribute as well as for each record pair, the attacker cannot infer any

information about other encoded records.

Attack record-level encodings with plaintext. The most hazardous scenario arises when an

attacker has access to plaintext attributes and a record-level encoding of the same record(s)

which would be the case when a single (malicious) organization is conducting !' and !� .

Similar to the attacks with KABF above, the attacker may infer correspondences of bit

positions/patterns and use this information to attack all other record-level encodings.

To prevent those scenarios, the first layer should be conducted by a different independent

organization than the other layers. It receives only the classification outputs of pairs from

lower layers.

Membership inference. Furthermore, the query strategy may leak information to the data

owners and allow them to infer the membership of some of their records in other databases.

This could already reveal sensitive information if the other linkage participants and some

common characteristics of the records in their databases are known. For example, the

knowledge that there is a duplicate of a known person in a cancer registry leaks private
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information. However, the data owners do not learn the classification outcome of their

records and thereby cannot tell whether a re-encoding request corresponds to a certain

match, a certain non-match or an uncertain match candidate.

4 Experimental evaluation

4.1 Goals and measures

Quality. The proposed protocol aims to enhance the overall linkage quality by using labeled

instances from clerical review. The improvement is achieved in two ways: (i) The original

uncertain labels are replaced by those from lower layers, which are likely more accurate

due to additional available information. (ii) The labeled samples are also used to update the

classification models and improve the labels of non-reviewed record pairs by reclassifying

them.

To evaluate linkage quality we use the F1 score, which is the harmonic mean of recall and

precision. Recall measures the proportion of detected true matches from all true matches.

Precision measures the proportion of detected true matches from all detected matches.

The quality assessment is repeated after each batch of reviewed pairs with subsequent

post-update reclassification in the first layer.

Privacy risk. We focus on quantifying the privacy risk of lower layers as the top record-level

layer is not directly affected by our protocol with regard to feasible attacks. There is

no universal privacy measure for perturbation-based PPRL as the risk depends on the

considered attack types and background knowledge as outlined above. For Bloom filter

based encodings several privacy risk scores have been proposed [Fr21]. We report the

Gini coefficient (G) as well as the Jensen-Shannon divergence (JSD) for measuring the

dissimilarity of the bit frequency distribution with a uniform distribution. The notion of

these measures is that the risk of frequency attacks is reduced if all bit positions have the

same likelihood of being set to ’1’. The scores of both measures range from 0 (identical, low

privacy risk) to 1 (maximal different, highest privacy risk). As the chances of successful

attacks rise in general with more accessible information, we also consider the number of

available pairs/records in !� and !� .

For the lowest layer with masked clerical review, we report the share of attributes that have

been provided (on request) by the data owners as some attributes are more relevant for

the privacy risk than others. However, reidentifications are mostly feasible using attribute

combinations as this may allow to unambiguously map partial records with (uncommon)

values to their original representation. We therefore also report the k-Anonymized Privacy

Risk (KAPR) score which has been proposed for measuring the privacy risk based on the

revealed information in masked display [Li19]. The normalized risk score in [0, 1] is higher,

the more plaintext of the records is disclosed and the lower the number of records that are

indistinguishable based on the level of disclosure. For each record 8 the number of possible
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records (:8) is determined based on the available information. The overall KAPR score

is computed using an adapted function from [Li19]:  �%' =
1

#�

∑
2=−1

8=0

38
:8

where # is

the total number of records (in this layer), � is the total number of attributes and 38 is

the number of provided attributes of record 8 in this layer. The original formula includes

the proportion of disclosed characters, but our KAPR variant measures the risk based on

the data available to the reviewing institution instead of based on the information that is

displayed.

