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Abstract: Schema matching involves identifying matching relationships between different data
schemas. While this task is supported by semi-automatic tools, achieving optimal results requires
configuring such tools which can be challenging depending on the number of configuration options
and schema characteristics. This study proposes a novel approach utilizing Reinforcement Learning
(RL) to automate the configuration of schema matching tools. RL has proven to be well-suited for
complex optimization problems but has not yet been applied for schema matching. We outline how
the configuration of a schema matching tool can be tackled as an RL task and how the corresponding
learning process can be accelerated and optimized. We evaluate the RL approach for a large real-world
dataset and show that it can be applied to different matching tools.
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1 Introduction

The task of matching semantically equivalent elements of data schemas is of high importance,
especially for data transformations between different formats and for data integration.
Integrating and fusing data from multiple sources with differing data types, structures,
schemas, or ontologies is needed in numerous domains and application areas. Schema
matching is therefore a vital step for data integration, along with other tasks such as
data cleaning or entity resolution. It is also needed in the construction and refinement
of knowledge graphs, e.g., when new data sources need to be integrated into an existing
knowledge graph [Ho24].

The ever-increasing number and volume of data sources make manual matching impractical
and time-consuming. Hence, there is a strong need for automated or semi-automated
matching approaches and user-friendly matching tools [Ra11; Ra16].

As indicated in Figure 1, these matching tools typically support a multitude of schema
match approaches (or matchers) and their combination. Matchers determine the similarity of
pairs of elements (e.g., attributes) from the input schemas. The similarity values of multiple
matches can be aggregated to derive combined similarities for a final selection of match
candidates (that can be verified by a human expert). Individual matchers either operate on
the schema level, instance data level, or a combination of both. Matching on the schema
1 Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Universität Leipzig,

Germany, michal.miazga@uni-leipzig.de
2 University Computing Centre, Leipzig University, Germany
3 Department of Computer Science, Leipzig University, Leipzig, Germany

mailto:michal.miazga@uni-leipzig.de


level typically involves the analysis of linguistic and structural information while matching
on the instance data level relies on the examination of the data values of schema elements.
Matchers may also make use of background knowledge, embeddings, and machine learning,
e.g., to determine instance-level match candidates [Ay22].

Fig. 1: A simplified view of a schema matching tool combining several matchers (inspired by
COMA [DR02]).

Tools supporting such a composed schema matching, i.e., that combine multiple matchers,
have shown to perform very well and they are also a necessity since no single matching
technique is universally effective for all kinds of schemas and domains [Al17; Ra11;
RB01]. However, the potential of such tools can only be utilized if they are configured
appropriately, i.e. according to the characteristics of the schemas and instance data. This
poses new challenges for users and demands extensive information on domain knowledge
of the data and how the different matching approaches work. In particular, it has to be
decided which matchers should be applied and whether to put them in parallel or in a certain
order. Furthermore, each matcher as well as the aggregation and selection steps need to
be configured leading to a particularly high number of possible configurations of different
effectiveness.

The use of Reinforcement Learning (RL) for schema matching configuration is an area
which has to our knowledge not yet been applied. In this paper, we explore whether RL can
configure schema matching tools as well as, or better than, human experts. We therefore aim
to automate the configuration of composed schema matching. In particular, we determine
the relevant actions to consider for the configuration and as a suitable reward mechanism
and approach to achieve an effective iterative optimization. We evaluate our new RL-based
configuration approach for a real-world dataset. We also show how the presented RL
approach can be applied to two matching tools, AgreementMaker Light [Fa13; Fa14; Fa19]
and LogMap2 [JC11; Ji12].

The next section reviews related work on schema matching tools and the use of RL for
auto-tuning. Section 3 provides a problem definition and background information about
the chosen RL model. Section 4 outlines our RL approach for composed schema matching
in detail. Section 5 contains the evaluation, including the application of the approach
to different matching tools. We give a summary and suggestions for future research in
Section 6.



2 Related Work and State of the Art

2.1 Schema Matching

Over the past 25 years, significant research efforts have been dedicated to schema matching
and ontology alignment. Numerous approaches and tools have been developed in this domain,
as described in several surveys [BMR11; OYD21; RB01]. The schema matching tool COMA
(stands for COmbined MAtching) has pioneered the multi-matcher approach more than two
decades ago [DR02; Ma11]. This approach has then been followed by numerous further
tools. Several recent approaches used machine learning to realize stand-alone matchers
[Ay22; Fe18; KKK18; SGR20]. For example, LEAPME uses supervised machine learning
to match schema properties based on instance characteristics and features of the property
name represented by word embeddings.

Another recent development is the use of large language models (LLM) [HP23; Pa24;
SS24] where schema matching is achieved by providing data along with carefully designed
prompts to obtain the most accurate results. The LLM-based approaches are promising but
still in their infancy, especially regarding necessary optimization techniques.

Several previous studies addressed already the optimization of schema matching configu-
rations [BD11]. eTuner [Le07] uses a sequential, greedy approach called staged tuning to
initially tune each matcher separately for a workload, and then optimizes the combination
of the matchers. GATuner [FZY10] applies genetic algorithms to match against generated
scenarios with known ground truth to find configurations that improve performance. Peukert
et al. [PER12] use features extracted from input schemas and intermediate match results to
define and adapt rules for selecting matchers and other operators. The Valentine framework
[Ko21a; Ko21b] aims at finding good configurations of existing tools by naively evaluating
a large number of possible settings for a few selected parameters but without dealing with
more complex decisions such as the selection of matchers.

