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Abstract. Human mobility data is valuable for many applications, but
it can pose a significant privacy risk for individuals. A person’s daily
movements are closely linked to their sociodemographic characteristics
and their points of interest (POI), which can reveal sensitive informa-
tion about them, such as their religion or educational background. Re-
searching and mitigating these risks requires realistic, semantically rich
data, which is often unavailable or lacks semantic features. We introduce
ASTRA, an agenda-based approach for generating synthetic mobility
data with semantic attributes. Using real travel surveys and census data,
ASTRA simulates artificial agents with sociodemographic features that
follow daily activity agendas. It maps activities to semantically similar
POIs, and projects them onto real-world locations within a user-defined
geographical region. To model movement, ASTRA extends the explo-
ration and preferential return (EPR) model with spatio-temporal and
semantic constraints as imposed by an agenda. Our evaluation against
real check-in data and the EPR baseline model shows that ASTRA can
generate realistic mobility data at scale, preserving important character-
istics of human movement.

Keywords: Synthetic Data · Human Mobility · Points of Interest ·
Agenda-Based Modeling

1 Introduction

Driven by the extensive use of location-based services on mobile devices, loca-
tion data of app users is becoming increasingly relevant. Such data can give
valuable insights into human mobility patterns and enable a range of applica-
tions, such as urban planning or personal recommendations [26]. However, the
collection of their location data bears potentially serious privacy risks for an
individual [23]. Human mobility is highly correlated with an individual’s so-
ciodemographic characteristics and their agenda, which is the schedule of their
daily activities [14,22]. These attributes determine a person’s points of interest
⋆ Corresponding author. Email: mschneider@informatik.uni-leipzig.de



(POI) which are the places they stay at or visit, for example their home, work,
or places of leisure activities. POIs are especially privacy-critical because they
can reveal sensitive information about a person, such as their educational back-
ground, age or gender [30]. To understand the involved privacy risk and mitigate
such risk with location privacy-preserving methods, researchers require suitable
data to study questions such as: Does an individual’s geographical trajectory re-
veal their demographic attributes or even allow to re-identify them? Is there an
increased privacy risk for certain demographic groups?

When data is collected for research purposes, it is usually limited to small
regions or certain groups of people, such as students, and can therefore be bi-
ased [2,17,27]. A solution to the lack of available data is to generate synthetic
mobility data [13]. However, existing methods usually do not include semantic
features, such as the location and label of a POI or the sociodemographic details
of a person. In addition, real and synthetic mobility data is often modified to
protect private user attributes, making such data unsuitable for privacy research.
To be useful for privacy research, synthetic human mobility data needs to ful-
fill certain requirements: The data needs to be realistic to reflect actual human
movement behavior. It needs to be representative for a society, for example a city
population, in order to avoid bias and allow for generalizable and fair analyses.
To understand privacy implications, it needs to be explainable with regard to the
privacy-sensitive factors that influence mobility, such as the sociodemographic
attributes of a person and the purpose of their movement as represented by their
POIs. Finally, to understand privacy concerns in different geographical contexts,
the synthesis of mobility data must be flexible with respect to the geographical
simulation region.

Existing approaches to synthesizing human mobility data generally do not
meet all of the above criteria, and in particular lack explainability [13]. To fill
this gap, we present ASTRA, our approach to generate Agenda-based Semantic
TRAjectories. Agenda-based modeling is based on the assumption that a per-
son’s trajectory is not random but highly influenced by the activities they pursue
and their social characteristics [12,29]. These factors determine which POIs a
person visits, while travel can be seen as a by-product of these visits. To model
the different sociodemographic groups in a society, ASTRA samples a popu-
lation of artificial mobile agents with certain sociodemographic features and a
daily agenda from a data set of real travel diaries. We define an agenda to be
a sequence of activities that can be divided into alternating segments of con-
secutive travel activities or non-travel activities. A non-travel segment refers to
an agent’s POI and all of its activities are assumed to be carried out at the
same location. For example, a non-travel segment with the activities sleeping,
eating, and reading can be linked to the label of a POI where these activities can
be executed, such as an apartment, hotel, or tent. Travel segments connect two
non-travel segments and indicate the main mode of transportation (like walking
or driving) that the agent uses to move between the respective locations.

