German English

Graph-basierte Daten-Analyse

Processing highly connected data as graphs becomes more and more important in many different domains. Prominent examples are social networks, e.g. facebook and Twitter, as well as information networks like the World Wide Web or biological networks. One important similarity of these domain specific data is their inherent graph structure which makes them eligible for analytics using graph algorithms. Besides that, the datasets share two more similarities: they are huge in size, making it hard or even impossible to process them on a single machine and they grow over time, which classifies them as dynamic graphs.