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Abstract

Graph pattern matching has a wide range of applications. However, because of its complexity as
an NP-complete problem [1], matching a large graph requires a distributed system to mitigate its
difficulty. To conduct graph pattern matching in a distributed system, Apache Flink1 was adopted
by Gradoop [2] as a batch processor using relational algebra operations and by SGraPMa [3] as a
stream processor using the Dual Simulation algorithm. This thesis extends the use case of Flink as a
stream processor by adopting Ullmann’s Subgraph-Isomorphism algorithm [4]. The main contribu-
tions of this thesis are the modification of Ullmann’s algorithm to fit property graph stream pattern
matching with Flink and the evaluation on various scenarios in terms of the number of elements
in the graph stream, length of the window and degree of the distribution. The result of evaluation
shows the inherent difficulty of the graph pattern matching problem and the limitation of the appli-
cable situation of property graph stream pattern matching with the modified Ullmann’s Subgraph-
Isomorphism. The evaluation demonstrated that the modified Ullmann’s Subgraph-Isomorphism
algorithm is capable of conducting low-latency stream pattern matching in small graphs, with up
to 1000 events per second throughput and a degree of parallelism up to 144. However, increasing
the degree of parallelism too much degrades its performance, causing bottlenecks.

1https://nightlies.apache.org/flink/flink-docs-master/, accessed February 2023
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1. Introduction

1. Introduction

1.1. Motivation

Graph pattern matching is one of the problems in graph theory that has a wide range of applica-
tions for solving many real-life problems. For example, a pattern matching program can detect a
specific route of travelers in a transportation network or identify a predefined abnormal pattern of
transactions in a banking network.

Figure 1.1.: Graph Pattern Matching Problem

In property graphs, where detailed descriptions of graph elements are embedded, it is possible to
define the pattern and graph with more detailed information. Adopting the property to graphs
leads to a broader scope of graph pattern matching applications.

Figure 1.2.: Property Graph
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1. Introduction

However, conducting graph pattern matching on a large static graph requires a lot of computation
with a powerful system to process it. Scalable distributed systems with a static database could be
one of the solutions to conduct the task with shorter amount of time. As well as the ability to process
a large graph, on the other hand, low-latency processing is also important for the stream pattern
matching task. This task takes its input not as a static graph, but as a stream of graph elements.
Because of its ability to handle real-time input streams, stream pattern matching applications can
solve more real-life graph problems than a static pattern matching application. A distributed stream
processing system can provide more ability to stream pattern matching applications. However, it
has to be verified whether the distributed stream system can produce the pattern matching result
with low-latency.

The Figure 1.3 illustrates a stream of graph elements with their assignments to the time windows.
The rounded boxes are time windows of ten seconds in every five seconds, and the circles are vertices
of the graph stream and the arrows are the edges between two vertices. The positions of the edges on
the time axis are the timestamps of the edges. From this Figure, the next Figure 1.4 demonstrates
an example output of the graph stream pattern matching on a time window of [12:02:10 PM -
12:02:20 PM].

Figure 1.3.: Graph Stream and Time Window

Figure 1.4.: Result of windowed graph stream pattern matching
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1. Introduction

1.2. Goal of the Thesis

This thesis aims to modify Ullmann’s Subgraph-Isomorphism algorithm [4] to be able to perform
Windowed Graph Stream Pattern Matching using Subgraph-Isomorphism in distributed Apache
Flink2 clusters and to examine if adding distributivity to the modified algorithm can enhance its
performance to produce the result with low latency. Ullmann’s algorithm will be brocken down into
details and will be tailored to benefit from the distributed system Flink. Discussions also include the
limitations of distributed computations. At the end, the result of evaluation will find the relation
between the degree of parallelism and the difficulty of pattern matching job in terms of the amount
of graph elements in a time window.

1.3. Structure of the Thesis

This thesis is structured into 8 sections beginning with this introduction to the motivation and
goal of the thesis. Section 2 provides the necessary background on graph theory especially on
graph pattern matching, Ullmann’s Subgraph-Isomorphism, property graph, and windowed stream
processing with Apache Flink. The related work in Section 3 is followed by Section 4 which lists
analysis of problems associated with modifying Ullmann’s algorithm into distributed property graph
stream pattern matching algorithm. In Section 5, a design of the algorithm for graph pattern
matching on property graph streams is presented based on the analysis in Section 4. Section 6
describes a prototypical implementation of the algorithm, and Section 7 presents an evaluation
of the algorithm’s performance. Finally, Section 8 concludes the thesis with discussion on the
contributions, limitations, and potential future work of the implemented algorithm.

2https://nightlies.apache.org/flink/flink-docs-master/, accessed February 2023
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2. Basics

2. Basics

2.1. Graph

Graph G is a tuple (V, E) with a set V of vertices and a set E ⊆ V × V of edges. An edge e ∈ E is
a connection between two vertices vi, vj ∈ V i, j ∈ {1, 2, ..., |V |}. Graphs can be used to represent
relations between objects(vertices). For example, a graph of network(G) with several machines(V )
and their physical connections(E) or a graph of public transportation(G) with bus stops(V ) and the
bus lines(E) connecting the bus stops. An edge e ∈ E can be directed or undirected. When edges
have direction from one vertex to other vertex, the graph is called directed graph. Otherwise it is
called an undirected graph. An undirected edge can be replaced by two directed edges in opposite
directions. Thus, directed graphs can also express undirected graphs by replacing an undirected
edge with two edges of opposite directions. This thesis assumes directed graphs, if not explicitly
others stated.

In this thesis, two representation for Graphs are mainly used: Adjacency Matrix and Adjacency
List. Let us assume that vertices are distinctively labeled with i ∈ {1, 2, ..., |V |}. Adjacency Matrix
is a square Matrix of Mat|V |×|V | where i-th element of both row and column refer the same vertex
vi ∈ V . In Adjacency Matrix, the value of each element eij means the following.

eij =

1 if an edge from vi to vj exists

0 otherwise
(2.1)

Adjacency List L of a graph G(V, E) is a list of vertex tuples (vi, vj) where i, j ∈ {1, 2, ..., |V |}. For
a eij in Adjacent Matrix, eij = 1⇔ (vi, vj) ∈ L and eij = 0⇔ (vi, vj) ̸∈ L. Adjacency Matrix and
Adjacency List can represent a single graph equivalently, where a single graph means that there
exists maximum one edge between two vertices. Otherwise it is called multi graph. Depending
on the context of their usage, each way offers different opportunities to utilize. For example, by
assigning the number of edges between vi and vj to eij in Adjacency Matrix, a multi graph can be
expressed. On the other hand, to express a multi graph with Adjacency List, multiple tuples with
same source and target vertex can be added to the list. An advantage of using Adjacency List is
that it does not need to keep the set of vertices separately from the set of edges. More over, with
a L′ ⊆ L, an incomplete subgraph of L can be expressed, which is maybe still evolving.

2.2. Graph Pattern Matching

Graph Pattern Matching is one of graph problems. It seeks for a predefined pattern in a given
graph. A pattern(or query) is also a graph with a set of vertices and a set of edges. There are two
types of graph pattern matching rule - Homomorphism and Isomorphism.

Definition 1 (Graph Homomorphism). Graph Homomorphism is a function h : G → H between
graphs G = (VG, EG) and H = (VH , EH) such that if (u, v) is an edge in EG, then (h(u), h(v))

Sung Geun Yun
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2. Basics

is an edge in EH . Homomorphism requires to preserve adjacencies, but allow mapping of multiple
vertices to the same vertex.

Definition 2 (Graph Isomorphism). Isomorphism is a bijective homomorphism between graphs
G and H. An isomorphism is a one-to-one mapping h : VG → VH such that (u, v) is an edge in
EG if and only if (h(u), h(v)) is an edge in EH . Isomorphism requires to preserve adjacencies and
injectivity of vertex mapping on both graphs.

In this thesis, mere homomorphism as excluded because it does not require injectivity of vertex
mapping function thus distinct pattern vertices could be mapped to one graph vertex 3. Graph
Pattern Matching is also called Subgraph Isomorphism and it is a task to find a subgraph of the
original graph that is topologically identical to the predefined pattern. An isomorphism(bijective
function) is found when both the vertices and edges of the pattern could be mapped to subset of
both vertices and edges of graph respectively. By definition of isomorphism, the bijection between
the pattern and the subgraph of the graph requires to meet the none-existency of edges as well.
However, one can require only injective function from pattern edges to graph edges and allow
additional edge in the graph which are not mapped from the pattern. This condition is defined as
Injective Homomorphism.

