
Faculty of Mathematics and Computer Science

Department of Computer Science

Database Group

Explorative Graph-Level Embeddings for Temporal Property Graphs

Bachelor Thesis

submitted by:

Linus Andreas Schneider

Matriculation number:

3705638

Supervision:

University of Leipzig: Dr. Christopher Rost

Neo4j: Kevin Gomez

©2024

This work including its parts is protected by copyright. Any use outside the narrow limits of copyright
law without the consent of the author is prohibited and punishable. This applies in particular to duplications,
translations, microfilming and storage and processing in electronic systems.

Abstract

This thesis explores methods for generating graph level embeddings of temporal property graphs

containing electronic health record data by extending Neo4j’s Graph Data Science Library imple-

mentation of FastRP node embeddings. Using a synthetic dataset generated with Synthea, various

approaches for preprocessing string and temporal properties, generating node embeddings, and ag-

gregating them into graph level representations were implemented and evaluated. The evaluation

assessed effectiveness in capturing graph characteristics, scalability, and clustering performance.

Results showed that using a sentence transformer model effectively captured semantic differences

between graphs, while a pre-trained time2vec layer successfully encoded temporal aspects, par-

ticularly relative time differences between medical encounters. Mean aggregation proved viable

for transforming node embeddings into graph level representations, with weighted aggregation

enabling domain-knowledge-based tuning. While embeddings based on string properties showed

strong clustering performance, incorporating temporal features created more uniform distributions

in the embedding space, suggesting that temporal patterns in patient journeys, while meaningfully

captured, may be too variable for effective density-based clustering. An interactive Jupyter note-

book was developed to facilitate the exploration of embedding parameters and their effects on the

representation of patient journeys in the embedding space.

Linus Andreas Schneider

3705638

Contents

Contents

List of Figures III

List of Tables IV

Listings V

List of Abbreviations VI

1. Introduction 1

1.1. Motivation . 1

1.2. Aims and Objectives . 1

1.3. Thesis Outline . 2

2. Background 3

2.1. Graphs . 3

2.1.1. Undirected Simple Graphs . 3

2.1.2. Directed Multigraphs . 3

2.1.3. Temporal Property Graphs . 4

2.2. Embeddings . 5

2.2.1. Similarity Measure . 5

2.2.2. Graph Embeddings . 5

2.2.3. Text Embeddings . 6

2.2.4. Temporal Embeddings . 6

2.3. Dimensionality Reduction . 7

2.3.1. Uniform Manifold Approximation and Projection 7

2.4. Clustering . 8

2.4.1. Hierarchical Density-Based Spatial Clustering of Applications with Noise . . 8

2.4.2. Performance Evaluation . 8

2.5. Neo4j . 9

2.5.1. Interacting with Neo4j . 9

2.5.2. FastRP . 10

3. Related Work 13

3.1. Graph Level Embeddings . 13

3.1.1. Temporal Graph Level Embedding . 13

3.2. Electronic Health Record Embeddings . 14

4. Dataset 15

4.1. Patient Journey Model . 15

4.2. Dataset Creation . 16

4.2.1. Synthea: Synthetic Patient Generator . 17

4.2.2. Using Synthea . 17

4.2.3. Creating Graph Representation . 18

Linus Andreas Schneider

3705638
I

Contents

4.3. Dataset Overview . 19

4.3.1. General Information . 19

4.3.2. Temporal Aspects . 20

5. Design and Implementation 22

5.1. Design . 22

5.2. Implementation . 22

5.2.1. Data Preprocessing . 22

5.2.1.1. Encoding String Data . 23

5.2.1.2. Encoding Temporal Aspects . 24

5.2.2. Embedding Generation . 25

5.2.3. Aggregation . 28

5.2.4. Analysis . 29

6. Evaluation and Discussion 31

6.1. Effectiveness Evaluation . 31

6.1.1. Topological Differences . 33

6.1.2. String Property Differences . 33

6.1.3. Temporal Differences . 35

6.2. Baseline Method . 36

6.3. Scalability Evaluation . 37

6.3.1. Preprocessing . 37

6.3.2. Embedding Generation . 37

6.4. Clustering Task . 38

6.5. Summary and Discussion . 39

7. Conclusion and Outlook 40

7.1. Conclusion . 40

7.2. Outlook . 40

Bibliography 42

Declaration of Originality 47

Linus Andreas Schneider

3705638
II

List of Figures

List of Figures

2.1. Example of an Undirected Simple Graph. 3

2.2. Example of a Directed Multigraph. 4

2.3. Example of a Social Network as a Temporal Property Graph. 4

2.4. Application of Node Level and Graph Level Graph Embeddings, adapted from [7]. . 5

4.1. Simplified Representation of a Patient Journey as a Temporal Property Graph. . . . 15

4.2. Example of a Synthea Module [37]. 17

4.3. Population Pyramid of the 10000 Patient Dataset. 19

4.4. Prevalence Distribution of Conditions, Drugs, and Procedures. 20

4.5. Encounters Rate by Age. 21

4.6. Inter-Encounter Distances by Age Group. 21

4.7. Normalized Heatmap of Encounters by Month and Encounter Type. 21

5.1. Flowchart of the Proposed Methodology. 22

5.2. Widget for Selecting Node/Relationship Types and Properties. 26

5.3. Viewing the Nearest Neighbor of an Embedding. 29

5.4. Selecting a Patient for Journey Visualization. 30

5.5. Visualizing the Selected Patient Journey with yFiles. 30

Linus Andreas Schneider

3705638
III

List of Tables

List of Tables

6.1. Comparison of Embedding Methods for Capturing Topological Differences. 33

6.2. Comparison of Embedding Methods for Capturing Seminatic Differences. 34

6.3. Comparison of Embedding Methods for Capturing Temporal Differences 36

6.4. Runtime of Preprocessing Methods for Different Dataset Sizes. 37

6.5. Runtime of Embedding Generation Methods for Different Dataset Sizes. 38

6.6. Performance of Different Embedding Methods on Clustering Task. 38

Linus Andreas Schneider

3705638
IV

Listings

Listings

2.1. Example of a Simple Cypher Query . 9

5.1. APOC Query for Fetching the Available Node Types and Their Properties. 23

5.2. One-Hot Encoding the String Properties. 23

5.3. Encoding the String Properties with Sentence Transformer. 24

5.4. The Boost Map Schema for Aggregation. 25

5.5. Generating the Node Embeddings using FastRP. 27

6.1. APOC Procedure for Efficiently Extracting Patient Journeys. 31

6.2. Python Code to Save Patient Journeys in Custom Representation. 32

Linus Andreas Schneider

3705638
V

List of Abbreviations

List of Abbreviations

APOC Awesome Procedures On Cypher

DBCV Density-Based Clustering Validation

EHR Electronic Health Record

GDBMS Graph Database Mangement Systems

GDS Neo4j Graph Data Science Library

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise

NLP Natural Language Processing

t-SNE T-Distibuted Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection

Linus Andreas Schneider

3705638
VI

1. Introduction

1. Introduction

1.1. Motivation

The adoption of electronic health record systems has been growing worldwide [1], leading to an

increased availability of electronic health record (EHR) data. Since there are inherent connec-

tions present in such data, organizing it in a graph format allows for an intuitive and descriptive

representation of it, explicitly encoding these connections as relationships between medical entities

(patients, providers, diagnoses, drugs, etc.). Additionally EHR data has a strong temporal aspect,

which can also be encoded as part of the graph.

For storing, managing, and extracting insights from large amounts of graph data, graph database

management systems (GDBMS) offer many advantages. The GDBMS Neo4j being the most

popular [2] choice and offering many avenues of generating insights from graph data. However, it

doesn’t yet offer a way of creating embeddings as graph level representations of entire (sub)graphs,

which could be used to embed graphs representing a patients EHR, called patient journeys, for

similarity search and potential applications in downstream clinical tasks. This leaves space for the

exploration of ways of doing so involving the use of the Neo4j ecosystem in this thesis.

1.2. Aims and Objectives

This thesis mainly concerns itself with the exploration of different ways of generating graph level

embeddings of patient journeys through the use and extension of functionalities implemented within

the Neo4j ecosystem.

It aims to do so both through providing an interactive way of exploring the effects of different

choices of preprocessing methods and embedding parameters on the results, as well as by deploying

a ground truth for evaluating how effective different methods are in capturing aspects of the EHR

data, with special consideration given to its temporal aspects.

The data, which forms the basis of the embeddings, will be generated synthetically through methods

that accurately model real patient data, containing information about various medical entities. This

will then be transformed into a graph representation inside Neo4j. This representation will be the

basis for the exploration of different approaches of creating graph level embeddings patient journeys,

making use of an interactive implementation to provide an intuitive understanding, as well as a

more rigorous evaluation.

The embeddings will be evaluated with regard to their effectiveness and the scalability of the

methods used to generate them in order to provide insight into their applicability, avenues for their

improvement, and further investigation in future work.

Linus Andreas Schneider

3705638
1

1. Introduction

1.3. Thesis Outline

The thesis starts with a comprehensive explanation of its background in Chapter 2, covering all

the concepts needed for the understanding and interpretation of its content and underlying im-

plementation. Then in Chapter 3, related work in the fields of graph level embeddings and EHR

embeddings is presented, to provide an overview of the scientific context this work is placed in.

Afterwards the datasets underlying model, generation, and features are described and explored in

Chapter 4, followed by a description of the design and implementation of the interactive way of

generating the graph level embeddings in Chapter 5. Lastly, the efficacy of different methods is

evaluated in Chapter 6, where its results are discussed, while Chapter 7 provides a summary and

interpretation of the thesis’ content and findings, with Section 7.2 exposing avenues for further

research, based on the findings and limitations of this work.

Linus Andreas Schneider

3705638
2

2. Background

2. Background

This thesis is based on an understanding of graph theory, embeddings, techniques of clustering

and visualizing them, and the Neo4j ecosystem, the implementation of FastRP in particular. This

chapter will provide an overview of these topics and their relevance to the thesis, as well as an

explanation of the hyperparameters for the algorithms used.

2.1. Graphs

2.1.1. Undirected Simple Graphs

The simplest form of a graph is an undirected simple graph. It consists of a finite set V 6= ∅ of

nodes, also called vertices, and a set E ⊆ {{u, v} | u, v ∈ V, u 6= v} of edges, also called relationships,

and can be denoted as G = (V,E).

1 2 3 4 5

Figure 2.1.: Example of an Undirected Simple Graph.

A path in a graph is a sequence of nodes connected by edges, where each node is connected to the

next by an edge. The degree d(v) of a node v is the number of edges connected to it, describing the

number of neighbors a node has. It can be used to define the degree matrix of a graph, which

is a diagonal matrix containing the degrees of the nodes on its diagonal and zeros elsewhere. The

degree matrix of the graph in Figure 2.1 would be:

D =

1 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 1

2.1.2. Directed Multigraphs

A more expressive version of graphs are directed multigraphs. They can be denoted as G =

(V,E, s, t) and differ from undirected subgraphs in that E is a multiset of edges, meaning that

multiple edges between two nodes are allowed. Additionally it contains the maps s : E → V and

t : E → V assigning to each edge a source and target vertex, which makes them directed.

Directed graphs can also be represented as an adjacency matrix, which is a square |V |× |V | matrix

S, where Sij is 1 if there is an edge from node i to node j and 0 otherwise. The adjacency matrix

of the graph in Figure 2.2 would be:

Linus Andreas Schneider

3705638
3

2. Background

1 2 3

e1

e2

e3

e4

e5

Figure 2.2.: Example of a Directed Multigraph.

S =

0 1 0

0 0 1

0 1 1

Adjacency matrices can also be used to represent undirected graphs. In that case the matrix is

symmetric, meaning that Sij = Sji for all i, j ∈ V .

2.1.3. Temporal Property Graphs

In order to be able to more accurately model real-world scenarios the directed multigraph can be

extended by:

• Adding a set B = {b1, b2, . . . , bn} of type labels

• A map β : (V ∪ E)→ B assigning a single label/type to every vertex or edge

• A set of property keys K = {k1, k2, . . . , kn} and a set of data values A = {a1, a2, . . . , an}

• A partial function κ : (V ∪ E) ×K → A assigning data values to vertex/edge and property

key combinations

• Changing each vertex to be a tuple (v, τval), where τval = [ωstart, ωend) is the valid time of

the vertex, consisting of a start time and optional end time, or being empty.

The notion of using the property keys K, values A, and corresponding mapping κ was proposed

by Angles et al. as the property graph model [3]. and is now widely used in graph databases

like Neo4j. The extension of the property graph model to include the valid time of a node was

proposed by Rost et al. as the temporal property graph model [4], which also includes notions

of transaction time, graph collections, and logical graphs, which are not relevant for this work and

therefore have been omitted.

