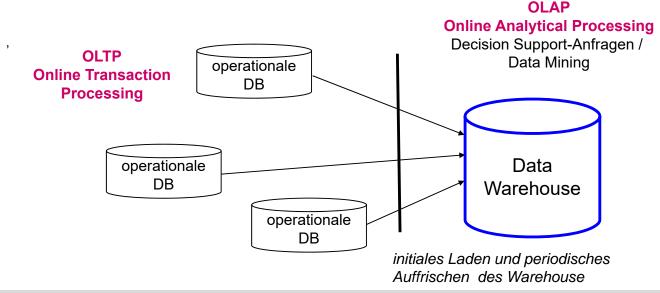
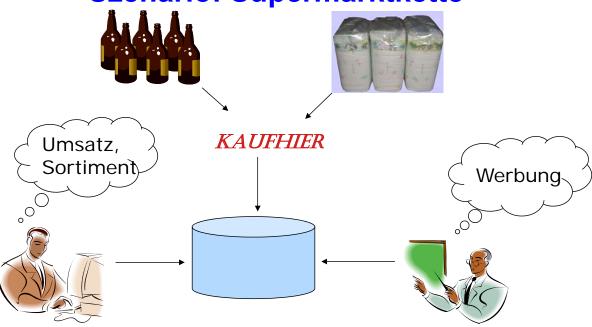
1. Data Warehouses - Einführung

- Definitionen und Merkmale
 - Grobdefinition
 - Einsatzbeispiele
 - DW-Merkmale nach Imnon
 - OLTP vs. OLAP
 - Grobarchitektur
 - virtuelle vs. physische Datenintegration
- Mehrdimensionale Datensicht
 - Stern-Schema und -Anfragen
- Analysearten (OLAP, Data Mining)
- Big Data


© Prof. Dr. E. Rahm

1-1


Data Warehouses

- Ausgangsproblem
 - viele Unternehmen haben Unmengen an Daten, ohne daraus ausreichend Informationen und Wissen für kritische Entscheidungsaufgaben ableiten zu können
- Data Warehouse (Def.): für Analysezwecke optimierte zentrale Datenbank, die Daten aus mehreren, i.a. heterogenen Quellen zusammenführt und verdichtet (Integration und Transformation)

Szenario: Supermarktkette

Anfragen:

- Wie viele Pakete Windeln wurden letzten Monat verkauft?
- Wie hat sich der Verkauf von Bier und Wasser im letzten Jahr entwickelt?
- Wo sind unsere Top-Filialen?
- Von welchem Lieferanten beziehen wir das meiste Bier?
- Wie wirkten sich die Werbepreise f
 ür Produkt X aus? ...

© Prof. Dr. E. Rahm

1-3

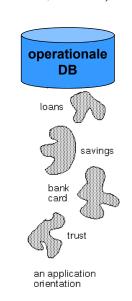
Einsatzbeispiele

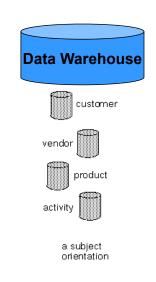
Warenhauskette

- Verkaufszahlen und Lagerbestände aller Warenhäuser
- mehrdimensionale Analysen: Verkaufszahlen nach Produkten, Regionen, Warenhäusern
- Ermittlung von Kassenschlagern und Ladenhütern
- Analyse des Kaufverhaltens von Kunden (Warenkorbanalyse)
- Erfolgskontrolle von Marketing-Aktivitäten
- Minimierung von Beständen
- Optimierung der Produktpalette, Preisgestaltung

■ Versicherungsunternehmen

- Bewertung von Filialen, Vertriebsbereichen, Schadensverlauf, ...
- automatische Risikoanalyse
- schnellere Entscheidung über Kreditkarten, Lebensversicherung, Krankenversicherung ...
- Banken, Versandhäuser, Restaurant-Ketten
- wissenschaftliche Einsatzfälle • •