The discussion shows that the previous approaches to automatically configure schema
matching tools are still limited. Some are computationally intensive, others are limited
to configuring only a small subset of parameters, and no previous approach is capable of
constructing complete match workflows (execution graphs) or scaling to a larger optimization
space, as we will demonstrate in our approach using Reinforcement Learning (RL). We
also show that our approach can be applied to different tools. We demonstrate this for two
state-of-the-art multi-matcher tools, AgreementMaker Light (AML) [Fa13; Fa14; Fa19] and
LogMap 2 [JC11; Ji12], that have been among the best ones in recent Ontology Alignment
Evaluation Initiative (OAEI) match evaluations (e.g. in [Po21]). Furthermore, these tools
can be configured so that RL is applicable (in principle).

AML is designed to align large-scale ontologies. It aims at scalability, extensibility, and
satisfiability and can make use of external knowledge sources such as WordNet [Fe10].
AML leverages lexical matching algorithms as its foundation, completed by structural



algorithms for both matching and filtering, as well as its proprietary logical repair algorithm.
While AML comes with a default configuration optimized for certain ontologies, manual
configuration is possible allowing users to adjust parameters such as matching threshold,
entity types to match, and instance matching mode [Fa13; Fa14; Fa19]. The ontology
matching tool LogMap2 [JC11; Ji12] is particularly suited for large-scale and complex
ontologies, such as in the biomedical domain. It leverages description logic reasoning like
HermiT [MSH09] and Condor [SKH15] which are optimized for classification, afterwards
computed classes are extended by additional information. It supports several approximate
string matching techniques and structural ontology matching considering the hierarchy of
classes and the relationships between entities. LogMap2 comes with a default configuration
file that can be adjusted.

2.2 Reinforcement learning for configuration

In recent years, there have been notable advancements in using RL to configure or fine-
tune systems in various domains. Consequently, it is worthwhile to examine the current
approaches and applications of RL in this regard.

Some attention has been directed towards optimizing configuration parameters for complex
systems, including auto-tuning mechanisms for blockchain systems [Li23] and distributed
systems such as Apache Spark [HZZ22; VC18]. Wang et al. [Li23] introduces Athena,
a performance auto-tuning system for Hyperledger Fabric [An18]. The parameter tuning
challenge in Fabric is a multi-agent coordination problem that is effectively addressed by
a so-called Permissioned Blockchain Multi-Agent Deep Deterministic Policy Gradient
(PD-MADDPG) algorithm. Huang et al. [HZZ22] utilize a deep-learning neural network and
a modified Q-learning algorithm for tuning Apache Spark configuration parameters. Another
study focuses on optimizing the configuration for Spark Streaming [VC18]. They utilize a
large amount of training data and the selection of suitable metrics and automatic tuning
using RL. The results show a significant reduction in latency compared to human-configured
clusters.

RL has also been applied for auto-tuning of database systems [Ba16; Li19; Zh19]. Q-learning
and Deep Q Network (DQN) algorithms have been explored in the domain of database
optimization, demonstrating their effectiveness in system tuning, though limited by their
discrete action space. Therefore, the Deep Deterministic Policy Gradient (DDPG) has been
proposed to overcome the limitations of the action space of previous algorithms, allowing
the use of continuous action spaces [Zh19].

Unlike prior applications of RL for configuration, the approach proposed in this paper diverges
towards identifying the optimal arrangement of components within a configuration for
composed schema matching. This entails determining both the combination of components
and the adjustment of their corresponding parameters to enhance the effectiveness of the
schema matching process.



3 Terms and definitions

3.1 Schema Matching

A schema is a formal description of the structure of data and defines the organization of data
as a blueprint, including the definitions of elements, such as attributes of tables in relational
databases, elements and attributes of an XML schema or DTD, or concepts in an ontology
or knowledge graph. Instance data refers to the actual data or entities that conform to the
structure defined by a schema. For example, the entities of a relational database 𝑅 are tuples
(𝑎1, 𝑎2, ..., 𝑎𝑛), where each 𝑎𝑖 is an attribute value corresponding to attributes from the set
of schema elements of 𝑅.

Schema matching is the task of determining semantic correspondences or matches between
elements of two schemas 𝑆1 and 𝑆2 with sets of schema elements 𝐸1 and 𝐸2. A match
indicates that two schema elements 𝑒1 ∈ 𝐸1 and 𝑒2 ∈ 𝐸2 are semantically equivalent and can
be denoted as 𝑚(𝑒1, 𝑒2). Similarity is a quantitative measure of how high the equivalence
of two schema elements is, where similarity of 𝑒1 and 𝑒2 is a function 𝑠𝑖𝑚(𝑒1, 𝑒2) → [0, 1].
Thus, similarity serves as a quantitative basis for determining matches between pairs of
elements.

To evaluate schema matching algorithms, a ground truth is crucial. Given two schemas 𝑆1
and 𝑆2, the ground truth is a predefined set of matches defined as 𝐺 = {𝑔(𝑒1, 𝑒2) | 𝑒1 ∈
𝐸1, 𝑒2 ∈ 𝐸2} where 𝑔(𝑒1, 𝑒2) is a known (or presumed) match.

To evaluate our solution, we employ three primary evaluation metrics: the F1 score, the area
under the receiver operating characteristic curve (ROC-AUC), and the Matthews Correlation
Coefficient (MCC). These metrics are widely used to measure performance in binary
classification tasks [Be19]. The F1 score is particularly valuable for imbalanced scenarios
with an uneven distribution of classes, such as the sets of matching and non-matching pairs
of schema elements in schema matching. ROC-AUC provides insight into the model’s
ability to distinguish between classes at different threshold settings and is commonly used
to evaluate model performance [Be19; Br97; CJ07]. The MCC score offers a reliable
assessment across all categories of the confusion matrix and effectively accounts for the
proportions of both positive and negative classes [Be19; CJ20; CJ23].