ASTRA uses an embedding approach [21] to map the activities of non-travel
segments to semantically similar POI labels. The segments are then projected
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Fig. 1. An agent’s agenda is mapped by ASTRA to a sequence of POI labels using a
semantic similarity score. We use Cosine similarity, ranging from –1 (low similarity) to
1 (high similarity). The POI label sequence is further processed into a POI trajectory
by selecting the GPS coordinates of actual POIs on a geographical map.

to the GPS coordinates of actual POIs with the respective label on a real map,
creating a POI trajectory. To select a POI, ASTRA uses an extension of the
exploration and preferential return model (EPR) [24] that takes into account
spatio-temporal travel constraints and individual and collective semantic con-
straints, imposed by the agent’s agenda and the map environment. Fig. 1 illus-
trates the mapping from an agent’s agenda to a POI trajectory. The example
highlights how certain POIs can potentially disclose private attributes, such as
the educational background. Note that while the aim of ASTRA is to synthesize
realistic trajectory data to allow researchers to study privacy, its intention is not
to reconstruct an actual person’s trajectory or to re-identify them.

Our contributions are as follows: (1) We extend the EPR model [24] by
three spatio-temporal and semantic constraints to reflect that human mobility is
driven by people’s daily activities. (2) We present ASTRA, a new approach for
synthesizing human mobility data that includes not only GPS locations, but also
semantic features, such as the labels of POIs and the sociodemographic features
of the data producers. The POI trajectories generated with ASTRA are realistic,
representative, explainable, and flexible. (3) We evaluate ASTRA against a real
data set of POI trajectories and against the baseline EPR model. Our results
show that ASTRA can generate mobility data that is realistic with respect to
spatial, temporal, and semantic measures of mobility.

2 Background and Related Work

Traditional mobility models focus on reproducing spatial and temporal aspects of
human mobility. Many approaches create synthetic trajectories by sampling cer-



tain features of a trajectory, such as start and end locations, speed, or trip length,
from distributions that are extracted from real mobility data sets [11,15,18].
Agenda-based models in turn rely on travel survey data to extract semantic mo-
bility patterns and demographics, assigning them to artificial agents that move
in a predefined geographical area in a rule-based manner [1,25,29]. Transitions
between consecutive trajectory points are often sampled based on Markov mod-
els [3,20] or random walk models [6,7].

To overcome the limitations in existing random walk methods to not suffi-
ciently reproduce certain aspects of human mobility, the exploration and pref-
erential return model (EPR) [24] introduced two fundamental mechanisms to
describe human mobility. The first, exploration, describes that individuals visit
new locations during their day but the likelihood to do so decreases over time.
The second mechanism, preferential return, reflects the observation that individ-
uals are more likely to return to previously visited locations where the likelihood
to choose a location is proportional to its visitation frequency.

Several extensions have been proposed to account for inaccuracies in EPR
modeling. Empirical observations indicate that the likelihood to choose a location
as a return does not only depend on its visitation frequency. Instead, individuals
tend to return to recently visited locations, even if these have not been visited
frequently. The concept of recency [4] thus introduces a rank-based approach that
considers for each potential return location a frequency rank and a recency rank
that are considered with a certain likelihood when choosing a return location.

The original EPR model also does not account for the observation that hu-
man mobility is influenced not only by individual motivations but by collective
behavior, without which some mobility metrics cannot be properly modeled.
The density-EPR [19] model incorporates such collective forces during the ex-
ploration phase by introducing the gravity model. Instead of following an equal
distribution, a destination location is selected using a gravity score. This score
is calculated based on the relevance of start and destination locations and their
geographical distance from each other. The relevance of a location can, for ex-
ample, be measured by its population density or another measure of popularity.