Subgraph Isomorphism as a decision problem is known to be an NP-Complete problem [1]. This
means no efficient algorithm has been found to be able to solve this problem in polynomial time.
However, when a solution is given, testing the correctness can be done in polynomial time. To find a
solution of an NP-Complete problem, ’Brute forcely trying all the candidates’ could be the simplest
approach. Nevertheless this inevitable difficulty, if someone is trying to find an optimized algorithm
for this problem, possible goals of the algorithm would be to reduce the number of candidates to
test and to distribute some of its tasks to reduce the running time of the algorithm. The following
famous algorithm is an approach to these goals.

2.3. Ullmann’s Subgraph Isomorphism

In 1976, J. R. Ullmann [4] introduced the Subgraph-Isomorphism algorithm to find all matching
patterns in a given graph with back-tracking search strategy and heuristics to improve the al-
gorithm’s efficiency. Even though this algorithm has been researched in many other papers, it is
worth explaining all the components and steps of the algorithm here in detail. It is because every
single steps of this algorithm will be analyzed and modified in different contexts and assumptions.
Although Ullmann named his algorithm Subgraph-Isomorphism, the isomorphism condition, he
introduced in his paper, is injective homomorphism. In this thesis, the term isomorphism can also
mean injective homomorphism unless otherwise stated. This algorithm assumes that a graph is
single and each vertex has unique identifier. It utilizes two types of matrices. One is the adjacency
matrix B to represent graph Gβ(Vβ, Eβ) and the adjacency matrix A for pattern Gα(Vα, Eα). The
other type is the matrix M ∈Mat|Vα|×|Vβ | that helps finding all isomorphisms from Gα to Gβ.

3This condition can be used in Graph Coloring Problem
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2.3.1. Search Space

For a subgraph isomorphism problem from Gα to Gβ, there are |Vα|C|Vβ | candidates without any
prior information. In order to systemically find all candidates, Ullmann’s Subgraph-Isomorphism
uses a matrix M0 ∈ Mat|Vα|×|Vβ | as a search space to enumerate all the candidates. Each row of
M corresponds to a vertex in Vα and each column corresponds to a vertex in Vβ.

The following rule applies to initialize the M0.

mij =

1 if vj is a candidate for vi

0 otherwise
(2.2)

Using Ullmann’s backtracking search strategy, the tree search starts from M0, where each 1 in the
matrix is a node, and every 1 in the row immediately below it is a child node. A child node can
be a child node of many parent nodes in different paths. Figure 2.1 illustrates an example of trees
derived from a M0, with the matrix expressed with the table form, and 18 candidate isomorphisms
obtained from it.

Figure 2.1.: Derived trees from initial search space

Definition 3 (Incomplete Mapping Matrix M). M is a incomplete mapping matrix(incomplete
tree search path).

Some rows in M may contain more than one 1 during the search. By leaving only one 1 in every row,
the search will be completed and will output a mapping matrix M ′. A complete mapping(path) M ′

meets the following conditions.

(a) Each row has exactly one 1.

(b) Each column has maximum one 1.
(2.3)

Sung Geun Yun
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Definition 4 (Complete Mapping Matrix M ′). M ′ is a matrix that satisfy the condition 2.3.

M ′ is a representation of an isomorphism. An element mij = 1 (i ∈ {1, ..., |Vα|}, j ∈ {1, ..., |Vβ|}) in
a M ′ is a mapping from vi ∈ Vα to vj ∈ Vβ. An example of a complete path and M ′ is demonstrated
in the Figure 2.2.

Figure 2.2.: M’ and a complete tree search path

To enumerate all candidates, Ullmann used Depth-First-Search(DFS) with backtracking. The enu-
meration starts from m11. As the DFS goes one depth forward, it selects(colored in orange) a
mij = 1 and automatically excludes(colored in grey) all the other 1s in the i-th row and the 1s in
the j-th column in current M respectively. When a path is completed, subgraph isomorphism test
in the condition (2.6) will be conducted on the resulting M ′. After the test, it backtracks to the
most recent split and keeps searching for the next M ′ until there is no more available path in M0.
With the help of a stack, which stores incomplete paths M , splits can be stored and restored during
enumeration. One thing to notice is that this stack is used globally. However tree search with this
single global stack would limit the benefit of distributed computation. Section 4.10 introduces other
tree search strategy to enable distributed search for a better performance.

A M ′ can be used to derive a subgraph C from the original graph Gβ. The adjacency matrix C of
a subgraph of B can be calculated as following 4.

C = ((BM ′)T M ′)T ∈Mat|Vα|×|Vα| (2.4)

When a permutation matrix is multiplied once to another matrix, it changes the size of the matrix
and switches the order of rows and columns. By combining with the matrix transpose, a permutation

4In Ullmann’s paper [4], the permutation was introduces as C = (BM ′)T M ′. This holds because Ullmann assumed
pattern matching between undirected graphs at the beginning of his paper. It was not necessary to conduct the
additional transpose of the result matrix C. However, to conduct the pattern matching on two directed graphs,
additional transpose operation is required to preserve the directions of edges.
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matrix can be used as a representation of injective function from Vα to Vβ. If the condition (2.2) is
satisfied, M ′ can be considered as a permutation matrix(injective function). When this calculation
((BM ′)T M ′)T is applied to the graph adjacency matrix B, it returns a matrix C with the same
size of pattern adjacency matrix A. One important characteristic of this permutation is that it not
only permutes the order of the vertices(index of C) and reduce the size(selecting a subset of vertices
from Vβ), but also keeps the adjacency of mapped vertices in the graph(1s in the B).

2.3.2. Initializing Search Space

Ullmann suggested setting as many element to 0 as possible when initializing the M0 if any prior
information is available. With the help of degree of vertices, exclusion of some of the unnecessary
candidates from M0 becomes possible. Each m0

ij can be set by the condition below.

m0
ij =

1 if degree(vi) ≤ degree(vj)

0 otherwise
(2.5)

In a directed graph, in and out degree can be used instead.

When a vertex of graph has smaller degree than that of a vertex in pattern, it cannot be a valid
candidate for this pattern vertex thus can be excluded from the search space. This can be done by
setting 0 to the corresponding element in the M0 before starting the enumeration. The paper not
mention how this step can be done, and the effort to do this step was not taken into consideration
in the evaluation of the algorithm. This is maybe because the focus of the paper was to provide an
algorithm to enumerate and efficiently search all matching subgraphs by applying heuristics during
tree search (see section 2.3.4): Refinement. The implement design of this thesis in the section 5.1
includes the steps to construct M0 in the context of stream environment.

Ullmann suggested to reduce as many 1s as possible to reduce the size of search tree M0 if there
exists any prior information that some vi cannot correspond to some vj . Since this thesis discusses
about a pattern matching on a property graph, there exists more information than degree infor-
mation to determine the feasibility for each vertex. In section 4.5, the discussion will cover how to
reduce 1s in the context of property match and in the graph stream.

2.3.3. Condition for Subgraph Isomorphism

As test condition for subgraph isomorphism, it compares the pattern adjacency matrix A with
C (2.4) which is the permuted subgraph adjacency matrix from B by the permutation matrix M ′.
Ullmann’s condition for subgraph isomorphism is the following.

∀i∀j(aij = 1)→ (cij = 1) (2.6)

It does not test the other direction of the condition. In C, there can be more 1s(edges) than A.
Therefore, it is not an isomorphism, but an injective homomorphism. However, according to the
Section 2.2, this will be assumed as a condition for subgraph isomorphism.
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This permutation (2.4) requires 2 matrix multiplications and 2 transposes. It is worth considering to
compute this computation distributively. Elements for an internal calculation could be distributed
to each physical or logical node, and then the results will be further aggregated(for multiplication)
and put together(for both multiplication and transpose). But the matrices in the equation (2.4)
are likely to be a sparse matrix because vertex is connected only to some of other vertices [5]. The
discussion in section 4.4 will present an efficient alternative to the matrix permutation by using a
different graph representation.

2.3.4. Refinement

The essence of Ullmann’s Subgraph-Isomorphism is the Refinement step. This heuristic method
enables early termination during the search.

Definition 5 (Refinement). Refinement is an iteration of pruning until there is no more to prune
in the context of the current search path.

Definition 6 (Pruning). Pruning changes a mij = 1 to 0 when it turns out that vi cannot be
mapped to vj .

The scope of pruning is all mij = 1 at the moment of refinement. Refinements will be conducted
after every forwarding in DFS. In every forwarding in a DFS, the selected mij = 1 not only map a
graph vertex to a pattern vertex, but also exclude(prune) the rest unnecessary mapping candidates
in the current intermediate search space M . From this exclusion, the ongoing search path(current
search space M) can acquire more information about its feasibility of the isomorphism in the middle
of a DFS. Therefore, pruning removes impossible paths and enables early termination of a path
during the DFS. The refinement will conduct prunnings until there is no more to prune in M , and
the result of the refinement is either an early termination of DFS or a pruned M . With the help of
this step, the difficulty from NP-Complete problem could be mitigated.