3.2 Reinforcement Learning

Reinforcement Learning (RL) is one of the primary pillars of machine learning, standing
alongside supervised and unsupervised learning. In contrast to supervised learning’s reliance
on labelled data, and unsupervised learning, where the model tries to find patterns without
guidance, RL thrives on the principle of trial and error. For this purpose, an RL agent
interacts with the learning environment to optimize it iteratively. The interaction of the
agent and the learning environment is influenced by the following components:



• Action Space: This space is defined once and cannot be modified. All possible actions
are defined at the beginning and outline the moves or actions an agent can take at any
stage. The agent’s actions can be discrete (such as go right, go left) or continuous (the
agent can select an action from a range of values for each state, e.g., turn the steering
wheel a few degrees).

• Observation Space: This refers to the information or state that the agent can perceive
about its environment while taking actions. Through this, the agent learns how its
actions impact the environment.

• Reward: The environment returns the reward in the form of a scalar value it informs
the agent about its progress in the environment after each movement.

In RL, agents engage within the environment, receiving rewards or penalties as feedback
based on the outcomes of their actions. The agent aims to amass cumulative rewards over
time, linked to a policy set of guidelines dictating action selection in various scenarios.
A policy dictates how an agent should behave by specifying the actions it should take
in each state. The rewards serve as guiding beacons, pointing to advantageous actions.
Through a blend of exploration and exploitation, the agent accumulates knowledge, refining
its decision-making efficiency over time. For this, there are a variety of algorithms. One
of these is Proximal Policy Optimisation (PPO), an RL algorithm within the gradient-
based methods category, designed to iteratively refine the policy. It updates the policy by
maximizing a surrogate objective function while constraining changes to prevent excessive
deviation from the previous policy, thus balancing exploration and exploitation. By using
surrogate losses, PPO aims to improve the agent’s action selection strategy and address
stability issues [Sc17]. Compared to previous applications of RL for configuration, the
Deep Q-Networks (DQN) algorithm is not suitable for action spaces that modify multiple
parameters simultaneously due to its inability to handle complex, multi-dimensional action
spaces efficiently. Implementing DQN for each parameter introduces significant complexity
and computational overhead, as it requires managing separate Q-value tables or network
outputs for each action combination. Compared to DQN, recent research indicates that PPO
performs better at solving complex tasks [DG24].

4 Our approach

For the development of the RL approach, we implemented a configurable schema matching
tool that we describe first before we outline the RL approach.

4.1 The Configurable Schema Matching Tool

The architecture of the Schema Matching Tool (SMT) is shown in Figure 2. The input is
expected to be a pair of schemas and a configuration for the matching process, both in a



Fig. 2: Coarse architecture of our schema matching tool.

predefined structured format. The matching is executed by components which compute and
aggregate similarities for pairs of schema elements. The final matching results, determined
by a selector component, are returned as output. So, for each input pair of schema elements
(𝑒1, 𝑒2), an output is generated as tuple (𝑒1, 𝑒2, 𝑚, 𝑠𝑖𝑚), where 𝑚 is a Boolean value
determining whether or not this pair is a match, and 𝑠𝑖𝑚 is the computed aggregated
similarity value for this pair also describing the confidence of the matchers in this regard.

Our tool incorporates several matching components that can be selected and configured by
the RL agent, including:

• Matching Approaches or Matchers, in particular, name matching based on string
similarity of element names, instance data matching based on aggregated instance
data properties, clustering-based matching (K-Means and Mean-Shift variations), and
match prediction with pre-trained Multi-Layer-Perceptron (MLP) classifiers (inspired
by [Ay22]).

• Aggregation Methods, determining the average, maximum or minimum of similarity
values, or distance weighted aggregation (weighted average based on distance metrics).

• Selectors deciding whether a pair of schema elements is a match based on the
computed similarity values for this pair, with either threshold-based selection (applies
a threshold either to each computed similarity value or, optionally, to the average of
these values) or variance-based selection (applies a threshold both to the computed
similarity values and to the variance over all these values).

The matching configuration specifies the matching process which is represented as a tree-like



Fig. 3: Tree-like structure of a composed matching configuration.

execution graph of the selected components, as shown in an example shape in Figure 3,
where the following rules apply:

• R1: A matcher is of type leaf (no children are allowed),

• R2: An aggregator is of type (inner) node and must have 𝑛 ≥ 1 children which must
be of type node or leaf,

• R3: A selector is of type root and must have 𝑛 ≥ 1 children which must be of type
node or leaf, and

• R4: There is exactly one root.

The matching process is executed in a topological order starting from the leaves and
progressing to the root with computed or aggregated similarities passed to the parent
component.

4.2 Reinforcement Learning Approach for Configuration

In this section, we explain our RL approach which is embedded into the architecture shown
in Figure 4. As illustrated, the PPO Agent engages with the Environment by executing
actions. For each Action (see sections 4.2.1 and 4.2.2) performed, the agent receives a
Reward (section 4.2.4) and a current progress Observation (section 4.2.3). Once the agent
accumulates a sufficient number of actions that constitute a valid execution tree, these
actions are forwarded to the Result Processor. The Result Processor is responsible for
converting the actions into an execution tree. Subsequently, it uses the configuration to
execute the SMT and obtain the match results for this configuration. These results are then
compared against the Ground Truth and reported back to the Environment as performance
in the form of various Measures (section 3.1).



In Section 4.2.5, we outline additional termination constraints while Section 4.2.6 describes
the approach to balance between known strategies (exploitation) and the discovery of new
options (exploration).