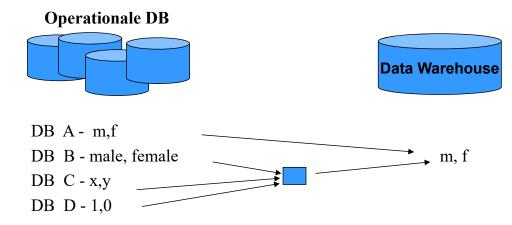



DW-Eigenschaften nach Inmon

A Data Warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>non-volatile</u>, and <u>time variant</u> collection of data in support of management decisions (W. H. Inmon, Building the Data Warehouse</u>, 1996)

Subjekt-orientiert

- Zweck des Systems ist nicht Erfüllung einer dedizierten operationalen Aufgabe (z.B. Personaldatenverwaltung),
- alle Daten unternehmensweit über ein Subjekt (Kunden, Produkte, Regionen ...) und nicht "versteckt" in verschiedenen Anwendungen
- Unterstützung übergreifender Auswertungsmöglichkeiten aus verschiedenen Perspektiven



© Prof. Dr. E. Rahm

1-5

DW-Eigenschaften nach Inmon (2)

■ integrierte Datenbasis (integrated): konsolidierte Daten aus mehreren verschiedenen Datenquellen

heterogen, inkonsistent

vereinheitlicht, konsistent

DW-Eigenschaften nach Inmon (3)

- dauerhafte Datenbasis (non-volatile):
 - Daten im DW werden i.a. nicht mehr geändert
 - stabile, persistente Datenbasis

regelmäßige Änderungen von Sätzen

© Prof. Dr. E. Rahm

1-7

DW-Eigenschaften nach Inmon (4)

- historische Daten (time-variant):
 - Vergleich der Daten über Zeit möglich (Zeitreihenanalyse)
 - Speicherung über längeren Zeitraum

aktuelle Datenwerte:

- Zeitbezug optional
- Zeithorizont: 60-90 Tage
- Daten änderbar

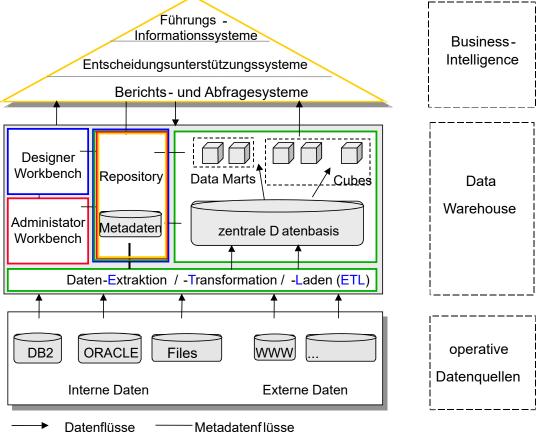
Schnappschuß-Daten

- Zeitbezug aller Objekte
- Zeithorizont: 2-10 Jahre
- keine Änderung nach
 Schnappschuß-Erstellung

Operationale Datenbanken vs. Data Warehouses (OLTP vs. OLAP)

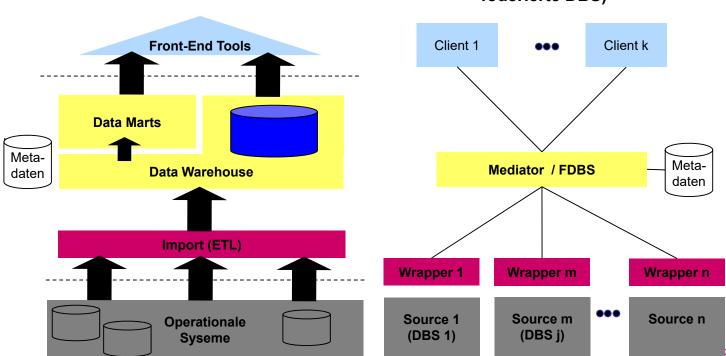
	Operationale Datenbanken /OLTP	Data Warehouses/OLAP			
Entstehung	für je eine Applikation / eine Perspektive	mehrere Perspektiven / anwendungs- übergreifend			
Bedeutung	Tagesgeschäft	Entscheidungs-/Planungsaufgaben			
Nutzer	Sachbearbeiter, Online-Nutzer	Analysten / Manager			
Datenzugriff	sehr häufiger Zugriff, kleine Datenmengen pro Operation, Lesen, Schreiben, Modifizieren, Löschen	moderate Zugriffsfrequenz, große Datenmengen, vorwiegend lesender Zugriff			
Änderungen	sehr häufig	periodisches Auffrischen			
#Datenquellen	meist eine pro Anwendung	mehrere			
Datenmerkmale	nicht abgeleitet, autonom, zeitaktuell, dynamisch	abgeleitet, integriert, i.a. leicht veraltet, stabil			
Optimierungsziele	hoher Durchsatz, sehr kurze Antwortzeiten (ms s), hohe Verfügbarkeit	gute Antwortzeiten für komplexe Analysen			

© Prof. Dr. E. Rahm


1-9

Warum separates Data Warehouse?