Definition 7 (Neighbor Condition). For a mij = 1, all adjacencies(direct neighbors) of a pattern
vertex vi and the adjacencies of its mapped graph vertex vj should be also mapped in the current
M .

Adjacencies of a vertex v in graph G refers to the adjacent vertices found in the adjacency list
LG. When checking the existence of mapping of directed graphs, the directions of edges have to be
considered.

Definition 8 (NeighborG object). NeighborG ∈ {(Vsource, Vtarget) | Vsource, Vtarget ⊆ VG} is an
object with two attributes. One is a set of source vertices and the other is a set of target vertices.

NeighborG can represent direct adjacent vertices of a vertex v in G for both edge directions.
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Definition 9 (neighbor function). A function neighborG : VG → VG × VG is defined by
neighborG : VG → {(Vsource, Vtarget) | Vsource, Vtarget ⊆ VG}
neighborG(vi) := (sourceG(vi), targetG(vi)) where vi ∈ VG,

sourceG : VG → V ⊆ VG, sourceG(vi) := {vj | (vj , vi) ∈ LG},
targetG : VG → V ⊆ VG, targetG(vi) := {vj | (vi, vj) ∈ LG}.

The neighbor function finds all adjacencies from the adjacency list LG and returns a NeighborG

object of the given vertex v in G. The condition in 7 can be tested with this function. If the
condition is not satisfied, the mapping mij can be pruned in the rest of DFS. Following algorithms
show the Refinement and Pruning step.

Algorithmus 1 : Refinement
1 Function refinement

Data : Pattern A, Graph G, current Mapping M

Result : Pruned M or NULL for early termination
2 /* initialization */

3 Mprev ←M

4 Mpruned ←M

5 repeat
6 Mprev ←Mpruned

7 foreach mij = 1 in Mpruned do
8 Mpruned ← prune(A, G, Mpruned, vi, vj)

9 if a row of Mpruned has none of 1 then
10 return NULL

11 end
12 end
13 until Mpruned ̸= Mprev/* until there is no more to prune */;
14 return Mpruned

15 end
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Algorithmus 2 : Pruning
1 Function prune

Data : Pattern A, Graph G, current Mapping M , vi in A, vj in G

Result : Pruned M

2 /* test if neighbors have mapping in current M */

3 foreach sA ∈ sourceA(vi) do
4 if sA is not mapped to sG ∈ sourceG(vj) in M then
5 mij ← 0
6 break

7 end
8 end
9 if mij is 1 then

10 foreach tA ∈ targetA(vi) do
11 if tA is not mapped to tG ∈ targetG(vj) in M then
12 mij ← 0
13 break

14 end
15 end
16 end
17 return M/* M is pruned */

18 end

Ullmann suggested to conduct the refinement asynchronously with several computers. This could
be done for the line 7 to 12 in algorithm 1 by distributing each mij = 1, but the problem is that
Flink does not allow for the distributed streams to access a global status which is Mpruned in this
case.

However, there is still possibility to benefit from distribution. Because the refinement step is done
after every forwarding in the DFS, it accompanies many repetitive calculation for each i and j

of mij = 1. By storing the results of the repetitive computations for each mij = 1 in M0, more
efficient refinement step can be achieved. This will be discussed in section 4.9

2.3.5. Alternative Condition for Subgraph Isomorphism

Once a DFS has reached a leaf and the Refinement step changes nothing in this M ′, then this is a clue
that there are only correct 1s in the resulting M ′. This also means that the mapping of all vertices
satisfies all the adjacencies(neighbors) and it is equivalent to the subgraph isomorphism. Ullmann
introduced this as an alternative condition of subgraph isomorphism. By using Refinement in the
course of DFS, matrix permutation (2.4) will be no longer necessary, which is originally required
when testing the subgraph isomorphism (2.6).

For the property graph pattern matching, however, a decision to the matching has not been accom-
plished because above condition tests only the topology matching. After the topology matching,
property matching can finally determine the property graph matching.
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2.4. Property Graph Stream

Definition 10 (Property Graph). A Property Graph is a 7-tuple (V, E, L, τ, K, A, κ).

(V, E) is a graph with a set of vertices V and the set of edges E. L is the set of labels, and
τ : V ∪ E → L is a function that maps a label to each graph element. K and A denote the set of
property keys and the set of property values. The function κ : (V ∪E)×K → A∪{ϵ} maps a value
by a key of a graph element. Graph elements may not have a property value. Assignable type of
values may vary.

The Figure 2.3 illustrates a property graph stream of messages in a network with four vertices and
six edges.

Figure 2.3.: Example of a Property Graph Stream

Below Listing 2.1 is an GDL5 expression of the first Triple(Source-Edge->Target) from the left in
the Figure 2.3.

1 (N1:PC {user: user_a, last_login: 2022-10-09})
2 -(:Request {type: auth, timestamp: 2022-10-09})->(N4:Server {status: on})

Listing 2.1: GDL expression of a triple

2.5. Windowed Stream Processing with Flink

In a stream environment, elements of the stream flow through the system unbounded. For example,
elements in a stream can be messages over network, bank transactions, events in a social network
service or real-time data from sensors. By contrast, in a static environment, data are bounded within

5GDL(Graph Definition Language) is a language to express a graph in a plane text. It supports the syntax for
property graphs and the MATCH clause for a query.(github.com/s1ck/gdl, accessed February 2023)
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a system and an application can have an access without limitation in terms of the completeness of
the data in the system at any given time.

Unlike a static environment, unbounded stream system cannot have an overall access to the elements
as a whole. Any application for a stream system has to define in advance how to handle streams
and their elements. Flink offers many operators for stream transformation, but in this thesis, the
scope is restricted to the four types of transformation as below.

• Type 1: 1 to 1 transformation to single stream.(Map)

• Type 2: 1 to n transformation to distributed stream.(FlatMap)

• Type 3: n to 1 transformation to single stream.(Join)

• Type 4: n to m transformation to distributed stream.(FlatJoin, CoGroup)

Type 1 and Type 2 are appropriate for real-time processing and being unbounded is not a problem.
Type 3 and Type 4 need definition on how to capture n elements in a stream. To this end, Flink
provides Windows [6]. A Window is a split of stream elements into groups. Flink provides 4 Windows
- Tumbling Window, Sliding Window, Session Window and Global Window(see figure 2.4). Tum-
bling Window and Sliding Window group the stream elements within a predefined duration(window
size). While Tumbling Window splits the time axis without overlap, Sliding Window can split the
time axis with overlap. Session Window groups the stream elements between two sessions and a
session is defined by the period between inactivities in the stream. Global Window groups the steam
elements by user-defined key. All these 4 Windows offer different scopes to capture elements in the
stream. Windows can be combined consecutively or joined to apply functions to elements of the
streams together for further transformation into a different type of stream.

For Tumbling, Sliding, Session Window, a timestamp assignment rule needs to be defined. Flink
offers two notions of time: Event Time and Processing Time. Event time refers to the timestamp
of a stream element itself and is already embedded in the data before entering the Flink system.
Processing Time, on the other hand, refers to the system time of the Flink application. Event Time
is useful when the application has to treat the data based on their occurred time. It enables a
simulation of the data in accordance with their original occurrence and Flink processes the data
independent from the wall clock. Supposing someone conducts a simulation and extracts some
statistics on a 10-year long period of data based on Event Time. The processing may be done
within a few seconds or minutes. On the other hand, Processing Time is appropriate for a real-time
application. If a graph pattern matching application is running on a real-time data and the size of
the window is set to 3 minutes, the application has to capture the data also for 3 minutes in wall
clock which is the Processing Time.

Another aspect of stream processing is the keyed and the non-keyed window. By using the keyed
window, each group of elements in the stream with the same key will be processed in separate task
slots distributively. It is useful when grouping of elements are necessary in a window. The keyed
window enables to process a group with the same key distributively without affecting the windows
with different keys. For example, a stream of user events can be divided by user’s identifier and
a pattern matching algorithm can be conducted on to each user. On the other hand, non-keyed
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Figure 2.4.: Assignable Windows in Flink

window treats all elements in the stream in the same window operation without considering group.
To decide whether to use keyed or non-keyed window, following aspects need to be taken into
consideration. The keyed window offers a more detailed access to the data, but this also necessitates
more computation and memory. If grouping does not offer any better chance to apply an operation,
using the non-keyed window can be a simpler selection. Some of the pipelines in the implementation
of modified Subgraph-Isomorphism can utilize the keyed window for a better performance. This
will be discussed in section 5.1.