Fig. 4: Architecture overview for our RL environment for configuration.

4.2.1 Action Space Partitioning

One of the key challenges in setting up the RL environment is to define and designate
the configuration components constituting the action space for the agent. This includes
the selection of matching components of different types (matcher, aggregator, selector),
their parameters and execution order. For our PPO agent, these multi-dimensional action
spaces must be flattened into a one-dimensional sequence which is also needed to apply the
optimization of dynamic action masking to be described in section 4.2.2.

To define the action space, let 𝑐𝑡 ∈ {0} ∪ {1, ..., |𝑐𝑡 |} be a component of type 𝑡 ∈ 𝑇 , 𝑇
the set of available types and |𝑐𝑡 | the number of available components of type 𝑡. The
value 0 is a special case indicating that no component of type 𝑡 has been selected. Further,
let 𝑝𝑡 ,𝑐𝑡 be the parameter array of 𝑐𝑡 and |𝑝𝑡 ,𝑐𝑡 | the corresponding array length. The
array 𝑃𝑡 = 𝑝𝑡 ,1 + ... + 𝑝𝑡 , |𝑐𝑡 | is the concatenation of all parameter arrays of type 𝑡 and
|𝑃𝑡 | =

∑ |𝑐𝑡 |
𝑖=1 |𝑝𝑡 ,𝑖 | the length of the concatenated array. To connect components in a tree-like

hierarchy as shown in Figure 3, an additional parameter 𝑝_𝑖𝑑 ∈ {0, ..., 𝑚𝑎𝑥_𝑐𝑜𝑚𝑝} is
introduced to specify the parent component (action) in the execution tree; 𝑚𝑎𝑥_𝑐𝑜𝑚𝑝 refers
the maximum number of possible components in an execution tree. To link actions, they are
assigned a unique ID (index position) based on the order in which they are created. The first
action is assigned ID 0, the second action ID 1 and so on. For the first action, 𝑝_𝑖𝑑 is set to
0 meaning that it points to itself. Since each configuration has exactly one root, this special
case can be ignored when building the final configuration. It is important to note that an
action represents the decision as to which a specific component was chosen. Consequently,
an action is only valid if exactly one 𝑐𝑡 is not equal to 0.

The SMT presented in Section 4.1 consists of three different component types 𝑇 = {𝑠, 𝑎, 𝑚}
(selector 𝑠, aggregator 𝑎, and matcher 𝑚). Following the general approach to action space
construction, the corresponding action space can be created as shown in Table 1.



Position Value Description

0 𝑐𝑠 Chosen selector 𝑠.
1 · · · |𝑃𝑠 | 𝑃𝑠 Parameters for selector (optional).
1 + |𝑃𝑠 | 𝑐𝑎 Chosen aggregators 𝑎.
2 + |𝑃𝑠 | · · · 1 + |𝑃𝑠 | + |𝑃𝑎 | 𝑃𝑎 Parameters for aggregators (optional).
2 + |𝑃𝑠 | + |𝑃𝑎 | 𝑐𝑚 Chosen matchers 𝑚.
3 + |𝑃𝑠 | + |𝑃𝑎 | · · · 2 + |𝑃𝑠 | + |𝑃𝑎 | + |𝑃𝑚 | 𝑃𝑚 Parameters for matchers.
3 + |𝑃𝑠 | + |𝑃𝑎 | + |𝑃𝑚 | 𝑝_𝑖𝑑 id of parent component.

Tab. 1: Action space for the three component types selector 𝑠, aggregator 𝑎, and matcher 𝑚 with
their corresponding parameter array 𝑃, array length |𝑃 |, and the connecting value 𝑝_𝑖𝑑 represents the
maximum number of components in the execution tree.

To illustrate the action space according to these principles, we present the steps the agent
takes to create the configuration shown in Figure 3. These steps are outlined in Listing 1.
In this simplified configuration, we include a parameter for the selector and the second
matcher assuming default parameters for the other components. The action space, in the
beginning, has six parts (index positions 0 to 5) to specify the possible values for the three
component types as well as for the maximal number of components to be created. For the
initial selector specification (id 0) the possible values are 0 (no selector) or 1 assuming only
one possible kind of selector. For the selector parameters (id 1) there is either no parameter
(0) or possible similarity threshold values between 1 and 101. Index position 2 defines the
space for adding an aggregator, with 0 for none followed by either 1 or 2 for two possible
kinds of aggregators. Index 3 defines the space for adding a matcher, using the same values:
0 for none, 1 for matcher 1, and 2 for matcher 2. Index 4 defines the space for parameters
related to matcher 2, while index 5 defines the possible values for linking to the parent up to
the maximum number of components in the execution tree (10, in the example). As can be
seen in the lower part of Listing 1 there are two instances of matcher 1 with either parent 1
(line 10) or 0 (line 12).

1 Defined Action Space:

2 [[0,1],[0,1,...,101],[0,1,2],[0,1,2],[0,1,...,5],[0,1,...,10]]

3

4 The agent steps are interpreted as follows:

5 # Adds a Selector 1 id = 0 with parameter 80.

6 Step 1: [1,80,0,0,0,0]

7 # Adds an Aggregator 1 id = 1, linked to the parent with p_id = 0.

8 Step 2: [0,0,1,0,0,0]

9 # Adds a Matcher 1 id = 2, linked to the parent with p_id = 1.

10 Step 3: [0,0,0,1,0,1]

11 # Adds a Matcher 1 id = 3, linked to the parent with p_id = 0.

12 Step 4: [0,0,0,1,0,0]

13 # Adds a Matcher 2 id = 4 with parameter 1,



14 # linked to the parent with p_id = 1.