The density-EPR approach however ignores the semantic relevance of a lo-
cation in the context of a typical activity schedule of a person with certain so-
ciodemographic characteristics. Therefore, ASTRA incorporates such knowledge
by combining density-EPR with an agenda-based modeling approach.

3 Agenda-Based Semantic Trajectory Generation

We now describe our approach for generating agenda-based semantic trajectories,
ASTRA. Our goal is to generate realistic and representative POI trajectories
for a population of artificial agents in an arbitrary simulation region. A POI
trajectory consists of the GPS locations and labels of the POIs that an agent
visits throughout a day. A key aspect of ASTRA is that it associates agents and
their POI trajectories with corresponding sociodemographic features. We first
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Fig. 2. The data processing pipeline of ASTRA

give an overview of ASTRA before we discuss its individual steps in the following
subsections.

Fig. 2 outlines the data flow in ASTRA. (1) We use daily travel diaries from
a travel survey data set, which includes sociodemographic attributes. (2) We
then define the geographical simulation region, which we partition with a spatial
tessellation into cells to reduce complexity and obtain census and POI data
for each cell. (3) We create a user-defined population of artificial agents and
assign each agent a starting cell, age and gender, proportionally to the actual
population distribution in the cell. Each agent is randomly assigned a real travel
diary and sociodemographic attributes from a person with matching age and
gender. Diaries are preprocessed into agendas consisting of travel segments and
non-travel segments. (4) ASTRA maps non-travel segments to cells according to
the labels of their available POIs, while taking into account the spatio-temporal
travel restrictions of travel segments. (5) Each segment is then assigned a precise
POI within its cell to create a POI trajectory. Fig. 3 shows how a travel diary
is translated into a POI trajectory with ASTRA.

3.1 Semantic Extension of EPR

The original EPR model [24] and its extensions do not capture the semantic
context of movement. To make synthetic trajectory data more explainable in
this regard, we propose an agenda-based semantic extension of density-EPR [19].
This means that we take into account both the spatio-temporal constraints of
an agenda’s travel segments, and the semantic constraints as imposed by an
agenda’s non-travel segments and the environment, in which the agent moves.

Spatio-temporal Travel Constraints: In density-EPR, the target loca-
tion of exploration is chosen based on the gravity model (see Sect. 2). This
allows an agent to pick any destination from a set of candidate locations with
a certain probability. This approach, however, is agnostic of the actual travel
constraints given by an agenda. In ASTRA, we restrict an agent’s movement in
the exploration phase to those locations that are reachable in the travel time of
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Fig. 3. Example of how a travel diary is converted by ASTRA into a POI trajectory

the current travel segment considering the specified travel mode. A relaxation of
this constraint is allowed if there are no locations reachable that the agent has
not yet visited. Note that in the return mode these constraints are not imposed
and the agent can pick any of their previously visited locations.

Individual Semantic Constraints: To model the semantic dimension of
mobility, we incorporate an agent’s daily activities into density-EPR. To do so,
we map each of the agenda’s non-travel segments to a suitable POI label and
restrict the agent’s movement to locations that have this label. To find a suitable
mapping, potential POI label candidates and the agenda segment’s activities are
embedded based on a textual description using a sentence transformer approach
(SBERT) [21] and compared with a semantic similarity score Ssem.

Collective Semantic Constraints: The gravity score Sgrv in density-EPR
uses the relevance of a location to describe the influence of a collective force on
an agent’s movement. We measure the relevance of a cell in the tessellation by its
population count, where we additionally consider the semantic relevance of a cell
by introducing a POI label frequency score Sfrq. This score aims to favour POIs
that are not geographically isolated with regard to their label. For example, if
an agent wants to visit a POI with the label restaurant, the likelihood to pick a
cell that lies in a city’s food district where many restaurants are located should
be higher than the likelihood to pick a cell that contains only one restaurant.

Scoring of Locations: While the spatio-temporal constraints decide which
locations are allowed to be selected by an agent, the final choice of a location
is done in proportion to a weighted combination S = αSsem + βSfrq + γSgrv,
where α+ β + γ = 1.