Person

name: Alice
birthdate:
1992-05-02

Person

name: Bob
tenure start:
2020-01-01
tenure end:
2022-01-01

Person

name: Charlie

friendsWith

friendsWith

worksFor

pays
salary: 50000

worksFor

Figure 2.3.: Example of a Social Network as a Temporal Property Graph.

Linus Andreas Schneider

3705638
4

2. Background

2.2. Embeddings

An embedding function emb : X → Rd maps objects from a set X to d-dimensional vectors. For

an object O ∈ X , its embedding is the vector emb(O) ∈ Rd. Much of the usefulness of embeddings

comes from the fact that they can be used to compare objects in the embedding space using

mathematical similarity measures, which is especially useful when applied to complex objects which

couldn’t otherwise be easily compared, like temporal property graphs.

2.2.1. Similarity Measure

Generally, similarity measures are some form of (distance) metric between two embedding vectors,

which can be used to compare the objects they represent.

The similarity measure chosen for this work is the cosine similarity, defined as:

Similarity(v1, v2) = cos(θ) =
v1 · v2
|v1||v2|

(2.1)

where v1 · v2 denotes the dot product and |v| the Euclidean norm of vector v. It encodes the angle

between two vectors, which is 1 if they are identical, 0 if they are orthogonal, and -1 if they are

opposite to each other and is invariant to the magnitude of the vectors. It was chosen because of

it’s simplicity, because it doesn’t require explicit normalization of the embedding vectors, and has

been used in other works [5] [6] exploring graph level embeddings of temporal graphs.

2.2.2. Graph Embeddings

Any embedding that takes a graph as input is called a graph embedding. However, there are two

types of graph embeddings, depending on the level of the graph they are applied to, the difference

between the two being illustrated in Figure 2.4 below.

v1
v2

v3

v4
v5
v6

An Input Graph

v1 v2 v3

v4 v5 v6

Label A

Label B

Node Classification

v1

v4

E = {v1, v4} ∈ G?

Link Prediction

v1 v2 v3 v4 v5 v6

Community Detection

node-specific
Embeddings

...

(a) Applications of node-specific Graph Embeddings.

G1

G2

...

Gn

Many Input Graphs Similarity(G1,G2) =?

Graph Comparison

G1

...

G2
Label A

Gn
...

Label B

Graph Classification

G1 G2

Gn

Graph Regression

graph-level
Embeddings

...

(b) Applications of graph-level Graph Embeddings.

Figure 2.4.: Application of Node Level and Graph Level Graph Embeddings, adapted from [7].

Linus Andreas Schneider

3705638
5

2. Background

Node level embeddings capture information about individual nodes, such as their properties,

connections, and roles within the graph. However, they often miss the global structure of the graph,

while graph level embeddings capture information about the entire graph, including its structure

and node relationships. These embeddings often aggregate node level embeddings through a process

known as graph pooling [7].

2.2.3. Text Embeddings

Commonly, properties of temporal property graphs are textual, like the name of a person or the

type of a relationship. In order to use these properties in the graph embeddings, they need to be

converted to numerical vectors, which is done using a form of natural language processing (NLP)

known as text embedding. Through text embedding, a string of text, which can be a single word, a

phrase, or a whole paragraph, is converted to a vector representation, which aims to capture the

meaning of the text in a high-dimensional space.

In this work a transformer model [8] was used to generate the text embeddings. More specifically,

a specialized version of the bidirectional encoder-only transformer model BERT [9] known as sen-

tence transformer [10] was used, which was trained on a large corpus of text data to generate

sentence embeddings that allow for an effective comparison of sentences using cosine similarity.

The sentence transformer processes text through multiple neural network layers that analyze the

relationships between words within their context. These relationships are captured in the model’s

attention weights, which are then used to generate sentence embeddings by aggregating word em-

beddings based on their contextual importance. The resulting fixed-length vector representations

encode semantic meaning in a way that similar phrases result in similar vectors, making them

suitable for comparison operations. The exact functioning of the transformer architecture exceeds

the scope of this thesis, as the focus lies on the application of the resulting embeddings rather than

their generation process.

2.2.4. Temporal Embeddings

As this work investigates temporal property graphs, the embeddings generated from the graphs need

to be able to capture the temporal aspects of the data. Time has both linear, as well as a periodic

aspect, which are both relevant. Age increases linearly throughout a persons life but patterns like

the day of the week, flu-season, or the time of day are periodic and can be just as relevant for the

analysis of the data. Time2vec [11] introduced a simple yet effective way of encoding both of these

aspects in a single neural network layer.

t2v(τ)[i] =

ωiτ + ϕi, if i = 0

F(ωiτ + ϕi), if 1 ≤ i ≤ k
(2.2)

It does this by taking a periodic input variable τ ∈ Rk, multiplying it with a set of learnable

weights ωi and adding a set of learnable biases ϕi for each dimension i of the output vector. For the

first dimension, the output is linear, while for the other dimensions it is passed through a periodic

Linus Andreas Schneider

3705638
6

2. Background

activation function F , which is usually a sine or cosine function, enabling it to learn both linear

and periodic patterns in the data. The layer can either be used as a standalone layer or as part of

a larger neural network.

2.3. Dimensionality Reduction

While typically larger embeddings are able to capture more information about the objects they

represent, they can also be harder to work with, as they don’t have an intuitive visual represen-

tation. This is solved through the use of dimensionality reduction techniques, which preserve the

relationships between the data, while reducing it to dimensions that can be visualized.

2.3.1. Uniform Manifold Approximation and Projection

One such method is Uniform Manifold Approximation and Projection, commonly referred to as

UMAP [12]. Compared to other popular dimensionality reduction techniques, like T-Distributed

Stochastic Neighbor Embedding (t-SNE) [13], it is much much more efficient and scales much better.

It is also able to preserve the global structure of the reduced embeddings better than t-SNE.

It constructs a neighborhood graph for the high dimensional data by first drawing a variable sized

radius around every data point, based on the distance of the k-th nearest neighbor of that point,

where k a hyperparameter (called n neighbours in the scikit-learn implementation used in this

work) that can be used to set the focus on more local or more global structures. Then, between

data points with overlapping radii an edge is added, which has a weight symbolizing the connection

probability based on the distance between the connected points.

In the second part of the algorithm the high-dimensional neighborhood graph is projected into a

lower dimensional space, while mostly preserving the distances between connected points. To do

this for every edge the cross entropy between its weight in the high-dimensional space wh(e) and

its weight in the low-dimensional space wl(e)

∑
e∈E

wh(e) log

(
wh(e)

wl(e)

)
+ (1− wh(e)) log

(
1− wh(e)

1− wl(e)

)
(2.3)

is minimized. In the equation the first summand wh(e) log
(
wh(e)
wl(e)

)
of the term essentially functions

as an attractive force between the connected points, as it’s lowest, when the weight is lowest in

the low dimensional space, while the second summand (1− wh(e)) log
(
1−wh(e)
1−wl(e)

)
functions as a

repulsive force, as it’s lowest when the weight is largest in the low dimensional space. The value for

wl(e) can be bounded by a hyperparameter min dist, which if low causes points to clump closer

together, reflecting harder, more local features, while if high causes points to spread out more,

reflecting softer, more global features.

Linus Andreas Schneider

3705638
7

2. Background

2.4. Clustering

Clustering describes the task of grouping objects together based on their similarity, with the goal

of maximizing the similarity within clusters and minimizing the similarity between them. There

are numerous clustering algorithms, which can be grouped into different categories based on their

underlying approaches. Centroid-based methods cluster points around iteratively updated centers

but require pre-specification of cluster numbers. Connectivity-based methods build hierarchical

relationships between points but are computationally intensive for large datasets. Density-based

methods identify clusters as dense regions in the data space and can handle irregular shapes,

though they require careful parameter tuning.

2.4.1. Hierarchical Density-Based Spatial Clustering of Applications with Noise

For the analysis in this work the Hierarchical Density-Based Spatial Clustering of Applications

with Noise algorithm, HDBSCAN [14] for short, was selected. It combines density-based and

hierarchical approaches, providing the benefits of density-based clustering while minimizing the

need for parameter tuning. The algorithm first calculates the mutual reachability distance between

points a and b using their k-th nearest neighbor distances (corek):

dmreach-k(a, b) = max {corek(a), corek(b), d(a, b)} (2.4)

where d(a, b) is the original metric distance between the points.

Using these distances, it builds and processes a hierarchical tree of clusters, merging and split-

ting them based on their size and stability. Three main hyperparameters control this process:

min cluster size sets the minimum size for valid clusters, min samples determines how conser-

vative the algorithm is in declaring clusters versus noise points, and cluster selection method

chooses between selecting the most stable clusters (eom) or the leaf clusters (leaf) from the hier-

archy.

2.4.2. Performance Evaluation

Clustering performance can be validated using either external or internal measures. External mea-

sures compare the clustering to known class structures, but require pre-existing knowledge of the

correct grouping, while internal measures evaluate cluster cohesion and separation without reference

data. However, internal measures often struggle with non-globular clusters and noisy data.

Density-Based Clustering Validation, referred to as DBCV [15], was developed specifically for

validating density-based clustering algorithms, where no ground truth is available and the clusters

are not necessarily globular.

It defines the DBCV index of a clustering C

DBCV(C) =
i=l∑
i=1

|Ci|
|O|

VC (Ci) (2.5)

Linus Andreas Schneider

3705638
8

2. Background

as a weighted average of the validity index VC of all clusters Ci ∈ C, where |Ci| is the clusters

size and |O| is the total number of objects including those classified as noise, meaning a lower

noise-ratio leads to higher values.

The validity index VC of a single cluster Ci is

VC (Ci) =
min1≤j≤1,j 6=i (DSPC (Ci, Cj))−DSC (Ci)

max (min1≤j≤l,j 6=i (DSPC (Ci, Cj)) ,DSC (Ci))
(2.6)

where DSC(Ci) denotes the Density Sparseness of Ci, encoding the lowest density within the

cluster, and DSPC(Ci,Cj) the Density Separation between it and another cluster Cj , meaning the

highest density between the two clusters. This means VC is highest for a cluster Ci when it is well

separated from other clusters and has a high density within itself.

The DBCV index of a clustering is then a value between -1 and 1, where greater values indicate

denser, better separated clusters overall. While it does provide a robust measure of cluster quality,

the DBCV index does not provide any information about the usefulness or expressiveness of the

clusters for a specific task or domain. Without expert knowledge of the domain and within the con-

straints of unsupervised learning, however, it seems to be the best measure available for evaluating

the quality of density-based clustering in a quantifiable way.

2.5. Neo4j

Neo4j [16] is the GDBMS used to store and manage the data used in this work. It offers performance

and flexibility in handling complex graph data and extracting insights from it [17].

2.5.1. Interacting with Neo4j

Cypher [18] is the query language used to interact with Neo4j databases. It is a declarative, pattern-

matching language, whose queries are based on ascii-art patterns that describe the structure of the

graph in an intuitive way.

1 MATCH (n:Node)−[r:REL]−>(m:Node)

2 WHERE n.property = ”value”

3 RETURN n, r, m

Listing 2.1: Example of a Simple Cypher Query

Additionally to basic querying and aggregation functions it offers a variety of options for creating

more complex requests, like chaining queries, subqueries, conditional statements, unwinding lists,

and using parameters, as well as implementing basic functions, for example getting the id of a node,

or the time between two DateTime values. The language is very expressive and well documented,

which is why specifics will not be further elaborated on here.

Linus Andreas Schneider

3705638
9

2. Background

Besides the more basic functions that can be accessed directly through Cypher, Neo4j also offers

the APOC [19] library, Awesome Procedures On Cypher , which provides a wide range of optimized

additional functions and procedures to interact with the database and the Neo4j Graph Data Science

Library [20], henceworth referred to as GDS, which provides efficiently implemented and highly

optimized versions of various graph algorithms.

A particularly useful subset of said algorithms are various node embedding algorithms. In order to

utilize them, a given (sub)graph needs to be projected into an in-memory version of the graph, which

can then be used for generating node embeddings of it. Additionally, a python client is provided

for GDS, which can be used to run Cypher queries and returns the results as a pandas DataFrame,

which can then be used to further process the data from within the python environment.

2.5.2. FastRP

The node embedding algorithm provided by GDS with the best performance and scalability [21] is

the Fast Random Projection algorithm, FastRP [22].

It gets its name from the fact that it’s multiple orders of magnitude faster than other node em-

beddings algorithms, like DeepWalk [23] or Node2Vec [24]. This is achieved through leveraging

the optimization-free dimensionality reduction technique of Very Sparse Random Projection [25],

which is able to project high-dimensional data into a lower-dimensional space while preserving the

pairwise distances between the data points.

As discussed in Section 2.1, a graph can be represented as an n × m adjacency matrix S and a

diagonal n×m degree matrix D can be computed for it. By multiplying the inverted degree Matrix

D with the adjacency matrix S the transition matrix

A = D−1S (2.7)

is formed, where each entry Aij of A contains the probability of reaching node j from node i in

one random step. Building upon this a k-step transition matrix Ak is computed, for which every

ij-th entry contains the probability of reaching node j from node i through a k-step random walk,

thereby encoding the graphs neighborhood structures.