15 Step 5: [0,0,0,2,1,1]

List. 1: Simplified action space and agent steps within that space for configuration of Figure 3.

4.2.2 Dynamic Action Masking

To accelerate the learning process, we employ action masking [HO20; Ta20] to dynamically
adjust the available actions based on the agent’s preceding moves and current state. This
strategy aims to prevent the agent from attempting redundant actions, such as adding a
selector despite one having already been chosen in a prior step.

Algorithm 1 Action Masking
1: Initialize 𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒_𝑚𝑎𝑝 for the flattened action space.
2: 𝑖 ← 0
3: for each action 𝑎 in the action space do
4: 𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒_𝑚𝑎𝑝 [𝑎] ← [𝑖, 𝑖 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎)]
5: 𝑖 ← 𝑖 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎)
6: end for
7: Initialize 𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 array of size 𝑖 with all elements set to True.
8: for each action 𝑎 in 𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒_𝑚𝑎𝑝 do
9: if 𝑎 is neither a selector nor a parameter of a selector then

10: for each 𝑖𝑑𝑥 in 𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒_𝑚𝑎𝑝 [𝑎] do
11: 𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 [𝑖𝑑𝑥] ← (𝑖𝑑𝑥 == 0)
12: end for
13: else
14: for each 𝑖𝑑𝑥 in 𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒_𝑚𝑎𝑝 [𝑎] do
15: 𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 [𝑖𝑑𝑥] ← (𝑖𝑑𝑥 ≠ 0)
16: end for
17: end if
18: end for
19: Add 𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘 to the observation.

To implement the masking mechanism the action space is treated as a set of probabilities,
where each component’s likelihood of selection is dynamically adjusted. For instance, if
a selector had already been chosen in a previous step, the likelihood of adding another
selector in subsequent steps is reduced to zero. Similarly, if an aggregator was introduced,
the parent ID list is modified to accommodate a newly feasible action, with its likelihood
adjusted to match the available actions. To realize this dynamic adjustment, a method was
devised to update the probabilities of each action after every step. Algorithm 1 illustrates
the initialization of action masking within a multi-discrete action space. This masking
occurs exclusively during the initial step of selector selection. This involves mapping the
probabilities to their corresponding actions, modifying them accordingly, and subsequently
incorporating them into the agent’s decision-making process. In subsequent steps, the roles
are inverted, and the selectors, along with their parameters, undergo masking.



The masked space then corrects the action probabilities, which are subsequently updated
by the forward progression function by [HO20; Ta20]. This ensures that only feasible and
relevant actions are considered at each stage of the learning process.

4.2.3 Observation Space

The observation space comprises two distinct parts: the first part consists of an array holding
all possible actions, encoded with 0 or 1 for masking (see Section 4.2.2), while the second
part provides essential information for the agent. In our scenario, the second part of the
observation space is an initially empty area that records the current state of the execution
graph. With each step the agent takes, this space is updated to include the component that
the agent introduced in the preceding step.

Algorithm 2 Initialize observation space (obs) with action masking
1: 𝑜𝑏𝑠← {}
2: 𝑜𝑏𝑠[′𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘𝑖𝑛𝑔′] ← 𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑠𝑘

3: 𝑜𝑏𝑠[′𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠′] ← {}
4: for 𝑖 from 0 to 𝑚𝑎𝑥_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do
5: 𝑜𝑏𝑠[′𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠′] [𝑖] ← {}
6: 𝑜𝑏𝑠[′𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠′] [𝑖] [′𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡′] ← 0
7: 𝑜𝑏𝑠[′𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠′] [𝑖] [′𝑝𝑎𝑟𝑒𝑛𝑡′] ← 0
8: 𝑜𝑏𝑠[′𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠′] [𝑖] [′𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠′] ← [0, . . . , 0]
9: end for

Algorithm 2 presents the initialization of the observation space with action masking. The
observation space contains all valid steps where 𝑖 is the step number at which the component
was added. Each component within this construct embodies its distinct parameters. To save
space, only the corresponding parameter array 𝑝𝑡 will be stored and not the whole array 𝑃𝑡 .
For the observation space to still have a constant size, the initial array of ’parameters’ is
set to 𝑚𝑎𝑥𝑡 (

∑ |𝑡 |
𝑗=1 |𝑝𝑡 , 𝑗 |) (the largest sum of the sizes of the parameter arrays 𝑡). After the

initialization process, the final values are set according to the following steps:

1. ′𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡′ = 𝑡 ∈ 𝑇 → N
2. ′𝑝𝑎𝑟𝑒𝑛𝑡′ = 𝑝_𝑖𝑑

3. ′𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠′ = 𝑝𝑡 ,𝑒𝑡 with size 𝑚𝑎𝑥𝑡 (
∑ |𝑡 |

𝑗=1 |𝑝𝑡 , 𝑗 |)

Step (1) maps the component type 𝑡 to a natural number > 0. The linking value 𝑛 is set as
parent according to step (2). Finally, the parameter array 𝑝𝑡 is set in step (3). It is important
to ensure that the length of 𝑝𝑡 is equal to the maximum sum of the sizes of arrays of
parameters of any component 𝑡 to accommodate any parameter. The observation space for
the execution graph shown in Figure 3 is represented by up to 𝑚𝑎𝑥_𝑐𝑜𝑚𝑝 components
shown in Listing 2.



