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Entity resolution plays an important role in data integration. However, most entity resolution methods focus
on pairwise linkage and ignore potential errors generated by the transitive closure based on the determined
equality links between two or more data sources. The transitive closure of a record forms a cluster where
each record represents the same entity. Cluster repair methods aim to determine these errors and correct
them. In the first category of methods, the assumption is that the data sources themselves do not contain any
duplicates. Consequently, each cluster can contain at most one record from the same data source. However,
real-world data often deviates from this assumption due to quality issues. Recent approaches apply clustering
methods in combination with link categorization methods or graph clustering algorithms based on a single
graph metric so they can be applied to data sources with duplicates. Nevertheless, the quality of the results
highly varies depending on the configuration and dataset. In this study, we introduce a novel approach for
cluster repair that utilizes graph metrics derived from the underlying similarity graphs. These metrics enable
a comprehensive characterization of links and the generation of enhanced classification models. In addition to
graph metric-based models, we integrate an active learning mechanism tailored to cluster-specific attributes.
Moreover, we integrate large language models as an oracle. The evaluation shows that the graph metric-based
method outperforms existing cluster repair methods and is more robust regarding different datasets and
configurations.
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1 Introduction
With the exponential growth of data, integrating information from multiple sources has become
essential for enabling comprehensive analysis and decision-making. A key step in data integration
beside schema mapping and data fusion is entity resolution (ER) [4]. Also known as record
linkage, duplicate detection, or entity matching [12], ER identifies records representing the same
entity across different data sources.
Over the past few decades, numerous ER methods [10, 12, 34] have been developed with most

focusing on pairwise linkage between two data sources [8, 14, 25, 35, 46]. The integration of multiple
data sources requires the execution of various pairwise linkage processes where the results are
consolidated by computing the transitive closures also called clusters utilizing the generated record
links. Each cluster is expected to consist of records corresponding to the same entity. The transitive
closure can lead to the propagation of linkage errors and consequently to erroneous clusters where
records are included representing different entities. To address this issue, cluster repair methods
aim to refine clusters by correcting erroneous links [13, 20, 41, 44, 48]. The methods can be divided
into two categories. The first [13, 36, 44, 48] assumes that data sources are free of duplicates. The
methods of the second category can be applied to ER problems with data sources consisting of
duplicates by themselves. Leveraging the duplicate-free assumption, the approach removes links
and produces clusters that conform to this ideal condition. However, this assumption is often
unrealistic in practice, as data sources in real-world applications frequently contain duplicates. As
a result, methods that rely on duplicate-free assumptions tend to perform poorly when dealing
with "dirty" data sources containing errors and inconsistencies.

Initial cluster repair methods [20] focus on a single data source without any duplicate-free
assumptions. Hassanzadeh and colleague [20] utilized single-pass clustering algorithms. Saeedi
et al. [44] compared their approach with a subset of the best algorithms from [20] and outperformed
the single-pass clustering algorithms on duplicate-free data sources.
Recent approaches [27, 41, 43] of the second category have introduced modified clustering

techniques that can repair clusters from noisy data sources as well as clean data sources. Despite
these advancements, the effectiveness of such methods remains highly dependent on specific
configurations tailored to particular linkage problems.
Our work focuses on cluster repair within the ER process, applicable to both clean-clean and

dirty linkage tasks with minimal configuration effort. To overcome existing limitations, we propose
GraphCR, a novel Graph metrics-driven Cluster Repair approach. GraphCR uses multiple graph
metric-based features to identify correct and incorrect links within clusters. Table 1 provides an
overview of the graph metrics used to build a classification model for predicting link correctness.
By leveraging machine learning with diverse graph metric-based features, our method achieves
accurate and robust cluster repair results, outperforming approaches that depend solely on single
metrics or similarities.

Specifically, we make the following contributions:
—We propose a novel cluster repair method GraphCR that employs a classification model using
a variety of graph metric-based features. In addition to the similarities, the used features
cover network information within a cluster leading to a meaningful representation of links.
The repair step utilizes the model to determine erroneous links from the clusters iteratively.
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Table 1. Overview of Graph Metric-Based Features to Characterize an Edge

Name Element type Scope

PageRank [5] node network
closeness centrality [42] node network
betweenness centrality [17] node network
cluster coefficient [23] node network
normal link ratio [44] node network
strong link ratio [44] node network
similarity edge local
bridge [47] edge network
betweenness centrality [17] edge network
complete ratio graph network
weighted degree node local

We distinguish between the element type of a graph and the scope of information.

—We integrate an active learning approach into our method combined with a LLM-based oracle.
To generate representative training data regarding the different clusters with their specific
characteristic, we extend an existing active learning method by considering cluster-specific
features in the selection phase. We also integrate the usage of LLMs as an oracle instead of a
human-based one.

—We evaluate GraphCR on three datasets, analyzing labeling budgets, selection strategies,
and the use of LLMs for training data generation. Results demonstrate that GraphCR is
more robust and effective than existing methods across various datasets and configurations.
Additionally, we validate its robustness against noisy similarity graphs by introducing random
changes to edge similarities.

The remainder of this article is structured as follows. In Section 2, we define the problem of
repairing clusters of records. Moreover, we discuss graph metrics as an integral component of our
approach. In Section 3, we discuss existing cluster repair methods and additionally active learning
and LLM-based ER methods. In Section 4, we present our novel approach for repairing clusters
utilizing graph metric-based features with active learning. In Section 5, we evaluate our approach on
different datasets to validate its practical applicability. Finally, we conclude our work in Section 6.

2 Preliminaries
2.1 Problem Definition
Let D be a set of data sources 𝐷1, 𝐷2,. . . ,𝐷𝑛 consisting of records 𝑟1, . . . , 𝑟𝑘 . Moreover, an arbitrary
pairwise record linkage system generates a similarity graph 𝑆𝐺 = (𝑉 , 𝐸). 𝑉 represents the set of
records across the different data sources D and 𝐸 is the set of weighted edges connecting two
records.
The edges are generated by the record linkage system or derived from a collection of links. A

record linkage tool generates for each data source pair a set of links by executing the following
steps: preprocessing, blocking, similarity computation, and classification [9].

We generate similarities for each pair of data sources to create a comprehensive similarity graph,
which serves as a crucial element in our cluster repair methods. In contrast, incremental ER methods
focus on comparing only the integrated data source with a single data source. However, research
by Saeedi et al. [45] showed that the order of data sources significantly impacts the quality of the
resolution process.
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Fig. 1. Outline of the complete ER process including the repair method identifying incorrect edges ENM to
construct repaired clusters Crep. The different shapes of the records represent the data sources (D1: triangle,
D2: circle, D3: pentagon).

In general, a record linkage approach computes multiple similarities regarding different attributes.
In this work, we assume that a function aggregates the similarities. Moreover, a similarity can also
be a probability of a classification model of how likely the match is. Therefore, an edge’s weight is
between 0 and 1. Note, that the similarity graph is incomplete because of the classification step, so
not each record pair represents an edge. Due to the transitivity of equality links, the records of a
connected component represent a cluster 𝑐 ∈ C and, thus, the same entity. However, clusters may
include incorrectly assigned records due to linkage errors.

Therefore, a cluster repair method [12] aims to determine incorrect clusters and repair them. The
repair method (see Equation (1)) identifies incorrect edges ENM utilizing the computed similarity
graph SG with its similarities. The deletion of edges of ENM in the similarity graph SG and the
computation of the transitive closure lead to a repaired set of clusters Crep.