3.2 Data Sources

We now describe the input data required for ASTRA, consisting of travel survey
data, census data, and map data. The data sets discussed below are examples
that can be replaced by other data sets of the same type.

Travel Survey Data: The basis of ASTRA are mobility diaries of real
persons together with a set of their demographic features. Such data can be



obtained, for example, from travel survey data sets. In our work we use the
Multinational Time Use Study (MTUS) data set [8,9], which is collected at
random households in over 20 countries. For each survey respondent, this data
set contains sociodemographic features (such as age, gender, ethnicity, or citizen
status), their educational and employment background (including employment
status, occupation, education level, and income), and details about their social
life (like marital status, number of children, or care taking obligations). The
respondents’ characteristics also include information about their household, such
as household size and income, or car or house ownership. As shown in Fig. 3,
respondents also provide detailed one-day travel diaries, recording each activity
of their day along with its start time, duration, and the travel mode used.

Census and Map Data: To allow for data abstraction, the simulation
region is modeled with a spatial tessellation that partitions the region into non-
overlapping subregions. This can be implemented, for example, using a grid,
dividing the region into equally sized square cells. The cell width w of the grid
is a user parameter and should be chosen to find a good balance between com-
putational complexity and modeling accuracy. For each cell in the tessellation,
census and map data is obtained.

– Sociodemographic Features: To create a realistic spatial distribution of the
start locations of agents, and to measure the relevance of a cell as a start lo-
cation for an agent, distributions of sociodemographic features are required.
We determine each cell’s population numbers by age and gender groups
based on census information obtained from WorldPop3.

– Points of Interest : To allow ASTRA to map activities to real POIs in the
simulation area, the POIs of each cell along with their labels are queried
from OpenStreetMap (OSM) using OSMnx [5]. We consider only POI labels
that are a subcategory of one of the OSM tags amenity, building, office, shop,
tourism, leisure, and sport, to account for places where people usually spend
their time. In each cell, POIs are grouped by their label and counted. This
information will serve as the basis for calculating the POI label frequency
score Sfrq as one of the three scores required for the semantic mapping as
we described in Sect. 3.1.

– Travel Times: For a certain selection of travel modes, such as car, bike or
walk, the travel times between pairwise cells are calculated. The calculation
is based on the OSM street network which is represented as a directed graph
between OSM nodes. Nodes are identified via their respective OSM identi-
fiers and connected via edges, that are weighted with travel speeds for the
respective travel modes. Travel times are calculated based on the shortest
path between the centroids of the cells.

3.3 Generating an Agent Population and Their Agendas

After the input data for ASTRA is prepared, a user-defined number of artificial
agents n is created and distributed onto the cells of the tessellation in proportion
3 www.worldpop.org

www.worldpop.org


to the actual population size. Each agent is randomly assigned an age and gender
following the actual distribution of these features in their cell’s geographic area.
An agent is further assigned a travel diary and sociodemographic features of
a person from the travel diary data set. For this, a person is chosen randomly
from all persons with matching gender and (approximate) age. The travel diary
is converted into an agenda by applying a non-overlapping sliding window. For
each window the longest activity is extracted. Consecutive windows are grouped
into travel and non-travel segments according to the nature of their activities.

3.4 Creating POI Trajectories

The goal of the next step is to project each agent’s agenda onto the simulation
region. ASTRA uses density-EPR with the recency extension described in Sect. 2
and applies the spatio-temporal and semantic extension introduced in Sect. 3.1.
This means that in the exploration phase we use the gravity model together with
our semantic extension, while in the return phase with a certain likelihood the
recency-based approach is chosen.

During exploration, an agenda segment is first mapped to a cell in the tessel-
lation before a specific POI in the chosen cell is derived later on. Candidate cells
are obtained according to the spatio-temporal travel time constraints. For each
candidate cell, Ssem and Sfrq are calculated. Furthermore, Sgrv is calculated
based on the travel distance between the centroids of the previous and the can-
didate cell, and by measuring the relevance of a cell by its population size. All
three scores are normalized and combined into a single score S by weighting the
three components according to a user-specific weight assignment (see Sect. 3.1).
A POI label and cell are then chosen randomly from the top-k highest scoring
cells, where k ≥ 0 is a user-specific parameter.