2.6. Flink Architecture

Flink is a distributed system that can run on a number of shared-nothing clusters(workers, TaskMan-
agers). The TaskManagers are connected to a single JobManager that controls all the connected
TaskManagers. The JobManager is responsible for the execution of the dataflow of the program
and scheduling of its tasks. When starting a Flink application, a client loads the program code to
JVM, and then the dataflow is built. The dataflow will be sent to a single JobManager. The client
has no more role during the Job is running. Some Flink streaming applications may never stop until
the client commands the JobManager to stop the running job explicitly. Each TaskManager is a
process in a JVM and executes task(s) in task slot(s). The predefined number of task slots is the
maximum degree of parallelism of a Flink system. Each task slots in a TaskManager will separately
use the memory of a TaskManager.
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Definition 11 (DAG). DAG(Directed Acyclic Graph) is a directed graph without any cyclic
sequence of edges.

Figure 2.5.: Example Dataflow from Flink Web Dashboard

Flink dataflow can be represented by a DAG6 consisting of operators(Source(s), Transformation
operator(s) and Sink(s)) as a set of vertices and streams between operators as a set of directed
edges. The figure 2.5 is an actual screenshot from Flink Web Dashboard. One Source operator and
many transformation operators with three Sink operators are displayed in a DAG.

The result can be stored or directly output to some device depending on requirements of a user.
It is also possible to pipeline the result stream to another Flink application as an input stream via
TCP Socket.

Flink API offers Table API and SQL on top of DataStream API. DataStream API enables program-
mers to fluently handle the stream with transformation, join, window, state, etc, and to produce
an output also as a stream. For more declarative usage, Table API and SQL provide relational al-
gebra operations such as select, project, join, group-by, aggregate, etc. With the help of Table API
and SQL, querying on continuously changing graph stream can be possible 7. Ullmann’s algorithm
is, however, less relevant to relational algebra, but more about matrix calculations, search strat-
egy and heuristics. The implementation in this thesis uses only DataStream API and distribution
strategy is designed based on the analysis of data transformations and their need for distributed
computation.

6There exists some exceptions such as Iteration operator in the DataStream API.
7To implement a stream graph pattern matching solution, using Table API could be worth considering because it

supports relational algebra operations. A solution to graph pattern matching problem with relational algebra with
Flink can be found in the research [2] and it is implemented in Gradoop. Gradoop has a graph pattern matching
implementation using relational algebra and enables querying on the static distributed dataset with Cypher. The
implementation uses DataSet API.
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2.7. Distribution in Flink

Type 2 and Type 4 transformation in DataStream API can transform a stream into distributed
streams. Although the streams are distributed, API allows programmers to access the streams as if
they enter a transformation operator as one logical stream. The distributed execution of the trans-
formation operation task is automatically coordinated across the JobManager and TaskManagers.
Task slots keep the JobManager updated on their recent Watermark, which reflects the status of
their operation in terms of their recently processed Timestamp. If one task slot is taking long to
complete its operation, the other task slots in the same stream will stop proceeding until they
receive a progressed watermark.

Distributed computation can solve problems with a large volume of data by partitioning them
into smaller problems. However, in a streaming system, the system must provide effective load-
balancing, so that one overloaded task slot does not delay the entire application [7]. Flink offers
several partitioning strategies such as rescale, rebalance and broadcast to ensure fair use of task
slots.

One of the critical considerations in this thesis is determining what should be distributed. While
high parallelism could reduce computation time, it can also result in a larger amount of data transfer
to TaskManagers and task slots. This thesis evaluates this trade-off by comparing two scenarios:
one involves a large amount of object distribution to achieve less computation in the successor
operators, and the other will not distribute objects to minimize the communication costs.

An important note about the distribution is that the join transformation cannot be applied to
an already distributed stream. If two heterogeneous objects needs to be processed together in a
transformation operator, they must first be joined and then distributed together by being packed
in a single object.
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3. Related Work

Ullmann’s Subgraph-Isomorphism [4] focuses on the enumeration of all M ′ and refinement during
searching for isomorphisms. How to construct A, B, M0 with a computer was not mentioned in the
paper. Discussions in this thesis include these tasks in terms of stream graph and distributivity.
In a stream system, these constructions will be conducted repeatedly, thus it is worth considering
this cost into the pattern matching algorithm together. In addition to that, the design and imple-
mentation will also include property matching. Ullmann suggested asynchronous computation on
some of the steps in the algorithm. Discussions in this thesis include what and how his suggestion
can be achieved.

Stonebraker et al. [7] presented eight requirements of real-time stream processing. The paper com-
pared the requirements of stream processing with relational DBMS and online analytical processing.
It highlighted the importance of low-latency processing, the ability to handle high throughput of
data, scalability to handle increase of data volume, fault tolerance, querying on stream, etc. Some
of the designs and evaluations in this thesis are inspired from these requirements.

Alkamel, A. [3] used Dual Simulation algorithm in Flink as a graph pattern matching algorithm for
property graph stream. In that thesis, several possible matching models were introduced as well as
different matching steps that could be applied in different stream processing steps. Furthermore, a
prototypical implementation of the pattern matching system, SGraPMa, was introduced with an
evaluation method and its result. Basic ideas in the paper on property matching and implementation
prototype have inspired the implementation of this thesis.

Other Subgraph Isomorphism algorithms such as VF2 [8], QuickSI [9], GraphQL [10], GADDI [11],
and SPath [12] were introduced and compared in the study by Lee, J. et al. [13]. These algorithms
improve the performance of pattern matching by using different join orders, pruning rules and
neighborhood information. In the study [13], the algorithms from originally different programming
environments were implemented in the same environment and tested with the same real-world
datasets(undirected graphs) in a static graph system. And then it was followed by an in-depth
comparisons of subgraph isomorphism algorithms.

The usage of query language was previously available in graph databases but not well supported
in the distributed graph data processing system. In the study by Junghanns et al. [2] in 2017,
the declarative graph query language Cypher was implemented to enable non-programmers to use
it more comprehensibly in the distributed graph analysis platform Gradoop. It included pattern
matching in a large graph data with the query language. It also demonstrated the scalability of
the operations in the queries in Gradoop. At the time this paper was written, Flink was selected
as distributed data processing system, but not as stream processor. Gradoop used DataSet API of
Flink, which has been soft-deprecated since November 2020(Flink 1.12) and replaced by DataStream
API, which is now used with backwards compatibility.

Ullmann’s enumeration strategy was the DFS and the possibility to distribute this enumeration
was not introduced. Makki et al. [14] presented an efficient distributed DFS algorithm. Nodes and
edges are distributed in a communication network. Nodes can communicate with other nodes by
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sending messages over network connection. Messages about visited and unvisited nodes are sent
and they enable more efficient tree search. Like other DFS algorithms, it also uses stack but with
more functionality - inspecting entire stack and removing some elements directly. The performance
is proven to be better than other DFS algorithms. However this distributed DFS is not appropriate
to be adopted in Flink. The distributed DFS is designed to use communications between distributed
nodes in a network. However Flink does not provide such communications between distributed nodes
for a stream. Therefore another distributable search strategies are analyzed in this thesis.
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4. Problem Analysis

This chapter analyzes the subgraph isomorphism problem in the context of property graph streams
in distributed environment Flink. The analysis begins with discussion on the complexity of the
problem, followed by discussions focusing on the challenges of Ullmann’s Subgraph-Isomorphism
on graph stream. This problem analysis and discussions on potential solutions set the foundation of
the implementation and evaluation of the proposed approaches to the goal of this thesis: Windowed
Graph Stream Pattern Matching using Subgraph-Isomorphism.

4.1. NP-Complete

Subgraph isomorphism as a decision problem is known to be an NP-Complete [1], meaning that
there is no known algorithm to find a solution within polynomial time. Ullmann’s Subgraph-
Isomorphism can be categorized as a backtracking based algorithm for the subgraph enumeration
problem, which is computationally more expensive than the decision problem. The heuristics in the
algorithm are not designed to produce an efficient algorithm, but rather to mitigate the difficulty
of the problem by reducing the size of search space M0 and enabling early termination via the Re-
finement step. The goal of this thesis is to prototypically implement the algorithm in the streaming
system Flink and to add further efforts to mitigate the difficulty of the problem by distributing
some of its processing steps. Presenting an efficient subgraph isomorphism algorithm is not the goal
of this thesis.

4.2. No static database

In a static graph system, the set of vertices and the set of edges can be stored in separate tables
within a relational database system. Every edge requires two reference keys to map its source and
target object in the vertex table. To solve a graph problem in a static graph system, relational
algebra operations such as Join and Select are used to find vertices of edges. In a stream graph
system, by contrast, accessing static database should be avoided if possible. One of the essential
requirements of stream processing is that the data should keep flowing through the system without
having a bottleneck. If stream elements are edges and there is a static database with vertex and
edge tables with keys to join them, the edges in stream will require at least two Join operations. For
analytical purpose, this is not acceptable because streaming system demands low-latency processing.
However continuous storage and polling in relational database system can lead to higher latency
and cause problems such as bottlenecks in operations. For this reason, static database systems are
not well-suited for stream systems [7].