ENM ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑟𝑒𝑝𝑎𝑖𝑟 (SG,C) (1)

Crep ← 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒_𝑐𝑙𝑜𝑠𝑢𝑟𝑒 (𝑒𝑑𝑔𝑒𝑠 (SG) \ ENM) (2)

To increase the completeness of clusters, a further linkage step can refine the resulting clusters of
Crep bymatching the clusters across each other. The comparison between clusters can be achieved by
using cluster representatives such as one selected record of a cluster or a fused record representing
the information of all records of a cluster. Due to the high complexity of the pairwise comparison,
we do not consider missing merged clusters. This issue can be mitigated by employing alternative
similarity computations or more relaxed classification thresholds to merge repaired clusters. For
improved efficiency, cluster representatives can be used for comparisons instead of individual
records.
Figure 1 shows the problem definition with three data sources 𝐷1 (triangle), 𝐷2 (circle), and

𝐷3 (pentagon) exemplary. Each of them consists of a set of records described by the attributes
description, name, brand, and id indicating the same entity. The similarity graph 𝑆𝐺 consists of two
connected components where the records representing entities 1 and 2 as well as 3 and 4 are in
the same clusters. Due to the erroneous links (D1.1, D3.2’), (D1.1’, D2.2), and (D2.4, D3.3), the first
cluster consists of records representing entities 1 and 2. Additionally, the records D2.3 and D3.3
represent an entity with D2.4. The repair method aims to determine these incorrect edges so the
records are split into 4 clusters Crep.
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2.2 Graph Features
The core component for repairing the clusters involves using graph metrics to characterize edges.
The current state-of-the-art approaches use Graph neural networks (GNNs)[6, 7, 19, 24, 49] to
learn appropriate node or edge representations so-called embeddings. The derived embedding can
be used for several downstream tasks such as node classification or link prediction. However, most
approaches assume that the existing edges in the graph are correct so that information via the graph
structure can be propagated using spectral- or spatial-based GNNs. However, the performance of
GNNs highly depends on the amount of noise such as missing or wrong edges in a graph [16, 51, 52].

Instead of using GNNs to learn edge representations, we employ well-known centrality measures
such as PageRank [5], closeness Centrality [42], and betweenness Centrality [17]. The intention
of using centrality measures is based on the assumption that a record well-connected to other
records in a cluster is likely to be correct. PageRank [5] was originally developed to determine
the relevance of web pages based on their link structure. Closeness Centrality [42] measures how
quickly a node can access other nodes in the network, with higher values indicating that a node is
better positioned to reach others efficiently. Betweenness Centrality [17] quantifies the extent to
which a node acts as a bridge along the shortest paths between other nodes, thereby highlighting
its role in facilitating communication within the network.
In addition to the centrality of records, we incorporate characteristics related to ER, including

similarity, strong link ratio, and normal link ratio introduced by Saeedi et al. [44]. These metrics
are crucial, particularly in upholding the duplicate-free assumption for clean data sources. A strong
link is an edge between two records where the similarity is the maximum of both adjacent nodes
regarding a data source pair. Thus, the strong link ratio of a node is calculated by dividing the
number of strong link edges by the total number of adjacent edges of a node.
These additional characteristics are instrumental in maintaining the integrity and accuracy of

the data, ensuring that connections reflect true relationships within clean data sources.

3 Related Work
Data integration requires ER, a field extensively studied for decades [9, 12, 34]. The primary objective
lies in identifying records that represent the same entity. Most of the approaches [14, 26, 32, 35]
treat ER as a classification task, categorizing record pairs between two data sources as matches
or non-matches. Recent research utilizes pre-trained [28, 29] and large language models [39] to
address data sources with high heterogeneity.

However, due to quality issues and the transitivity of equality links, a pairwise view is insufficient
to generate qualitative record clusters. The error-prone clusters can lead to wrong analysis results
or incorrect downstream tasks such as knowledge graph construction. As a solution, methods
for cluster repair become relevant to enhance the quality of derived clusters, building upon the
determined.
In the following, we discuss cluster repair methods. Due to the requirement of training data

for the classification model, we consider active learning methods. Additionally, we briefly discuss
LLM-related ER since we use LLMs as oracles in our method.
Cluster repair: Hassanzadeh et al. [20] proposed an evaluation framework for single-pass

clustering approaches for ER tasks without considering any constraints. CLIP [44] focuses on
repairing clusters based on multiple duplicate-free data sources. The method categorizes the
computed links into strong, normal, and weak links based on the similarity graph structure and
the data sources. The different link categories distinguish if two records from two data sources
are connected by an edge that maximizes the similarity for both records (strong), only one record
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(normal), or none of them (weak). Using the link categories and the assumption of duplicate-free
data sources, the method iteratively removes edges from clusters until they are source-consistent.
The evaluation showed that CLIP outperforms the best-performing clustering methods from [20]
considering duplicate-free data sources. The strong assumption regarding duplicate-free data
sources is also utilized by [13, 48]. Lerm et al. [27] extended affinity propagation clustering applicable
for clean and dirty data sources. In terms of the repair methods from Hassanzadeh et al. [20], the
adapted cluster method outperformed the single pass-clustering algorithms. However, experiments
showed that the approach leads to small clusters with high precision but at the cost of relatively
low recall. To overcome the low recall, Saeedi et al. [43] proposed an agglomerative hierarchical
clustering-based method using the basic strategies: single-, complete-, and average-linkage. To
guarantee source consistency regarding clean data sources, they adapted the general method by
adding certain constraints for merging clusters. Raad et al. [41] utilized the modularity as network
information implicitly by applying the Louvain algorithm to determine incorrect links. Using
the determined communities, the method computes an intra/inter-community link error degree
for each edge. The authors evaluated the approach using Linked Open Data datasets to show its
efficiency. However, the effectiveness was only shown by a small sample. Furthermore, selecting
the error-degree threshold for the classification as non-match is a challenging task, as this is
dataset-dependent and was only determined by sampling.
Active Learning: Due to the classification of links based on the graph metric-based features,

training data is required. Active learning enables efficient and effective training data generation
by determining informative unlabeled samples iteratively and interactively. In each iteration, the
training data is utilized to determine new informative samples being labeled by an oracle. The
algorithm terminates if a specific stop criterion is achieved such as the number of manually classified
samples, the so-called labeling budget, or the performance of the current classification model is
sufficient. Due to the lack of available training data, various methods [1, 11, 31, 37] have been
proposed for ER. Mozafari et al. [31] proposed two approaches, named Uncertainty andMinExpError,
being applicable for applications beyond ER. The main idea of these approaches is to use non-
parametric bootstrapping to estimate the uncertainty of classifiers. Recent work [40] also addresses
mutli-source ER problems introducing new challenges such as increasing heterogeneity and search
space regarding informative samples.
LLM-based Entity Resolution: The application of large language models is established in

various research fields including data management and wrangling tasks [15, 33]. Relevant to our
approach are methods focusing on ER tasks [33, 39]. Peeters et al. [39] showed the feasibility of
using LLMs for ER on various real-world datasets and different prompt variations without any
fine-tuning. The results showed that the LLMs achieve comparable results or outperform existing
methods based on pre-trained language models [29, 30]. However, the experiments only utilize
small test sets so an end-to-end solution requires a high monetary effort. In terms of using LLMs as
an oracle in the active learning step, Xiao et al. [50] used large language models in combination
with fine-tuned language models to label informative samples in an active learning method and
to filter out error-prone labeled data using the fine-tuned model. They evaluated their method
considering NLP tasks.
In comparison to related work, we are the first who intensively utilize various network infor-

mation as features for generating a classification model for cluster repair tasks. In contrast to the
active learning method from Mozafari et al. [31], we focus on cluster repair tasks instead of ER
problems. Therefore, we consider not only informative record pairs but also select informative
pairs based on cluster-specific characteristics to determine representative training data regarding
the various clusters. In contrast to the LLM-based ER methods, we do not only use the output of
the model as the final decision rather we utilize the result for generating a classification model to
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Fig. 2. Overview of the graph-based cluster repair method. The different shapes of the records represent the
various data sources: D1: triangle, D2: circle, D3: pentagon. We highlighted the box, including the novel steps
of our approach.

classify pairs as matches similar to the work of [50]. Moreover, the existing LLM-based methods do
not focus on cluster repair methods rather than on pairwise linkage.