4.2 Setup

Datasets. We use personal records from the North Carolina voter register (NCVR) as

provided by Panse et al. [Pa21a]. The database contains multiple snapshots of the register

and thereby real-world errors of matching records, e.g., due to people moving or changing

their names. Ground truth data is available based on unique voter IDs. We use the attributes

first name (FN), middle name (MN), last name (LN), year of birth (YOB), CITY, ZIP code

and place of birth (POB) for linkage. We derive multiple datasets with two sources with 50:

records each that overlap by 10% (S), 20% (M) and 30% (L). The duplicates are selected

by randomly sampling records from snapshot ’2021-01-01’ and using a duplicate from a

different snapshot where at least one (E1) or two (E2) of the attributes FN, MN, LN, POB,

(CITY+ZIP) are non-equal. Our datasets therefore do not contain any perfect matches as

those are trivial to match. Apart from that, the records are not synthetically modified. These

dimensions of dataset variation – overlap of data sources and disparity of duplicates – have

been chosen as they represent dataset characteristics that typically are not known prior to

linkage. The datasets names are composed of their error rate (E1, E2) and overlap (S, M, L).

Encoding. We use CLK encodings with < = 1024 and ℎ = 12 for the first layer

(�'). Additionally, we test an encoding variant where the XOR-folding hardening tech-

nique is applied to these CLK. As attribute-level encodings �� we use KABF with

< = 256 and attribute-specific ℎ (see Table 2), following the encoding procedure de-

scribed in [Ro23]. Both, CLK and KABF, have an approximate average fill rate (pro-

portion of 1-bits) of 40%. For !� and !� , data owners also provide approximate

frequency information for the attributes, together with the attribute-level encodings.

Tab. 2: Number of hash functions h for the

Keyed Attribute-level Bloom filter encodings

FN MN LN YOB CITY ZIP POB

h 18 21 17 26 13 21 43

The possible values are: ’1’ for the top 1%

most frequent values, ’2’ for the top 5%, and

’3’ for rarer values. Those frequency labels are

used as additional features for "� when the

corresponding attributes of a pair are equal,

otherwise the value is set to ’0’.

Linkage. We conduct the following blocking strategy in !' to generate candidate record

pairs: For each record we derive multiple blocking keys at the data owners based on the

plaintext attribute combinations FN+YOB, LN+YOB and Soundex(FN)+Soundex(LN) and

encode each of them using a cryptographic one-way hash function. These hashed blocking
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keys are transmitted together with the encoded records to enable standard blocking at the

linkage unit. This procedure ensures that the same candidate pairs are generated during the

initial batch matching on the first layer even with different encoding techniques.

Query strategy and models. We select the parameters ?C = 0.8 and G = 10 for our

uncertainty-bucket-based query strategy. The prediction probability ? of "' is computed

for a similarity B8< and the threshold C as 0.5 ∗ (1 + <8=(1, 01B(B8< − C)/3) → ? with

3 = 0.05 for B8< < C and 3 = 0.1 for B8< >= C. For "', we apply the threshold shift

approach (see Section 3.2) with accuracy as the quality measure. Although this measure is

typically not suitable for unbalanced classification tasks like record linkage, it is applicable

in this context as the number of matches and non-matches close to the threshold is way

less imbalanced than in the complete linkage result. For "�, we use the shifting Random

Forest classifier based on the RF implementation from the WEKA library [FHW16] using

the options "-P 70 -I 10 -J 10 -N 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1 -depth 6"

where -I, -J, -N determine the initial, added and maximum number of trees. The model is

bootstrapped using the initial batch of prelabeled pairs from !'. In each iteration the model

is updated with all samples and their respective predictions, either from !' or !� .

Test protocol. Initially, a batch matching on the first layer is conducted. Afterwards, our

iterative protocol is composed of two phases: In the warm-up-phase, 5 smaller batches of

100 uncertain record pairs from the first layer are selected for review by the second layer.