An edge in static system can be transformed into a triple of (s, e, t) ∈ V × E × V that can equiv-
alently represent an event in the graph stream. Source and target objects contain all of their
description even if they can appear repeatedly in the stream. Unlike static system, redundant oc-
currences are not considered as a problem in stream systems. If it is necessary to capture aggregated
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data, the operations in the graph stream system should store data in memory within a window’s
operator.

From this context, this thesis assumes that there is no prior information or the use of a database.
A set of triples is considered incomplete until the defined time window is closed. To conduct
computations such as building matrices A, B, and M0, or applying matrix permutation (2.4), all
necessary information needs to be stored without the help of a database. For example, to construct
an adjacency matrix, it requires the indices of vertices and information about their connections.
Although there is no database, the index are stored similar to a database system, for example, by
hashing with an available key.

4.3. Challenges from Using Traditional Graph Representations

One problem of constructing adjacency matrix in the graph stream is that it first requires complete
set of vertices, edges and their index. To obtain a complete set of vertices and edges in the stream, it
is necessary to wait until the end of each time window. Constructing the adjacency matrix incremen-
tally is also possible. However, it is inappropriate to build an adjacency matrix for an incomplete,
evolving graph. Adding a new row and column to the adjacency matrix at every appearance of new
vertex requires expanding the size of the matrix each time. Additionally, 2D-array is not a good
solution because it requires fixed size upon initialization. Another problem of adjacency matrix is
that it stores |V |2 information about edges for a graph G(V, E). For a sparse matrix, it would be
waste of memory because it also stores 0s for unconnected vertices. A vertex in a graphs is likely
to be connected to only some of other vertices, therefore its adjacency matrix would be a sparse
matrix [5]. For this reason, using adjacency list with List object is more preferable to represent a
stream graph.

While adjacency list offers a better opportunity to represent a stream graph than 2D-Array, there
is also a disadvantage. Subgraph isomorphism problem requires to meet the mapping of both vertex
and adjacency. To verify mapping of a number of adjacencies, it would demand high computational
cost to iterate on the graph several times. To select an edge or a vertex in an adjacency list, an
iteration on the list is unavoidable. If such iterative operations must occur frequently, another
alternative can be chosen: Hashing. With the help of HashMap, it is possible to store edges with
indexing the key with SourceAndTargetId, which is Tuple2<SourceId, TargetId>. This enables
lower cost of selecting an edge in the graph. The implementation of the thesis represents stream
graphs with HashMap<SourceAndTargetId,Triple> and it is named AdjacencyMap. AdjacencyMap

also contains additional index to allow accessing the graph elements by the order and id of ver-
tex. Briefly, the AdjacencyMap is an expansion of HashMap<SourceAndTargetId,Triple> with
additional indices based on vertex order and vertex id respectively.

Definition 12 (AdjacencyMap). AdjacencyMap is a representation of a stream graph that includes
three types of indices to facilitate easier access to graph elements: the tuple of (Source Id,

Target Id), Vertex Id, and Vertex Order
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4.4. Subgraph from AdjacencyMap: an Alternative to Matrix
Permutation

AdjacencyMap needs to support the permutation operation in formula 2.4 to derive a subgraph
from the stream graph. An advantage of using AdjacencyMap is that deriving subgraph with M ′

accompanies less computation than adjacency matrix. This is because, for a m′
ij = 1, the j is

the index of vertex of the graph and i is the order of the selected vertex in the isomorphism.
With the help of index in the AdjacencyMap, deriving subgraph from the stream graph requires,
in general, constant complexity of O(1), which is more efficient than O(N3) of matrix multiplica-
tion8. By avoiding matrix multiplications, higher efficiency could be achieved in terms of the time
complexity.

4.5. Reducing Search Space using Property

The inherent complexity of the subgraph isomorphism increases significantly as the number of
graph elements in a window grows. Therefore, reducing the number of candidates in the search
space plays an essential role in solving this problem. Properties and predicates can contribute to
this effort in the first two steps among the three steps below. This lists the usage of properties and
the predicates within the algorithm.

• Step 1. Filtering out irrelevant triples from input stream

• Step 2. Initializing the search space M0

• Step 3. Property matching on an isomorphic subgraph

The step 1 filters irrelevant triples out from the input stream of triples. To achieve this, the triple-
Filter (function 3) is applied on the input stream. The soloMatch in the function refers to the
Solo check in the paper [3], which tests the properties and also self-predicates of a single graph
element against that of an element in the query. Predicates could be tested on the subgraph af-
ter isomorphism test(Step 3). However, by testing the self-predicates in this step 1, reducing more
triples becomes possible in earlier stage of the algorithm. The step 1 contributes to reduce the num-
ber of columns in the M0 by filtering only the relevant vertices from the property graph stream.
Only the relevant vertices will construct the columns of M0 as a result of step 1.9

Out of this filtered triple stream, an additional stream will be produced to compute the degree of
each vertex. Each triple will be transformed(Type 2 in 2.5) into the stream of (source vertex

id, 1) and (target vertex id, 0) tuples, and they will be distributed to keyed window stream
by each vertex key(identifier). The sum of the 1s in each of keyed window indicates the out degree
of each vertex in the windowed graph stream. Although this computation was not considered
in Ullmann’s algorithm, the vertex degree can be efficiently computed with the help of Flink’s
distributed keyed window stream.

8There are many algorithms for matrix multiplication including distributed algorithms that have lower complexity
than O(N3), but they are still higher than O(1)

9As explained in the Limitation (see section 5.3), the column index will not be ordered.
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After this, the step 2 determines the value of each row in the columns out of step 1. This step
follows the suggestion of Ullmann by reducing more 1s in the M0 with prior information, which
is the properties and self-predicates besides the vertex degree. Three conditions(degree, properties
and self-predicates) of each query vertex vi(a row of M0) test each stream vertex vj(a column of
M0), and assign m0

ij = 1 only when the vj passes all the conditions of vi.

By applying Step 1 and Step 2, the search space M0 becomes smaller than the M0 without prop-
erties and self-predicates.

Algorithmus 3 : Triple Filter function
1 Function tripleFilter

2 /* test if the triple tG has a matching triple in A */

Data : A Triple tG in Graph G, Pattern A

Result : Boolean
3 foreach tA ∈ A do
4 if soloMatch(tG.source, tA.source) then
5 if soloMatch(tG.target, tA.target) then
6 if soloMatch(tG.edge, tA.edge) then
7 return True/* tG has a matching triple in A */

8 end
9 end

10 end
11 end
12 return False/* tG has no matching triple in A */

13 end

4.6. Multi Graph into Single Graph

In a property graph, two edges are considered distinct if they have the same source and target
vertices but different labels or properties. This distinction results in a multi-graph by definition,
where multiple edges can exist between the same pair of vertices. For a GDL query below, for
example, there will be four matching patterns in the figure 4.1.

MATCH (:City)-[type:"regional"]->(:City)-[:Train]->(:City)

Figure 4.1.: Example of a multi property graph

In this thesis, the prototypical implementation and evaluation are restricted to single graphs. Be-
cause of this restriction, it is necessary to ensure that all edges of the triples in a time window have
to be unique for each pair of source and target vertices. To solve the problem of removing edge
duplication, Keyed Window can be used. To split the stream, key has been assigned by (s.id,
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t.id) to each triple (s,e,t). The number of splits is maximum |Vβ|2, which is the number of
elements in adjacency matrix B. After applying Window to this Keyed Stream, the triples in a
Keyed Window have the same key (s.id, t.id), but there can be a number of different edges in
terms of their property. To remove edge duplication, following assumptions were considered.

1. Choose the first one in the window.

2. Choose the most recent one in the window.

3. Choose one with matching property.

In this thesis, the first alternative was chosen for simplicity. Because Flink offers access to Iterable

object and getting the first one can be done without iterating objects in the window. On the other
hand, choosing the last one in the Iterable requires one full iteration. Computing property match
between graph edges and a pattern edge may provide the best result in terms of finding isomorphism,
but it is hard to define the match because it is not know yet which pattern edge should be compared
to the edge in the window.

4.7. Configuring Multiple Window Operations

This thesis limits its scope to Tumbling and Sliding Windows because the evaluation assumes that
the input stream flows with a predefined throughput per second. Session Window, which requires
gaps in the stream to split it, is not suitable. Global Windows is flexible to use, but it offers no
benefit to graph pattern match because there is no prior information about a key to group stream
elements. The available information to group the stream elements is only the timestamp. Therefore,
the thesis focuses on Tumbling or Sliding Window to compose a graph using the timestamp in the
stream. Besides the selection of Window, it is required to define how to assign timestamp for each
stream element.