4 Graph-Based Cluster Repair
In the following, we will present our graph-based cluster repair method where the entire workflow
is depicted in Figure 2. As input, the method has an initial set of clusters C derived from a similarity
graph SG generated by an arbitrary record linkage framework. Given the dependency of the
prediction power on the derived features and the similarities, we assume that the record linkage
tool produces results where higher similarity scores between records are more likely to indicate
matches. Furthermore, the generated similarity scores should be distributed across a broad range
rather than being concentrated within a narrow interval. Similarly to CLIP [44], we also remove
weak links being edges where both adjacent records are related to edges with a higher similarity.
Initially, we compute various graph metrics in the feature generation step, such as PageRank,

and several centrality measures to construct node and edge features illustrated as boxes in the
workflow Figure 2.

To determine the correctness of an edge, we classify each edge based on a trained model M
using the derived edge features. The training process requires classified edges as matches and
non-matches. Due to the sparsity of available training data, we execute an active learning method
to select informative edges as training data T. In each iteration, we select 𝑖𝑡𝑒𝑟_𝑏𝑢𝑑𝑔𝑒𝑡 ≥ 0 unlabeled
samples for labeling and add the labeled edge feature vectors to the existing training dataset T.
The iteration terminates if the specified labeling budget 𝑏 is exhausted. We extend the approach by
considering cluster-specific characteristics such as the number of nodes. The intention is that the
selected training data should represent the different available clusters. Therefore, the cluster-specific
properties of the selected edges should be similar to the characteristics of all clusters. In the last
step, we iteratively resolve the initial clusters C using the model M so that each group consists of
records where the edges are classified asmatch with a high support. In the example of the workflow,
the edges (D1.1, D3.2’) and (D2.4, D3.3) are classified as non-match by the derived model using the
features. The iterative cluster resolution step constructs repaired clusters starting with the records
D1.1, D3.2’, D2.4, and D3.3 being associated with edges classified as non-matches. In the iterations,
the method extends the clusters adding the records to the cluster with the highest support.
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4.1 Feature Generation
In our iterative cluster repair step (see Section 4.3), a classification model M classifies the edges
in a cluster using graph metric-based feature vectors to determine if the edges are correct. Most
approaches utilize the similarity of a link in combination with a clustering approach for cluster
repair. The induced similarity graph of a cluster is utilized to derive various edge features in addition
to the given similarity.
An overview of the considered graph-metrics is shown in Table 1. The main intuition of using

graph metrics is to consider network information in addition to only local information such as
similarity. To determine edge features based on node metrics, we compute the absolute value of
the difference between the adjacent nodes. In addition to the common graph metrics, we also
consider the link categories (see Section 3) by determining the normal link ratio and strong link
ratio. The ratios determine how often a record is adjacent to a normal link or a strong link relative
to the number of disjoint data sources being represented in the cluster. As an indicator of how well
connected the cluster is, the complete ratio represents how similar the induced graph of a cluster is
compared to a complete graph. Therefore, we compute the complete ratio by |𝐸 |/ |𝑉 | · ( |𝑉 |−1)2 where
|𝐸 | is the number of edges and |𝑉 | the number of records.
Due to the same structure of different clusters, various edges can be represented by the same

edge vector. Therefore, we only consider unique edge vectors in the training phase for generating
the modelM.
The efficiency of our approach is influenced by the complexity of the graph algorithms we use.

Most of these algorithms have either cubic or quadratic complexity in relation to the number of
vertices and edges in the graph. However, thanks to the blocking and classification steps, many
edges are pruned, resulting in clusters with a moderate number of vertices and edges. As a result,
the feature generation process requires significantly less runtime compared to the active learning
model generation step shown in Section 5.

4.2 Cluster Characteristic Aware Active Learning with LLMs
Due to the high number of clusters and the lack of evaluated clusters, we need to generate training
data efficiently. The current research provides various active learning methods for record linkage.
In our case, we also want to consider cluster-specific characteristics to select edge feature vec-
tors as training data. Therefore, we extend the active learning method of Mozafari et al. [31] by
considering the number of nodes regarding the cluster of the selected edge. The main idea is to
select iteratively a certain number 𝑖𝑡𝑒𝑟_𝑏𝑢𝑑𝑔𝑒𝑡 of unlabeled edge feature vectors being informative
to extend the current training data T. The iterative process terminates if a stop criterion such
as a total labeling budget 𝑏 is reached. To determine informative vectors Mozafari et al. use a
bootstrapping technique. The method generates 𝑘 classifiers based on the current training dataset
T by sampling with repetition. The determined models𝑚1, ..,𝑚𝑘 classify the unlabeled edge feature
vectors where the predictions are utilized to compute the uncertainty𝑢𝑛𝑐 (−→𝑒 ) of an edge 𝑒 shown in
Equation (3).

𝑢𝑛𝑐 (−→𝑒 ) =
∑𝑘

𝑖=1𝑚𝑖 (−→𝑒 )
𝑘

·
(
1 −

∑𝑘
𝑖=1𝑚𝑖 (−→𝑒 )

𝑘

)
(3)

The term𝑚𝑖 (−→𝑒 ) results in 0 or 1 if the edge 𝑒 represents a non-match, respectively, a match.
We extend the uncertainty criterion by using the number of nodes regarding the graphs of each

edge vector −→𝑒 as a cluster-specific characteristic. The goal is to avoid over and under-representing
clusters with a certain size concerning all clusters. Note, that multiple clusters can contain edges
with the same edge vector due to the same structure and similarity. Consequently, an edge vector
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can be assigned to more than one cluster-specific characteristic. For selecting an edge vector
−→𝑒 , we determine a cluster-specific weight 𝑤𝑐 (−→𝑒 ) based on the cluster size distribution from all
available clusters 𝑑𝐶 and the current training data distribution 𝑑𝑇 . The distribution of 𝑑𝐶 and 𝑑𝑇
are represented as vectors with a dimension equal to the maximum number of nodes considering
all clusters. An entry of 𝑑𝐶 and 𝑑𝑇 consists of the ratio between the frequency of clusters with a
certain number of nodes and the total number of clusters in C resp. T. The weight according to a
certain cluster size is computed by the difference −→𝑤 = 𝑑𝐶 −𝑑𝑇 . Due to the n:m relationship between
edge feature vectors and clusters, we determine the average weight according to an edge feature
vector −→𝑒 using the specific weights𝑤𝑙 of𝑤 where the 𝑙th entry corresponds to the cluster size of a
cluster 𝑐 where 𝑒 ∈ 𝑐 holds.
In addition to the cluster-specific characteristic, we extend the selection strategy by using the