After classification based on attribute-level encodings with "�, 2 batches of uncertain

pairs on that layer are reviewed by the final oracle (PPCR). After each reviewed batch, the

model is updated based on the revised predictions and all non-reviewed record pairs are

reclassified based on the revised model. The back propagation to the first layer is conducted

in each iteration of �!' after completion of the 2 batches of �!�. The batch size in AL�

is computed as 1
10

. After this initial phase, the budget is reached and the clerical review

layer is omitted. Consequently, "� is not updated anymore. The batch size is increased to

1000 pairs per iteration for 4 additional batches to study the performance of the trained "�.

The number of reviews for the top layer can still rise as the limiting budget 1 refers to the

masked clerical review.

Evaluation procedure. We evaluate different scenarios with regard to the PPCR layer:

We vary the simulated error rate 4AA = {0.0, 0.1, 0.2} and the clerical review budget

1 = {100, 200, 300}. For each dataset, we determine the top-level threshold C>?C that

optimizes the F1 score given the global ground truth. Each scenario is evaluated using initial

thresholds between C>?C−0.05 and C>?C+0.05 with a stepsize of 0.01 to study the performance

of the protocol with regard to threshold optimization. We repeat each experiment three

times and report the micro average F1 score as well as the minimum-maximum range.

Baselines. In the following figures, grey-dotted vertical lines mark the end of the

warm-up phase and green dashed horizontal lines represent the F1 score with op-

timal threshold for the respective dataset without any revised labels as a base-

line. Furthermore, orange-doted horizontal lines refer to the optimal F1 scores
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achieved using a linkage strategy solely based on attribute-level encodings. Attribute

similarities are aggregated to a record similarity using a weighted mean average.

Tab. 3: Attribute weights w used for the baseline

linkage solely based on (non-keyed) attribute-level

Bloom filters.

FN MN LN YOB CITY ZIP POB

w 12.04 15.15 5.12 6.58 8.23 10.95 6.63

Weights are determined based on a proba-

bilistic approach [FS69], using the default

average value frequencies and error rates of

the Epilink Matcher based on a German can-

cer registry [Ro21]. For missing attributes,

the corresponding similarity scores are ex-

cluded from the aggregation.

4.3 Results

Dataset E1M. Fig. 3 (left) shows the results for dataset E1M with 1 = 100 and varying

4AA. The worst initial F1 score is 0.791 for the threshold C>?C + 0.05. The F1 score for

C>?C is 0.863 and the average initial F1 score over all thresholds is 0.838. As expected, the

linkage quality improves with growing number of reviewed pairs. After reviewing 4500

pairs on the top layer, average F1 scores reach 0.899 (4AA = 0.0), 0.888 (4AA = 0.1) and

0.881 (4AA = 0.2). The final results of the best runs are very similar with a F1 score of

0.910 ± 0.002. The worst runs lead to F1 scores between 0.832 (4AA = 0.2) and 0.863

(4AA = 0.0). Hence, higher error rates of the PPCR oracle lead to higher outcome variability.
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Fig. 3: Linkage quality development for dataset E1M with fixed budget 1 = 100 and varying error

rates (left) and varying budget 1 and fixed error rate of 4AA = 0.2 (right).

In the following, we set the error rate 4AA to 0.2 which is in line with the empirical studies

based on visual disclosure in [Ku19; Ra18]. As depicted in Fig. 3 (right), higher budgets

1 = 200 and 1 = 300 improve the performance considerably. The final average F1 scores are

0.903 (+0.065) and 0.909 (+0.071) which is comparable to the best runs with lower budget.

Higher budgets also improve the reliability of the results, as even the worst runs achieve F1

scores of 0.884 and 0.896. The range of outcomes is reduced from 0.072 to 0.031 (1 = 200)

and 0.017 (1 = 300). Furthermore, F1 scores rise already with a low number of reviews
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Fig. 4: Linkage quality development for datasets E1S and E1L (left) and E2S and E2M (right) with

varying budget 1 and fixed error rate of 4AA = 0.2.

in the top layer. In our setup, the optimal threshold can be reached from the worst starting

condition (C>?C ± 0.05) after three iterations due to the shift limit 3CD?3 = 0.02. For 1 = 300

the average F1 score reaches the baseline in three to four rounds (90 − 120 manual reviews)

whereas for 1 = 100 it is not achieved at all during the warm-up phase despite a comparable

number of manual reviews. Therefore, the quality improvements with larger budgets in that

phase are mostly the result of the threshold shift algorithm.