For the dataset, which is used for the evaluation, the embedded event timestamp could have been
used. However, to enable more realistic evaluation, additional assumption and modification were
necessary. If the timestamps in the record are used, the number of triple among time windows will
fluctuate unpredictably, which will make the evaluation less meaningful. For this reason, it has
been first decided to use the processing time. But this did not fully solve the problem because the
implementation uses several consecutive windowing operations [15] to construct the pipelines of the
stream Subgraph-Isomorphism. One thing to note is that the elements out of a window will get the
maximum timestamp of the window.

Sliding Windows requires more care when a Flink application contains consecutive window opera-
tions. If multiple Sliding Windows are used, duplicated elements will be observed by downstream
Sliding Windows. In the figure 1.3, the Sliding Window is configured with 10 seconds window length
and 5 seconds for the slide. The timestamp of all elements out of the Sliding Window [12:02:05PM,

12:02:15PM) will be 12:02:14.999PM. If a successor window operator is configured also with the
length of 10 seconds, the window will also contain all elements out of the overlapping previous Slid-
ing Window. This is because the timestamp 12:02:14.999PM falls into the window [12:02:10PM,

12:02:20PM). Therefore, all elements in [12:02:10PM, 12:02:14.999PM] will appear duplicated
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in the successor window operator for the period of [12:02:10PM, 12:02:20PM). To avoid this, if
a Flink application uses Sliding Window and multiple window operations, the successor windows
must use Tumbling Window as below.

• Place the Sliding Window in the front of the dataflow.

• Tumbling Window’s size must be the sliding size of the Sliding Window.

With this configuration, the timestamps of elements will be always the maximum timestamp of
the first Sliding Window and they will not change in the course of the dataflow. The intended
operations will occur on every length of slide without any duplicated stream elements in the
successor windows.

4.8. Tracking Flink Operations

One advantage of stream system is the real-time computation. However, the graph pattern matching
requires windowed operations. With increasing amount of elements in windows, the system may
not process streams with low latency and predictable results. A bottleneck in a window operation
delays not only the successor operations, but also the predecessor operations such as source operator,
especially if the bottleneck is not making a progress on its recent watermark. In that case, the source
operator cannot accept any new input until there are available task slots. There are some solutions
for this problem by automatically scaling up the degree of distribution and increasing the system
capacity. But this thesis excludes discussions about this.

It is obvious that window operations such as Type 3 and Type 4 in 2.5 require more capacity. One
challenge is that it is difficult to know how much capacity it would require. The impact of the
amount of elements in the stream needs to be analyzed in terms of the system capacity and the
throughput of input.

To analyze this, the evaluation will focus on the time consumed by operations in the implementation.
To measure this, a Tracker is designed and attached to stream objects. Tracker will keep the
timestamps of some of the operations throughout the system. Observing the Tracker records as in
the table 4.1 will enable to identify which operations in the implementation are causing issues.

Operation End Time Duration
WindowAll:graphAdjacencyMap 2023-01-09T22:25:30.731Z 0
WindowAll:get-M0.begin 2023-01-09T22:25:30.820Z 89
WindowAll:get-M0.end 2023-01-09T22:25:30.821Z 1
Join,FlatMap:M0distribution 2023-01-09T22:25:30.967Z 146
Map:neighboursMapSubset 2023-01-09T22:25:31.079Z 112
CoGroup:merge-NeighboursMap 2023-01-09T22:25:32.618Z 1539
CoGroup:BFS-queuing.begin 2023-01-09T22:25:32.770Z 152
FlatMap:DFS.begin 2023-01-09T22:25:33.096Z 326
apply-permutation 2023-01-09T22:25:33.102Z 6
property-match 2023-01-09T22:25:33.103Z 1

Table 4.1.: Records in a Tracker in a Window
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4.9. Distributed Neighbor Computation

During searching in the M0, a number of repetitive computations occur. The largest overhead
emerges from Refinement step, which iteratively tests the existence of direct neighbors mapping in
M . Within a path, the line 7 of the algorithm 1 causes problem because the Refinement is conducted
at every forwarding in the path. More over, the entire search will visit the same node(mij = 1) in the
search tree many times from different paths(see figure 2.1). To avoid this repetition, NeighborsMap

can be computed only once for each window.

Definition 13 (NeighborsMap). NeighborsMap object is a HashMap of Neighbors object by
hashing (i, j) as the key, where m0

ij = 1.

Definition 14 (Neighbors). Neighbors is an object with 4 Lists: query targets, query sources,
graph targets, graph sources depending on following arguments: a query vertex, a target vertex in
the context of Query and Graph.

A naive approach to compute the NeighborsMap is to iterate on every m0
ij = 1. However, because

the computations on each (i, j) are independent from each other, a distributed approach can be
considered. By evenly partitioning the set of m0

ij = 1 in M0, the subsets of the NeighborsMap
can be distributively computed. After the completion of distributed computation, all subsets of
the NeighborsMap in the window can be merged(joined) because the resulting subsets have no
intersecting elements with the same (i, j). This step is not mentioned in Ullmann’s paper, but it
is worth implementing and verifying the new approach. Whether the distribution of M0 for the
calculation of NeighborsMap improves the performance or not will be discovered in the evaluation
part.

4.10. Distributed Tree Search

The NP-Completeness arises from searching for all isomorphisms in the M0. If possible, this step
should be conducted distributively to mitigate the inherent difficulty. Ullmann’s method of enu-
meration cannot be distributed because of the backtracking with the global stack. This requires a
distributed search strategy as demonstrated in the Figure 4.2.

Figure 4.2.: SubTrees derived from Figure 2.1
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This search strategy is a mix of Breadth-First Search(BFS) and Depth-First Search. To partition
the SubTrees with the similar amount of search spaces, BFS strategy is used first: all the 1s in the
row with lowest i in the M0 will be first selected and split until the desired degree of distribution
is achieved. Each of the partitions is the SubTree and it can be now considered as an independent
search space. The set of SubTrees and the original tree are equivalent in terms of the result of the
subgraph isomorphism, therefore they can be evenly distributed to each task slots for further tree
search with the same Refinement and NeighborsMap as before.

The next consideration is how to remove the global backtracking and this can be achieved with the
Recursive Depth-First Search. By copying the SubTrees for each recursions on the same level, the
global stack can be replace. But, this does not reduce the calculation or increase the performance
because the copying the SubTrees are fundamentally as same as storing the splits in the stack.

Although the search space is evenly partitioned, some of the SubTrees may finish its search earlier
with the help of the Refinement. In fact, the partitioned SubTrees do not contain similar amount of
isomorphisms. However, knowing it in advance is not possible due to the nature as the NP-Complete
problem.
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5. Distributed Subgraph Isomorphism on Property Graph
Stream

This chapter integrates problem analysis and discussions from the previous chapter to design a so-
lution for the problem of property graph subgraph isomorphism in the stream environment Flink.
The chapter also includes a list of assumptions and limitations. In addition, to benefit from dis-
tributed system following basis of strategy has been established to address the challenges from the
problem analysis.

• Rule 1. Most time consuming operation should be distributed at the last stage of the algo-
rithm.

• Rule 2. Select distribution when there is a trade-off between distribution and volume of data
to distribute.

• Rule 3. Reduce Join transformation as much as possible.

As a result, following strategy has been set. For the Rule 1, the searching in M0 will be distributively
conducted at the end of the pipeline because this process is where the NP-Completeness originates.
To enable distributed search, M0 will be partitioned fairly to each task slots as illustrated in
the Figure 2.1. As a result of the Rule 2, AdjacencyMap itself will be distributed to all task
slots by attaching it to partitioned M0 together with pre-computed Refinement object. This will
require large volume of data communication, but at the same time, it will enhance the searching
performance. In order to comply with the Rule 3, the AdjacencyMap is joined to distributed stream
of Sub-Trees before computation of distributed NeighborsMap.

5.1. Design

This section illustrates the design of Windowed Graph Stream Pattern Matching using Subgraph-
Isomorphism based on the problem analysis and discussions in the section 4.

In contrast to the dataflow in the figure 2.5, this DAG in figure 5.1 represents streams as vertices
and transformation operations as edges. When joined streams map to a stream of Tuple with the
original or mapped data type, they are represented in the form of <XXX, YYY>. It is important to
note that the query graph from the GDL Query is not reflected in this DAG, as the query object
is not a stream element. However, it can be easily accessed by any operation by providing it as an
argument to the operator. The dataflow in Figure 2.5 together with the DAG in Figure 5.1 illustrates
how Subgraph-Isomorphism on a property graph stream is designed with Flink DataStream API.