However, calculating Ak is too costly of an operation. This is circumvented by FastRP by the

construction of a reduced m × d k-step transition matrix Akr where d < n, which has the same

pairwise distances between data points as Ak but can be calculated much more efficiently through

the use of the associative property of matrix multiplication and a random projection matrix R

whose values are randomly sampled from a zero-mean distribution by setting

Rij =

√
s with probability 1

2s

0 with probability 1− 1
s

−
√
s with probability 1

2s

(2.8)

Linus Andreas Schneider

3705638
10

2. Background

where s = n. Thereby, the reduced transition matrix can be calculated as

(A ·A · . . . ·A)︸ ︷︷ ︸
k

·R = Akr = (A · . . . (A · (A︸ ︷︷ ︸
k

·R))) (2.9)

The dimension d of R and therefore the dimension of the generated node embeddings, which are

the rows of the resulting matrix, can be set using the hyperparameter embeddingDimension.

Additionally, normalization is applied through multiplication with a n×n normalization matrix

L = diag

((
d1
2m

)β
, . . . ,

(
dn
2m

)β)
(2.10)

where dj is the out-degree of a node j and β, which can be set through the hyperparameter

normalizationStrength and controls how much each nodes degree should influence the final em-

beddings. The higher it is the more the final embeddings will be influenced by more connected

nodes, the lower it is, the more equal the influence of all nodes will be.

This results in a reduced, normalized k-step transition matrix

Ãk = (A · . . . (A · (A · L ·R))) (2.11)

Finally the embeddings are aggregated into a final embedding matrix N through the weighted

combination of different powers of the transition matrix:

N = (α1Ã
1 + α2Ã

2 + . . .+ αkÃ
k) (2.12)

where the weights αi can be set through the hyperparameter iterationWeights and control how

much influence the k-th neighbors of a given node have on the final embedding. The length of the

array determines the number of iterations k that are used to generate the final embeddings.

The GDS implementation extends the functionality of the original FastRP algorithm described

above by allowing R to be, either partly or fully, deterministically generated from a set of properties

of the nodes, specified through the hyperparameter featureProperties. The ratio of how many

columns of R are based on the node properties and how many are randomly sampled can be set

through the hyperparameter propertyRatio. The properties need to be either scalars or arrays of

scalars. For every scalar x (even if it’s inside an array) a very sparse random vector vi of dimension

propertyRatio · embeddingDimension is generated. These vectors are then linearly combined to

form the node specific row Ri by summing over all n scalars xi and vi:

Ri =
n∑
i=1

xi · vi (2.13)

This process is deterministic because a seed for all randomness in the algorithm, including the

sampling of the very sparse random vectors, can be set through the hyperparameter seed.

Linus Andreas Schneider

3705638
11

2. Background

Since this causes R to encode information about the nodes instead of just random information, the

embedding aggregation was extended to include it inside the final embedding matrix N as well, by

adding it to the weighted combination of the different powers of the transition matrix:

N = (α0R · L+ α1Ã
1 + α2Ã

2 + . . .+ αkÃ
k) (2.14)

where the weight α0 can be set through the hyperparameter nodeSelfInfluence.

Additionally, the algorithm supports weighted graphs through the relationshipWeightProperty

parameter. When specified, edge weights influence how strongly connected nodes contribute to each

other’s embeddings throughout the iterative multiplication steps. The algorithm’s normalization

ensures numerical stability despite potentially large differences in edge weights.

Linus Andreas Schneider

3705638
12

3. Related Work

3. Related Work

This thesis lies at the intersection of two distinct areas of research: graph level embeddings and

EHR embeddings. While graph level embeddings are often more theoretical in nature and concern

themselves mostly with the topological properties of graphs, EHR embeddings focus more on the

domain-specific challenges of electronic health record data.

Graph level embeddings represent a more established field with a longer history, drawing from

graph theory and utilizing classical machine learning techniques. In contrast, EHR embeddings

are a more recent development that has seen a surge of interest in the past few years, driven by

advances in deep learning techniques [9] and the availability of large-scale healthcare datasets [1].

Despite their differences, both areas share a common goal: To learn meaningful representations of

complex data structures, such as graphs or sequences, in a way that preserves the inherent properties

of the data. These representations enable more effective downstream tasks, such as clustering or

classification.

3.1. Graph Level Embeddings

Yang et al. [7] provide an excellent overview of the history and current state of graph level learning.

Notable examples of graph-level learning techniques include:

• Graph2vec [26]: Samples rooted subgraphs around every node of the graph. Then uses

skipgram with negative sampling akin to doc2vec [27] on those samples.

• UGraphEmbed [28]: Uses a graph isomorphism network [29] to create node embeddings

and uses multi-scale node attention to aggregate them in a way that the embeddings of two

gaphs preserve their proximity based on the graph edit distance.

• NetLSD [30]: Uses the heat trace of the laplacian eigenspectrum of the adjacency matrix

representing the graph/the heat kernel of the graph.

Most graph level embedding techniques are limited to capturing the static topology of a graph.

While there are some advanced methods like FEATHER-G [31] that are able to capture node

properties, they are still limited to static graphs.

3.1.1. Temporal Graph Level Embedding

There have been some graph level embedding techniques developed to explicitly capture the tem-

poral evolution of a graph. For example the following techniques:

Linus Andreas Schneider

3705638
13

3. Related Work

• Temporal backtracking random walk [6]: Uses a multilayer graph, where every time

step in the graphs evolution is represented by one layer, and random walks with the ability to

change layers, which are then aggregated similarly to the method of graph2vec [26], optimizing

the probability of seeing a node within its context, which is defined as a sliding window over

its random walk.

• GraphERT [32]: Uses multiple random walks and a biderectional encoder-only transformer

architecture trained simultaneously on predicting masked nodes in those random walks and

the time step of each random walk, in order to learn a representation that captures both the

topology and the temporal evolution of the graph through the attention weights.

These do not, however, offer the ability to incorporate node attributes into the embeddings. Addi-

tionally, not every graph with temporal features can be meaningfully divided into time steps.

3.2. Electronic Health Record Embeddings

Both the temporal nature of EHR data and its domain-specific representation are of particular

importance to learning meaningful embeddings. The work of Li et al. [33] introduced the BEHRT

model, which models EHR data akin to natural language data by treating diagnoses codes as

words, patient visits as sentences, and patients EHR as documents. Regarding visit data they

limited themselves to diagnoses codes, which they represented according to the ICD-10 and included

temporal features by encoding the sequence of visits using positional embeddings and the relative

time between visits by embedding the patients age at the time of the visit. The BEHRT model was

trained to predict masked diagnoses codes in the visit sequence. Using the aggregated attention

weights of the trained model as a EHR level embedding, it was able to outperform other state-of-

the-art models on a variety of downstream classification/prediction tasks in the clinical domain.

There have been numerous works improving upon the BEHRT model. For example by applying

recent findings from the field of NLP to the clinical domain, incorporating more learning tasks [34],

and by utilizing more effective ways of encoding temporal information [35]. Notably, one work

used a graph transformer model to learn relationship-aware embeddings of the visits in the EHR

data [36], showing that the incorporation of graph representations of EHR data can be beneficial

for learning meaningful embeddings.

Linus Andreas Schneider

3705638
14

4. Dataset

4. Dataset

The dataset is the foundation of the generated embeddings and therefore plays a crucial role in

the evaluation of the proposed methods. This chapter provides an overview of the dataset used in

this thesis, including how it was created, its structure, and the information it contains about the

application domain.

4.1. Patient Journey Model

A Patient Journey describes a sequence of medical encounters, associated events and data for

a single patient over time. In this work when referring to a patient journey, it is meant as a

temporal property graph, where the nodes represent patients that have encounters, which in turn

are connected to other nodes representing the associated medical entities of medical observations,

providers, diagnosed conditions, prescribed drugs, and medical procedures. Each patient’s journey

through the medical system is a path through the encounter nodes and their associated entities, as

shown in simplified form in Figure 4.1.

Besides the explicit ordering of the encounter nodes in the graph through the NEXT relationships,

the temporal aspect of the patient journey is encoded in the start and end times of the encounters,

which encode their absolute temporal position, as well implicitly encoding the time elapsed between

them and therefore their relative temporal position in the journey.

Patient

name: John Doe
birthdate: 1980-05-15

country: USA

Encounter (Check Up)

start: 2023-06-01 10:00

end: 2023-06-01 11:30

FIRST

Observation Provider

Condition

Drug Drug

Procedure

. . .
NEXT Encounter (Emergency)

start: 2024-09-06 12:15

end: 2024-09-06 13:00

NEXT

Observation Provider

Drug Procedure

Figure 4.1.: Simplified Representation of a Patient Journey as a Temporal Property Graph.

Representing a patient’s EHR data as a temporal property graph has the advantage of capturing

the complex relationships between the different entities through encoding them directly within the

topology of the graph.

In the example above, many properties and relationships of the patient journey model have been

omitted, for the sake of clarity. The following is a full list of the (optional) properties of the entities

contained in the patient journey and their respective data types:

Linus Andreas Schneider

3705638
15

4. Dataset

Patient :

id : String

birthdate : DateTime

birthplace : String

first : String

last : String

gender : String

race : String

ethnicity : String

city : String

state : String

county : String

healthcare expenses : Float

address : String

(deathdate : DateTime)

Encounter :

id : String

description : String

code : String

class : String

start : DateTime

(end : DateTime)

basecost : Float

isEnd : Boolean

Provider :

id : String

name : String

address : String

specialty : String

Condition :

code : String

description : String

start : DateTime

(end : DateTime)

Observation :

description : String

category : String

value : Float

Drug :

code : String

description : String

start : DateTime

(end : DateTime)

basecost : Float

Procedure :

code : String

description : String

Most properties are string values, the only exceptions being the healthcare expenses and value

properties, which are encoded as floats and the temporal properties which are encoded as Date-

Time objects. The HAS ENCOUNTER relationship from the patient to the encounters as well as the

HAS ENTITY relationships from an encounter to its associated medical entities, where ENTITY is

the name of the associated entity have also been omitted from the simplified representation in

Figure 4.1 above, but are also part of the patient journey model.

4.2. Dataset Creation

This section provides an overview of the process of creating the dataset and the data contained

within it.

Linus Andreas Schneider

3705638
16

4. Dataset

4.2.1. Synthea: Synthetic Patient Generator

“Synthea is an open-source, synthetic patient generator that models the medical history of synthetic

patients.” [37] It was first proposed in 2017 by Walonoski et al. [38] and has since expanded its

capabilities to model a wide range of patient histories. It independently models the life of each

patient and their EHR from birth (to death).

It does this using modules from its own Generic Module Framework, where each module is used

to model events that can occur in a patient’s life, such as encounters, conditions, medications,

and procedures, stating that these statistical modules “are informed by clinicians and real-world

statistics collected by the CDC, NIH, and other research sources.” [37] An in-depth description of

the framework and all available modules can be found in the official documentation [39].

Figure 4.2.: Example of a Synthea Module [37].

It was chosen for this project because it allows for the user-friendly generation of large-scale, realistic

- yet synthetic - patient data, which makes it useful for creating a dataset that can be shared and

used for research purposes without violating patient privacy.

4.2.2. Using Synthea

Synthea is implemented in Java and can be run either from a packaged .jar file, as a Docker

container, or built from source. The latter approach was chosen for this project, as it allowed for

easier configuration, by modifying the synthea.properties file, which was adapted from an earlier

version used in a different project [40] by Neo4j. It was updated to work with the latest version of

Synthea and is configured to generate CSV files for the dataset which can be more easily imported

into Neo4j than the default FHIR format.

The setup of Synthea was done on a Windows Subsystem for Linux (WSL) running Debian 11

(bullseye) on a local machine, which had access to 12GB of RAM, with an Intel i7-10510U CPU

with a base clock rate of 1.8GHz. A Linux system was used because it was easier to set up and run

Synthea on it than on Windows, as it is primarily developed for Unix-like systems.

Besides excluding information not consistent with the data model defined in 4.1 the default con-

figuration was used. While it was considered to generate a dataset whose patient population is

Linus Andreas Schneider

3705638
17

4. Dataset

more representative of German demographic data, it was decided against it. Patient demographics

like names and addresses could have been adjusted to reflect German characteristics, however, the

underlying statistical models are based primarily on U.S. healthcare data. Therefore, such surface-

level changes would not have created a truly representative German patient population. The full

configuration file is too extensive to be included here, but has been included in the supplementary

materials submitted alongside this thesis.