Datasets E1S and E1L. Experiments using dataset variants with lower and higher overlap

show enhancements of the average F1 scores from 0.786 by 0.101 (E1S, 1 = 300) and from

0.862 by 0.048 (E1L, 1 = 300), see Fig. 4 (left). The minimal F1 score is increased from 0.727

by 0.131 (E1S, 1 = 300) and from 0.802 by 0.083 (E1L, 1 = 300). The range of outcomes

is reduced from 0.094 to 0.046 (E1S, 1 = 300) and from 0.083 to 0.033 (E1L, 1 = 300).
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Fig. 5: Linkage quality development for datasets

E1S, E1M and E1L with XOR hardened CLK

encodings, fixed 1 = 300 and 4AA = 0.2.

The final results for 1 = 200 are comparable,

but the improvements are achieved later and

with higher variance in the process.

BF Hardening. The experimental out-

comes based on �' with XOR hardening

(see Fig. 5) are comparable in terms of the

average F1 scores, which improve by 0.108

(E1S-XOR), 0.076 (E1M-XOR) and 0.049

(E1L-XOR). However, the linkage quality is

in general slightly lower as a trade-off for the

improved privacy of the encodings, which

is illustrated, e.g., for E1M-XOR compared

to E1M by decreases of G from 0.224 to

0.095 and JSD from 0.172 to 0.079.
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Datasets E2S and E2M. Finally, we study the results for datasets E2S and E2M (see Fig. 4

(right)). In general, the linkage quality is lower due to the higher dissimilarity of duplicates.

The average F1 score is raised by 0.109 (E2S, 1 = 300) and 0.048 (E2M, 1 = 300), which

is comparable to the E1 datasets. However, the progress is less stable, leading to a larger

range of outcomes and for some runs even quality losses (E2S, 1 = 200).

For most of the datasets the respective reference results solely using (non-keyed) ABF

encodings (orange lines) are not reached on average. Please note, though, that the baseline

results are reported for an optimized classification threshold. Nonetheless, the distances of

the final average F1 scores are rather small: −0.008 (E1S), −0.003 (E1M), −0.008 (E1L),

0.012 (E2S) and −0.026 (E2M) (all results for 1 = 300 and 4AA = 0.2).

Privacy. Table 4 compares the privacy measures of these ABF baselines with our approach

using keyed attribute-level Bloom filters. The number of available encodings in !� is

decreased from up to 100.000 (total number of records in the dataset) to up to 9.000 (two

times the number of record pair review requests by !'). For some attributes, in particular

middle name and place of birth, the counts are lower due to missing values. Both Bloom

filter privacy measures are heavily reduced from 0.147− 0.388 (G) and 0.114− 0.299 (JSD)

to at most 0.01. For attributes with a high variety of values, in particular name components,

the decreasements are the lowest. The largest improvements are achieved for the year of

birth attribute, likely due to very frequent bigrams such as ’19’ which are reflected in

having very frequent corresponding bit positions in conventional ABF. This illustrates the

privacy-enhancing effect of the pair-specific hashing secrets in our protocol.

Tab. 4: Privacy measures in !� for Keyed Attribute-level Bloom filter (KABF) compared to the

baseline approach using only ABF-based linkage for linkage of E1M. The given values for KABF are

the mean over all experimental runs for that dataset.