average cosine distance between the unlabeled edge feature vector −→𝑒 and the already selected
edge vectors 𝑒𝑇 ∈ 𝑇 . The intention is to choose dissimilar vectors compared to the current training
dataset. Summarizing, the different measures 𝑢𝑛𝑐 (−→𝑒 ), 𝑤 (−→𝑒 ) and 𝑎𝑣𝑔_𝑐𝑜𝑠 (−→𝑒 ) are averaged to a
final informativeness score being used to order the edge feature vectors. Using the order, we select
𝑖𝑡𝑒𝑟_𝑏𝑢𝑑𝑔𝑒𝑡 edge feature vectors in each iteration until the training data size achieves the labeling
budget.
LLM oracle: Instead of using a human-based oracle, using large language models removes the

manual effort of labeling the selected feature vectors. Consequently, the efficiency of generating
labeled training data is enhanced, as its availability is no longer dependent on human involvement.
The task of the LLM is to classify two records represented as JSON objects with the original given
properties if they represent the same entity or not. Therefore, we define for each requested record
pair the following prompt being sent using the LLM-specific API:
Classify record pairs represented as JSON objects as the same entity or not. Be aware that the content
of a record can slightly differ due to quality issues such as typos or missing values. Output: yes/No
Entity A: a
Entity B: b
We process the response by searching for the keywords “yes” or “no.” If the response contains

any other content, we label the pair as a non-match by default. Due to the compact output, we
can easily label the requested pairs and add them to the existing training data. The manually or
automatically labeled edge vectors are utilized to train a classification model M for classifying
edges as correct or not. In the following, we describe an iterative cluster repair method using the
modelM.

4.3 Iterative Cluster Resolution Step
The method resolves each cluster 𝑐 utilizing the generated classification model M. The resolution
step is shown in Algorithm 1. At first, we determine for each cluster 𝑐 the set of edges 𝐸𝑁𝑀 and 𝐸𝑀
classified as non-matches resp. as matches using the related edge feature vectors. Each record 𝑢 and
𝑣 of an edge (𝑢, 𝑣) ∈ 𝐸𝑁𝑀 represent a repaired cluster 𝑐𝑢 and 𝑐𝑣 of𝐶𝑟𝑒𝑝 because𝑢 and 𝑣 are classified
as different entities. We iteratively merge the remaining records into the existing clusters until they
are stable (lines 11–29). The process utilizes a support value 𝑠𝑢𝑝 (𝑟, 𝑐𝑟𝑒𝑝 ) indicating the strength of
the assignment of record 𝑟 and the cluster 𝑐𝑟𝑒𝑝 . The support is defined as the difference concerning
the number of predicted matches and non-matches between the record 𝑟 and records 𝑡 ∈ 𝑐𝑟𝑒𝑝 being
already added to cluster 𝑐𝑟𝑒𝑝 . The merging process checks each cluster 𝑐𝑟𝑒𝑝 ∈ 𝐶𝑟𝑒𝑝 by considering
the adjacent nodes 𝑟 of a record 𝑠 ∈ 𝑐𝑟𝑒𝑝 (line 17). The adjacent records 𝑟 are determined by the
adjacent edges 𝐸𝑠 of the record 𝑠 regarding the induced similarity graph of the cluster 𝑐 returned by
the function graph()(line 15). Suppose the adjacent record 𝑟 is not connected via an edge predicted
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ALGORITHM 1: Iterative Cluster Resolution Step
Input:
-M: classification model
- 𝑐: cluster
Output:
- Crep: set of repaired clusters

1 Crep, 𝐸𝑁𝑀 , 𝐸𝑀 ← ∅
2 for 𝑒 = (𝑢, 𝑣) ∈ 𝑒𝑑𝑔𝑒𝑠 (𝑐) do
3 if classify (M, feature (𝑒)) then
4 𝐸𝑀 ← 𝐸𝑀 ∪ {𝑒}
5 else
6 𝐸𝑁𝑀 ← 𝐸𝑁𝑀 ∪ {𝑒}
7 𝑐𝑢 = {𝑢}
8 𝑐𝑣 = {𝑣}
9 Crep ← Crep ∪ 𝑐𝑢 ∪ 𝑐𝑣

10 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑡𝑟𝑢𝑒

11 while 𝑐ℎ𝑎𝑛𝑔𝑒 do
12 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑓 𝑎𝑙𝑠𝑒

13 for 𝑐𝑟𝑒𝑝 ∈ Crep do
14 for 𝑠 ∈ 𝑐𝑟𝑒𝑝 do
15 𝐸𝑠 ← adjacentEdges (graph(𝑐), 𝑠)
16 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← ∅
17 for 𝑒𝑠 = (𝑟, 𝑠) ∈ 𝐸𝑠 do
18 if 𝑒𝑠 ∉ 𝐸𝑁𝑀 ∧ 𝑟 ∉ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 then
19 𝑐𝑟 ← cluster (𝑟,Crep)
20 if 𝑐𝑟 = 𝑁𝑜𝑛𝑒 then
21 𝑐𝑟𝑒𝑝 ← 𝑐𝑟𝑒𝑝 ∪ {𝑟 }
22 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑡𝑟𝑢𝑒

23 else
24 𝑠𝑢𝑝𝑐_𝑟 =support (𝑟, 𝑐𝑟 , 𝐸𝑀 , 𝐸𝑁𝑀 )
25 𝑠𝑢𝑝𝑐_𝑟𝑒𝑝 =support (𝑟, 𝑐𝑟𝑒𝑝 , 𝐸𝑀 , 𝐸𝑁𝑀 )
26 if 𝑠𝑢𝑝𝑐_𝑟𝑒𝑝 > 𝑠𝑢𝑝𝑐_𝑟 then
27 𝑐𝑟 ← 𝑐𝑟 \{𝑟 }
28 𝑐𝑟𝑒𝑝 ← 𝑐𝑟𝑒𝑝 ∪ {𝑟 }
29 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑡𝑟𝑢𝑒

30 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪ {𝑟 }

31 return Crep

as non-match, is not processed in the current iteration (line 18), and is not merged into another
cluster 𝑐𝑟 (line 20). In that case, we add the adjacent record 𝑟 to 𝑐𝑟𝑒𝑝 . Suppose the record 𝑟 is already
assigned to another cluster 𝑐𝑟 . In that case, we determine and compare the support values 𝑠𝑢𝑝𝑐_𝑟𝑒𝑝
and 𝑠𝑢𝑝𝑐_𝑟 using the induced graphs of 𝑐𝑟𝑒𝑝 and 𝑐𝑟 as well as the set of classified non-matches
𝐸𝑁𝑀 and matches 𝐸𝑀 (lines 24–26). We change the cluster assignment (lines 27/28), if the support
𝑠𝑢𝑝𝑐_𝑟𝑒𝑝 of the considered cluster 𝑐𝑟𝑒𝑝 is higher than the support 𝑠𝑢𝑝𝑐_𝑟 of the previous cluster 𝑐𝑟
for the record 𝑟 . The assignment could differ depending on the order in which the adjacent records
are processed. Therefore, we repeat this procedure for the new clusters until they do not change.
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Fig. 3. Example of the iterative cluster repair procedure showing 6 records of an initial cluster. The dashed
red line is an edge being classified as non-match.