To pick a specific POI from the chosen cell, only POIs with a matching label
are considered. These POI candidates are evaluated based on a single score.
We again use the gravity score as we described in Sect. 2, but calculate it in a
different way than before. The calculation of gravity is based on the distance
between the centroid of the previous cell’s POIs and the POI candidate, and the
relevance of a POI candidate is measured by the spatial density of POIs in its
surroundings. Following this approach, POIs that are in proximity to other POIs
are preferred over those that are spatially isolated. This reflects the increased
popularity of POIs in lively areas, such as a store in a shopping center, or a bar
in a nightlife district. To realize this calculation, each cell is further divided into
subcells using a grid. The relative number of POIs in each subcell in relation to
the entire cell then indicates the relevance of the POIs in a subcell.

During the return phase, a POI must be selected that was previously visited
by the agent. In order to ensure the greatest possible semantic integrity with the
agenda, we ignore the spatio-temporal travel restrictions in this case. ASTRA
evaluates each of the POI candidates according to their frequency and recency
scores. In addition, ASTRA allows a return to a POI only if its semantic similar-
ity with the segment is greater or equal to a user-defined threshold: Ssem ≥ τsem.
Otherwise, the return is rejected and an exploration is executed instead.



4 Evaluation

We now evaluate the modeling capabilities of ASTRA4. We first assess the se-
mantic mapping quality from agenda segments to POI labels. Then, we compare
the spatial, temporal, and semantic characteristics of the generated POI trajec-
tories of ASTRA with a real mobility data set and the traditional density-EPR
model, instantiated by the DITRAS framework [20] using default parameters.

4.1 Experimental Setup

We first describe the baseline data set and configurations of ASTRA as used in
our experiments.

Baseline Data Set: We compare ASTRA with the Foursquare data set [26],
a real mobility data set collected in New York City, USA, between April 2012 and
February 2013. It contains 227,428 check-ins (POIs) from 1,083 users who logged
their visits to a POI with an app, indicating the POI’s label, GPS location, and
timestamp. Due to the nature of the app usage, the check-in history of a user
can be incomplete and reflect only a part of their daily POIs [28]. Also, because
such apps are more likely to be used by young adolescents to connect with
their friends, this data set is likely biased towards this demographic group. Even
though data sets collected via social media apps usually have these limitations,
only they provide the POI information required for comparison with ASTRA.

Simulation Parameters: The simulation region of our experiments consists
of the convex hull of all users’ POIs in the Foursquare data set. We choose a
tessellation cell width of w = 1,500m. With ASTRA, we create a population of
n = 10,000 agents along with their POI trajectories. We create the same number
of agents and trajectories using DITRAS [20].

Travel Diary Data Basis: We run ASTRA based on an extract of 190,088
MTUS [8,9] travel diaries from the USA between January 2003 and December
2019. This is to reflect travel behavior that is not influenced by the Covid-19
pandemic. The selected data is used by ASTRA as the basis for assigning a real
diary to an artificial agent. The travel diaries are divided into agendas with a
sliding window. The window size should be chosen appropriately to not miss any
travel activities in the preprocessing, but at the same to keep computation time
to a minimum. As more than 90% of non-travel activities in the MTUS extract
have a duration of at least 5min, we choose this value as the window size. The
data set contains travel modes car, bike, and walk, for each of which the travel
times between all cells in the simulation area are calculated.

Scoring: Because the level of the semantic similarity score Ssem influences
the number of POI candidates that an agent can choose from, this might im-
pact the quality of the generated POI trajectories. We therefore test the three
semantic similarity score weights of α = 0.9, 0.6, and 0.3 and redistribute the re-
maining weight equally across the two other score components, gravity and POI
4 ASTRA is available open-source at https://github.com/majaschneider/ASTRA.
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label frequency score: β = γ = 1−α
2 . After the combined score S is calculated,

we select a POI label and its cell from the top-k = 5 highest ranking scores to
introduce variability in the data generation process. In the return phase, we test
the three minimum similarity score thresholds of τsem = 0.0, 0.3, and 0.5.