- unterschiedliche Nutzung und Datenstrukturierung
- unterschiedliche Funktionalität
 - historische Daten
 - Konsolidierung (Integration, Bereinigung und Aggregation) von Daten aus heterogenen Datenquellen
- Performance
 - OLTP optimiert für kurze Transaktionen und bekannte Lastprofile
 - komplexe OLAP-Anfragen würden gleichzeitige OLTP-Transaktionen ausbremsen
 - OLAP erfordert speziellen logischen / physischen DB-Entwurf für mehrdimensionale Anfragen
 - Transaktionseigenschaften (ACID) für OLAP weniger wichtig
- Sicherheit
- Nachteile der separaten Lösung
 - Datenredundanz
 - Daten nicht vollständig aktuell
 - hoher Administrationsaufwand
 - hohe Kosten


Datenintegration: physisch vs. virtuell

1-11

Virtuelle Integration

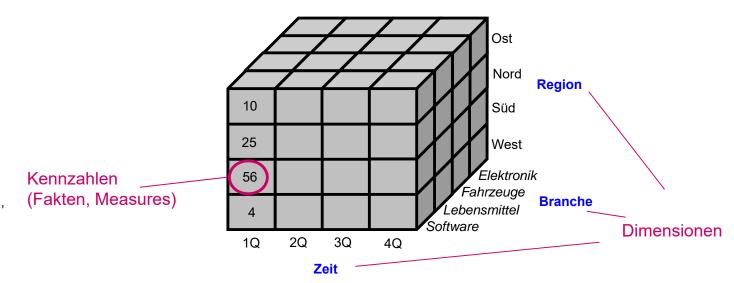
(Mediator/Wrapper-Architekturen, föderierte DBS)

© Prof. Dr. E. Rahm

Datenintegration: physisch vs. virtuell (2)

	physisch (Data Warehouse)	virtuell			
Integrationszeitpunkt: Metadaten	vorab (DW-Schema)	vorab (globale Sicht)			
Integrationszeitpunkt: Daten	vorab	dynamisch (zur Anfragezeit)			
Aktualität der Daten					
Autonomie der Datenquellen					
Erreichbare Datenqualität					
Analysezeitbedarf für große Datenmengen					
Hardwareaufwand					
Skalierbarkeit auf viele Datenquellen					

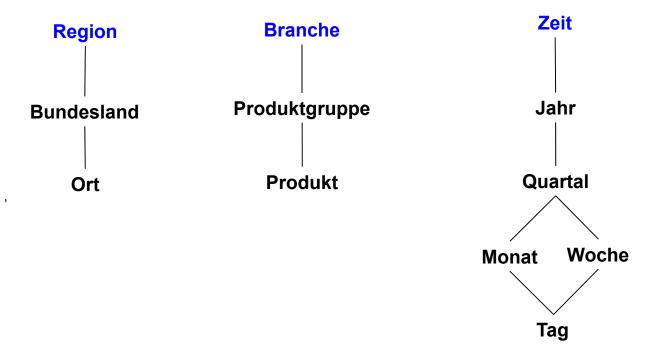
© Prof. Dr. E. Rahm


1-13

OLAP (Online Analytical Processing)

- interaktive multidimensionale Analyse auf konsolidierten Unternehmensdaten
- FASMI-Merkmale (Fast Analysis of Shared Multidimensional Information)
 - Skalierbarkeit auf große Datenmengen
 - stabile, volumenunabhängige Antwortzeiten
 - intuitive, interaktive Analyse und Visualisierung
 - Mehrbenutzerunterstützung
 - Client/Server-Architektur
 - mehrdimensionale, konzeptionelle Sicht auf die Daten
 - unbegrenzte Anzahl an Dimensionen und Aggregationsebenen
 - unbeschränkte dimensionsübergreifende Operationen
 - integrierter Zugang zu heterogenen Datenbeständen mit logischer Gesamtsicht