To build and run Synthea, the following commands were executed in the project directory:

./gradlew build

./run_synthea -p $patient_count

Where patient count specified the number of living patients to generate, which was set to 10,

100, 1000, and 10000 respectively. Generating Datasets of four different sizes, in order to analyze

the scalability of the proposed embedding methods.

Since Synthea simulates patients’ whole lives until the population reaches the amount specified in

the census data it uses to model demographics, where only living people got counted, but some

patients will have conditions causing their death before the population reaches that amount, it

continues generating patients until the specified amount of living patients is reached. This leads

to the number of generated patients being higher than the amount specified in the generation

command. However, since medical outcomes causing death are relevant for generating realistic data

and the number of dead patients scales with the number of living patients, the dead patients are

included in the dataset.

The generated datasets were of sizes 10 (0 dead), 122 (22 dead), 1127 (127 dead), and 11618 (1618

dead), which means that the average death rate was 10.81% with a standard deviation of 6.69%.

For the purpose of cleaner notation, however, the datasets will be referred to as the number of

living patients they contain.

4.2.3. Creating Graph Representation

For the creation of the graph representation of the dataset, the generated CSV files were used to

create nodes for patients, encounters, providers, conditions, medications, procedures, and observa-

tions, as well as the relationships between them according to the patient journey model defined in

section 4.1. To do this, a modified version of the “pyingest” [41] script ingest.py from Neo4j was

used, which works as follows:

1. It loads a config.yaml file that specifies the target database’s connection details, the paths

to the CSV files, and Cypher queries for each file, specifying how to create the nodes and

relationships, as well as pre- and post-ingest queries.

2. It runs the specified pre-ingest queries. This was used to create indices for some of the nodes’

properties to speed up the ingest process.

3. It iterates over the CSV files specified in the config file, loading them into memory and then

adding them into them to the Neo4j database in chunks, by running the specified Cypher

queries.

Linus Andreas Schneider

3705638
18

4. Dataset

4. It runs the specified post-ingest queries. This was used to create NEXT relationships between

encounters of the same patient, as well as the FIRST relationship between the patient and

their first encounter.

The full modified script, as well as the config.yaml were submitted in the supplementary materials

alongside this thesis and further explanation is omitted here, since beyond the specified steps the

sake of reproducibility, it is not further relevant to the thesis.

4.3. Dataset Overview

This section analyzes the 10,000-patient dataset’s characteristics and distributions to better under-

stand common patterns and inform the interpretation of patient embeddings.

4.3.1. General Information

The dataset’s demographic distribution is visualized in Figure 4.3, showing a structure typical of

developed countries.

Figure 4.3.: Population Pyramid of the 10000 Patient Dataset.

The dataset comprises 6,937,466 nodes, including 304 conditions, 361 drugs, 400 procedures, and

6,071,300 observations. Due to computational constraints, observation nodes were excluded from

further analysis. The prevalence of different medical entities provides insight into patient similari-

ties.

Linus Andreas Schneider

3705638
19

4. Dataset

Figure 4.4.: Prevalence Distribution of Conditions, Drugs, and Procedures.

As shown in Figure 4.4, drugs tend to be rare and unique to patients, while conditions and pro-

cedures are more commonly shared across patients. This distribution suggests that drug-based

embeddings may better capture individual patient characteristics, while condition and procedure-

based embeddings may better represent shared health patterns.

4.3.2. Temporal Aspects

Temporal patterns in the data encompass patient age during encounters, inter-encounter intervals,

and seasonal variations, all of which may influence embedding representations. The encounter rates

shown in Figure 4.5 reveal that while medical visits increase with age, the patient population

decreases, reflecting natural mortality patterns in the synthetic data generation. It also shows spikes

in the number of patients having encounters at certain ages, most likely caused by the statistical

models used in Synthea genearting regular check-ups at those ages.

Inter-encounter distances demonstrate significant variance across age groups, with particularly no-

table differences in younger patients. As shown in Figure 4.6, the intervals between encounters

decrease with age, potentially encoding both patient age and health condition severity in the tem-

poral patterns.

Beyond age-related patterns, the data also exhibits seasonal variations. Figure 4.7 shows how dif-

ferent types of encounters vary by month, suggesting cyclical patterns that may influence patient

similarities in the resulting embeddings.

Linus Andreas Schneider

3705638
20

4. Dataset

Figure 4.5.: Encounters Rate by Age.

Figure 4.6.: Inter-Encounter Distances by Age Group.

Figure 4.7.: Normalized Heatmap of Encounters by Month and Encounter Type.

Linus Andreas Schneider

3705638
21

5. Design and Implementation

5. Design and Implementation

This chapter details the implementation of a patient journey analysis system that transforms graph-

structured clinical data into numerical embeddings. Using Neo4j’s FastRP algorithm and custom

encoding methods, the system generates patient-level representations that can be explored through

an interactive Jupyter notebook.

5.1. Design

In order to leverage Neo4j’s FastRP implementation, the graphs properties are encoded in ways

allowing more meaningful node embeddings to be generated, which are then aggregated into a single

graph level embedding for each patient. The embeddings are then clustered, dimensionally reduced

and visualized.

ó
Data

Preprocessing

Ò
Node Embedding

Generation

�
Aggregating
Embeddings

A
Analysis

Figure 5.1.: Flowchart of the Proposed Methodology.

The entire workflow has been implemented as an interactive and extendable Jupyter notebook,

submitted alongside this thesis, allowing for easy extension of the workflow and exploration of the

data through the use of easily customizable embedding generation, as well as a custom visualization

of the patient journeys within the notebook.

5.2. Implementation

This section describes the technical implementation details of the data preprocessing, embedding

generation, and analysis workflows.

5.2.1. Data Preprocessing

Since FastRP requires numerical input, string properties in the graph must be encoded appropri-

ately. Two methods were implemented: one-hot encodings and sentence transformer based encod-

ings.

Linus Andreas Schneider

3705638
22

5. Design and Implementation

5.2.1.1. Encoding String Data

As described in section 4.1, most properties of the nodes are strings. Since FastRP can only utilize

numerical properties, it is necessary to encode these strings in a meaningful way. The algorithms

optimized implementation also requires that every node in the projected graph has a value for every

encoded property and, in the case of arrays of scalar values, that the arrays are of the same length

on all nodes.

To allow for the flexible selection of properties to encode, while still ensuring these constraints are

met in all cases an interactive widget was implemented in the notebook. Using an APOC procedure,

seen below in Listing 5.1, the nodes, their properties, and the types of these properties are fetched

from the database.

1 CALL apoc.meta.nodeTypeProperties()

2 YIELD nodeType, propertyName, propertyTypes

3 RETURN nodeType AS label, propertyName AS prop, propertyTypes[0] AS valueType

Listing 5.1: APOC Query for Fetching the Available Node Types and Their Properties.

Then a selection of the node types and their string properties, as well as which encoding string

type to use can be made. There are two implemented ways of encoding the string properties.

A naive method of encoding the string properties is to use one-hot encodings. To do so, for every

selected property a list of distinct values over all the nodes with the selected labels is built. Then,

the one-hot encoding of these values is added to the nodes inside the database in batches using a

one-hot encoding function implemented within GDS.

1 MATCH (n)

2 WHERE ANY(label IN labels(n) WHERE label IN [{target labels str}])
3 AND n.‘{prop}OneHot‘ IS NULL

4 WITH n LIMIT {batch size}
5 WITH n, [toString(n.‘{prop}‘)] AS propValues

6 WITH n, gds.alpha.ml.oneHotEncoding($distinctValues, propValues) AS oneHotVector

7 SET n.‘{prop}OneHot‘ = oneHotVector

8 RETURN COUNT(n) AS updated nodes

Listing 5.2: One-Hot Encoding the String Properties.

Note that this query is run using the GDS python client and uses f-strings to dynamically insert the

selected properties and labels as python variables inside curly braces in addition to the parameter

denoted by the dollar sign in the query. The GDS oneHotEncoding function creates an array of

zeros with the length of the amount of distinct values and sets the value at the index of the property

value to 1. If the property is not present on the node, the encoding is an array of zeros. All selected

labels are also encoded and added as a property to the corrresponding nodes.

Linus Andreas Schneider

3705638
23

5. Design and Implementation

This is a relatively fast way of encoding the string properties but it doesn’t encode any semantic

similarity between values. It also has the downside of the length of the arrays growing with the

number of distinct values, which can be a problem for larger datasets.

These problems can be mitigated by using a sentence transformer model to encode the string

properties. This is done by iterating over all nodes with the selected labels and encoding the

property values with the all-MiniLM-L6-v2 model from the “Sentence Transformers” [42] library,

saving each encoded value into a dictionary to avoid encoding the same value multiple times. These

encodings are then saved to the database in batches, writing an array of zeros, the length of the

embedding size, for nodes that don’t have the corresponding string property.

1 for prop name in selected properties :

2 prop value = row.get(prop name)

3 prop encoded name = f”{prop name}SentTransf”

4

5 if pd.notna(prop value):

6 if prop value in value embedding map[prop name]:

7 embedding = value embedding map[prop name][prop value]

8 else :

9 embedding = model.encode(prop value)

10 value embedding map[prop name][prop value] = embedding

11 else :

12 embedding = np.zeros(EMBEDDING DIM)

Listing 5.3: Encoding the String Properties with Sentence Transformer.

Both methods provide a deterministic way of encoding string properties, while ensuring they are

present on all nodes in the projected graph and the arrays are of the same length on all nodes.

Since FastRP linearly combines the randomly sampled vectors with the property arrays, arrays of

zeroes do not influence the embeddings in any way.

5.2.1.2. Encoding Temporal Aspects

Since temporal information in the data is of particular interest but FastRP can’t natively handle

DateTime properties, these also need to be encoded in a way suitable for the algorithm. The focus

being encoding the information contained in the start and end properties of the nodes, which can

also be used to calculate the duration between encounters.

The timestamps are encoded using a pre-trained version of the time2vec layer described in sec-

tion 2.2.4 called “Date2Vec” [43], which was trained on a next day prediction task and a date

reconstruction task. First, all the start and end values of the nodes in the database are extracted.

They are then converted to the input format of Date2Vec, passed through it and written back to

the database in batches, similar to the sentence transformer based encodings.

Linus Andreas Schneider

3705638
24

5. Design and Implementation

The temporal distances between encounters are encoded as edge weights of the NEXT edges be-

tween them using a cypher query. The same is done with the distances between the birthdate of

the patient and the encounters, as a measure of how old the patient was at the time of a given

encounter. Since FastRP also requires the selected relationshipWeightProperty to be present on

all projected edges, which is why it is set to 1 for all other relationships.

5.2.2. Embedding Generation

In section 2.5.2 many different hyperparameters of FastRP have been presented. In addition to

these there also exist choices regarding which nodes, relationships, properties, and what way of

representing them to use during node embedding generation, embeddings of which type of nodes to

aggregate into graph level representations, whether or not to boost the importance of some nodes

during the aggregation process, and if so by how much.

To enable faster iterations and flexibility with regard to data models in generating and exploring

the embeddings, as well as ensuring that the selected parameters are fit to be used within the

constraints of FastRP all of these options, with the exception of configuring the boosting, have

been implemented as interactive and adaptable widgets within the notebook.

Selecting node types, relationships types, and properties during the embedding generation

is all connected, since only properties present on the selected node types should be able to be

selected, all selected node types should be reachable from the patient node, and only relationships

with types that connect nodes of the selected node types should be selected for FastRP to work.

That is why the APOC procedure already presented in 5.1, together with a query containing

information about the source and node types of relationship types, is used to build an adjacency list

representation of the graphs schema and a dictionary of which node types have which properties.

These are then used to dynamically adjust the possible choice of properties, making sure that only

those properties are able to be selected, which are present on all selected node types in the selected

string encoding format, and that all nodes of the selected types are reachable through relationships

of the selected types. The widget interface for this is shown in Figure 5.2.

Using the selected node types, another interactive widget provides the option of selecting which

node types to aggregate into graph level embeddings, as well as the option to concatenate the

temporal encodings to the node embeddings.

Through defining a boost map according to the schema presented in Listing 5.4, the importance

of nodes of certain types or with certain property values during the aggregation can be increased.

1 boost factors = {
2 ’NodeTypeName’: {
3 ’ type’ : 1.1,

4 ’propertyName’: {
5 ’propertyValue’: 10

Linus Andreas Schneider

3705638
25

5. Design and Implementation

Figure 5.2.: Widget for Selecting Node/Relationship Types and Properties.

6 }
7 }
8 }

Listing 5.4: The Boost Map Schema for Aggregation.

Where the type key is used to boost the importance of all nodes of a certain type and the

attributeName and attributeValue keys are used to boost the importance of nodes with a certain

property value.

Lastly setting the hyperparameters for FastRP is also done through a widget, making sure

that, if no properties are selected, the property ratio and node self influence are set to 0.0.