The source operator(Type 1) accepts a stream of triples as input from outside the Flink application.
This stream is then filtered by the next operator(Type 1) to remove irrelevant data. The filtered
stream is then transformed by multiple operators. One operator(Type 2) computes the degree of
each vertex in a keyed window stream in a distributed manner and constructs matrix M0 using
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Figure 5.1.: Design of Windowed Stream Subgraph-Isomorphism

windowAll, while the other operator(Type 3) constructs an AdjacencyMap with all graph elements
in a pre-filtered, non-keyed window without distribution.

Before the streams from the previous operators are joined, the NeighborsMap is distributively(Type 2)
constructed(Type 1) and grouped in a window(Type 3). The M0 stream is then joined(Type 3)
with the AdjacencyMap and NeighborsMap before being distributed(Type 2) by partitioning the
M0 into disjoint Sub-Trees (see section 4.10).

The distributed Subgraph-Isomorphism begins with the operator(Type 1), which performs DFS
Refinement independently in each task slot following Ullmann’s algorithm. After this, the correct
results obtained from Ullmann’s algorithm are processed again with the property matching, and
the resulting stream is produced at the sink operators(Type 3).

5.2. Assumption

The design of the Windowed Graph Stream Pattern Matching using Subgraph-Isomorphism assumes
the followings.

1. Database is not available.
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2. Elements of input stream are triples of (source, edge, target) with unique identifier in each
element of a triple.

3. Edges are directed.

4. Elements have label and properties.

5. Pattern matching will be applied on a single graph. Among duplicated edges, only the first
edge will be considered.

6. The condition for the subgraph isomorphism requires injectivity, not bijectivity.

5.3. Limitation

The results of the algorithm are indistinguishable in terms of the set of matching subgraph isomor-
phisms regardless of the order of search in the search space. However, Ullmann suggested to sort
the index of vertex in adjacency matrix in the descending order of degree to enhance the refinement
step. But the computational effort it requires to sort the vertex index was not taken into account
in the paper [4]. The implementation and evaluation of this thesis also do not consider this. As
sorting the vertex index was identified as a bottleneck for the design, it was excluded from both
the implementation and evaluation stages of this thesis.
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6. Prototypical Implementation

This chapter presents the prototypical implementation of the Windowed Graph Stream Pattern
Matching using Subgraph-Isomorphism including the illustration of the workflow for the evalua-
tion. In addition, a custom Stream Server is implemented specifically to help the prototypical
implementation with following reasons:

1. To restrict the scope of the thesis merely to Flink.

2. To ensure the deterministic order of input data from the dataset for the evaluation.

3. To configure the throughput of the input stream for the evaluation.

6.1. Technologies

Used technologies are listed in table 6.1 with their usages.

Technology Version Usage in the thesis
Java jdk1.8 Development and Runtime Environment for Java Application
Flink 1.14 Distributed stream processing environment for the Property

Graph Stream Pattern Matching
Apache Maven 3.8.3 Build automation for the Flink application
GDL 0.3 Graph and Query definition
TCP/IP - Network communication protocol between the Stream Server and

Flink
Netcat 0.7.1 Configuration of the Stream Server

Table 6.1.: Used technologies

6.2. Workflow of the Prototypical Implementation

The prototypical implementation of the graph pattern matching system is structured into three
levels: client, socket, and Flink application, as illustrated in Figure 6.1. The overall workflow consists
of the following steps:

1. The Stream Server runs on the client and writes graph stream to a socket.

2. With the given arguments in the Table 6.2, the Flink application connects to the socket and
reads from the socket as the source of stream.

3. The Flink application applies the graph pattern matching algorithm to the stream, and gen-
erates a stream of matching results.

4. The outputs will be sent to the client over sockets.
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The Benchmark program controls the execution of the Flink application in various scenarios by
configuring the throughput of the Stream Server and assigning different sets of arguments for the
Flink application as listed in Table 6.2. For the purpose of the evaluation, the prototypical imple-
mentation outputs three streams in total: Result of pattern matching to the Socket1, Timestamp
records in the Tracker to the Socket2, Filtered triples in a window to the Socket3.

Figure 6.1.: The workflow of the prototypical implementation

6.3. Input and Output

To read the text stream input from the client’s local Stream Server through clients socket, the im-
plementation utilizes the socketTextStream method described in the Listing 6.1 in the StreamEx-
ecutionEnvironment provided by Flink10.

1 public DataStreamSource<String> socketTextStream(String hostname, int port)

Listing 6.1: socketTextStream method

Below Listing 6.2 is the code snippet of the input and the socketTextStream method. The Stream
Server runs on the client’s local JVM and its throughput configuration will be informed by the
benchmark program through the port 9998. The Stream Server will write a stream of triples as
text with the given throughput configuration.

1 //Benchmark shell script
2 //configure the Stream Server with throughput of 1000/s for example
3 echo 1000 | nc localhost 9998
4

5 //Stream Sever side
6 acceptThroughputConfig(); //accept the throughput configuration from port 9998
7 printWriter.println(tripleAsTextLine); //write triples as text stream to socket
8

10socketTextStream method supports only TCP socket. WebSocket is, however, not supported.
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9 //Flink side
10 DataStreamSource<String> inputStream
11 = socketTextStream(hostName, 9999); //read triple stream from socket
12 DataStream<Triple> tripleStream
13 = inputStream.map(new TripleParser()); //parse triple text to a Triple object

Listing 6.2: Stream input and socketTextStream method

The Listing in 6.3 demonstrates an example output of the pattern matching result from the pro-
totypical implementation. Each null in the adjacency matrix indicates that there exists an edge
between the matching vertices in the windowed graph stream, however, the edge does not have a
corresponding edge in the query graph.

1 [2023-01-09T22:25:20Z - 2023-01-09T22:25:29.999Z]
2 Adjacency-Matrix(4x4) with 12 elements
3 v3 v1 v2 v4
4 v3 [ e3 e7 null e4 ]
5 v1 [ e6 null e1 . ]
6 v2 [ e2 . null . ]
7 v4 [ null e5 . null ]
8 //ID and property of each element will be printed additionally.

Listing 6.3: Example of Pattern Matching Output

All the outputs are finally processed in the Sink transformation operators. The prototypical im-
plementation will sink its output to the sockets with writeToSocket method in the Listing 6.4.

1 public DataStreamSink<T> writeToSocket(String hostName, int port
2 , SerializationSchema<T> schema)

Listing 6.4: writeToSocket method

The client can access the output stream as described in the code snippet in the Listing 6.5.

1 //Flink side
2 matchResultStream.writeToSocket(hostName, 9991, new SimpleStringSchema());
3

4 //Client side. Client will append the stream to a local file.
5 //In terminal
6 nc -lk 9991 >> /result/result_file1

Listing 6.5: Stream output and writeToSocket method

6.4. Program Setup

The table 6.2 lists the arguments available for the implemented program. For Sliding Windows, the
half of the window length is set as the length of slide, and the successor windows are automatically
set to Tumbling Windows accordingly (see section 4.7). The IngestionTime for timestamp argument
is an alternative for the processing time window. If processing time window is used, the group of
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elements of one window can have different timestamp than the elements in the successor windows.
And their timestamp will change in the course of going through several windowing operations. To
avoid this, the evaluation uses time windows not with the embedded timestamp but by assigning
the ingestion time of each triple. By assigning them, the elements out of the first window and the
successor windows will have the same timestamp. This consideration is made only for the purpose
of evaluation.

The window_runtime serves to restrict the maximum processing time for each window with the
help of the Tracker. When a Tracker identifies that it exceeded the maximum runtime in a window,
which is set to five minutes by default, the Tracker stops the Flink Job. This function is designed
for more efficient evaluation because it enables to identify the bottleneck during the runtime and
to dismiss the evaluation earlier.

Arguments Options Purpose
jar name of jar file to select different implementations
query_file name query file to select different query
parallelism a number to set the parallelism and evaluate its impact
window_type Tumbling and Slid-

ing
to configure window type

window_size length in seconds to evaluate impact of window size
throughput input throughput to evaluate impact of throughput
input_port port number to specify input port
output_port1 port number to specify output port for pattern matching re-

sult
output_port2 port number to specify output port for identifying bottleneck
output_port3 port number to specify output port for observing the triples

in the stream
server_config_port port number to update the server configuration during the

evaluation
timestamp EventTime or Inges-

tionTime
to configure timestamp

time_unit milliseconds, sec-
onds, minutes,
hours, days

to configure the time unit

window_runtime milliseconds to configure maximum running time for a win-
dow(default 5 minutes)

number_of_window the number of win-
dow

to configure the number of windows to evalu-
ate(default 30 windows)

Table 6.2.: Arguments for the program

The code snippet in Listing 6.6 is an example running command with the arguments in the ta-
ble 6.2.