4.2 Evaluation of the Semantic Mapping

The aim of the semantic mapping is to find the most similar POI label for an
agenda segment and its activities. Using MTUS and OSM, this involves the
mapping of 60 different non-travel activities to 665 unique POI labels.

To calculate the similarity of agenda segments and POI labels, we first embed
their textual representation with the sentence transformer SBERT5. This model
was specifically designed for semantic text comparisons and has been trained
on 215 million (question, answer)-pairs. It converts texts into a 384-dimensional
vector space and allows semantic nearest neighbor search based on Cosine simi-
larity, which we use as the semantic similarity score.

POIs and activities usually only have a short identifier, or label. Due to
SBERT’s training data, it can be advantageous to provide more context and
convert both identifiers and labels, into a longer textual description so that they
resemble a question and an answer. We empirically test which of the following
two options achieves better semantic mapping quality: Label : Only the identi-
fiers and labels of activities and POIs are used for mapping, or Desc: A more
comprehensive description of activities and POIs is used for mapping.

To realize the option Desc, we use descriptions of POI labels from OSM to
obtain an answer-like text. For example, the POI label “Food Court” is converted
into “An area with several different restaurant counters and a common dining
area. Often found in shopping centers, airports, etc.”. Similarly, we manually
phrase activity descriptions as questions, in some cases indicating a location.
For example, the activity "Food preparation, cooking" is converted to "What is
a usual place for personal cooking and food preparation? (Often at apartment,
detached house or building)". Optionally, a large language model can be used to
help automate this task, with a subsequent manual verification.

In the case that an agenda segment contains multiple activities, several strate-
gies are possible to map it to a POI, varying the impact of certain activities onto
the mapping based on their significance. For example, a segment consisting of
three activities 6 h sleeping, 15min eating, and 15min reading, can probably be
linked to a home location due to the long duration of the sleeping activity. If the
duration is ignored, the segment could potentially also be mapped to a restau-
rant or café. We therefore study different strategies: Avg : All activities of an
agenda segment are mapped and the scores are averaged for the same POI. Dur :
All activities are mapped and all single scores are averaged using a weighting
according to their duration. DurSqrd : This is the same strategy as Dur, but the
weights are squared in order to test an increased impact of the duration. Long :
Only the activity with the longest duration is mapped.
5 https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
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To find the best mapping strategy, we use MTUS agenda segments with one
of the 400 most frequent activity patterns, covering 75% of all segments. This
subset is chosen to focus only on the most influential activity patterns.

Fig. 4 shows the semantic similarity scores of the top five mappings between
each of the agenda segments and all POIs, distinguished by the mapping strate-
gies. The figure shows that the similarity score and thus the mapping quality
can be increased by using a comprehensive description for POIs and activities.
Furthermore, higher scores can be achieved with the mapping strategies Long
and DurSqrd, which assign more weight to longer activities in the embedding.

4.3 Evaluation of Spatio-temporal and Semantic Properties

To evaluate how well ASTRA captures spatial, temporal, and semantic prop-
erties of mobility, we calculate a set of established mobility metrics [13] over
the POI trajectories generated with ASTRA, and compare them against the
Foursquare data set, and the synthetic POI trajectories created with the DI-
TRAS baseline model. We provide a visual evaluation with comparative plots
for each metric in Fig. 5 and calculate the error of fit between synthetic and real
data with the Jensen-Shannon divergence (JSD) in Table 1.