The hyperparameters selected in this work are:

• embeddingDimension: 256

• propertyRatio: 1.0

• iterationWeights: [1.0, 1.0, 1.0, 1.0]

• nodeSelfInfluence: 1.0

• relationshipWeightProperty: ’weight’

Linus Andreas Schneider

3705638
26

5. Design and Implementation

where propertyRatio and nodeSelfInfluence were only set to 1.0 if properties were selected for

the tested embeddings and relationshipWeightProperty was only set to weight if temporal edge

weights were used. Additionally a seed for the randomness inside FastRP was specified to ensure

reproducibility of the results.

These values were selected based on recommendations inside the FastRP documentation and showed

sufficiently good results in testing, providing a good balance between speed and quality of the

embeddings, although they could be further optimized through hyperparameter tuning, given a

more concrete task to optimize for.

All of the previous selections are then used to dynamically build the query for generating the

node embeddings using a python f-string, which is then executed in batches over all patients in

the database using the GDS python client.

1 UNWIND $batch patient ids AS patientId

2 MATCH (p:Patient {{id: patientId}})
3 WITH p

4 CALL {{
5 WITH p

6 MATCH path = (p)−[∗0..]−>(n)

7 WHERE ALL(r IN relationships(path) WHERE type(r) IN {list(selected relationships)})
8 WITH p, COLLECT(DISTINCT n) AS nodesInPath

9 WITH p, nodesInPath, [n IN nodesInPath | id(n)] + id(p) AS nodeIds

10

11 CALL gds.graph.project.cypher(

12 ’patientJourney ’ + p.id,

13 ’MATCH (n) WHERE id(n) IN $nodeIds

14 RETURN id(n) AS id,

15 labels (n) AS labels{’ , ’ if feature properties else ’ ’}
16 {”, ”. join ([f”n.{prop} AS {prop}” for prop in feature properties])}’ ,

17 ’MATCH (n)−[r]−(m)

18 WHERE id(n) IN $nodeIds AND id(m) IN $nodeIds

19 RETURN id(n) AS source, id(m) AS target{project match end}’,
20 {{
21 parameters: {{
22 nodeIds: nodeIds

23 }}
24 }}
25)

26 YIELD graphName

27

28 CALL gds.fastRP.stream(

29 graphName,

30 {{

Linus Andreas Schneider

3705638
27

5. Design and Implementation

31 embeddingDimension: {embedding dimension},
32 featureProperties : { list (feature properties)},
33 propertyRatio: {property ratio},
34 randomSeed: {random seed},
35 iterationWeights: { iteration weights },
36 nodeSelfInfluence : { node self influence },
37 relationshipWeightProperty: {relationship weight property}
38 }}
39)

40 YIELD nodeId, embedding

41 MATCH (n:{”|”.join(output types)}) WHERE id(n) = nodeId

42 WITH p, graphName, n, embedding{concat case statement}{boost case statement}
43 WITH p, graphName, {output statement}
44

45 CALL gds.graph.drop(graphName) YIELD graphName AS droppedGraph

46

47 RETURN p.id AS patientId, nodeEmbeddings

48 }}
49 RETURN patientId, nodeEmbeddings

Listing 5.5: Generating the Node Embeddings using FastRP.

First, in lines 4–26, an in-memory projection of the patient journey subgraph containing only the

selected node and relationships types, as well as the selected properties, is created. This projected

graph is then passed to the FastRP algorithm called in lines 28–40, which generates the node

embeddings for the projected graph using the selected hyperparameters.

In lines 41–43 first only the nodes of the types selected for aggregation are matched, then the

node embeddings for the patient are grouped into a list, optionally concatenating the property

containing the Date2Vec temporal encoding to them or adding an additional boost factor for every

node embedding if the boost map was set.

Finally the projected graph is dropped from the database and the embeddings are returned together

with the patient id. As the query is run from the GDS python client, the data is returned as pandas

dataframes, which are then concatenated into a single dataframes containing the patient ids and

their corresponding node embeddings.

5.2.3. Aggregation

Depending on whether a boost map was set or not, the node embeddings are aggregated into a single

graph level embedding for each patient by either taking the element-wise mean of the embeddings

or by using a weighted mean based on the boost factors.

Linus Andreas Schneider

3705638
28

5. Design and Implementation

While this is a simple way of aggregating the node embeddings into graph level representations, it

is a computationally inexpensive and commonly used method of doing so [7]. A brief discussion of

potentially more effective but more complex methods can be found in chapter 7.

5.2.4. Analysis

In order to gain insights into the structure of the generated embeddings and how they represent

the patient journeys in the embedding space, they are clustered, dimensionally reduced and visu-

alized inside a two dimensional and a three dimensional plot. The latter of which allows for the

interactive display of the k-th nearest neighbors of a given embedding and the selection of one or

more embeddings to view the corresponding patient journeys from within the notebook.

For clustering and dimensionality reduction, widgets are provided for selecting the hyperpa-

rameters of the HDBSCAN and UMAP algorithms. In chapter 6, different options for HDBSCANs

hyperparameters are discussed for different embedding strategies. The UMAP hyperparameters can

be freely set to explore either more local or more global structures of the data.

The interactive two-dimensional plot is implemented using the plotly library for python.

Using a dropdown menu a k value can be selected and the k-th nearest neighbors of an embedding

can be highlighted by clicking on it. An example is shown in Figure 5.3, where the first nearest

neighbor of the selected embedding is highlighted.

Figure 5.3.: Viewing the Nearest Neighbor of an Embedding.

In Figure 5.4 both the patients embeddings and that of their nearest neighbor have been selected

by encircling them in the plot.

Linus Andreas Schneider

3705638
29

5. Design and Implementation

Figure 5.4.: Selecting a Patient for Journey Visualization.

Upon selecting one or more embeddings in the two-dimensional plot, a cypher query for fetch-

ing the corresponding patient journeys can be generated and used for visualizing the associated

patients’ journeys in the notebook. This functionality is implemented through the use of the

yfiles jupyter graphs for neo4j package, which has been configured to provide an intuitive

visualization of the journey based on the patient journey model. An example of the visualization

of the journeys of the patients selected in Figure 5.4 is shown in Figure 5.5.

Figure 5.5.: Visualizing the Selected Patient Journey with yFiles.

Linus Andreas Schneider

3705638
30

6. Evaluation and Discussion

6. Evaluation and Discussion

Graph level embeddings are complex and abstract objects, which makes them difficult to evaluate

when lacking a ground truth to compare them to. Even though a manual inspection can pro-

vide some insights, these can hardly be considered robust evidence about the quality of generated

embeddings, as they are not quantifiable.

To make informed claims about the validity of the methods proposed in this work and the quality

of the embeddings generated with them it is crucial to evaluate whether they have the ability

to capture different characteristics of patient journeys, namely their topological, semantic, and

temporal aspects and if structures in the data can be made apparent through clustering.

First, the effectiveness of the embeddings in capturing differences with regard to topological, se-

mantic, and temporal differences is evaluated by constructing a ground truth for these categories.

Based on the results, the most promising candidates of the embedding methods are evaluated with

respect to their scalability and performance in a clustering task against a baseline method. Finally

the results are discussed and key findings are summarized.

6.1. Effectiveness Evaluation

For the purpose of constructing the discussed ground truths, two patient journeys were extracted

from the 10000 patient dataset by use of an APOC function, seen in Listing 6.1. The smaller of

which will only be used for the evaluation of the topological differences, while the larger one will

be used for the evaluation of the semantic and temporal differences.

1 MATCH (p:Patient {id: $patient id})
2 CALL apoc.path.subgraphAll(p, {
3 relationshipFilter : ’HAS CONDITION>|HAS ENCOUNTER>|HAS DRUG>|

HAS PROVIDER>|NEXT>|FIRST>|HAS PROCEDURE>’,

4 minLevel: 0,

5 maxLevel: −1

6 })
7 YIELD nodes, relationships

8 RETURN nodes, relationships

Listing 6.1: APOC Procedure for Efficiently Extracting Patient Journeys.

They were then saved in-memory as a python variable, seen in Listing 6.2, by storing their nodes’

ids, labels, and associated properties, filtering out all properties that were added during the pre-

processing done on the source database. For the relationships the ids of the source and target nodes

and their types were stored.

Linus Andreas Schneider

3705638
31

6. Evaluation and Discussion

1 nodes = []

2 edges = []

3 for node in nodes result :

4 nodes.append(

5 {
6 ’old element id ’ : node.element id,

7 ’ label ’ : ””. join(node.labels) ,

8 ’ properties ’ : {
9 key: node[key] for key in node.keys() if not (key.endswith(’OneHot’) or key.

endswith(’SentTransf’) or key.endswith(’D2V’))

10 }
11 }
12)

13

14 for relationship in relationships result :

15 edges.append(

16 {
17 ’ start id ’ : relationship .start node.element id,

18 ’end id’ : relationship .end node.element id,

19 ’type’ : relationship .type

20 }
21)

22

23 return {’nodes’ : nodes, ’edges’ : edges}

Listing 6.2: Python Code to Save Patient Journeys in Custom Representation.

Note that the nodes ids are denoted as old element id, as they are the ids of the nodes in the

source database. When the nodes of graphs in this format are written to the evaluation database,

a mapping of the old ids to their newly assigned ids is created and used to correctly assign the

relationships to the nodes in the new database.

Storing the graphs in this format allows for modifications to be made in a fast and easy to implement

way, which is required for creating the ground truths for the different categories. For each category a

set of modifications is applied to the graph, altering it in different ways with regard to the category

in question, while keeping its structure with regard to the other categories intact. Then the cosine

similarity between the embeddings of the different versions of the graph is calculated for different

embedding methods and it is evaluated whether the embedding methods are able to capture the

differences, if so how much of an influence they ascribe to the different categories, and whether that

is consistent with how large the modifications were.

Linus Andreas Schneider

3705638
32

6. Evaluation and Discussion

6.1.1. Topological Differences

First it was evaluated whether the aggregated embeddings capture topological differences between

a smaller and a larger patient journey. Both extracted graphs were transferred to the evaluation

database as is and the embeddings were generated with:

NP - No properties.

STP - Sentence transformer encoded properties.

STSP - Sentence transformer encoded properties and scalar properties.

Besides the topological differences the graphs also differed moderately in the string properties

encoded through the sentence transformer. The reason for including the STP and STSP embeddings

was not to evaluate how well the embeddings capture the string properties, but rather to evaluate

if the topological differences are still captured when these different aspects are included.

Metric NP STP STSP

Similarity 0.1199 0.7832 0.9947

Table 6.1.: Comparison of Embedding Methods for Capturing Topological Differences.

It can be seen that the topological difference captured by the node level embeddings still holds when

the embeddings are aggregated to the graph level, even when the string properties are included.

However, including basecost, the only scalar property left after excluding the Observation nodes

due to their mass, in the STSP embeddings leads to the topological being completely overshadowed.

This is consistent with the way FastRP constructs the initial sparse vectors of nodes when using

a propertyRatio 1.0 as a linear combination of sparse vectors for each scalar property and each

index of the arrays of scalar values. For over all the nodes in the evaluated graphs, basecost has a

mean of 135.34 with a standard deviation of 78.22, while the scalar values in the arrays generated by

the sentence transformer are mostly distributed around 0. This causes the sparse vector generated

for the basecost to be orders of magnitude more influential than the other properties. For this

reason basecost was not further considered as a relevant property during the evaluation.

6.1.2. String Property Differences

In order to test the ability of the embeddings to capture semantic differences between different

graphs and the ability of the boosting strategy to influence the embeddings, the larger of the two

patient journeys was modified with regard to its string properties. The following transformations

were applied:

No Properties (NP) - All properties were removed.

Test 1 (T1) - All string properties were replaced with “TEST PROP”.

Test 2 (T2) - All string properties were replaced with “TEST PROPij” (where i corresponds to

the i-th node and j to the j-th property). Additionally, a property boostprop with value

“SAME i” was added to each i-th node.

Linus Andreas Schneider

3705638
33

6. Evaluation and Discussion

Test 2 Boost (T2 B) - Same as T2, but with boostprop set to “THISISDIFFERENT” for the

first and last encounter.

The cosine similarity of the sentence transformer encodings is between 0.7 and 0.85 for “TEST PROP”

and “TEST PROPij”, between 0.6 and 0.8 for “SAME i” with different i’s, and between 0.1 and

0.3 for “THISISDIFFERENT” and “SAME i” with different i’s, meaning that the former two sim-

ilarities are encoded as much more semantically similar than the latter.

The modified versions of the graph were then written into the evaluation database and the embed-

dings were generated using:

NP - No Properties.

OHP - One-hot encoded properties.

STP - Sentence transformer encoded properties.

STP TB - Sentence transformer encoded properties with boosting encounter nodes with a factor

of 10.

STS VB - Sentence transformer encoded properties with boosting encounter nodes with the value

“THISISDIFFERENT” with a factor of 10.

Allowing for a comparison between how well the one-hot encoding and the sentence transformer

strategies are able to capture differences in the string properties against a baseline of no properties.