{

0: {'component': 1, 'parent': 0, 'parameters': ...},

1: {'component': 3, 'parent': 0, 'parameters': ...},

2: {'component': 5, 'parent': 1, 'parameters': ...},

3: {'component': 5, 'parent': 0, 'parameters': ...},

4: {'component': 6, 'parent': 1, 'parameters': ...},

5: {'component': 0, 'parent': 0, 'parameters': ...},

...

max_comp: {'component': 0, 'parent': 0, 'parameters': ...}

}

List. 2: Observation space for the example configuration in Figure 3, combined with the action
space definition provided in Listing 1. In this configuration, component ’1’ corresponds to Selector
1, component ’3’ to Aggregator 1, component ’5’ to Matcher 1, component ’6’ to Matcher 2, and
component ’0’ represents a component not yet defined.

4.2.4 Reward system

In the field of agent-based systems, decision-making and the concept of reward are crucial.
After executing a validated action, an agent receives a positive reward for feasible actions
and incurs a penalty for disallowed ones at the given moment. For instance, if an agent
attempts to add multiple components to the configuration at once such as trying to add both
a matcher and an aggregator simultaneously, it will receive a penalty.

The first step of the agent involves adding a selector to the configuration tree, which serves
as the starting point for subsequent actions. Additionally, the selector-specific parameters
must be defined, and the agent is rewarded for successfully adding and defining a selector.
In the following step, the agent has two main options to choose from: adding a matcher
or an aggregator and defining their respective parameters. In both cases, the agent must
not only make this selection but also determine the identifier of the parent. In the second
step, this only relates to the initially added selector. In subsequent steps, the list of available
parents expands to include previously added aggregators.

As the process continues, subsequent steps replicate the available actions following the choice
of the selector. Once the necessary minimum criteria, as outlined in the configuration rules,
have been met, all steps undergo validation to confirm compliance with the configuration
file’s specifications. For instance, putting a selector and at least one child, or, in the case of a
selector and aggregator, ensuring the aggregator also has at least one child. After successful
validation, the resulting configuration file is transmitted to the SMT alongside the schemas
to execute the matching process. The matching result for this configuration file is then
compared with the ground truth available for those schemas (see Section 5.1). The ground
truth does not need to involve hundreds of tables, a small sample, such as two matched



schemas, is sufficient. The agent learns primarily the characteristics of the matching tool for
a particular type of schema, not the schemas themselves.

To optimize and balance the various metrics, we use the Geometric Mean of the F1 score
(calculated for binary values (0 and 1) after applying a threshold by the agent) and ROC-AUC
values (which evaluates the similarity of values between 0 and 1) as a metric for aggregated
Performance (GMP score), see Formula 1. By merging these metrics into a single GMP
score, the agent can optimize its performance based on both predictive performance and the
impact of different component configurations on similarity scores. Ultimately, the reward is
added to the total collected by the agent for assembling a valid configuration.

GMP score =
√︁

F1 × ROC-AUC (1)

4.2.5 Termination constraints

To reduce the likelihood of the agent reaching a local optimum, where the balance between
reward and penalty is finely tuned, two constraints were established:

• Firstly, a limit was imposed on the Maximum Number of components (MN) allowed
in the configuration, defined upon the environment’s creation. This restriction ensures
that the agent cannot exceed the predetermined Number of Components (NC),
although it does not impose further limitations on the configuration tree’s structure.
When reaching the specified number of components in the configuration, the event is
terminated, and a signal is transmitted along with the response to the corresponding
event step.

• Secondly, a constraint called a number of Available Lives (AL) mitigates the risk of
the agent getting trapped in a local optimum. This constraint reduces the available
lives for each incorrect move or repetitive execution of the same incorrect action.
When all available lives are exhausted, the trial terminates, and a penalty is incurred.

The termination condition can be described as shown in Formula 2. If the episode is
terminated, it serves as a strong signal for the agent to seek other solutions. It has been
observed that an optimal termination strategy involves setting conditions that support the
exploration of diverse moves by the agent while mitigating the risk of stagnation.

Terminate Trial =

{
True, if (NC > MN) ∨ (AL ≤ 0)
False, otherwise

(2)



4.2.6 Exploitation vs Exploration

The PPO algorithm was selected for training the agent thanks to several key factors. Firstly,
PPO’s implementation of proximal optimization effectively limits policy changes during
updates minimizing the risk of large fluctuations and enhancing stability — a crucial
requirement in RL [Sc17]. In PPO, entropy measures the randomness of the policy’s
action distribution, encouraging exploration by preventing the policy from becoming
too deterministic. To maintain a balance between exploration and exploitation, entropy
regularization is employed to prevent the agent from converging to a local optimum [Ah19].
This approach ensures the agent explores various components and their combinations in the
action space.

Configuring the PPO algorithm correctly was imperative given the unique characteristics
of our environment. For our tool to yield consistent results for the same configuration
and input data, a delicate balance between exploitation and exploration is required. While
it is important to explore various combinations of components in the configuration tree,
leveraging known components which yield favourable results is equally essential. This
balanced approach maximizes the efficiency of the learning process while facilitating
comprehensive exploration of the action space. Given the unique characteristics of our
environment, the aim is to prioritize exploration over exploiting known actions. Increasing
the entropy coefficient encourages the agent to explore more actions but a balance has to be
found to avoid excessive randomness. Entropy measures the uncertainty or information in
potential actions and outcomes. To address this, an entropy bonus, as discussed in [Mn16;
Sc17; SCA17], is applied to encourage more diverse action selection.

5 Evaluation

To assess whether our RL-based approach for the configuration of schema matching tools
produces results comparable to or better than those of expert configurations, we begin
by providing an overview of the dataset and the evaluation setup. We then present the
training process, and the results achieved using our RL approach on this dataset. Finally,
we investigate the application of our approach to other configurable tools like AML and
LogMap2.