JSD is often used to measure the dissimilarity between two distributions, P
and Q, and builds on Kullback-Leibler divergence (KLD) [13]. JSD is defined as
JSD(P ||Q) = (KLD(P ||M)+KLD(Q||M))/2, where M is the pointwise mean
of P and Q and KLD(P ||Q) =

∑
x∈X P (x) log(P (x)/Q(x)). JSD is normalized

and values close to zero indicate high similarity between P and Q.
Trip Distance: The distance of a trip measures the geographical Euclidean

travel distance between two consecutive POI locations in a POI trajectory. We
calculate the trip distance for each trip over all POI trajectories and plot the
distribution in Fig 5 (a). ASTRA captures the shape of the distribution of real
trip distances in the Foursquare data set while slightly overestimating longer
trip distances. ASTRA achieves both visually and quantitatively similar results
as DITRAS with an average JSD of 0.240 (ASTRA) versus 0.244 (DITRAS).
Both approaches do not capture the high ratio of short trip distances that are
prevalent in the Foursquare data.



Table 1. Jensen-Shannon divergence between synthetic and real data per metric.
Results for ASTRA are averaged over all nine tested configurations (described in
Sect. 4.1). The respective best (lower) result in each column is highlighted in bold.

Trip
Distance

Trips
per Hour

Stay
Duration

Locations
per User

Location
Frequency

Visits per
Location

ASTRA 0.240 0.106 0.065 0.224 0.148 0.028
DITRAS 0.244 0.006 0.294 0.032 0.237 0.600

Trips per Hour: The number of trips per hour gives an indication of how
realistic the generated data is in terms of its temporal distribution. To calculate
this metric, the start times of the agents’ visits to a POI are assigned to one
hour time windows and counted. We plot the distribution of trips per hour over
all POI trajectories over the 24 hours of the day in Fig. 5 (b). All three data sets
show multiple peaks reflecting the typical human movement behavior to mainly
move at specific times of the day [10]. The peaks coincide with the major travel
times, for example when people go to work in the morning, go to lunch around
noon, and return to their home in the evening. ASTRA is able to reproduce
the overall shape of the real distribution with an average JSD of 0.106 while
DITRAS can slightly better reproduce all peaks with a JSD of 0.006. For most
of the tested configurations of ASTRA, the peaks are present at the typical
moving times, however the most relaxed configuration using Ssem = 0.3 and
τsem = 0.0 can best reproduce the different peaks. Because ASTRA uses travel
diaries that start at midnight, the first POI in each generated POI trajectory
has a start time at midnight as well, causing another peak at this time.

Stay Duration: The duration of a stay indicates how much time an in-
dividual spends at a POI that they visit. This metric is calculated as the time
difference in hours between the start times of consecutive POIs in an agent’s POI
trajectory. A stay time thus also includes the travel time between two POIs. This
is due to the fact that POI trajectories from Foursquare and DITRAS only in-
dicate the start timestamp of a visit to a POI. We plot the distribution of the
stay duration over all agents’ POI trajectories in Fig. 5 (c). ASTRA can cap-
ture the shape of the Foursquare distribution better than DITRAS with a JSD
of 0.065 (ASTRA) versus 0.294 (DITRAS). In contrast to the real distribution,
ASTRA shows a peak at approximately 8 h. This peak is likely to reflect the time
duration that individuals stay at home or at work, whereas this might not be
reflected in the Foursquare data set. A possible explanation is that Foursquare
users preferably check in at food places, but not as often check in at home or
work [16]. The high ratio of short trip distances in the Foursquare data set (see
Fig. 5 (a)) also leads to a high ratio of short or zero durations of stay. DITRAS
struggles to reproduce this peak, while ASTRA achieves more similar results.

Locations per User: The locations per user is the number of distinct POIs,
that an agent visits during the period of observation. We plot the distribution
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Fig. 5. Distributions of spatial, temporal, and semantic metrics

of locations per user over all agents in Fig. 5 (d). DITRAS reproduces the dis-
tribution of this metric in the Foursquare data set closely (JSD of 0.032), while
ASTRA is showing a different pattern (JSD of 0.224) and produces POI tra-
jectories with more POIs than Foursquare. The reason is likely that ASTRA is
based on real travel surveys which often include POIs related to a person’s home
or work. Foursquare users, however, do not check in as often at such a type of
POI, reducing the overall number of POIs of a user. Studies of travel diary data
and mobile phone records show that about 90% of human trajectories can be
explained by fewer than seven regularly visited POIs [22]. ASTRA reproduces
this trend while the majority of agents visits up to ten different POIs.