Enc. FN MN LN YOB CITY ZIP POB

Number of encoded attributes
ABF 100: 92.2: 100: 100: 100: 99.9: 80.8:

KABF 9: 8.4: 9: 9: 9: 9.0: 7.6:

Gini coefficient (G)
ABF 0.171 0.157 0.147 0.388 0.212 0.330 0.373

KABF 0.010 0.009 0.010 0.010 0.009 0.009 0.010

Jensen-Shannon diverg. (JSD)
ABF 0.132 0.121 0.114 0.299 0.162 0.251 0.296

KABF 0.008 0.007 0.007 0.008 0.007 0.007 0.008

Fig. 6 shows the distributions of the privacy measures in !� for datasets E1M and E2M

based on the final states of the runs with 1 = 200 and 4AA = 0.2. Each measure is computed

for three attribute selection methods: No restrictions refers to the baseline where all attributes

of uncertain pairs in !� are provided to !� . In No equal attributes the data owners are

asked to provide all attributes whose similarity is below 1, whereas in the last setting, an

additional filter is applied to exclude very dissimilar attributes (B8< < 0.4) as well. In the

first setting, the results represent the availability of the attributes in the plain dataset. With

stronger restrictions, the share of attributes that have been requested and provided decreases

for most attributes. While all attributes of E1M apart from MN and POB are available for
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(nearly) all records in the unrestricted setting, the average sharing rate is reduced to a high

(FN, YOB) or moderate (LN, CITY) degree using the proposed selection strategies. The

ZIP code, however, is still available in plaintext for most records (median ≈ 83%). For E2M

the availability of the location-related attributes is even higher, close to 100% for the ZIP

code. While the median scores are otherwise comparable to E1M, the results show a lower

variance. The KAPR score for both datasets is reduced from above 0.9 to below 0.4 and 0.2

using the two filtering methods.
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Fig. 6: Comparison of the privacy measures in !� for datasets E1M (left) and E2M (right) using

different attribute selection strategies. All measures to the right of KAPR refer to the availability of

the respective attribute in this layer.

5 Discussion

In general, the results show that the proposed protocol achieves its aim of improving the

linkage quality with a limited amount of manual labeling.

Quality. While higher error rates of the masked clerical review naturally are detrimental to

the overall performance, it can be observed from Fig. 3 (right) and Fig. 4 (left) that protocol

runs with increased budgets achieve F1 score improvements by approximately 5 − 10%

on average. Both aspects, clerical reviews as well as the model updates, contribute to that.

The tuned threshold of "' is largely responsible for improvements in early iterations with

few reviewed instances. F1 scores above the green reference lines represent results that

are beyond the optimal initial threshold configuration and therefore could not have been

achieved without clerical review based on additional data in !� and !� . In addition, the

range of possible outcomes is reduced substantially. This means that data custodians can

expect a high linkage quality, less depending on the initial classification threshold choice.

This also applies to the E2 dataset variants in principle, however, a higher budget is required

for stable results. As the oracle error rate is identical to the E1 experiments, the cause must

be the training of "� and "'. The high availability of the residence attributes and the low

variance of other attributes in !� (Fig. 6) indicates that the reviewed pairs are fairly similar,

leading to a biased and poor "�. In consequence, the performance of "' also deteriorates.
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In our setup, the warm-up phase with AL� in the first five iterations determines the

performance of "�, because the training will be stopped as soon as the clerical review

budget 1 is reached. "� serves as the bridge between the more secure comparison of the

majority of records based on record-level encodings and the masked clerical review for a

small set of uncertain match candidates. For this functionality, it is not necessary that "�

performs better than "'. In fact, the protocol would even work without the model when

(6, ?) of "' is reused in this layer. In that scenario, the computed attribute similarities

based on the attribute-level encodings would merely serve to restrict the requested plaintext

data for the subsequent clerical review to non-equal attributes.