Mehrdimensionale Datensicht

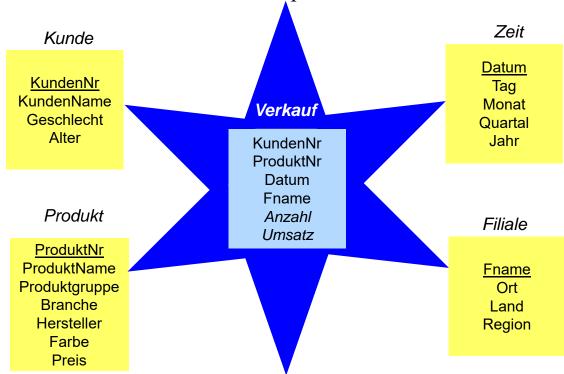


- Kennzahlen: numerische Werte als Grundlage für Aggregationen/Berechnungen (z.B. Absatzzahlen, Umsatz, etc.)
- Dimensionen: beschreibende Eigenschaften
- Operationen:
 - Aggregierung der Kennzahlen über eine oder mehrere Dimension(en)
 - Slicing and Dicing: Bereichseinschränkungen auf Dimensionen

© Prof. Dr. E. Rahm

1-15

Hierarchische Dimensionierung



- Operationen zum Wechsel der Dimensionsebenen
 - Drill-Down
 - Roll-Up

Star-Schema

zentrale Faktentabelle sowie 1 Tabelle pro Dimension

© Prof. Dr. E. Rahm

1-17

Anfragen

Beispielanfrage:

Welche Auto-Hersteller wurden von weiblichen Kunden in Sachsen im 1. Quartal favorisiert?

select p.Hersteller, sum (v.Anzahl)

from Verkauf v, Filialen f, Produkt p, Zeit z, Kunden k

where z.Quartal = 1 and k.Geschlecht = 'W' and

p.Produkttyp = 'Auto' and f.Land = 'Sachsen' and

v.Datum = z.Datum and v.ProduktNr = p.ProduktNr and

v.Filiale = f. FName and v.KundenNr = k.KundenNr

group by p.Hersteller

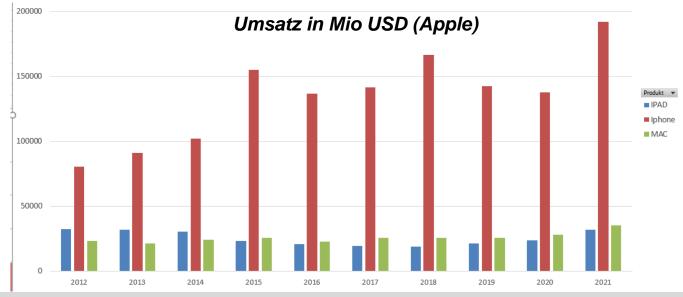
order by 2 desc;

■ Star-Join

- sternförmiger Join der (relevanten) Dimensionstabellen mit der Faktentabelle
- Einschränkung der Dimensionen
- Verdichtung der Kennzahlen durch Gruppierung und Aggregation

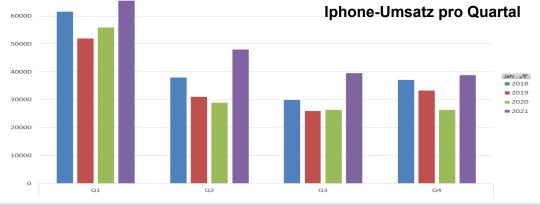
Analysewerkzeuge

- (Ad Hoc-) Query-Tools
- Reporting-Werkzeuge, Berichte mit flexiblen Formatierungsmöglichkeiten
- OLAP-Tools
 - OLAP-Unterstützung in Speadsheet-Tools bzw. im Web-Browser
 - oft Datendarstellung als Pivot-Tabellen (Kreuztabellen)
 - interaktive mehrdimensionale Analyse und Navigation (Drill Down, Roll Up, ...)
 - Gruppierungen, statistische Berechnungen,
 - unterschiedlichste Visualisierungen
- Tools/Verfahren für Data Mining und maschinelles Lernen