Complexity: In the following, we briefly discuss the complexity of Algorithm 1 regarding a
cluster 𝑐 as input. The complexity depends on the number of edges 𝐸𝑐 in the cluster 𝑐 , the number
of edges classified as matches |𝐸𝑀 |, and as non-matches |𝐸𝑁𝑀 |. At the beginning, we partition
each edge 𝑒 ∈ 𝐸𝑐 into 𝐸𝑀 and 𝐸𝑁𝑀 resulting in a complexity 𝑂 ( |𝐸𝑐 |). The number of iterations
in the while loop is bounded by the number of changes regarding the records to a cluster. The
assignment can change due to higher support for a certain cluster compared to the support regarding
a previously assigned cluster 𝑐′. The support depends on the number of positive edges 𝐸𝑀 being
associated with a record. Consequently, the while loop terminates in the worst case, if the algorithm
has seen all edges in 𝐸𝑀 . In each iteration of the while loop, the algorithm considers the adjacent
records of each record of a cluster 𝑐 ∈ 𝐶𝑟𝑒𝑝 connected by an edge 𝑒 ∈ 𝐸𝑀 . Therefore, the total
number of verified adjacent records is bounded by the number of edges in 𝐸𝑀 . The complexity of
the while loop is given by𝑂 ( |𝐸𝑀 | · |𝐸𝑀 |) where the first factor represents the maximum number of
iterations where the assignments can change and the second factor the total number of verified
adjacent records (see lines 13–30). The complete complexity of Algorithm 1 is 𝑂 ( |𝐸𝑐 | + |𝐸𝑀 |2).
regarding a certain cluster 𝑐 .

Example: Figure 3 shows an example of the iterative cluster repair step. In this example, we have
a cluster with 6 records. The classification model classifies the edge (𝑟3, 𝑟5) ∈ 𝐸𝑁𝑀 as non-match.
Consequently, the records 𝑟3 and 𝑟5 represent two clusters 𝑐1 and 𝑐2. In the first iteration, the
approach considers the records 𝑟1 being adjacent to 𝑟3 ∈ 𝑐1 as well as 𝑟4 and 𝑟6 connected to
𝑟5 ∈ 𝑐2. Note, that 𝑟4 will be considered for both clusters 𝑐1 and 𝑐2. Depending on the processing
order of clusters, the records are merged into the clusters. Assuming 𝑐2 is the first cluster, 𝑟4 and
𝑟6 are added to it since both are adjacent to 𝑟5. After that, cluster 𝑐1 is considered where 𝑟1 and 𝑟4
are connected to 𝑟3 ∈ 𝑐1. Only 𝑟1 is assigned to the cluster 𝑐1 with a support of 1. The assignment
of 𝑟4 does not change because the support 𝑠𝑢𝑝 (𝑟4, 𝑐1) = 1 is equal to 𝑠𝑢𝑝 (𝑟4, 𝑐2) = 1. In the next
iteration of the while loop, the support of 𝑟1, 𝑟4, and 𝑟6 is the same. The record 𝑟2 is added to the
cluster 𝑐1 with 𝑠𝑢𝑝 (𝑟2, 𝑐1) = 1. Due to the added record 𝑟2 to cluster 𝑐1, the support 𝑠𝑢𝑝 (𝑟4, 𝑐1)
changes to 2 in the third iteration. Therefore, the record 𝑟4 is assigned to 𝑐1 and removed from 𝑐2.
In the next iteration, the assignment does not change so the approach terminates.

5 Evaluation
In this section, we evaluate our graph metric-based cluster repair method, beginning with the
experimental setup describing the datasets, the default parameter configuration, and the considered
metrics. We initially evaluate various graph metric combinations and compare them with the basic
feature combination used in previous work [27, 43, 44] in Section 5.2. In Section 5.3, we analyze the
impact of our modification to select informative links in the active learning step and the usage of
LLMs as an oracle in Section 5.4. After that, we compare our method using a perfect oracle with
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Table 2. Dataset Overview and Linking Configuration of
MusicBrainz and Dexter

Dataset Dexter MusicBrainz WDCC0 C50 C100

#Records 21K 20K 5.3K

#Matches 368.5K 38K 16K 16.25K 6.8K

existing approaches in Section 5.5. Finally, we verify the robustness regarding erroneous similarities
in Section 5.6.

5.1 Experimental Setup
5.1.1 Datasets. We use datasets from three domains: records about music albums (MusicBrainz),

consumer products of type camera (Dexter), and computer hardware(subset ofWDC). These datasets
are multi-source datasets and heterogeneous regarding their error characteristics. In contrast to
the MusicBrainz dataset being duplicate-free, the camera and WDC datasets are dirty and contain
intra-source duplicates.
MusicBrainz: The MusicBrainz dataset is a synthetically generated dataset from the MusicBrainz
(https://musicbrainz.org/) database. The dataset is corrupted by [22], consisting of five sources with
duplicates for 50% of the original records. Each data source is duplicate-free, but the records are
heterogeneous regarding the characteristics of attribute values, such as the number of missing
values, length of values, and ratio of errors.
Dexter: This dataset is derived from the camera dataset of the ACM SIGMOD 2020 Programming
Contest (http://www.inf.uniroma3.it/db/sigmod2020contest/index.html). The dataset consists of
23 sources with ≈21,000 records and intra-source duplicates. Each data source consists of source-
specific attributes. In addition to the original dataset, Lerm et al. [27] also derive various datasets of
different duplicate ratios. Therefore, they deduplicated a specified set of data sources and selected
a certain ratio of records to construct clean data sources. The remaining data sources were used
to generate the dirty data sources. We consider the datasets 𝐶0,𝐶50, and 𝐶100 in our evaluation.
For instance, the dataset 𝐶50 consists of ≈ 50% records from deduplicated sources according to the
total number of records of the constructed dataset.
WDC:We utilize the WDC Training Corpus for Large-scale Product Matching, specifically a subset
derived from the original dataset used in the Almser study . This subset includes data from four
sources focused on hard drives. For our initial links, we employ the pre-computed similarity vectors
available online.1 Our analysis considers all records of the transitive closures derived from the true
matches in the ground truth. By leveraging these transitive closures, we can identify all record pair
combinations that are not present in the ground truth as matches.
We utilize the WDC Training Corpus for Large-scale Product Matching, specifically a subset

derived from the original dataset used in the Almser study . This subset includes data from four
sources focused on hard drives. For our initial links, we employ the pre-computed similarity vectors
available online. Our analysis considers all records of the transitive closures derived from the true
matches in the ground truth. By leveraging these transitive closures, we can identify all record pair
combinations that are not present in the ground truth as matches.

5.1.2 Metrics&Parameters. We compute the F1-score, defined as the harmonic mean of
precision and recall, to measure the effectiveness. We measure the efficiency utilizing the

1http://data.dws.informatik.uni-mannheim.de/benchmarkmatchingtasks/almser_gen_data/
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Table 3. Evaluation Aspects

Characteristic Comparison Default parameters

Feature Generation (Section 5.2) different graph metric
feature combinations

perfect oracle, bootstrap AL

Active Learning (Section 5.3) bootstrap vs extension
(bootstrap ext)

perfect oracle, feature combi-
nation 0/1/2/3/4/5/6/7/8/9

LLM-based Oracle (Section 5.4) different LLMs feature combination
0/1/2/3/4/5/6/7/8/9, best
AL for each dataset

Baseline Comparison (Section 5.5) various cluster repair
methods

perfect oracle, feature com-
bination 0/1/2/3/4/5/6/7/8/9,
best AL for each dataset

Robustness (Section 5.6) different noise ratios perfect oracle, feature com-
bination 0/1/2/3/4/5/6/7/8/9,
best AL for each dataset

runtime in seconds. Each experiment is repeated three times where we compute the Micro
F1-score.
For the MusicBrainz and Dexter datasets, we utilized precomputed similarity graphs that were

generated using various thresholds, as described in prior studies [27, 43–45]. These similarity
graphs were computed using the FAMER framework [44] aggregating multiple similarity functions
to produce similarity scores. Specifically, different thresholds were applied to classify the similarity
scores and generate distinct similarity graphs. The thresholds were selected to maximize the F1-
score of the resulting graphs. An overview of the datasets is provided in Table 2, while a detailed
description of the linkage configurations can be found in Appendix A.