In order to achieve higher quality improvements, an increased number of reviews is required,

because "' cannot be improved much due to its privacy-induced simplicity with a single

feature. However, the number of manual reviews should be kept as low as possible. Therefore,

it is important that "� has a high predictive performance to provide the majority of corrected

links. In our evaluation setup we used a fixed budget of 4500 reviews by !�, analogous

to the clerical budget 1 in !� . In principle, additional reviews are possible and may raise

the linkage quality even further. However, the likelihood that pairs having similarities with

larger distance to the threshold in "' are wrongly classified declines, deteriorating the ratio

of corrected to reviewed links.

A possible approach to improve our setup could be a more sophisticated query strategy in

!(� based on the available feature vector instead of the probability score only. Furthermore,

it could be beneficial using a pre-trained "� instead of bootstrapping it based on the initial

predictions of "'. Such an approach requires a sufficiently similar reference dataset with a

given ground truth for training though.

The ABF baseline results are higher than the RBF baselines as they make use of attribute

weights and weight redistribution in case of missing values, even with weights determined

on an independent dataset (German cancer registry). The experiments show that our protocol

achieves only slightly lower linkage quality compared to this baseline linkage approach.

However, the risk of reidentification attacks based on frequent patterns in the underlying

attribute-level encodings is greatly reduced, as illustrated by Table 4.

Privacy. The majority of reviews is handled automatically by the intermediate layer without

plaintext access while only a small fraction is reviewed manually based on partial display.

After the warm-up, 1
500

= 20/40/60% of the uncertain pairs from the initial layer have

been reviewed using PPCR, the remainder by "�. At the end, the proportion is reduced to
1

4500
= 2/4/7%. We studied basic filtering approaches for lowering the number of requested

plaintext attributes based on the attribute similarity. The observed reductions vary between

the attributes. In particular, the effect for the numerical ZIP code attribute is comparatively

low, because it has a high similarity on average due to the records being from the same

US state. As a consequence, it is requested for a high share of pairs. This problem may be

addressed in future work by using a dynamic data-driven approach where the lower bound

is determined by the average similarity of each attribute in !�.
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The KAPR scores are drastically decreased due to the attribute selection. Fewer persons can

be uniquely reidentified based on the remaining attributes. This is also illustrated by the

observation that the availability is particularly reduced for strongly identifying attributes

like name and year of birth. Nevertheless, malicious reviewers could still target certain

persons, e.g., with rare attribute combinations. The data owners may implement their own

selection rules to protect their high profile records.

We want to point out that although our protocol was described and evaluated using Bloom

filter encodings due to their popularity, any perturbation technique is applicable that supports

record-specific keys and approximate similarity computation. As the experimental results

using hardened Bloom filter encodings (see Fig. 5) suggest, the overall linkage quality might

be lower though, despite comparable improvements.

6 Conclusion

By their very nature, privacy-preserving classification problems are difficult to parameterize

in practice due to the lack of labeled training data, e.g., from clerical review. In privacy-

preserving record linkage, record-level Bloom filter encodings are frequently used to

improve resistance against reidentification attacks but suffer from potential quality issues

and the need for a well-selected classification threshold. We presented an active learning

based protocol that enables increased and more stable linkage quality using multiple layers

of clerical review. Merely a low number of masked manual reviews is required because

the majority of uncertain pairs can be classified automatically with higher accuracy based

on attribute-level features with the trained models. Sharing additional information with

the linkage unit increases the risk of reidentification. We therefore employ record-specific

salting and attribute selection to hamper such attacks. Furthermore, data owners still remain

in full control of the information they are willing to share for each record.

We sincerely hope that the increased reliability of the linkage outcome leads to a wider

adoption of PPRL methods in practical applications. Our proposed multi-layer clerical

review is also applicable in incremental linkage, e.g., for pseudonymous patient registries,

and would allow monitoring of the linkage quality over time. In future work, we will

investigate whether the suitability of record-level encoding parameters can be assessed based

on the ability of the record-level model "' to reproduce labels from the attribute-level

model "�, and how optimal weights can be determined based on attribute agreements of

selected match candidates.
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