5.1 Dataset and evaluation setup

To evaluate our Schema Matching Tool (SMT) on real-world schemas, we utilize the Web
Data Common Schema Matching Benchmark [We23]. We test the SMT by transforming
the schemas to the predefined format, including a column header and aggregated schema
instance statistics. The dataset comes in two variants: T2D-SM-WH and T2D-SM-NH.
The T2D-SM-WH dataset provides both instance data and descriptive column headers. In



contrast, the T2D-SM-NH dataset contains instance data without meaningful or descriptive
header names. Each of the two datasets contains 356 tables from 28 thematic domains
which are divided into three parts: the test set includes two subsets with 89 tables each, the
train set comprises two subsets with 71 tables each, and the validation set contains two
subsets with 18 tables each. When evaluating the test set from the WDC Schema Matching
Benchmark, the SMT needs to compare up to 212,004 schema elements highlighting the
significant matching complexity.

For our setup, we utilized a machine equipped with 64 GB of RAM and an AMD Ryzen
9 7950X 16-core processor. The Reinforcement Learning environment was developed in
Python, leveraging the RLlib [Li18] library, along with Gymnasium [To23] and scikit-learn
[Pe11] for basic evaluation metrics.

5.2 Training

The training of the agent extends through two distinct phases, each aimed at addressing
specific aspects of its learning process.

In the initial phase, the primary objective is to familiarize the agent with the difficult process
of assembling a valid execution graph. This involves imparting knowledge on the number
of components to include and the complexity of the execution graph. To encourage the
agent to learn, a reward structure was introduced, where rewards are granted based on the
number of components successfully added to the configuration file and the advancement of
the resulting execution graph. However, it was crucial to strictly adhere to the requirements
for the validity of the configuration at this phase. The underlying goal is to equip the agent
with the necessary knowledge to navigate the environment effectively including tasks such
as selecting and adding components, referencing parents, or ensuring the uniqueness of
components within each level of the execution graph.

(a) Average agent rewards during training. (b) Agent performance with action masking.

Fig. 5: Agent Training Results.



In the second training phase, the focus shifts from quantity to quality. The reward for adding
components is reduced, and the agent’s reward is extended on how well the configuration
achieves the desired matching results. This phase refines the agent’s decision-making to
optimize matching outcomes. We ran the training for 14 hours. The average episode reward
value fluctuated until the end of the initial 2-hour training period (with mean reward below
100) coinciding with the agent’s transition into the second training phase, as shown in
Figure 5a. Following the transition into the second phase, the average reward steadily
increased until approximately 8 hours into the training process. In contrast to traditional
agent training, which focuses on teaching an agent to perform specific actions, our approach
aims to identify the optimal configuration. Thus, we maintain a scoreboard that records only
the highest-performing configurations of the schema matching process.

Thanks to action masking, described in Section 4.2.2, the agent makes correct decisions
when constructing the execution graph, leading to a high initial reward. For our test case,
the agent requires approximately 80,000 steps without action masking to achieve a level of
rewards comparable to an agent with action masking enabled from the start, see Figure 5b.

The entropy should gradually decrease during successful training, as demonstrated by
applying an entropy bonus of 𝑆 = 0.1, as shown in Figure 6a. As described in Section
4.2.6, in this context, we define 𝑆 as the entropy bonus coefficient applied to encourage
exploration. In contrast, with 𝑆 = 0.5, decisions remain highly random, indicating limited
progress despite extended training time, as illustrated in Figure 6b.

(a) Entropy bonus 𝑆 = 0.1. (b) Entropy bonus 𝑆 = 0.5.

Fig. 6: Comparison of entropy with different entropy bonus 𝑆 values.

The fine-tuning of RL agent configurations is not all necessary to find a good configuration
for the schema matching tool. The experiments are solely intended to reduce the time
required for the agent to identify a suitable configuration.

5.3 Results for SMT

A manual approach to finding an optimal configuration for our SMT matching tool based
on trial and error would be extremely time-consuming and repetitive. Alternatively, another



solution is using a script to automate the generation of all feasible configurations. However,
this method necessitated the imposition of certain constraints such as limiting the number
of components to be examined and predefining the structure of the execution graph. Still,
the number of generated configurations escalated quickly even with constraints applied.
Given a simple graph structure with depth 1, the number of different combinations is
#𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = ((#𝑚𝑎𝑡𝑐ℎ𝑒𝑟_𝑡𝑦𝑝𝑒𝑠)#𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)#𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟_𝑡 𝑦 𝑝𝑒𝑠 . Considering that multiple
parameters can be set for each type of selector and matcher; the complexity further
grows. This complexity expands when aggregators introduce another layer to the graph.
Consequently, the total number of combinations quickly escalates to several million, even
before considering nested aggregators. Moreover, due to the execution time required for
each configuration, finding the optimal combination remains challenging, even with parallel
execution. With a rough estimate of 20 trials per second, the execution time would take
many weeks. Therefore, one of the evaluation points is the execution time for finding an
optimal configuration.

Dataset Time Action Masking Off Time Action Masking On
T2D-SM-WH 1d 10h 6h
T2D-SM-NH 1d 2h 4h

Tab. 2: Time Comparison with and without Action Masking.

T2D-SM-WH T2D-SM-NH
Manual Configuration RL Configuration Manual Configuration RL Configuration

F1 score 0.496 0.686 0.262 0.565
ROC-AUC 0.742 0.837 0.637 0.821

MCC 0.509 0.621 0.166 0.451
Accuracy 0.884 0.894 0.755 0.845

GMP score 0.607 0.758 0.409 0.681

Tab. 3: Matching quality results for manual and RL-optimized configurations.