For the WDC, we utilize the provided feature vectors that were previously employed in research
on Almser [40]. These vectors incorporate various string similarity measures for textual data
and normalized absolute differences for numerical data. To construct a similarity graph, we train
a random forest model using these computed similarity features. To enhance the training data
selection, we apply the active learning procedure from Mozafari et al. [31], with a budget of
1000, 𝑘 = 50, and 𝑖𝑡𝑒𝑟_𝑏𝑢𝑑𝑔𝑒𝑡 = 20. For generating weights in the similarity graph 𝑆𝐺 , we use
the prediction probabilities of matches. Therefore, we calibrate the random forest model using
a 3-fold cross-validation. Since no threshold is applied, we represent it as -1 in the figures for
clarity.

In pre-experiments, we determined the number of labels selected for each iteration 𝑖𝑡𝑒𝑟_𝑏𝑢𝑑𝑔𝑒𝑡 =
20 and the number of models 𝑘 = 100 for determining the uncertainty in the active learning step. As
a classification model, we used the random forest implementation from scikit-learn 1.1.2. For
computing the graph metrics we use networkx 2.8.2. As a default setting, we assume a perfect
oracle in the active learning step. Table 3 shows an overview of the evaluation aspects regarding
the compared components and the default parameters.

5.2 Graph Metric Analysis
In the first experiment, we evaluate various graph metric combinations to determine edge feature
vectors for generating a classification model M. Overall, we test 8 combinations ranked regarding
the F1-score and calculate the average rank over all datasets, all thresholds, and budgets. Figure 4
shows the F1-score for the top 2-ranked combinations, the largest combination, and the basic
combination averaged over the labeling budget.
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Fig. 4. Comparison of different graph metric combinations utilized as features to determine a classification
model. 0:PageRank, 1:Closeness Centrality,2:Betweenness Centrality, 3:Cluster Coefficient, 4:Normal link
ratio, 5:Strong link ratio, 6:Similarity, 7:Bridge, 8:Betweenness Centrality, 9:Complete ratio, 10:weighted
degree.

We observe that the additional features improve the quality of resulting clusters compared to
only using the similarity and link categories (features=4/5/6). The repair method generates similar
results considering the top 2-ranked features and the largest one. Moreover, the combinations lead
to stable results regarding different labeling budgets for the datasets C50 and C100 where we assume
that the enriched features result in models with a high discriminative power even for small training
datasets. For the WDC dataset, the different feature combinations achieve similar F1-score results.
We explain that due to the small clusters and the small number of edges per cluster. Therefore,
the additional network information does not lead to a significant improvement compared to the
smallest feature combination. Moreover, we assume that the determined prediction probabilities
are more accurate than the aggregated similarities. Therefore, the similarity and the link category
features are sufficient in this case.

5.3 Cluster-Specific Training Data Selection
We compare the cluster-specific active learningmethod (bootstrap ext) with the original approach by
Mozafari et al. [31] (bootstrap) shown in Figure 5. Both selection strategies improve the initial quality
considering the given similarity graph (dashed line) for both datasets and similarity thresholds
using a labeling budget above 1500. The results also show robustness using different labeling
budgets since the F1-score only differs by ≈0.017 (bootstrap) and ≈0.016 (bootstrap ext). However,
we observe a negative effect for the dirty dataset C0 and high thresholds such as 0.7. The approach
cannot improve the linkage results for a small labeling budget. We assume that the filtering effect
using a high threshold impedes the selection of informative pairs.
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Fig. 5. Results considering the basic selection strategy (bootstrap) and the cluster-specific selection (bootstrap
ext) in the active learning step. The green line represents the quality of the input similarity graph.

In terms of the effectiveness regarding data quality issues, the cluster-specific selection strategy
slightly improves the results by up to ≈0.018 compared to the original active learning method for
repairing clusters of dirty datasets such as C0. However, the baseline achieves better results for
duplicate-free datasets such as MusicBrainz and C100 than the extended selection. Concerning
the WDC dataset, both active learning procedures result in similar quality. We assume that the
clusters show similar sizes so that the difference between both selection strategies is marginal. We
conclude that the cluster characteristics are more relevant for selecting samples where the clusters
are larger due to more links based on the intra-source record comparisons. In contrast to the dirty
data sources, we observe that the baseline performs better for clean data sources indicating that
the cluster-specific characteristics are less relevant in these scenarios and negatively impact the
informativeness score of an edge. The labeling budget has a marginal positive influence on the
results, indicating that our method is capable of generating high-quality clusters even with a limited
budget.

5.4 LLMs for Active Learning
For comparison, the usage of LLMs as oracles in the active learning step, we initially considered
a labeling budget of 500 and the Dexter C0 dataset to select an appropriate model. We compare
our method using the perfect oracle and the following LLM models: gpt-3.5-turbo, gpt4,
claude-3-opus with the default configuration. Table 4 shows the F1-score results and the
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Table 4. F1-Score Results of the Active Learning Step Using a Perfect Oracle
Compared with Different Large Language Models gpt-3.5-turbo, gpt-4,
and claude-3-opus as an Oracle on Dexter-C0 with a Labeling Budget of

500 as well as theQuality of the Input Similarity Graph

t Input Perfect gpt-3.5-turbo gpt-4 claude-3-opus

0.3 0.8 0.88 0.82 (0.65) 0.86 (0.72) 0.87 (0.68)
0.5 0.85 0.88 0.88(0.65) 0.83 (0.67) 0.82 (0.64)
0.7 0.89 0.835 0.82(0.74) 0.83 (0.87) 0.83 (0.87)
The accuracy of the oracle is shown in brackets.

accuracy of the requested record pairs on the Dexter dataset C0 for a labeling budget of 500.
For a heterogeneous set of record pairs existing in impure similarity graphs, the LLMs-based
approaches can generate models that improve the input similarity graph, although the accuracy of
the LLM is at most 0.67 for thresholds of 0.3 and 0.5. Similar to the previous analysis, the presented
approach has problems with clean similarity graphs generated by higher thresholds and a small
labeling budget, as the distinction between matches and non-matches based on a small training
dataset and only small differences is very challenging. Therefore, the model with the perfect
ground truth also decreases the quality of the linkage result and the LLM-based methods do not
lead to any improvement although the accuracy is above 0.8. To summarize, using the various
LLM models as an oracle can improve the initial clusters. However, due to the low accuracy of
the labels, our cluster repair model achieves smaller F1 scores than a perfect oracle. Therefore,
methods for denoising class labels [18, 38] are promising directions for future work. All models
perform similarly with regard to the achieved quality. Interestingly, although the accuracy of
gpt-3.5-turbo is lower than that of gpt-4, the F1-score is comparable or higher (t=0.5). We
explain that gpt-3.5-turbo labels the more relevant pairs regarding the model correctly than the
gpt-4 model.