Additionally, the boosting strategy for node types as well as values together with the sentence

transformer is evaluated.

Method NP-T1 NP-T2 NP-T2 B T1-T2 T1-T2 B T2-T2 B

NP -0.0022 -0.0677 -0.0652 -0.0598 0.0437 0.0458
OHP 0.3605 0.8679 0.8677 0.3615 0.3608 0.9996
STP 0.4656 0.4727 0.4730 0.8441 0.8444 1.0000
STP TB 0.4631 0.4723 0.4727 0.8299 0.8303 0.9999
STS VB 0.4656 0.4727 0.4803 0.8441 0.8381 0.9729

Table 6.2.: Comparison of Embedding Methods for Capturing Seminatic Differences.

The results show distinct differences between one-hot encoding and sentence transformer methods.

One-hot encoding captures the uniqueness of T1 but fails to differentiate between NP, T2, and T2 B,

as their initial embedding vectors become similarly random due to the summation of multiple sparse

vectors, since for n = i×j different property values of T2 and T2 B n sparse vectors get generated.

In contrast, the sentence transformer method successfully captures the semantic similarity between

T1 and T2/T2 B while maintaining appropriate distance to NP, though it cannot differentiate

between T2 and T2 B by itself.

Boosting all encounter node embeddings by a factor of 10 produces minimal changes, while targeted

boosting of nodes with the “THISISDIFFERENT” value in boostprop effectively highlights these

differences. The sentence transformer method proves more viable for capturing semantic similarities,

while one-hot encoding, though potentially useful for categorical data, shows significant limitations.

Linus Andreas Schneider

3705638
34

6. Evaluation and Discussion

The boosting technique, while effective for emphasizing specific values, is not considered for further

evaluation.

6.1.3. Temporal Differences

To evaluate the ability of the embeddings to capture temporal aspects of the patient journeys, four

transformations were applied to encounters of the larger journey and their directly associated nodes.

Each transformation alters different temporal properties while maintaining others constant:

Uniform (UNI) - Sets the temporal distance between all encounters to their mean value, modifying

relative distances while maintaining total journey duration.

Flipped (FLIP) - Reverses the order of encounters, preserving both relative and absolute distances

but changing their sequence.

Absolute (ABS) - Shifts all encounters one year into the future, maintaining all relative temporal

relationships while changing absolute timestamps.

Delta (DELT) - Multiplies the temporal distance between encounters by ten, expanding the total

journey duration while preserving relative proportions.

These transformations allow for the isolation of specific temporal aspects: only UNI modifies relative

distances between encounters, only DELT changes the total journey duration, only FLIP alters the

encounter sequence, and only ABS shifts the absolute timestamps.

The methods of encoding temporal differences, of which all permutations were evaluated, were:

NT - No temporal encoding.

WGT - The precomputed weights on NEXT and HAS ENCOUNTER relationships as relationship weights

in FastRP.

D2Vprop - The Date2Vec encoded properties as feature properties in FastRP.

D2Vconc - The Date2Vec encoded property start concatenated to the corresponding node em-

bedding vector.

For the evaluation of temporal characteristics, the sentence transformer method was used to encode

a selected set of non-temporal string properties: address, category, class, code, description, ethnicity,

gender, name, race, and specialty. These properties cover all relevant data from drug, condition,

procedure, and provider nodes, while including only the most descriptive patient properties, as

encoding all patient-specific properties would create unnecessary computational overhead without

adding informational value.

The Table 6.3 shows the similarities of the modified journeys to the unaltered journey under each

permutation of temporal encoding methods.

Linus Andreas Schneider

3705638
35

6. Evaluation and Discussion

Method UNI FLIP ABS DELT

NT 1.0000 1.0000 1.0000 1.0000
EW 1.0000 1.0000 1.0000 1.0000
D2Vprop 0.5193 0.9629 0.9994 0.9486
D2Vconc 0.6273 0.8763 0.9999 0.8988
EW + D2Vprop 0.6874 0.9962 0.9994 0.9733
EW + D2Vconc 0.6195 0.8747 0.9999 0.8976
D2Vprop + D2Vconc 0.5193 0.9629 0.9994 0.9486
EW + D2Vprop + D2Vconc 0.6161 0.8746 0.9999 0.8975

Table 6.3.: Comparison of Embedding Methods for Capturing Temporal Differences

The results demonstrate that, while temporal edge weights failed to capture temporal differences,

both methods of using the Date2Vec encodings (as feature properties and concatenated node em-

beddings) made it possible to distinguish between embeddings of the modified journeys and the

unaltered journey. Notably, when both Date2Vec implementations were combined, the feature prop-

erty version showed dominant influence.

With both versions the biggest change in similarity can be observed for UNI, which is the only

transformation that changes the relative temporal distance between encounters. Together with the

fact that the smallest change in similarity happened to ABS, which only changes the absolute

temporal distance between encounters, this indicates that the Date2Vec encoded properties are

mainly capturing the relative temporal distance between encounters This seems consistent with the

design of the time2vec layer, which is designed to mainly learn periodic patterns and only has a

single neuron for linear patterns. Despite that both versions still manage to capture the temporal

differences for FLIP and DELT, which maintain the relative temporal distance between encounters.

This might be due to both transformations changing the timestamps of the encounters and their

directly associated nodes, in a way that is less linear than the shift by exactly one year by ABS,

changing not just the year but also the months, days, hours, and minutes, and therefore a much

larger part of the input to the pre-trained time2vec model.

Since both Date2Vec based temporal encoding methods seem to be able to capture the temporal

differences, both will be used in the following evaluation steps together with the sentence trans-

former method for encoding string properties. Additionally for the clustering task a naive baseline

journey embedding method and the sentence transformer method without any temporal encoding

will be used as a comparison.

6.2. Baseline Method

The purpose of creating a baseline method is to have a simple and fast method, not involving any

topological features, to compare the more complex and computationally expensive graph based

methods to. In order for it to still be comparable to the other methods, it should contain some

semantic and temporal information about the patient journey, while foregoing the topological in-

formation.

Linus Andreas Schneider

3705638
36

6. Evaluation and Discussion

The method chosen for the baseline in this work extracts the 5 most common and 5 least common

string property values for every property in the patient journey, calculates a sentence transformer

encoding for each of them, and then averages them all together to get a single vector describing the

journeys string properties. This vector is then concatenated with the Date2Vec encoded properties

of the first and last encounter in the journey to provide it with some temporal information.

6.3. Scalability Evaluation

All times listed in this section pertain to the runtime of the specified processes within a jupyter

notebook executed through the vscode jupyter extension on a machine with an Intel Core i7-10510U

CPU with a base frequency of 1.8 GHz and 16 GB of RAM running Windows 11 and are provided

in the format hours:minutes:seconds.

6.3.1. Preprocessing

As the embedding generation methods chosen for the clustering task rely heavily on preprocessing

with the sentence transformer model and Date2Vec, the runtime of both methods on the four sizes

of datasets was measured. For the purpose of comparison the time for generating and writing the

one-hot encodings was also measured, resulting in Table 6.4 below.

Method 10 100 1000 10000

One-hot 00:00:06 00:00:14 00:02:33 01:34:22
Sentence transformer 00:02:27 00:06:15 00:52:51 09:13:55
Date2Vec 00:00:03 00:00:11 00:01:37 00:19:32

Table 6.4.: Runtime of Preprocessing Methods for Different Dataset Sizes.

When investigating the scaling behavior of the preprocessing methods, all methods exhibit super-

linear scaling behavior as the dataset size increases, though to varying degrees. The one-hot en-

coding method shows the most dramatic super-linear scaling, with runtime increases growing from

2.3x to an extreme 37x for each 10-fold increase in dataset size. The sentence transformer method,

while still super-linear, shows more moderate scaling with runtime increases ranging from 2.5x to

10.5x. Date2Vec also demonstrates super-linear scaling, with increases from 3.7x to 12.1x, though

it processes significantly less data per sample than the sentence transformer method due to its

simpler input requirements.

6.3.2. Embedding Generation

The runtime of the embedding generation methods was measured for all selected embedding meth-

ods on the four sizes of datasets, the results of which are shown in Table 6.5.

The generation speeds are very similar, due to the embedding of the sentence transformer encoded

properties taking much longer than that of the Date2Vec based properties. This can be seen when

Linus Andreas Schneider

3705638
37

6. Evaluation and Discussion

Method 10 100 1000 10000

STP + D2Vprop 00:00:15 00:01:36 00:15:47 11:41:20
STP + D2vconc 00:00:05 00:01:36 00:13:11 11:13:58
STP 00:00:04 00:00:57 00:12:40 10:51:00

Table 6.5.: Runtime of Embedding Generation Methods for Different Dataset Sizes.

comparing STP which only uses the former with the other methods and is explained by the dis-

crepancy between the dimensionality of the vectors generated by the sentence transformer model

(384) and Date2Vec (64), as well as the higher prevalence of string properties than date properties

in the data.

6.4. Clustering Task

The clustering task was performed on embeddings generated from the 10000 patient dataset with

each of the selected embedding methods. Each clusterings quality was evaluated using the DBCV

index. To enable a fairer comparison a grid search was done for the HDBSCAN hyperparameters,

finding the optimal values for each set of embeddings over the ranges:

min cluster size [10, 50, 100, 200, 300, 500]

min samples [2, 5, 5, 10, 20, 50, 100, 200]

cluster method [eom, leaf]

Additionally to the DBCV index, the hyperparameters (cluster selection method, minimum samples,

minimum cluster size), the number of clusters, and the percentage of noise points were recorded

for each clustering, to provide more insight into their structure.

Method Sel. Min. S. Min. C. S. n Clusters % of Noise DBCV Score

Baseline eom 2 50 4 74.40% 0.2560
STP + D2Vprop leaf 2 10 101 83.66% 0.1634
STP + D2Cconc eom 2 200 2 77.67% 0.2233
STP eom 20 10 2 4.87% 0.9513

Table 6.6.: Performance of Different Embedding Methods on Clustering Task.

The results in Table 6.6 show that, according to the DBCV score, the simple baseline method

outperforms both methods that incorporate temporal properties, while using only the encoded

string properties yields the highest score. Analysis of the optimal hyperparameters provides insight

into these results.

For the method using encoded dates as features, optimal clustering is achieved with the leaf

cluster selection method, resulting in numerous smaller, more homogeneous clusters, indicating

that there might be many small clusters in the data that are hard to distinguish. The embeddings

that concatenate temporal properties differ from the string-only embeddings only in their final 32

dimensions. This explains why they produce the same number of clusters as the string-only method

(STP) - they likely discover clusters based on the same underlying distribution, but with added

Linus Andreas Schneider

3705638
38

6. Evaluation and Discussion

noise from the temporal data. This noise appears to cause the algorithm to select only the densest

parts of the clusters that were discovered in the string-only approach.

The lower performance of temporally-integrated embeddings, even compared to the baseline, sug-

gests that incorporating temporal data creates a more uniform distribution of points in the embed-

ding space, making distinct clusters harder to identify. However, this doesn’t necessarily mean the

embeddings fail to capture important data properties. Rather, it suggests that temporal informa-

tion introduces natural variation in the data that, while potentially meaningful, makes traditional

density-based clustering more challenging.

6.5. Summary and Discussion

It was discovered that FastRP node embeddings maintain their ability to capture topological dif-

ferences when using mean aggregation, validating this approach for generating graph-level embed-

dings. Furthermore, weighted mean aggregation (boosting) proved to be an effective method for

fine-tuning embeddings, potentially allowing for the incorporation of domain knowledge to adjust

similarity scores.

The sentence transformer model “all-MiniLM-L6-v2” successfully captured semantic differences be-

tween graphs when encoding string properties, outperforming one-hot encoding in both effectiveness

and scalability.

For temporal aspects, the pre-trained “Date2Vec” model successfully captured temporal differences

between patients, with a notably stronger effect on relative time differences between encounters

compared to absolute temporal shifts.

The clustering analysis revealed that embeddings based on string properties create denser point

distributions in the embedding space, facilitating distinct cluster identification. However, incor-

porating temporal properties leads to a more uniform distribution, making cluster identification

more challenging. This reduced clustering performance does not necessarily indicate lower quality

embeddings overall.

The significant impact of temporal features on embedding similarity, particularly regarding relative

encounter distances (see “UNI” in Table 6.3), combined with the high variance in encounter timing

observed especially in younger patients (Figure 4.6), suggests that temporal patterns might be either

too variable or too dominant in the embeddings for effective clustering. Despite this limitation in

clustering performance, these embeddings accurately reflect temporal differences between patient

journeys and may prove valuable for other applications, such as patient similarity search, though

proper evaluation would require domain expertise to establish ground truth.