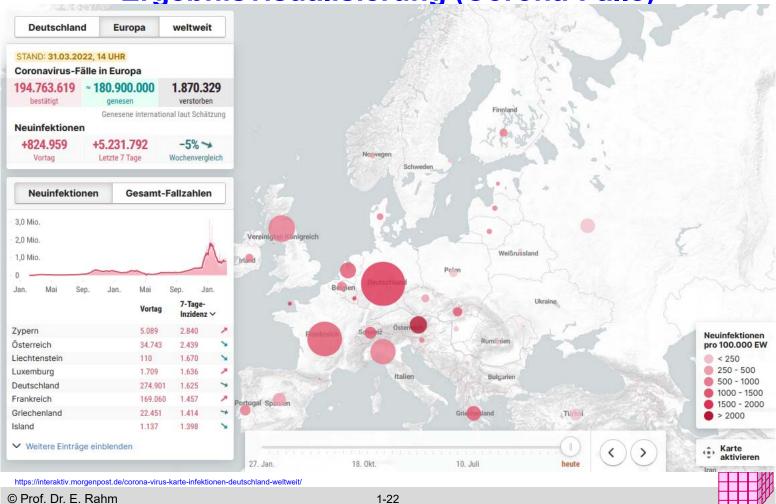


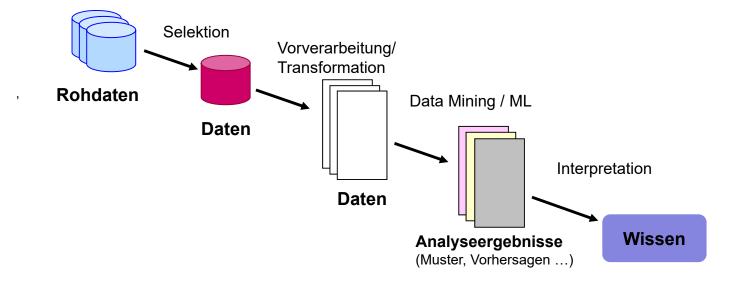
© Prof. Dr. E. Rahm

1-19


Beispiel: OLAP-Ausgabe (Excel)

Summe von Umsatz Mio\$											
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	Gesamtergebnis
IPAD	32.424	31.980	30.283	23.227	20.628	19.222	18.805	21.280	23.719	31.862	253.430
Iphone	80.477	91.279	101.991	155.041	136.700	141.319	166.699	142.381	137.781	191.973	1.345.641
MAC	23.221	21.483	24.079	25.471	22.831	25.850	25.484	25.740	28.127	35.190	257.476
Gesamtergebnis	136.122	144.742	156.353	203.739	180.159	186.391	210.988	189.401	189.627	259.025	1.856.547





Knowledge Discovery

- (semi-) automatische Extraktion von Wissen aus Daten
- Kombination von Verfahren zu Datenbanken, Statistik (Data Mining) und KI (maschinelles Lernen)

© Prof. Dr. E. Rahm

1-23

Techniken des Data Mining/ML

- Einsatz statistischer, wissens- und lernbasierter Methoden zur Datenanalyse
 - Auffinden von Korrelationen, Mustern und Trends in Daten, Vorhersagen

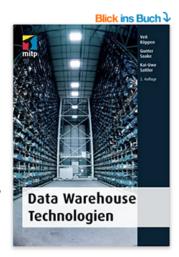
Clusteranalyse

- Objekte werden aufgrund von Ähnlichkeiten in Klassen eingeteilt (Segmentierung)
- Bsp.: ähnliche Kunden, ähnliche Website-Nutzer ...

Assoziationsregeln

- Warenkorbanalyse (z.B. Kunde kauft A und B => Kunde kauft C)
- Nutzung für Kaufvorhersagen / Recommendations, ...