In the following, we will utilize the gpt-3.5-turbo model concerning a labeling budget of 1000,
1500, and 2000. We test the large language model-based method on all datasets. We generate for each
dataset a fine-tuned model using the first 20 record pairs by our active learning approach concerning
the threshold 0.35 (MusicBrainz), 0.3 (Dexter-C0/C50/C100), and the record pairs of theWDC dataset.
The comparison between the perfect oracle and the LLM-based oracle without and with fine tuning
is depicted in Figure 6. The fine-tuned method achieves comparable results according to the perfect
oracle for the homogeneous dataset MusicBrainz, and the small WDC dataset. In contrast to the
MusicBrainz and WDC dataset, the results of the Dexter datasets show the challenges of using
LLMs as an oracle. Due to the high heterogeneity, the F1-score differs from 0.021 to 0.078 for the
basic LLM model and from 0.011 up to 0.063 for C0. We also observe the effect that the quality does
not increase for larger labeling budgets, which is what we would expect. We explain that due to the
low accuracy between 0.56 and 0.73 of the LLM-based oracles. Moreover, we assume that the noisy
training data influences the selection of informative pairs negatively so that the determined training
data consists of noisy labeled data and potentially non-informative pairs for larger budgets. In terms
of the Dexter datasets, we also observe that only the fine-tuned models for the threshold 0.3 can
achieve better results than the base models. We explain this due to the high resulting heterogeneity
within the similarity graphs so that in this case fine-tuning should be performed for each similarity
graph generated by a certain threshold separately. Summarizing, the LLM-based oracle leads to
comparable results for certain cases. The main issue of the determined labels is the small accuracy.
Therefore, a promising solution for future work might be the application of denoising methods such
as [38].
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Fig. 6. Comparison between the perfect oracle, gpt-3.5-turbo and gpt-3.5-turbo-fineTuned with 20
samples labeled by the ground truth.

5.5 Comparison with Existing Repair Methods
We compare our method using a perfect oracle with the CLIP method [44], two clustering-based
repair approaches based on hierarchical agglomerative clustering with the different clustering
strategies single (MSCD S-Link), complete (MSCD C-Link), and average (MSCD A-Link) [43], affinity
propagation (MSCD-AP) [27] as well as the Louvain-based error degree method (err-louvain) [41]
described in Section 3. The original method [41] considers unweighted graphs. To guarantee a fair
comparison, we also evaluate the method utilizing the similarities named err-louvain-sim.
Parameters: CLIP is a parameter-free approach since it is based on a greedy algorithm. The

affinity propagation (MSCD-AP) [27] consists of parameters to guarantee convergence. The au-
thors integrated a parameter adaptation step that is applied if the method does not find a solution.
The agglomerative clustering approaches [43] use a similarity threshold to control the merging
process of clusters. The authors set the merging threshold in their evaluation to the minimum
threshold to generate the input similarity graph. Detecting error-prone links requires the spec-
ification of a 𝑒𝑟𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 where an edge is classified as incorrect if the intra or inter-error
degree is above the specified threshold. We evaluated various error thresholds between 0.1 and 0.5
where 𝑒𝑟𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.2 and 𝑒𝑟𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.3 for err-louvain resp. err-louvain-sim achieved
qualitative results in pre-experiments overall.
Depending on the datasets’ dirtiness and the clustering algorithm’s configuration, the existing

methods improve the quality of the initial similarity graphs as shown in Figure 7. However, the
resulting quality of a certain method highly differs regarding the different duplicate ratios and
thresholds considering the Dexter dataset. For instance, the F1-score achieved by CLIP ranges from
0.1(C0) to 0.9(C100). The hierarchical clustering methods (MSCD S/C/A-Link) achieve comparable
results for the WDC dataset. However, the results of the hierarchical clustering methods designed
for mixed datasets differ between 0.81(C0) and 0.9(C100) for MSCD A-LINK concerning all datasets.
Similarly, the graph metric-based method utilizing the Louvain algorithm results in a moderate
variation from 0.83(C100) to 0.89(C0) using the record similarity for the Dexter dataset. However,
for the MusicBrainz and the WDC dataset, the err-lovain-sim method performs poorly achieving
at most an F1-score of 0.55 (MusicBrainz) and below 0.18 for WDC. In contrast, the err-louvain
method without using the similarities performs poorly for the Dexter dataset where the F1-score
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Fig. 7. F1-score results of our proposed approach (GraphCR) as compared with the other repair methods
CLIP [44], affinity propagation clustering (MSCD-AP) [27], agglomerative hierarchical clustering methods [43]
with the different variations regarding the merging step single (MSCD S-LINK), complete (MSCD C-LINK)
and average (MSCD A-LINK) as well as the louvain-based method [41] with (err-louvain-sim) and without
(err-louvain) the usage of similarities.

differs from 0.73(C100) to 0.89(C0). GraphCR outperforms the existing approaches concerning
the used thresholds and datasets for labeling budgets ≥ 1500 by up to 0.8(CLIP), 0.17(err-louvain),
0.41(err-louvain-sim), 0.1(MSCD-AP/MSCDA-Link), 0.09(MSCDC-Link), and 0.2(MSCD S-link). The
F1-score differences regarding the dirtiness of datasets are tiny compared to the SOTA approaches.
For instance, the F1-score difference is smaller than 0.03 for GraphCR concerning C0 and C100
using a labeling budget of 1500 overall thresholds.
To properly compare the performance of these approaches, we rely on the Bayesian analysis

proposed in [2]. To determine significant differences between the two approaches, we rely on a
Bayesian signed rank test [3]. Using Bayesian statistics gives the advantage over a frequentist
hypothesis testing approach that can not only reject but also accept a null hypothesis. We can
also define a region of practical equivalence (ROPE) where approaches perform equally well. The
Autorank [21] package provides these methods and can automatically set the ROPE in relation to
effect size. The result of our analysis then gives us a probability that one approach is better (or
worse) than another. We provide a verdict if one of these probabilities is ≥ 95%, or else we see the
result as inconclusive.
The result of this analysis is a decision matrix in Figure 8. We compared the F1-score of each

approach across all dataset/threshold combinations. For GraphCR, we also compare different
labeling budgets. It is evident that GraphCR, with a budget of 2000, is significantly better than all
other approaches. Even with a budget of 1500, it is better than all approaches that are not GraphCR.

ACM J. Data Inform. Quality, Vol. 17, No. 2, Article 7. Publication date: June 2025.



Graph Metrics-driven Record Cluster Repair meets LLM-based active learning 7:19

Fig. 8. Decision matrix comparing cluster repair approaches using Bayesian signed rank tests. Each cell shows
the decision when comparing the row approach to the column approach.

Fig. 9. Results with various error ratios of the similarities using the basic and extended selection strategy.