Linus Andreas Schneider

3705638
39

7. Conclusion and Outlook

7. Conclusion and Outlook

7.1. Conclusion

This thesis explored approaches to generating graph level embeddings of temporal property graphs

containing health data, utilizing Neo4j’s Graph Data Science Library implementation of FastRP

node embeddings. A synthetic patient dataset was created using Synthea and analyzed with fo-

cus on its temporal features to understand the information potentially encoded in the resulting

embeddings. Various approaches for incorporating this information through preprocessing and ag-

gregating node level embeddings into graph level representations were evaluated for effectiveness,

scalability, and clustering performance. Additionally, an interactive notebook was developed to vi-

sualize embeddings and explore parameter effects, enabling intuitive visual analysis of the resulting

graph level embeddings.

The results of the evaluation show that using a sentence transformer model to encode string infor-

mation is an effective and scalable way of enabling the FastRP implementation in GDS to benefit

from them. Mean aggregation proved viable for transforming node embeddings into graph level rep-

resentations, with weighted aggregation offering opportunities for domain-knowledge-based tuning.

A pre-trained time2vec layer successfully captured temporal differences in patient journeys, with

relative encounter distances showing the strongest impact, followed by encounter order, temporal

distance magnitude, and to a lesser extent, absolute temporal positions. While string property

embeddings showed strong clustering performance compared to the baseline, adding temporal in-

formation prevented the identification of dense, well-separated clusters, likely due to high temporal

variance in the dataset.

7.2. Outlook

As this thesis follows an explorative approach of generating graph level embeddings, it is not

exhaustive in its trials of potentially meaningful approaches. Further, with more computational

capacities different avenues of evaluation, which might lead insight into potential for domain specific

tasks could be enabled.

Since encoding the temporal information shows promising results in effectiveness evaluation but

clustering the data falls short in recognizing underlying structures, experimentation with the di-

mensionality and therefore influence on the graph level embedding of the vectors encoding the

timestamps, as well as controlling the dataset for temporal variations could yield insight into what

levels of influence of the temporal data is appropriate for embedding patient data.

With more computational resources, evaluating embeddings with on domain specific tasks, like

emergency stay prediction or death prediction, would be possible by generating a larger dataset,

assigning ground truth values to relevant outcomes and truncating them out of the journeys, then

training a classifier. This would provide insight into the methods’ viability in medical contexts and

Linus Andreas Schneider

3705638
40

7. Conclusion and Outlook

enable training a custom time2vec layer alongside the classifier for optimized temporal representa-

tion.

Generally, while encoding information through pre-trained models (sentence transformers and

time2vec), generating node-level embeddings, and aggregating them into graph-level representations

makes efficient use of implemented functionalities and effectively encodes patient journey aspects,

the approach using Neo4j’s FastRP and mean aggregation remains inherently static. Optimiza-

tions are limited to choosing encoding methods, tuning hyperparameters, and varying aggregation

methods, without practical ways to optimize embeddings for specific downstream tasks through

end-to-end training. This limitation exists despite the much of the effectiveness of the presented

embedding methods stemming from neural networks, which theoretically enables fine-tuning of in-

dividual components like the sentence transformer or time2vec models. While these components

could be fine-tuned separately, the current architecture, makes it impractical to backpropagate loss

from a classifier layer through to the embedding layers, as this would require re-encoding properties

and regenerating embeddings at each training step. This architectural constraint also limits the in-

corporation of advanced techniques, such as attention mechanisms, for optimizing the aggregation

of node embeddings into graph-level representations.

One promising method employing end-to-end training for the generation of embeddings of EHR

are the BEHRT [33] models, that represent a patient journey as a sequence of encounters, akin

to a sequence of words in a sentence, in order to aggregate them using tokenized descriptions of

health codes as input. Recent iterations [36] are successfully employing graph learning techniques

for embedding generation, following the same hypothesis as this work: that properly encoding the

inherent connections in health data improves results. However, the graph representation employed

is quite simplistic, lacking in expressiveness compared to a temporal property graph. THis makes

it worth investigating if using one would improve the performance by allowing the model to learn

from a richer basis.

The difficulty in employing BEHRT models lies in the selection of time representations, as well as

training tasks, as there needs to be a discrete set of variables the model can predict for training,

in order to generate a loss. Some of these questions have been addressed in a recent analysis [34],

which also employed a time2vec layer for encoding temporal information, similarly to this work.

For training tasks, using a set of medical codes from existing systems like SNOWMED-CT is

preferred, which exist for conditions, procedures, and drugs. However, these codes aren’t always

universally adapted, making the choice of training data dependent on the potential (geographic)

area of deployment.

In conclusion, future work in this area primarily depends on finding appropriate data representations

and optimization objectives. As a developing field, few standardized methods exist for generating

and evaluating EHR data embeddings. Since assessing embedding utility requires clinical context,

approaches allowing for end-to-end training and therefore adaptability to different contests and

tasks show promise and warrant further investigation, particularly regarding the efficacy of utilizing

graph data.

Linus Andreas Schneider

3705638
41

Bibliography

Bibliography

[1] “Progress on implementing and using electronic health record systems: Developments in

OECD countries as of 2021,” OECD Health Working Papers 160, Sep. 21, 2023. doi:

10.1787/4f4ce846-en. [Online]. Available: https://www.oecd-ilibrary.org/social-

issues - migration - health / progress - on - implementing - and - using - electronic -

health-record-systems_4f4ce846-en (visited on 09/27/2024).

[2] “DB-Engines Ranking per database model category.” (), [Online]. Available: https://db-

engines.com/en/ranking_categories (visited on 03/30/2024).

[3] R. Angles, “The Property Graph Database Model,” presented at the Alberto Mendel-

zon Workshop on Foundations of Data Management, 2018. [Online]. Available: https:

//www.semanticscholar.org/paper/The-Property-Graph-Database-Model-Angles/

91d6e8ba5dd90b02fe3bd870b19da13a6167af53 (visited on 09/06/2024).

[4] C. Rost, A. Thor, and E. Rahm, “Analyzing Temporal Graphs with Gradoop,” Datenbank-

Spektrum, vol. 19, no. 3, pp. 199–208, Nov. 1, 2019, issn: 1610-1995. doi: 10.1007/s13222-

019-00325-8. [Online]. Available: https://doi.org/10.1007/s13222-019-00325-8

(visited on 09/28/2024).

[5] M. Beladev, L. Rokach, G. Katz, I. Guy, and K. Radinsky, “tdGraphEmbed: Temporal Dy-

namic Graph-Level Embedding,” in Proceedings of the 29th ACM International Conference

on Information & Knowledge Management, ser. CIKM ’20, New York, NY, USA: Associa-

tion for Computing Machinery, Oct. 19, 2020, pp. 55–64, isbn: 978-1-4503-6859-9. doi: 10.

1145/3340531.3411953. [Online]. Available: https://doi.org/10.1145/3340531.3411953

(visited on 03/29/2024).

[6] L. Wang, C. Huang, W. Ma, X. Cao, and S. Vosoughi, “Graph-Level Embedding for Time-

Evolving Graphs,” in Companion Proceedings of the ACM Web Conference 2023, Apr. 30,

2023, pp. 5–8. doi: 10.1145/3543873.3587299. arXiv: 2306.01012 [cs]. [Online]. Avail-

able: http://arxiv.org/abs/2306.01012 (visited on 05/07/2024).

[7] Z. Yang, G. Zhang, J. Wu, J. Yang, Q. Z. Sheng, S. Xue, C. Zhou, C. Aggarwal, H. Peng, W.

Hu, E. Hancock, and P. Liò, “State of the Art and Potentialities of Graph-level Learning,”

ACM Comput. Surv., Sep. 12, 2024, issn: 0360-0300. doi: 10.1145/3695863. [Online].

Available: https://dl.acm.org/doi/10.1145/3695863 (visited on 09/27/2024).

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.

Polosukhin. “Attention Is All You Need.” arXiv: 1706.03762 [cs]. (Aug. 1, 2023), [Online].

Available: http://arxiv.org/abs/1706.03762 (visited on 09/29/2024), pre-published.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidi-

rectional Transformers for Language Understanding,” in Proceedings of the 2019 Confer-

ence of the North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, Volume 1 (Long and Short Papers), J. Burstein, C. Doran,

and T. Solorio, Eds., Minneapolis, Minnesota: Association for Computational Linguistics,

Jun. 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423. [Online]. Available: https://

aclanthology.org/N19-1423 (visited on 09/27/2024).

Linus Andreas Schneider

3705638
42

https://doi.org/10.1787/4f4ce846-en
https://www.oecd-ilibrary.org/social-issues-migration-health/progress-on-implementing-and-using-electronic-health-record-systems_4f4ce846-en
https://www.oecd-ilibrary.org/social-issues-migration-health/progress-on-implementing-and-using-electronic-health-record-systems_4f4ce846-en
https://www.oecd-ilibrary.org/social-issues-migration-health/progress-on-implementing-and-using-electronic-health-record-systems_4f4ce846-en
https://db-engines.com/en/ranking_categories
https://db-engines.com/en/ranking_categories
https://www.semanticscholar.org/paper/The-Property-Graph-Database-Model-Angles/91d6e8ba5dd90b02fe3bd870b19da13a6167af53
https://www.semanticscholar.org/paper/The-Property-Graph-Database-Model-Angles/91d6e8ba5dd90b02fe3bd870b19da13a6167af53
https://www.semanticscholar.org/paper/The-Property-Graph-Database-Model-Angles/91d6e8ba5dd90b02fe3bd870b19da13a6167af53
https://doi.org/10.1007/s13222-019-00325-8
https://doi.org/10.1007/s13222-019-00325-8
https://doi.org/10.1007/s13222-019-00325-8
https://doi.org/10.1145/3340531.3411953
https://doi.org/10.1145/3340531.3411953
https://doi.org/10.1145/3340531.3411953
https://doi.org/10.1145/3543873.3587299
https://arxiv.org/abs/2306.01012
http://arxiv.org/abs/2306.01012
https://doi.org/10.1145/3695863
https://dl.acm.org/doi/10.1145/3695863
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

Bibliography

[10] N. Reimers and I. Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-

Networks.” arXiv: 1908.10084 [cs]. (Aug. 27, 2019), [Online]. Available: http://arxiv.

org/abs/1908.10084 (visited on 09/29/2024), pre-published.

[11] S. M. Kazemi, R. Goel, S. Eghbali, J. Ramanan, J. Sahota, S. Thakur, S. Wu, C. Smyth, P.

Poupart, and M. Brubaker. “Time2Vec: Learning a Vector Representation of Time.” arXiv:

1907.05321 [cs]. (Jul. 11, 2019), [Online]. Available: http://arxiv.org/abs/1907.05321

(visited on 09/11/2024), pre-published.

[12] L. McInnes, J. Healy, and J. Melville. “UMAP: Uniform Manifold Approximation and

Projection for Dimension Reduction.” arXiv: 1802.03426 [cs, stat]. (Sep. 17, 2020),

[Online]. Available: http://arxiv.org/abs/1802.03426 (visited on 08/09/2024), pre-

published.

[13] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal of Machine

Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008, issn: 1533-7928. [Online]. Available:

http://jmlr.org/papers/v9/vandermaaten08a.html (visited on 10/22/2024).

[14] C. Malzer and M. Baum, “A Hybrid Approach To Hierarchical Density-based Cluster Selec-

tion,” in 2020 IEEE International Conference on Multisensor Fusion and Integration for In-

telligent Systems (MFI), Sep. 14, 2020, pp. 223–228. doi: 10.1109/MFI49285.2020.9235263.

arXiv: 1911.02282 [cs]. [Online]. Available: http://arxiv.org/abs/1911.02282 (visited

on 08/12/2024).

[15] D. Moulavi, P. A. Jaskowiak, R. J. G. B. Campello, A. Zimek, and J. Sander, “Density-

Based Clustering Validation,” in Proceedings of the 2014 SIAM International Conference

on Data Mining, Society for Industrial and Applied Mathematics, Apr. 28, 2014, pp. 839–

847, isbn: 978-1-61197-344-0. doi: 10.1137/1.9781611973440.96. [Online]. Available:

https://epubs.siam.org/doi/10.1137/1.9781611973440.96 (visited on 10/15/2024).

[16] “Neo4j Graph Database & Analytics – The Leader in Graph Databases,” Graph Database

& Analytics. (), [Online]. Available: https://neo4j.com/ (visited on 09/28/2024).

[17] “Why Graph Databases?” Graph Database & Analytics. (), [Online]. Available: https:

//neo4j.com/why-graph-databases/ (visited on 03/30/2024).

[18] “Introduction - Cypher Manual,” Neo4j Graph Data Platform. (), [Online]. Available:

https://neo4j.com/docs/cypher-manual/5/introduction/ (visited on 10/23/2024).

[19] “Procedures & Functions - APOC Documentation,” Neo4j Graph Data Platform. (), [On-

line]. Available: https://neo4j.com/docs/apoc/5/overview/ (visited on 10/23/2024).