Klassifikation


- Zuordnung von Objekten zu Gruppen/Klassen mit gemeinsamen Eigenschaften bzw. Vorhersage von Attributwerten
- Verwendung von Stichproben (Trainingsdaten)
- Ansätze: Entscheidungsbaum-Verfahren, neuronale Netze, statistische Auswertungen

Beispiel Warenkorbanalyse

Kunden, die diesen Artikel angesehen haben, haben auch angesehe

Data Warehouse Technologien (mitp Professional)

Taschenbuch – 26. Mai 2014

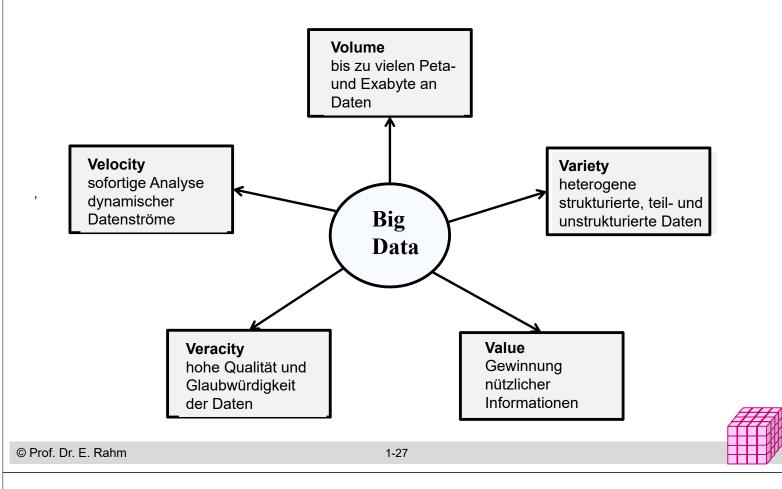
von Veith Köppen (Autor), Kai-Uwe Sattler (Autor), Gunter Saake (Autor)

Architekturprinzipien von Data-Warehouse-Systemen

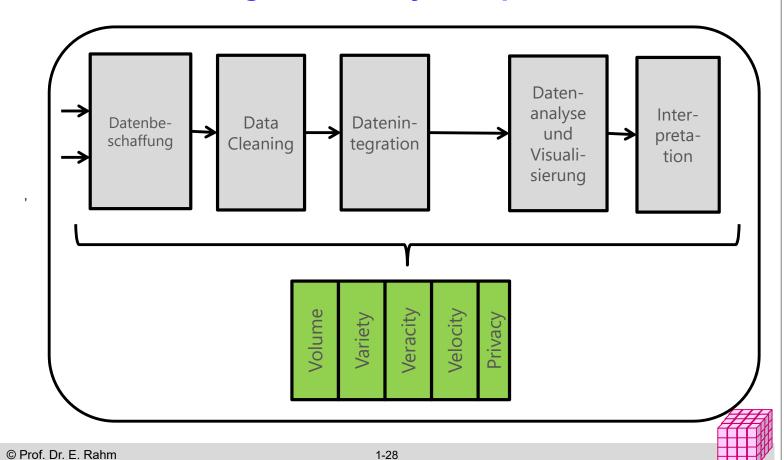
• Datenstrukturen und Algorithmen

• Anwendungsfeld Business Intelligence

Dieses Lehrbuch behandelt Konzepte und Techniken von Data-Warehouse-Systemen, die eine wesentliche Komponente in betrieblichen Entscheidungsprozessen darstellen. Im Mittelpunkt stehen dabei Architekturprinzipien sowie die Umsetzung des multidimensionalen Datenwürfels als zentrale


© Prof. Dr. E. Rahm

1-25


Big Data

Anforderungen für "Big Data"

Big Data Analyse-Pipeline

Zusammenfassung

- Data Warehousing: DB-Anfrageverarbeitung und Analysen auf integriertem Datenbestand für Decision Support (OLAP)
- riesige Datenvolumina
- Hauptschwierigkeit: Integration heterogener Datenbestände sowie Bereinigung von Primärdaten
- physische Datenintegration ermöglicht
 - aufwändige Datenbereinigung
 - effiziente Analyse auf großen Datenmengen
- mehrdimensionale Datenmodellierung und -organisation
- breites Spektrum an Auswertungs- und Analysemöglichkeiten
- Data Mining: selbständiges Aufspüren relevanter Muster in Daten
- Big Data: Datenanalysen auf großen Mengen auch unstrukturierter Daten