5.6 Effect of Noisy Similarities
Additionally, of various threshold settings resulting in different similarity graphs, we also evaluate
the impact of erroneous similarities. Reasons for inappropriate similarities can be caused by
inappropriate similarity functions or improperly configured ER systems. Within this section, we
aim to assess the robustness of our proposed method in the presence of noisy similarities. In the
following experiment, we randomly select a specified ratio of edges and set the similarity to a
random number between 0 and 1. We assume that the noisy similarity edges negatively impact our
classification model and, therefore, the result of the cluster repair.
Figure 9 shows the results for the MusicBrainz dataset applying the bootstrapping selection

(bootstrap) and the Dexter dataset C0 using the extended strategy (bootstrap ext). Using the original
similarity graph without any noise (error ratio = 0) for the MusicBrainz dataset results in a small
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Table 5. Runtime Results (𝑠) of the Complete Workflow 𝑡𝑡𝑜𝑡𝑎𝑙 , the Feature Generation
Step 𝑡𝑓 𝑒𝑎𝑡 as well as the Resolving Algorithm 𝑡𝑟𝑒𝑠 Considering the Different Datasets for

the Similarity Graphs Based on Various Thresholds

dataset threshold |𝐶 | |𝑉 | |𝐸 | 𝑡𝑓 𝑒𝑎𝑡 𝑡𝑟𝑒𝑠 𝑡𝑡𝑜𝑡𝑎𝑙

C0 0.30 1729 11.41 180.71 79.13 2.16 572.23
C0 0.50 1850 10.64 162.06 79.86 2.00 558.23
C0 0.70 2110 9.15 132.38 67.57 1.62 479.36

C50 0.30 994 7.39 43.62 4.23 0.44 138.95
C50 0.50 1046 6.93 38.12 3.88 0.56 127.50
C50 0.70 1181 5.86 27.83 3.16 0.70 96.18

C100 0.30 962 6.03 21.44 3.37 0.70 151.16
C100 0.50 1004 5.67 18.15 3.30 0.67 148.30
C100 0.70 1119 4.77 12.59 2.21 0.80 111.25

MB 0.35 3657 3.78 4.51 11.10 1.56 74.34
MB 0.40 3984 3.20 3.54 5.81 2.13 88.95
MB 0.45 4022 2.90 2.99 2.89 1.19 48.30

WDC -1 532 2.9 2.42 0.085 0.2 17.96
We use a labeling budget of 2000. We also present the numbers of clusters |𝐶 | , average numbers of
vertices and edges per cluster |𝑉 | resp. |𝐸 | .

quality difference of at most 0.007. As expected, the increase in the error ratio leads to a decrease in
quality. Especially, an error ratio of 0.5 leads to F1 score differences up to 10%(MusicBrainz) and
6%(Dexter-C0). The threshold and the budget influence the robustness of the results. An increasing
threshold and labeling budget positively influence the robustness. A higher threshold reduces the
number of noisy similarities already included in the original graph compared to a smaller threshold.
Moreover, the increasing budget leads to a reduced impact of noisy links. However, the increasing
budget does not lead to robust results for the MusicBrainz dataset regarding a high error ratio of 0.5
and a small threshold of 0.35. The results of the WDC dataset show that qualitative similarities lead
to robust results even for a high error ratio. Summarizing, we observe that outliers of similarity
highly influence the quality of the result from the cluster repair process. The influence is larger
than the impact of the threshold where the results are robust as shown in previous experiments.
Therefore, selecting appropriate similarity functions or pre-trained language models is essential to
compute meaningful similarities. When comparing the effects of the threshold and the labeling
budget, it is evident that the threshold has a greater influence due to its role in filtering out erroneous
similarities within the original graph.

5.7 Runtime Analysis
To analyze our approach’s effectiveness, we consider the runtimes using the different datasets with
regard to various similarity graphs depending on the threshold. We ran our experiments on an
8-core AMD Ryzen 7 Pro 7840U 3.3 GHz CPU and 32GB of RAM. Table 5 shows statistics about
the initial clusters of 𝐶 , the total runtime as well as the runtimes for the feature generation and
the resolution step (see Algorithm 1). As expected, the runtime scales with the size of the initial
similarity graph, the higher the number of edges is the higher the runtime is. The main components
of the runtime are the active learning and the model generation step. Especially, the active learning
step scales with the number of edges, the label budget, and the number of models 𝑘 to determine
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the 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (see Equation (3)). The cluster resolution algorithm has only a small impact on the
total runtime.
In our analysis, we observed that our method exhibits slower performance than baseline un-

supervised algorithms. This is primarily due to the inclusion of an additional active learning and
model generation step in our approach. The runtimes for the unsupervised methods across the
various datasets are as follows: CLIP completes its processing in under 50 seconds, MSCD-AP takes
less than 295 seconds, and MSCD-S/C/A operates in under 5 seconds. The err-louvain algorithm
achieves a runtime of less than 1.3 seconds.

5.8 Summary
Our results demonstrate that the graph-based cluster repair approach significantly enhances the
quality of initial clusters with a moderate labeling effort. This method surpasses existing cluster
repair techniques while requiring less configuration effort than traditional approaches. A key
factor in our success is the extensive utilization of graph metric features, which provide superior
performance compared to methods relying solely on similarity and link category-based features,
as detailed in Section 5.2. Furthermore, our extended active learning method improves efficacy
on noisy datasets compared to the standard bootstrap-based selection strategy. When employing
LLM-based oracles, we observe comparable results, contingent upon the fine-tuning of the LLM
model. However, it is important to note that our method yields moderate performance when the
similarities within the data are predominantly noise.

6 Conclusion
Cluster repair methods play an integral role in multi-source ER tasks being relevant for data
integration. The main goal of ER is identifying records representing the same entity. The majority
of ER systems focus on pairwise linkage. However, due to the transitive closure of equality links
and incorrect edges, the result potentially consists of clusters with records representing different
entities. Therefore, cluster repair methods are required to identify incorrectly assigned records
utilizing the generated similarity graph. The majority of repair methods intensively rely on the
assumption of duplicate-free data sources. Current methods try to overcome this issue by modifying
general clustering approaches. However, the results vary depending on the configuration of the
method and the degree of dirtiness.

Therefore, we proposed a novel cluster repair method relying on graph metric features, enabling
a classification model’s training. The computed model is used to modify the initial clusters by
iteratively removing edges being classified as non-match. Due to the lack of available training data,
we integrate and extend an active learning method by considering cluster-specific characteristics to
guarantee that the selected training samples represent the complete dataset. Moreover, we integrate
the usage of large language models as an oracle to decrease the manual effort. We evaluated our
proposed approach using two datasets. The results showed that our method outperforms existing
approaches using a moderate labeling budget. We also showed the feasibility of using large language
models as oracles.

In future work, we plan to consider graph-structured data sources such as knowledge graphs and
utilize the semantic graph structure in combination with the similarity graph-based metrics. Due to
the manual labeling process in the active learning step, we will evaluate graph-based methods [40]
to reduce the number of selected samples. Moreover, we will also consider cluster-wise active
learning strategies where a whole cluster is labeled regarding the correct and incorrect record.
This allows the application of graph augmentation, such as the addition of correct links regarding
one cluster. In the direction of using LLMs as oracles, we will consider combination strategies of
multiple models and look at methods for denoising the predictions of LLMs.
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Availability
Reference code and datasets are available from our repository at https://github.com/
vicolinho/graphCR and https://www.dropbox.com/scl/fo/xtawtr2qbeckt0esu5v0h/h?rlkey=
6lkz7hwsyhnqgyhg9quh7pp96&dl=0.
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Appendix
A Linkage Configuration
To compute the similarity graph, we utilize the following configurations shown in Table 6.

Table 6. Overview of Linkage Configurations of Dexter, MusicBrainz, and WDC

Dataset Dexter MusicBrainz WDC

Attributes Heterog. key-value
pairs

Artist, title, album,
year, length, language,
number

title, description,
brand, Capacity,
Manufacturer, Spindle
Speed

Blocking Key manufacturer name,
model number

preLen1(album) -

Similarity Function Trigram(model
names,product
code, sensor type),
Euclid(opt./digital
zoom,camera
dim.,price,weight,
resolution

Trigram(title) Levenshtein, Jaccard,
Jaccard with inner
Levenshtein, token
overlap, token
containment on string
attributes, normalized
absolute difference on
numerical attributes
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