The proposed RL approach avoids these excessive and impractical execution times, especially
when action masking is applied. Table 2 shows the execution times to find well-performing
configurations for the two datasets without and with action masking. Action masking leads
to a drastic reduction of execution times by 22-28 hours to only 4-6 hours. The matching
effectiveness results in Table 3 are based on the test data, using the best configuration
identified by our method after training on the training portion of the T2D-SM-WH and
T2D-SM-NH datasets. Table 3 indicates that the configuration produced by RL surpasses
the manually adjusted configuration in terms of matching quality. This method proved
particularly effective for T2D-SM-NH, where the absence of column headers in the dataset
made the manual configuration of our tool challenging, making it difficult to obtain
satisfactory results. However, the configuration determined through RL led to notable
improvements, increasing the GMP score. The configurations generated by the agent were
subsequently compared against those that had been manually selected and fine-tuned for
each dataset.



5.4 Application to other Tools

To demonstrate the general applicability of the proposed RL approach, we apply it to
other configurable tools that have been successful in the OAEI ontology matching contests
[On23a]. All evaluations are conducted using the 2023 OAEI anatomy track dataset [On23b].
A direct comparison of our tool’s results with the other ontology matching tools is not
feasible as the OAEI anatomy dataset does not include the instance data required by our tool.
Its matcher components primarily use aggregated information about the instance data for
the similarity computation while structure-based matchers are not implemented. Following
an initial assessment of available libraries, AML (AgreementMakerLight) in version 3.2 and
LogMap2 were chosen for further evaluation. Certain conditions must be met when exploring
potential applications of our approach, including the ability to configure the execution of
the matching processes, which requires developers to provide configuration options rather
than coding them permanently into the code. In both cases, the RL environments for the
tools were designed with a simplified implementation, as neither tool permits modification
of the execution graph, only adjustments to their parameters. The configuration generated
using RL was used in the manual mode of the AML tool and compared against the default
configuration settings in the auto mode.

Tool Configuration Precision Recall F1 score Time

LogMap2 Default Matching 0.911 0.847 0.878 -
RL Configuration 0.934 0.844 0.887 1h

AML v3.2
Automatic Matching 0.957 0.881 0.918 -

Default Matching 0.767 0.863 0.812 -
RL Configuration 0.96 0.883 0.92 3h

Tab. 4: Performance metrics for different configuration approaches using LogMap2 and Agreement-
MakerLight on the OAEI 2023 dataset.

It took 1 hour (LogMap2) and 3 hours (AML) for the RL model to produce configurations
on par with the performance of the automatic mode, or in some cases even slightly better as
shown in Table 4, which includes metrics supported by the evaluated tools. The learning
process involves the agent selecting actions from the multi-discrete space, which are
then converted into configurations and sent to AML for evaluation. Results from the
evaluation mode are returned to the agent as a reward. The manual mode is predefined
in the configuration, which contains universal settings for ontology matching. In contrast,
the automatic configuration is a predefined mode that is permanently hard coded into the
AML tool, fine-tuned for the OAEI. The automatic configuration facilitates the automatic
selection of background knowledge sources [Fa14]. The manual mode serves as an optional
configuration provided within AML for user customization and experimentation. Similar to
the AML, we implemented the environment for the LogMap2 tool. The Automatic mode
is the default mode for LogMap 2 [Ji12], it is defined in the configuration. Unfortunately,
there is no proper documentation about the parameters inside the configuration, so only
parameters for which it is possible to set a number, or Boolean values are available for
modification for the agent.



6 Conclusion

We introduced a novel approach using Reinforcement Learning (RL) to automatically
configure tools for composed schema matching. This approach presents a significant
advance in the field offering a dynamic solution to improve the efficiency and quality of
configuration. Previously, configuring a schema matching tool required in-depth domain
knowledge and manual intervention which is time-consuming and complex. Wrapping the
schema matching tool in the RL environment enables the automation of this process and
allows the agent to adjust and optimize the configuration based on the available tool settings
and data characteristics. One key aspect of our approach is the utilization of dynamic action
masking within a multi-discrete action space, which allows the RL agent to focus on relevant
actions and speeds up the learning process. Moreover, we proposed a reward mechanism
based on the geometric mean of the metrics ROC-AUC and F1 score (GMP score) based on
ground truth. By incorporating these metrics into the reward function, we aimed to optimize
the matching outcomes. We have shown that a configuration generated by RL is not only
faster to produce a good configuration compared to generating all possible combinations but
has also proven to be better than a manually adjusted configuration. Additionally, a simplified
version of RL-based automatic configuration was implemented and applied to other tools in
the field, specifically AML and LogMap2 to demonstrate the general applicability of our
approach. This involved designing an RL agent that learns to optimize the configuration
parameters based on our proposed reward mechanism. The results of our experiments show
that with the configuration generated by RL, the results obtained were equal to the default
configuration and, in some cases, even better than the tool’s default manual configuration or
automatic matching mode, in terms of fitting accuracy. Allowing tools to be configurable
enables the use of RL for automating configuration and constructing execution graphs. This
approach could further extend to other tools requiring human fine-tuning.

In future work, we aim to compare the effectiveness of various RL algorithms in configuring
schema matching tools. We want to assess their efficiency and speed in adapting configura-
tions within schema matching tools through experimentation with different RL algorithms,
such as Advantage Actor-Critic (A2C), Recurrent PPO, or Trust Region Policy Optimization
(TRPO). Another possible implementation of our solution would be to integrate a pre-trained
RL model into the running SMT. The pre-trained model would be capable of recognizing
different input schemas and automatically selecting or adapting the optimal configuration
for each specific type of schema.
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