[20] “Introduction - Neo4j Graph Data Science,” Neo4j Graph Data Platform. (), [Online].

Available: https://neo4j.com/docs/graph-data-science/2.6/introduction/ (visited

on 03/30/2024).

[21] “Node embeddings - Neo4j Graph Data Science,” Neo4j Graph Data Platform. (), [Online].

Available: https://neo4j.com/docs/graph-data-science/2.6/machine-learning/

node-embeddings/ (visited on 03/30/2024).

Linus Andreas Schneider

3705638
43

https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1907.05321
http://arxiv.org/abs/1907.05321
https://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1109/MFI49285.2020.9235263
https://arxiv.org/abs/1911.02282
http://arxiv.org/abs/1911.02282
https://doi.org/10.1137/1.9781611973440.96
https://epubs.siam.org/doi/10.1137/1.9781611973440.96
https://neo4j.com/
https://neo4j.com/why-graph-databases/
https://neo4j.com/why-graph-databases/
https://neo4j.com/docs/cypher-manual/5/introduction/
https://neo4j.com/docs/apoc/5/overview/
https://neo4j.com/docs/graph-data-science/2.6/introduction/
https://neo4j.com/docs/graph-data-science/2.6/machine-learning/node-embeddings/
https://neo4j.com/docs/graph-data-science/2.6/machine-learning/node-embeddings/

Bibliography

[22] H. Chen, S. F. Sultan, Y. Tian, M. Chen, and S. Skiena. “Fast and Accurate Network

Embeddings via Very Sparse Random Projection.” arXiv: 1908.11512 [cs]. (Aug. 29,

2019), [Online]. Available: http://arxiv.org/abs/1908.11512 (visited on 08/02/2024),

pre-published.

[23] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of social represen-

tations,” in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, ser. KDD ’14, New York, NY, USA: Association for Computing

Machinery, Aug. 24, 2014, pp. 701–710, isbn: 978-1-4503-2956-9. doi: 10.1145/2623330.

2623732. [Online]. Available: https://doi.org/10.1145/2623330.2623732 (visited on

10/23/2024).

[24] A. Grover and J. Leskovec, “Node2vec: Scalable Feature Learning for Networks,” in Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, ser. KDD ’16, New York, NY, USA: Association for Computing Machin-

ery, Aug. 13, 2016, pp. 855–864, isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939754.

[Online]. Available: https://doi.org/10.1145/2939672.2939754 (visited on 10/23/2024).

[25] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,” in Proceedings of

the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

ser. KDD ’06, New York, NY, USA: Association for Computing Machinery, Aug. 20, 2006,

pp. 287–296, isbn: 978-1-59593-339-3. doi: 10.1145/1150402.1150436. [Online]. Available:

https://dl.acm.org/doi/10.1145/1150402.1150436 (visited on 10/23/2024).

[26] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal. “Graph2vec:

Learning Distributed Representations of Graphs.” arXiv: 1707.05005 [cs]. (Jul. 17, 2017),

[Online]. Available: http://arxiv.org/abs/1707.05005 (visited on 05/07/2024), pre-

published.

[27] Q. V. Le and T. Mikolov. “Distributed Representations of Sentences and Documents.”

arXiv: 1405.4053 [cs]. (May 22, 2014), [Online]. Available: http://arxiv.org/abs/

1405.4053 (visited on 05/07/2024), pre-published.

[28] Y. Bai, H. Ding, Y. Qiao, A. Marinovic, K. Gu, T. Chen, Y. Sun, and W. Wang. “Un-

supervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity.”

arXiv: 1904.01098 [cs, stat]. (Jun. 2, 2019), [Online]. Available: http://arxiv.org/

abs/1904.01098 (visited on 05/07/2024), pre-published.

[29] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. “How Powerful are Graph Neural Networks?”

arXiv: 1810.00826 [cs, stat]. (Feb. 22, 2019), [Online]. Available: http://arxiv.org/

abs/1810.00826 (visited on 05/07/2024), pre-published.

[30] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, and E. Müller, “NetLSD: Hearing the

Shape of a Graph,” in Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, Jul. 19, 2018, pp. 2347–2356. doi: 10.1145/3219819.

3219991. arXiv: 1805.10712 [cs]. [Online]. Available: http://arxiv.org/abs/1805.10712

(visited on 05/07/2024).

Linus Andreas Schneider

3705638
44

https://arxiv.org/abs/1908.11512
http://arxiv.org/abs/1908.11512
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/1150402.1150436
https://dl.acm.org/doi/10.1145/1150402.1150436
https://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1707.05005
https://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
https://arxiv.org/abs/1904.01098
http://arxiv.org/abs/1904.01098
http://arxiv.org/abs/1904.01098
https://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
https://doi.org/10.1145/3219819.3219991
https://doi.org/10.1145/3219819.3219991
https://arxiv.org/abs/1805.10712
http://arxiv.org/abs/1805.10712

Bibliography

[31] B. Rozemberczki and R. Sarkar, “Characteristic Functions on Graphs: Birds of a Feather,

from Statistical Descriptors to Parametric Models,” in Proceedings of the 29th ACM Inter-

national Conference on Information & Knowledge Management, ser. CIKM ’20, New York,

NY, USA: Association for Computing Machinery, Oct. 19, 2020, pp. 1325–1334, isbn: 978-

1-4503-6859-9. doi: 10.1145/3340531.3411866. [Online]. Available: https://dl.acm.org/

doi/10.1145/3340531.3411866 (visited on 09/27/2024).

[32] M. Beladev, G. Katz, L. Rokach, U. Singer, and K. Radinsky, “GraphERT– Transformers-

based Temporal Dynamic Graph Embedding,” in Proceedings of the 32nd ACM International

Conference on Information and Knowledge Management, Birmingham United Kingdom:

ACM, Oct. 21, 2023, pp. 68–77, isbn: 9798400701245. doi: 10.1145/3583780.3614899.

[Online]. Available: https://dl.acm.org/doi/10.1145/3583780.3614899 (visited on

05/07/2024).

[33] Y. Li, S. Rao, J. R. A. Solares, A. Hassaine, R. Ramakrishnan, D. Canoy, Y. Zhu, K. Rahimi,

and G. Salimi-Khorshidi, “BEHRT: Transformer for Electronic Health Records,” Scientific

Reports, vol. 10, no. 1, p. 7155, Apr. 28, 2020, issn: 2045-2322. doi: 10.1038/s41598-020-

62922-y. [Online]. Available: https://www.nature.com/articles/s41598-020-62922-y

(visited on 09/24/2024).

[34] M. Odgaard, K. V. Klein, S. M. Thysen, E. Jimenez-Solem, M. Sillesen, and M. Nielsen.

“CORE-BEHRT: A Carefully Optimized and Rigorously Evaluated BEHRT.” arXiv: 2404.

15201 [cs]. (May 22, 2024), [Online]. Available: http://arxiv.org/abs/2404.15201

(visited on 09/16/2024), pre-published.

[35] C. Pang, X. Jiang, K. S. Kalluri, M. Spotnitz, R. Chen, A. Perotte, and K. Natarajan,

“CEHR-BERT: Incorporating temporal information from structured EHR data to improve

prediction tasks,” in Proceedings of Machine Learning for Health, PMLR, Nov. 28, 2021,

pp. 239–260. [Online]. Available: https://proceedings.mlr.press/v158/pang21a.html

(visited on 09/24/2024).

[36] R. Poulain and R. Beheshti, “Graph Transformers on EHRs: Better Representation Im-

proves Downstream Performance,” presented at the The Twelfth International Conference

on Learning Representations, Oct. 13, 2023. [Online]. Available: https://openreview.

net/forum?id=pe0Vdv7rsL (visited on 09/16/2024).

[37] “Synthea.” (), [Online]. Available: https://synthetichealth.github.io/synthea/ (vis-

ited on 09/27/2024).

[38] J. Walonoski, M. Kramer, J. Nichols, A. Quina, C. Moesel, D. Hall, C. Duffett, K. Dube,

T. Gallagher, and S. McLachlan, “Synthea: An approach, method, and software mechanism

for generating synthetic patients and the synthetic electronic health care record,” Journal

of the American Medical Informatics Association, vol. 25, no. 3, pp. 230–238, Mar. 1, 2018,

issn: 1527-974X. doi: 10.1093/jamia/ocx079. [Online]. Available: https://doi.org/10.

1093/jamia/ocx079 (visited on 09/27/2024).

[39] “Generic Module Framework,” GitHub. (), [Online]. Available: https://github.com/

synthetichealth/synthea/wiki/Generic-Module-Framework (visited on 10/26/2024).

[40] Neo4jSolutions/patient-journey-model, Neo4j Solutions, Jun. 23, 2024. [Online]. Available:

https://github.com/Neo4jSolutions/patient-journey-model (visited on 10/26/2024).

Linus Andreas Schneider

3705638
45

https://doi.org/10.1145/3340531.3411866
https://dl.acm.org/doi/10.1145/3340531.3411866
https://dl.acm.org/doi/10.1145/3340531.3411866
https://doi.org/10.1145/3583780.3614899
https://dl.acm.org/doi/10.1145/3583780.3614899
https://doi.org/10.1038/s41598-020-62922-y
https://doi.org/10.1038/s41598-020-62922-y
https://www.nature.com/articles/s41598-020-62922-y
https://arxiv.org/abs/2404.15201
https://arxiv.org/abs/2404.15201
http://arxiv.org/abs/2404.15201
https://proceedings.mlr.press/v158/pang21a.html
https://openreview.net/forum?id=pe0Vdv7rsL
https://openreview.net/forum?id=pe0Vdv7rsL
https://synthetichealth.github.io/synthea/
https://doi.org/10.1093/jamia/ocx079
https://doi.org/10.1093/jamia/ocx079
https://doi.org/10.1093/jamia/ocx079
https://github.com/synthetichealth/synthea/wiki/Generic-Module-Framework
https://github.com/synthetichealth/synthea/wiki/Generic-Module-Framework
https://github.com/Neo4jSolutions/patient-journey-model

Bibliography

[41] Neo4j-field/pyingest, neo4j-field, Oct. 18, 2024. [Online]. Available: https://github.com/

neo4j-field/pyingest (visited on 10/26/2024).

[42] UKPLab/sentence-transformers, Ubiquitous Knowledge Processing Lab, Oct. 26, 2024. [On-

line]. Available: https : / / github . com / UKPLab / sentence - transformers (visited on

10/26/2024).

[43] S. K. Sahu, Ojus1/Date2Vec, Sep. 25, 2024. [Online]. Available: https://github.com/

ojus1/Date2Vec (visited on 10/23/2024).

Linus Andreas Schneider

3705638
46

https://github.com/neo4j-field/pyingest
https://github.com/neo4j-field/pyingest
https://github.com/UKPLab/sentence-transformers
https://github.com/ojus1/Date2Vec
https://github.com/ojus1/Date2Vec

Declaration of Originality

Declaration of Originality

Ich versichere, dass ich die vorliegende Arbeit mit dem Thema:

“Explorative Graph-Level Embeddings for Temporal Property Graphs”

selbstständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt habe,

insbesondere sind wörtliche und sinngemäße Zitate als solche gekennzeichnet. Mir ist bekannt, dass

Zuwiderhandlung auch nachträglich zur Aberkennung des Abschlusses führen kann. Ich versichere,

dass das elektronische Exemplar mit den gedruckten Exemplaren übereinstimmt.

Tübingen, den 27.10.2024

Linus Andreas Schneider

Linus Andreas Schneider

3705638
47

	List of Figures
	List of Tables
	Listings
	List of Abbreviations
	Introduction
	Motivation
	Aims and Objectives
	Thesis Outline

	Background
	Graphs
	Undirected Simple Graphs
	Directed Multigraphs
	Temporal Property Graphs

	Embeddings
	Similarity Measure
	Graph Embeddings
	Text Embeddings
	Temporal Embeddings

	Dimensionality Reduction
	Uniform Manifold Approximation and Projection

	Clustering
	Hierarchical Density-Based Spatial Clustering of Applications with Noise
	Performance Evaluation

	Neo4j
	Interacting with Neo4j
	FastRP

	Related Work
	Graph Level Embeddings
	Temporal Graph Level Embedding

	Electronic Health Record Embeddings

	Dataset
	Patient Journey Model
	Dataset Creation
	Synthea: Synthetic Patient Generator
	Using Synthea
	Creating Graph Representation

	Dataset Overview
	General Information
	Temporal Aspects

	Design and Implementation
	Design
	Implementation
	Data Preprocessing
	Encoding String Data
	Encoding Temporal Aspects

	Embedding Generation
	Aggregation
	Analysis

	Evaluation and Discussion
	Effectiveness Evaluation
	Topological Differences
	String Property Differences
	Temporal Differences

	Baseline Method
	Scalability Evaluation
	Preprocessing
	Embedding Generation

	Clustering Task
	Summary and Discussion

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Declaration of Originality