Location Frequency: The location frequency is the probability of an agent
to visit a POI given its rank in the POI trajectory. The rank of a POI is its
position in a descending order of visit frequency in the POI trajectory. A low
rank thus indicates that a POI was visited often. In Fig. 5 (e) we plot the
distribution of the location frequency given the rank over all POI trajectories.
Both ASTRA and DITRAS can reproduce the shape of the real distribution
approximately with a JSD of 0.148 (ASTRA) and 0.237 (DITRAS), but both
approaches underestimate the distribution for higher ranks.

Visits per Location: The visits per location count the number of visits by
all users to a unique POI location, that is a certain GPS coordinate. We plot the
distribution of the number of locations given the number of visits in Fig. 5 (f).
ASTRA can better reproduce the shape of the real distribution compared to
DITRAS leading to a lower JSD of 0.028 versus 0.6 for DITRAS.



5 Discussion

The results of our experiments indicate that ASTRA is a suitable approach to
generate realistic synthetic human mobility data that satisfies important spatial,
temporal and semantic mobility measures. While the data quality is comparable
or better than the DITRAS baseline, ASTRA additionally provides semantically
accurate POI information and sociodemographic details about the generated
agents. This information is usually not provided by other mobility models but
essential for certain questions of (privacy) research.

ASTRA can flexibly be applied to any simulation region where the required
input data is available. Census and map data are generally available for most
countries, for example from WorldPop and OSM. However, the quality of the
map data might vary per region which can limit ASTRA’s applicability. Travel
surveys can be obtained for many different countries [8]. While studies suggest
that human mobility patterns are generally very similar [22], future work should
investigate the question whether the semantic and temporal aspects of human
travel patterns are similar in different countries. In this case, travel surveys
might be interchangeable, which would eliminate the need for a geographically
accurate input data set. Because ASTRA uses an embedding approach for the
semantic mapping between activities and POI labels, their scope and formatting
are not fixed, and therefore different data sources can be used. However, the
preprocessing routines might need to be adapted to new source formats.

To create realistic, fair and unbiased data sets, the quality and size of the
input data needs to be considered when choosing a simulation region and the
respective input data set. In order for ASTRA to reflect realistic travel patterns,
the used travel survey data must not contain exceptional events, such as the
Covid-19 pandemic, which could distort results. It also needs to be large enough
to ensure the synthetic population has diverse sociodemographic features.

Because ASTRA relies on agendas and needs to map agenda segments with
specific activities and time range to a suitable POI, the distribution and avail-
ability of POIs in the chosen simulation area has an impact on the mapping
quality. ASTRA’s parameters control how much the semantic accuracy during
mapping can be relaxed. Our experiments indicate that these parameters also in-
fluence how accurately the temporal patterns are preserved in the synthetic data
while the impact on other analyzed metrics seems to be only small. As future
work we therefore aim to test ASTRA’s applicability to regions with different
POI distributions, for example, smaller regions or urban and rural areas.

ASTRA is scalable to the desired number of artificial agents, because travel
diaries can be selected multiple times from the travel survey data set if necessary.
This makes the data useful also for other research, for example to study the
effects of a growing population on the utilization of a city’s transport network.

6 Conclusion

We have presented ASTRA, a novel approach to generate synthetic human mo-
bility data. ASTRA creates POI trajectories that are representative of a society,



following an agenda-based approach based on real travel diaries. A major ad-
vantage of ASTRA is that its trajectories are explainable, because they retain
semantic information about the contained POIs, and they can be linked to the so-
ciodemographic features of their artificial agent. Because the data is not modified
by privacy-preserving mechanisms, unlike other synthetic data sets, it is suitable
for researching privacy-relevant questions regarding human mobility. ASTRA
creates trajectories flexibly in any simulation region and is scalable with regard
to the number of created trajectories. Our experiments show that ASTRA can
create realistic mobility data that satisfies important metrics of mobility.
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