1 #In terminal
2 /opt/flink-1.14.5/bin/flink run -p 576 -c edu.leipzig.streaming.graphs.

patternmatching.subgraphisomorphism.app.BikePatternMatchApp /local/d1/users/
userxxx/jar/pattern_match/StreamGraphPatternMatch-1.0.jar -queryFile /local/d1/
users/userxxx/query/query1 -testKey test01 -host localhost -inputPort 9999 -
outputPort1 9991 -outputPort2 9992 -outputPort3 9993 -timestamp IngestionTime -

Sung Geun Yun
3735467

33



6. Prototypical Implementation

timeUnit seconds -parallelism 576 -windowType TumblingWindow -windowSize 30 -
maxRuntimePerWindowMilliSec 300000

Listing 6.6: Flink running command with program arguments
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7. Evaluation

This section dedicates to the evaluation of the Windowed Graph Stream Pattern Matching us-
ing Subgraph-Isomorphism. The first object is to verify if the distributed Ullmann’s Subgraph-
Isomorphism can process the graph stream pattern matching with a low latency as emphasized in
the paper [7]. To achieve this, the prototypical implementation measures the runtime of the Flink
Job for each matching task in various scenarios, and the resulting runtime to complete the 30 cycles
of windows will be compared against their allowed latencies.

Allowed latency = Total duration of a matching task

= length of the window × 30

The second object is to determine whether increasing the degree of parallelism can improve the
processing of large graphs that could not be effectively processed with a lower degree of parallelism.
Confirming the necessity of the distribution of M0 (see section 4.9) is the next object. The last
object is to identify which operations are the most time-consuming within the dataflow.

To achieve the objects above, the benchmark program sequentially runs each matching task scenario
with the combination of the parameters in the table 7.1. To confirm the expected advantage from
the distribution of M0, a specific version of Flink application has been implemented, which performs
the pattern matching without the distribution of M0. The timestamp records in the Tracker(see
Table 4.8) can be analyzed to identify the time-consuming operations.

Parameters values
parallelism 36, 72, 144, 288, 576 (task slots)
window_type TumblingWindow, SlidingWindow
window_size 10, 20, 30 (seconds)
throughput 300, 500, 1000, 2000, 3000 (per second)

Table 7.1.: Parameters for Evaluation

7.1. Evaluation Environment

The evaluation is conducted on a Flink cluster consisting of 1 JobManager and 16 TaskManagers.
Flink version 1.14.5 executes the program on 16 workers, connected by 1 Gbit/s Ethernet without
sharing their resources. Each JobManager has 376 GB RAM, CPU of Intel(R) Xeon(R) Gold 6240
@ 2.60GHz with 72 Cores, and 11TB SSD.

7.2. Dataset

Citibike dataset11 is frequently used for data analysis, as it offers a large public bike-sharing usage
in New York City with valuable information that can be interpreted as a graph. The dataset
11https://citibikenyc.com/system-data, accessed February 2023
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contains trip data between bike stations with the information about the trip such as the station
IDs, locations, start and end times, user types, etc.

This thesis uses the SF10 Citibike dataset12, containing 10% of sampling data from 06/2013 to
05/2020. The dataset has about 20 million records of trips and the records are stored in each edge
CSV files and vertices CSV files respectively.

To represent the Citibike dataset as a set of triples in the form of (Source Station, Trip, Target

Station), a preprocessing step was carried out specifically for this evaluation. The preprocessing
integrated the two types of CSV files into the files of triples retaining all the original information in
the vertices and edges. This enables the Stream Server to easily read the file and emit triples without
further processes. Moreover, this enhances the comparability of the scenarios by guaranteeing the
same order of triples in the input stream in each scenario.

7.3. Query

The query used for the evaluation is presented in a GDL in Listing 7.1 and visualized in Figure 7.1.
This query seeks for the pattern of rides with the specified location boundary and a time sequence
for some of the rides.

1 MATCH (v1:Station{})-[e1:Trip ]->(v2:Station {})-[e2:Trip ]->(v3:Station{})-[e3]->(v
3)-[e4]->(v4)-[e5]->(v1), (v1)-[e6]->(v3), (v3)-[e7]->(v1)

2 WHERE e1.stopTime < e2.startTime AND e2.stopTime < e3.startTime AND e3.stopTime < e4.
startTime AND e4.stopTime < e5.startTime

3 AND v1.latitude < 40.725273d AND v2.latitude < 40.725273d AND v3.latitude <
40.725273d AND v4.latitude < 40.725273d

4 AND v1.longitude < -73.976019d AND v2.longitude < -73.976019d AND v3.longitude <
-73.976019d AND v4.longitude < -73.976019d

Listing 7.1: GDL Query for the Evaluation

Figure 7.1.: Illustration of the Query

12The dataset is imported by Gradoop and transformed into Gradoop’s IndexedCSV format.
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7.4. Results

Based on the preprocessed dataset and the query, test scenarios have been carried out with the
following results. A missing result of a scenario occurs when the Tracker stops the stream job due
to a bottleneck of a windowed operation longer than 5 minutes. Therefore, a missing result can be
considered as failure of keeping the low latency.

Verifying the Low Latency Processing

The Figure 7.2 verifies that keeping the allowed latency was possible with a lower throughput
ranging from 300 up to 500 per seconds. However, it is noticeable that the scenarios with high
parallelism result in higher latency. This implies that some of the operations related to distributed
computation takes larger amount of time as the degree of parallelism increases.

Figure 7.2.: Scenarios with low throughput of input

Effect of Increasing the Parallelism

The Figure 7.3 shows the results of scenarios with higher throughput. Increasing the degree of
parallelism also does not improve the processing of larger graphs.

Figure 7.3.: Scenarios with high throughput of input
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Necessity of the Distribution of M0

These scenarios show less missing results than the previous scenarios in 7.3. Along with the pre-
vious observation, the scenarios in the Figure 7.4 confirm that it is not necessary to compute the
NeighborsMap with distributing M0. Despite this confirmation, low-latency processing is still not
possible in large graphs with high throughput even without distributing M0 for the computation
of NeighborsMap.

Figure 7.4.: Scenarios without distribution of M0

Identifying the Time-Consuming Operation

The waterfall charts in Figure 7.5 are from the scenario with the window length of 30 seconds,
parallelism of 576 and throughput of 1000 triples per seconds. Each chart illustrates the cumulative
progress of windowed operations until outputting the pattern matching result. The alphabets on x-
axis correspond to the entries in the Table 4.1 of the Tracker example in timely order. By analyzing
the charts, the most time-consuming operations have been identified: the entry H(the distributed
search step). While the first matching results are computed very quickly, the last matching results
takes significantly longer amount of time until finishing the pattern matching. The last matching
candidate simply waits in the window for longer than 20 seconds. And there are no considerable
difference between the version with the distribution of M0 and the other version without the
distribution of M0. This means that the problems identified from the previous figures in the 7.2,
7.3 and 7.4 are from the distributed search step.

Limitation of Evaluation

Although the prototypical implementation was evaluated using a variety of window sizes, degrees
of parallelism, and input throughputs, it is important to note that the evaluation scenarios on
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Figure 7.5.: Waterfall chart of the records in Trackers

the Sliding Windows did not provide comprehensible results. As a result, the evaluation results
presented in this chapter are only from the Tumbling Windows.
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8. Conclusion

In this thesis, Ullmann’s Subgraph-Isomorphism has been implemented in the distributed streaming
system Flink by modifying the algorithm to be able to perform the property graph stream pattern
matching. Ullmann’s algorithm has been extensively analyzed in this thesis and various new aspects
have been considered to enhance its performance. Notably, adopting the AdjacencyMap as a graph
representation has facilitated better indexing and reduced repetitive iterations. The distributed
computation of the NeighborsMap and the distributed tree search strategies without backtracking
leveraged the distributed system Flink.

By integrating all the considerations into the pipelines of the Flink operations, Windowed Graph
Stream Pattern Matching using Subgraph-Isomorphism has been designed. To evaluate the design, a
prototypical implementation has been developed and tested with a set of stream pattern matching
scenarios with the combination of various sizes of the windows, the degrees of parallelism and the
throughput of the input stream.

The evaluation results demonstrate that the modified Ullmann’s Subgraph-Isomorphism algorithm
can perform low-latency stream pattern matching in small graphs at a throughput of up to 1000
events per second and with a maximum degree of parallelism of 144. However, the implementation’s
performance in producing results with low latency is limited when the graph stream has a large
number of elements in a window. Increasing degree of parallelism presents its limitation on reducing
the latency. High parallelism can cause problem even with small graphs.

As a future work, it might be considerable to employ the vertex-ordering step during the initial-
ization of the search space as suggested in Ullmann’s paper [4], which was not implemented in this
prototypical implementation. This could enhance the search performance by enabling earlier termi-
nation of tree search. Additionally, testing and examining the implementation on Sliding Windows
could provide further insights, widening the scope of its application.
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